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Teacher-student collaborated multiple
instance learning for pan-cancer PDL1
expression prediction from
histopathology slides

Darui Jin 1,2,3, Shangying Liang1, Artem Shmatko 2, Alexander Arnold4,
David Horst4,5, Thomas G. P. Grünewald 6,7,8,9 , Moritz Gerstung 2 &
Xiangzhi Bai 1,10,11

Programmed cell death ligand 1 (PDL1), as an important biomarker, is quan-
tified by immunohistochemistry (IHC) with few established histopathological
patterns. Deep learning aids in histopathological assessment, yet hetero-
geneity and lacking spatially resolved annotations challenge precise analysis.
Here, we present a weakly supervised learning approach using bulk RNA
sequencing for PDL1 expression prediction from hematoxylin and eosin (H&E)
slides. Our method extends the multiple instance learning paradigm with the
teacher-student framework, which assigns dynamic pseudo-labels for intra-
slide heterogeneity and retrieves unlabeled instances using temporal ensem-
blemodel distillation. The approach, evaluated on 12,299 slides across 20 solid
tumor types, achieves a weighted average area under the curve of 0.83 on
fresh-frozen and 0.74 on formalin-fixed specimens for 9 tumors with PDL1 as
an established biomarker. Our method predicts PDL1 expression patterns,
validated by IHC on 20 slides, offering insights into histologies relevant to
PDL1. This demonstrates the potential of deep learning in identifying diverse
histological patterns for molecular changes from H&E images.

Inhibitors for the PD1-PDL1 checkpoint have revolutionized cancer
therapy in the past decade. In addition to seven anti-PD1/PDL1 mono-
clonal antibodies (mAbs) currently approved by US Food and Drug
Administration (FDA), there are still approximately six thousandmAbs
undergoing clinical trials1–3. Blockade of PD1-PDL1 interaction notably

contributes to activating antitumor immunity and is proven to benefit
the treatment of various types of tumors4–6. The expression of PDL1
(gene symbol CD274) serves as a biomarker associated with patients’
response to anti-PD1/PDL1 mAbs such as pembrolizumab and nivolu-
mab, which acts as the most widely adopted standard for identifying
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patient cohorts that are appropriate candidates for PD1-PDL1
immunotherapy7. From 2011 to 2021, FDA approvals of 15 immune
checkpoint inhibitors were linked with companion PDL1 testing
including non-small cell lung cancer (NSCLC) (N = 7), bladder cancer
(N = 3), triple-negative breast cancer (N = 2), cervical cancer (N = 2) and
gastric cancer (N = 1). Further, the outcomes of patients with renal cell
cancer, colon cancer andmelanoma are also reported linkedwith PDL1
expression by many reports8–12.

Currently, PDL1 expression is predominantly quantified by immu-
nohistochemistry (IHC) assays, and some recent research has also
indicated a significant correlation betweenmRNA expression levels and
the responseof associatedmonotherapies13.Whilst IHCqualificationhas
been successfully used in clinical practice for decades and is considered
to be a gold standard for this task, recent analyses show that the inter-
pretation of staining and decision threshold differs for different com-
mercially available platforms andevenwithin the sameplatform14. Along
with the subjectivity of pathologists, these factors introduce undesired

inter- and intraobserver variance to the evaluation of staining, limiting
the reproducibility. Besides, quantification of mRNA expression using
techniques like real-time reverse transcription polymerase chain reac-
tion and IHC tests can be costly and time-consuming15. H&E stained
slides are one of the most widely used and effective carriers of patho-
logical information, offering a cost-effective and expedient alternative,
and are employed in routine pathological assessment of clinical speci-
mens. Developing an efficient and reliable method for estimating PDL1
expression on H&E stained slides, which does not require additional
sample preparations,may yield a faster and cheaper diagnostic readout.
Further, this process is capable of unraveling histopathological char-
acteristics of PDL1 expression on slides, thereby assisting pathologists in
comprehending the gene’s expression mechanism and facilitating a
more precise interpretation of immune evasion patterns.

The expanding field of computational histopathology may not
only automate existing workflows, but also proposes to explore the
molecular information based on morphological features via deep
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Fig. 1 | The frameworkofMILTSand its performanceonclinicallyPDL1-relevant
tumors. a The training and inferenceworkflow ofMILTS includes three steps. First,
the data of patient cohorts are divided into training set, validation set and test set,
followed by patching and random augmentations. Then, obtained tiles are utilized
to train the patch-level teacher-student collaborated network in a MIL manner. At
last, the trained patch-level teacher model (or student model) works as the
extractor of both statistical features and deep features. The deep features of

patches in the same slide are further fused into a slide token and combinedwith the
statistical summary of patch-level features to train anMLP classifierwhich gives the
patient-level diagnosis. MIL multiple instance learning, S student, T teacher, C
concatenation, MLP multi-layer perceptron. b Quantities of slide images of differ-
ent tumors. c Plot illustrating the model’s performance on FFPE slides and fresh-
frozen slides for the aforementioned tumors, separately. Source data are provided
as a Source Data file.
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learning16. It has exhibited great potential in assisting pathologists on
many routine tasks17 including applications such as mitosis
detection18–21, tissues segmentation22–25, tumor subtyping and
grading26–29, and biomarker assessment30–33. Some studies also reveal
that morphotypes are closely associated with genetic alterations in
tumors and thus indicative of clinical features and prognosis, which
has a chance to redefine the clinical workflows34–37. However, the
analysis of pathological images is often challenged by the limited
availability of reference data, with clinical reports and patient-level
diagnoses being the main sources of information16. And it is also dif-
ficult to accurately capture and spatially resolve transcriptome profiles
at the pixel or cell level in whole slide images38. The presence of such
heterogeneity poses challenges in training deep learning based algo-
rithms, which usually requires accurate references in the form of
labeled data39. Some studies used manual data annotation and adop-
ted fully supervised learning strategies. For example, in the works of
Sha et al.40 and Shamai et al.33, PDL1 expression quantification was
performed at the tile level by pathologists using paired IHC slides
providing an accurate reference for training. However, the dataset size
could be constrained due to the labor-intensive nature of annotating
such data. Some other approaches have opted to overlook the intra-
tumor heterogeneity by assigning slide-level annotations to all content
within a slide31,34,35,41,42. This strategy works well if the slides exhibit
good homogeneity concerning specific properties of interest. How-
ever, it can also lead to overfitting and undesired generalization with
heterogeneous composition, where inaccurate instance-level labels
will either hinder the convergence of the model or result in erroneous
recognition of relevant patterns43. More recent approaches tend to
directly utilize ImageNet44 pretrained features and incorporate spe-
cially designed attention or embedding-based MIL
strategies19,24,29,36,45–48, which significantly accelerates the training but is
also more data-hungry. In addition, dimensionality reduction with
pretrained features inevitably leads to information loss, since
such ImageNet pretrained models are designed to capture general
visual patterns without any specific bias towards histopathology-
related features or priors. Consequently, in situations where certain
details in histopathology images are completely lost or unavailable,
reweighting or attention mechanisms have limited effectiveness.

In this work we propose a weakly supervised learning based
methodology named MILTS (Teacher-Student collaborated Multiple
Instance Learning framework) to leverage the massive amount of tile
information and slide-level annotation provided by whole slide
H&E images from The Cancer Genome Atlas (TCGA) and The National
Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium
(CPTAC) involving 12,299 slides from 6715 patients across 20 kinds of
tumors. MILTS utilizes an iterative, self-refining process to assign
labels automatically supporting tile feature extractor training, and
combines the statistical summary of tile-level predictions with tokens
fused by a transformer to obtain the slide-level embedding for the final
prediction. Results demonstrate there exists a salient morpho-
transcriptomic link across cancer types, whose treatment landscape
and prognosis are associated with PDL1 gene expression, with a
weighted average AUC of 0.83 on fresh-frozen and 0.74 on FFPE spe-
cimens. Heterogeneous tile-level predictions further provide insights
into morphotypes associated with PDL1 hot regions in colon cancer,
which include mixed inflammatory stroma with relatively high abun-
dance of eosinophils and a cribriform growth pattern of tumor cells
with hyperchromatic nuclei. Model predictions also consistently
exhibited a strong positive correlation with corresponding IHC quan-
tification, providing further validation for the findings based on H&E
staining. Varying degrees of morpho-transcriptomic correlation are
observed among 11 additional cancer entities, for which PDL1 is cur-
rently not considered tobe a relevant biomarker. Theseanalyses reveal
that the molecular basis of tumors can be depicted from the view of
cellular morphology via advanced deep learning techniques, which

could provide a perspective on studies of tumorigenesis and
treatment.

Results
Workflow of MILTS
The corresponding workflow of MILTS is presented in Fig. 1a. In the
context of MILTS, a slide-level label initialized from dichotomized
mRNA expression levels is employed to supervise the representation
learning for the histopathological image, where three binarization
thresholds (quartile, tertile, and median points) for each cancer type
were considered. Specific values for each cutoff can be found in Sup-
plementary Tables S1 and S2. Because the slide-level labels constitute
an aggregate summary, which is expected to differ across the tiles of
the tumor section, the teacher-student framework combines dynamic
label assignment for individual tiles with knowledge distillation from a
temporal ensemble model representing the exponentially decaying
average of previous learning iterations. Specifically, tiles are processed
both the teacher and student models with random augmentation
including rotation, crop, flip and color transformation. The teacher
model continuously yields tile-level pseudo-labels for typical positive/
negative tiles in each training epoch, based on which the student
model is updated following the MIL constraint as well as the distribu-
tion generated by the teacher model on unlabeled instances. As the
teacher model is continuously updated via the moving average of the
student model, this collaborative procedure automatically learns tile
level labels. These features are further fused by a transformer to obtain
a slide-level token and combined with statistical summaries of patch-
level outcomes in a multi-layer perceptron (MLP) to infer per patient
results. More details are provided in the Methods section.

Predictability of PDL1 expression across nine cancer types
The ability to classify gene expression was evaluated on nine cancers
for which PDL1 expression serves as an established biomarker for
checkpoint inhibitors. The distribution of slides is shown in Fig. 1b
(involving 3121 cases with 4215 fresh-frozen slides and 2966 FFPE
slides). Using the upper tertile of PDL1 expression as a threshold,
MILTS achieved performance on fresh-frozen slides with a weighted
average average area under receiver operating characteristic curve
(AUC) of 0.83 (range: 0.64–0.91), accuracy of 0.75 (range: 0.58–0.87),
sensitivity of 0.83 (range: 0.74–0.90) and specificity of 0.71 (range:
0.47–0.89). We also evaluated the model using other two threshold
settings: the upper quartile (top 75%) and median (50%) expression
levels in each cancer type. These two alternative thresholds yielded
broadly comparable performance with a mean AUC of 0.81 and 0.75,
respectively (Supplementary Fig. S3 and Supplementary
Tables S3 and S4). In the following, we discuss results at the upper
tertile, unless stated otherwise.

Specifically, the dataset comprises bladder urothelial carcinoma
(BLCA), cervical squamous cell and endocervical adenocarcinoma
(CESC), colon adenocarcinoma (COAD), kidney renal papillary cell
carcinoma (KIRP), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), skin cutaneous melanoma (SKCM), stomach ade-
nocarcinoma (STAD), and triple-negative breast carcinoma (TNBC).
Performance results are shown in Fig. 1c. The threshold to determine
the accuracy, sensitivity and specificity is selected by Youden’s J sta-
tistic. The optimal threshold here is the one thatmaximizes the sumof
sensitivity and specificity. This strategy is applied across all our
experiments unless stated otherwise. 95% confidence interval (CI) is
also computedwithbootstrapping strategy (2000 randomresamples),
where the AUC performances on fresh-frozen slides are respectively
0.87 for bladder urothelial carcinoma (95% CI: 0.84–0.90), 0.91 for
cervical squamous cell and endocervical adenocarcinoma (95% CI:
0.88–0.93), 0.92 for colon adenocarcinoma (95% CI: 0.90-0.93), 0.77
for kidney renal papillary cell carcinoma (95% CI: 0.73–0.80), 0.74 for
lung adenocarcinoma (95% CI: 0.72–0.77), 0.73 for lung squamous cell
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carcinoma (95% CI: 0.70–0.76), 0.87 for skin cutaneous melanoma
(95% CI: 0.86–0.89), 0.85 for stomach adenocarcinoma (95% CI:
0.83–0.87) and 0.64 for triple-negative breast carcinoma (95% CI:
0.60–0.69).

Separate models were trained on FFPE samples using the tertile
threshold. We maintained consistent cohort splits employed for fresh-
frozen sections and an average AUC of 0.74 was achieved with the
model trained with FFPE slides, where the trend in tumor-specific per-
formancewas consistentwith that of fresh-frozen slides. Detailed results

are presented in Supplementary Tables S5 and S6. Nonetheless, there
remained a performance gap between FFPE slides and fresh-frozen ones
as shown in Fig. 1c. The finding that frozen slides usually yield better
molecular inference aligns with observations reported in several pre-
vious studies26,32. Further investigations are warranted to explore stra-
tegies for bridging the gap between these two modalities. Overall, a
significant morpho-transcriptomic link is evident regarding PDL1
expression across nine PDL1-relevant cancer types, which demonstrates
good predictability independent of the specific threshold.
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Fig. 2 | Quantitative comparison of PDL1 expression in clinically relevant
tumorswith othermethods and ablation study results. aRadar charts, arranged
from left to right and top to bottom, represent the AUC, accuracy, F1 score, and
MCCof the proposedmethod and comparisonmethods, respectively, at the tertile
threshold. b The histogram shows the results of external validation on the CPTAC
BRCA and COAD datasets using the same thresholds as in the TCGA datasets.

cHistograms of ablation studywith respect to AUC, accuracy, F1 score andMCC. In
the group of “FS + average pooling”, a fully supervised framework and average
pooling of patch-level predictions was adopted. In the group of “TS + average
pooling”, the patch-level feature aggregation module of MILTS was substituted
with average pooling. Source data are provided as a Source Data file.
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MILTS outperforms other methods in PDL1 expression
prediction
Comparison results demonstrate that MILTS outperforms other
methods on aforementioned tumors, exhibiting a notable advantage
of 9% ormore in terms of average AUC. Evaluated were themethod by
Campanella et al.36, TransMIL46 and CLAM47. All comparison methods
are deep learning-based MIL algorithms, among which method
by Campanella et al. adopts instance-level strategy while TransMIL and
CLAM work on embedding-level. The related hyperparameter settings
are listed in Supplementary Table S7. Quantitative results are provided
in Fig. 2a. The weighted average AUC of MILTS on these nine types of
tumors is 0.83, while those of the method by Campanella et al.,
TransMIL and CLAM are respectively 0.63 (range: 0.51–0.75), 0.71
(range: 0.53–0.84) and 0.74 (range: 0.56–0.83). The results of F1 score
and Matthews correlation coefficient (MCC) further reveal that MILTS
exhibits more balanced sensitivity to both positive and negative sam-
ples, with an average performance of 0.69 and 0.50, respectively. In
comparison, the second-best model achieves only 0.60 and 0.39 for
the same metrics.

An ablation study was conducted to evaluate the individual
modules of the teacher-student MIL learning and feature aggregation
using COAD, SKCM and STAD data. Specifically, MILTS consists of two
key modules: a teacher-student MIL module for patch-level feature
extraction and a transformer-based feature aggregation module for
slide-level predictions. The ablation study was conducted by examin-
ing these two modules in isolation. Details about the modules are
provided in the Methods section. The results are presented in Fig. 2c.
Results reported that teacher–student MIL module brought an
improvement of 4.4%, 8.5%, 5%, and 8.8% with respect to AUC, accu-
racy, F1 score andMCC. The improvements of the feature aggregation

module are respectively 3.5%, 1.5%, 2.9%, and 4.2%, respectively.
Besides, we also implemented external validation on the CPTAC
dataset49 whose results are shown in Fig. 2b. Theproposedmethod still
demonstrated superior overall performance when compared to the
other methods. However, all algorithms exhibit a decrease in perfor-
mance when applied to the CPTAC dataset. This decline in accuracy
could be attributed to several factors, including variations in mRNA
quantification and differences in the slide imagemodalities used in the
CPTAC dataset which are a mixture of fresh frozen slides and FFPE
slides. Further investigation and refinement of the algorithms may be
necessary to address these issues and improve their performance on
the CPTAC dataset. Nonetheless, the quantitative analysis of compar-
ison confirms that the proposed model appear to better decipher
morphological features associated with PDL1 expression from patho-
logical patterns compared to other methods.

Spatially heterogeneous patterns of high PDL1 expression
Like most other MIL models, MILTS calculates predictions for each
individual tile as well as for the entire slide. Strikingly, tiles from
samples within the upper tertile of bulk PDL1 expression are predicted
to exhibit a wide range of PDL1 expression, whereas tiles from the
remaining samples were uniformly low (Fig. 3a). These distributions of
tile-level probability accord with the assumption that there exists a
substantial part of instances in positive slides which may not exhibit
the samecharacteristics as the overall slide-level label suggests. Similar
results were observed for the upper quartile and median thresholds,
where it appears that the range of positive probabilities for the PDL1-
low class tends to shrink as the threshold value increases (Fig. S4).
Conversely the range of positive probabilities becomeswiderwhen the
median is chosen as the threshold, indicating that the model begins to

t-SNE embedding space

b

COAD negative slides

COAD +
COAD -

STAD negative slides

COAD postive slides STAD postive slides

a

STAD +

STAD -

t-SNE embedding space

Fig. 3 | Different distributions between samples of PDL1 high and low expres-
sion. a Violin plot of positive probabilities for tiles from PDL1 high class and low
class at thresholds of upper tertile for each kind of tumor. b Two-dimensional
feature space constructed by t-SNE using 523-dimensional slide-level embedding.

Heatmaps shown in the red boxes are from positive samples and those in the blue
boxes are from negative samples, within which red represents a high probability of
being PDL1 highly expressed and blue indicates the opposite. Source data are
provided as a Source Data file.
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unravel nuances of very lowPDL1 expression. Thedistinct distributions
between PDL1 high and low groups explain the observed differences of
AUCs (Figs. S5 and S6). Noting that the distributions show greater
overlap of other thresholds reflects the lower AUCs for these cutoffs
and indicates that the histopathological differences are less pro-
nounced for median and upper quartile threshold.

The notion that positive tiles reflect commonhistological features
is also supported by aUMAP50 visualization of the embeddings learned
by the patch-level classifier in Fig. S7. Here the representations of
instances in slideswith highPDL1expression exhibited varyingdegrees
of overlap with instances from negative slides, and those with high
expression also demonstrated their own distinct distribution, inde-
pendent from the distribution of negative samples, which were also
reflected respectively by the cold region and highlighted region in
heatmaps of PDL1 positive slides (Fig. 3b).

Deepmorphological features help discoveringmorphotypes for
PDL1 expression
The aforementioned dispersion of high PDL1 predictions across tiles
from the same slide manifest in a spatially organized fashion as evi-
denced by heatmaps of the predicted PDL1 expression (Fig. 3b). In the
case of negative slides, the distribution tends to have a relatively lower
mean value, resulting in the domination of blue regions in the corre-
sponding heatmaps. In contrast, the heatmaps of positive slides exhi-
bit different contiguous areas of predicted high and low expression
values. This spatial heterogeneity also coincides with a range of his-
topathological patterns, which we illustrate at the example of colon
adenocarcinoma.

Presented in the first row of Fig. 4a, it is common to observe a
mixed inflammatory stroma characterized by a relatively high abun-
dance of eosinophils in areas with high PDL1 expression, which can be
either intact or degranulated. This suggests an immune response or
inflammatory process occurring in these areas. The findings in Ref. 51
align with our observations, where PDL1 expression was pre-
dominantly observed on tumor-associated inflammatory cells by
pairwise comparison with IHC slides in MSI-H subtypes. Another dis-
tinctive feature observed in areas with high PDL1 expression is the
presence of a cribriform (sieve-like) growth pattern of tumor cells in
the second row of Fig. 4a. This growth pattern is accompanied by
tumor cells exhibiting hyperchromatic nuclei, which appear darker
and more intensely stained compared to surrounding cells. The pre-
sence of cribriform growth has been identified as an independent
prognostic factor in various types of cancers, indicating a higher riskof
tumor progression, metastasis, and decreased overall survival. In
contrast, typical negative patterns usually included areas of non-
invasive adenomatous parts of the lesion as illustrated in the first row
of Fig. 4b. The non-invasive adenomatous areas appear more uniform
and well-differentiated glandular architecture, indicating a lower like-
lihood of malignancy or aggressive behavior. Other patterns also
include normal colonic crypts adjacent to the invasive carcinomas,
tumor necrosis, abundant tumor-associated mucin in case of muci-
nous carcinomas and coagulation necrosis at the sample margin in
Fig. 4b. The aforementioned recurring patterns were identified in both
fresh-frozen and FFPE slides. Additional examples can be found in
Supplementary Figs. S8 and S9.

Further, the predicted patterns of PDL1 gene expressionwere also
validated using paired PDL1 IHC slides. Correlation analysis between
model predictions and IHC scores was conducted using a set of 20
colon adenocarcinoma samples. Visually, PDL1 IHC levels exhibited
similar patterns as H&E based predictions (Fig. 5a). IHC levels were
quantified in patches of 128 × 128μm2 and compared to the H&E based
PDL1 prediction in matching areas containing 1% of the total patches
on the slide. Model predictions exhibit a consistent strong positive
correlation with IHC across all 20 slides, with an average Pearson’s
correlation coefficient of 0.74 (Fig. 5b). Together these findings

confirm themodel’s ability to deconvolve gene expression signals and
attribute these signals to distinct histopathological areas. More details
are provided in the Supplementary Note 1.

Correlations between MILTS predictions with TME and clinical
features
In order to better understand the observed histopathological asso-
ciations, correlations with the immune microenvironment, as esti-
mated from RNA-seq data by CIBERSORT52, and with other clinical
parameters were performed. The analysis of immune infiltrates
revealed an overall positive correlation between the presence of cell
types, such as M1 macrophages and CD8+ cytotoxic T cells, and pre-
dicted PDL1 expression acrossmost cancer types (Fig. 6a). This finding
aligns with the observed patterns of high PDL1 expression in COAD
which was found to co-occur with a mixed inflammatory infiltrate. The
analysis also revealed a correlation between the presence of CD4
memory-activated T cells and elevated PDL1 expression, which may
indicate a previous immune response against tumor antigens, leading
to the upregulation of PDL1 as a countermeasure by tumor cells to
suppress T cell activity and evade immune attack. This correlationmay
imply an intricate interplay between PDL1 expression, immune cell
infiltration, and the inflammatory response within the tumor
microenvironment.

In addition, we conducted an analysis to assess the correlation
between the predictions generated by MILTS and various clinical fea-
tures specific to different cancer types which is shown in Fig. 6b.
Across cancer types, only few consistent trends were observed, with
tumormutation burden and TIL Regional Fraction exhibiting generally
weak positive correlations with PDL1 prediction patterns. The finding
of PDL1 expression coinciding with high inflammation, which is often
found in tumors with high mutation burden, agrees with the obser-
vations of the previous section. To further verify the correlation, we
crafted three distinct feature sets, consisting of (i) the deep features
derived from the proposed model, (ii) deep features concatenated
with standardized clinical features and (iii) clinical features alone. An
XGBoost classifier was employed to conduct the prediction based on
the forementioned embeddings. The results are presented in Fig. 6c.
It’s evident that the deep features extracted by MILTS outperform the
purely clinical features which implies that the proposed model
encapsulates uniquemorphological information sourced directly from
the pathological slides. We also implemented SHAP to showcase the
relative importance of the deep features in comparison to clinical
features (Fig 6d). Using SHAP values, it could be observed that the
deep features derived from the proposed model hold significantly
greater importance than the clinical features. These evidences indicate
that the features extractedby themodel aremostly either independent
of, or lowly correlatedwith, standard clinical features. Consequently, it
suggests that the features captured by the model are distinct and do
not overlap with or duplicate the information provided by the clinical
features. This highlights the complementary nature of the model’s
predictive capabilities in relation to the clinical characteristics of the
cancers under investigation.

Weaker histopathological associations in other cancer types
In order to provide broader context, we also conducted analysis of
tumor types, forwhich immunotherapies have not been approvedwith
PDL1 companion tests, or forwhich the prognostic significanceof PDL1
expression has not been significantly verified. The experiments
involved a total of 11 types of tumors, which were adrenocortical car-
cinoma (ACC), esophageal carcinoma (ESCA), head&neck squamous
cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), meso-
thelioma (MESO), ovarian serous cystadenocarcinoma (OV), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), testicular
germ cell tumors (TCGT), thyroid carcinoma (THCA) and uterine cor-
pus endometrial carcinoma (UCEC). The statistical performance of
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TCGA-AA-3672-01A-01-TS1
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TCGA-G4-6322-01A-01-TS1

mixed inflammatory stroma with eosinophils

cribriform growth patterns of tumor cells

non-invasive adenomatous parts

normal colonic crypts

TCGA-AA-A01D-01A-01-BS1

coagulation necrosis
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tumor necrosis

tumor-associated mucin
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Fig. 4 | Typical patterns for PDL1 high/low expression in H& E slide images
of COAD. a Example slides with typical PDL1 positive and (b) negative patterns.
From left to right are the original H&E slides, predicted heatmaps and example tiles

with high and low predicted PDL1 expressions. Tiles of high expression aremarked
in the color red and low ones in blue. Scale bars in the tile views of (a) and
(b): 100μm.
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Fig. 5 | Correlation analysis between model predictions and paired IHC quan-
tification. a Visual comparison between predicted heatmaps and corresponding
IHC slide images. The stain-separated images are produced by employing the dia-
minobenzidine and hematoxylin channels from IHC slide images as the green and
blue components, respectively. A more pronounced green area signifies higher

PDL1 levels. b Scatter plots illustrating the relationship between normalized IHC
quantification and predictedpositive probability by the proposedmodel. The error
band represents a 95% confidence interval, calculated using bootstrap methods.
Source data are provided as a Source Data file.
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MILTS on these tumors is presented in Fig. 7a. The average AUC value
ismeasured at 0.67 and the average accuracy stands at 64%, indicating
a moderate level of discriminatory power in distinguishing between
different mRNA expression levels. See Supplementary Tables S8–S10
for the details.

Among the 11 cancer entities analyzed, it is important to note that
not all tumors display a distinct morphological pattern of PDL1
expression that can be directly comparable to PDL1 relevant tumors.
The AUCs for HNSC, READ, TGCT and THCA exceeded 0.7, whichwere
comparable to theperformanceon cancerswith PDL1 as an established
biomarker where TNBC is the only one with the AUC lower than 0.7.
Besides, we also devised a similaritymeasure based on the distribution
of average classification performance of all PDL1 relevant tumors (see
Similarity Measure in Supplementary Note 2). The corresponding

results are exhibited in Fig. S11, and the four aforementioned tumor
types (HNSC, READ, TGCT, and THCA) still demonstrate good simi-
larity. This implies that the intermediate processes connecting mac-
roscopic changes in tumor morphology to microscopic gene
expressionsmay share certain common features for these tumors with
good predictability of PDL1 expression, which contribute to their
consistent and accurate prediction of PDL1 expression.

PDL1 expression was found to be lower compared to PDL1 rele-
vant tumors, with mean values for the two groups being 1.71 and 3.27.
Despite this positive correlation exists between the average level of
PDL1 expression and corresponding classification performance we
note that there are some PDL1 relevant tumours which achieve high
classification accuracy despite low PDL1 expression (Fig. 7b). This
implies that the distinction in the predictability based on

a b

Spearman’s rank correlation

c d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC accuracy sensitivity specificity

MILTS MILTS+clinical clinical

Fig. 6 | Correlation analysis on tumor immune microenvironment and clinical
profiles. a Heatmap of Spearman’s rank correlation between model predictions
and immune infiltrates. b Heatmap showing Spearman’s rank correlation between
model predictions and clinical features. The bold values indicate correlation
coefficients with p-values less than 0.05. The alternative hypothesis is specified as

two-sided. c Classification performance by the deep features, deep features con-
catenated with standardized clinical features and clinical features alone. d Features
with the top 10 SHAP values. Features with indices less than or equal to 523
represent deep features extracted by MILTS. Source data are provided as a Source
Data file.
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histopathology may be attributed to multiple factors in addition to
PDL1 expression level, which may also have implications for ther-
apeutic outcomes. The residual differences in morpho-transcriptomic
associations suggests that additional investigation is warranted for
tumors with better morphological correlation.

Discussion
PDL1 hasbeenproven to be aneffective biomarker for determining the
response to the immunotherapies in a number of cancer types. Here,
we developed MILTS, a weakly-supervised multiple-instance learning
algorithm for predicting slide-level labels from H&E slide scans. We
demonstrated its efficacy in predicting elevated PDL1 expression for a
broad range of cancers including 9 cancers where PDL1 serves as an
established biomarker. Given the absence of a clinically optimal
threshold, different cutoffs thresholds of mRNA quantification were
employed in this study to verify the correlation. Compared to existing
toolsMILTS displayed competitive performance. Our analysis revealed
salient links between histopathology and the level of PDL1
gene expression for these tumors across various thresholds. Of note,
tumor types for which PDL1 is not considered to be a relevant bio-
marker, also exhibited lower histopathological predictability, likely
because of overall lower PDL1 expression.

In addition to the predictability of PDL1 based solely on histology,
which could potentially help reduce the need for additional tests, this
study also highlighted a diversity of histopathological patterns asso-
ciated with high and low PDL1 expression. Utilizing the deep histo-
pathological features and patch-level predictions, typical patterns for
high PDL1 expression in colon adenocarcinomas were found. These
include amixed inflammatory stromacharacterizedby a relatively high
abundance of eosinophils and a cribriform growth pattern of tumor
cells. Furthermore, low expression patterns include tumor necrosis,
coagulation necrosis at the samplemargin, tumor-associatedmucin in
case of mucinous carcinomas, normal colonic crypts adjacent to the
invasive carcinomas, and, most interestingly, non-invasive adenoma-
tous parts of the lesion. It reflected that this weakly-supervised learn-
ing manner was capable of pinpointing the potential morphological
patterns or cytomorphology of different PDL1 expression levels, which
due to their diverse nature and heterogeneous occurrence across and
within a slide are difficult to establish by conventional means.

Despite these insights, there are still certain limitations. The first
one is the persisting performance gap between fresh-frozen and FFPE

tissue sections in the proposedmodel. This discrepancy is likely due to
the fact that fresh-frozen slides are generally considered to better
preserve the structure of molecular content, as noted by ref. 26.
Therefore, future research should focus on bridging this gap and
enhancing the generalizability of models trained with single-modality
data. This improvement is crucial formaking AImodels applicable and
effective in routine clinical settings. Another important limitation was
the consistency scale used for PDL1 expression. The accuracy and
reliability of the results heavily depended on the thresholdingmethod
employed to generate labels from mRNA expression levels. The
potential mismatch between the bulk RNA sequences and the tissue
presented in the histopathology slide can introduce challenges in
integrating themolecular information from bulk RNA sequencing with
the spatial information provided by histopathology slides. And varia-
tions of the protocols and techniques used for RNA expression quan-
tification can also impact the knowledge transferability between
different datasets. These may be plausible factors contributing to the
observed performance differences in the external validation on the
CPTAC dataset in this study.

Overall, our study revealed that it is possible to predict high and
low PDL1 mRNA expression based on H&E slides with the proposed
weakly supervised method MILTS. Furthermore, MILTS captures and
identifies meaningful histopathological patterns that are associated
with molecular changes, which may not be readily discernible due to
their heterogeneous occurrence across and within slides. These find-
ings underscore the utility of AI to augment the capabilities of
pathologists by leveraging large amounts of digitized histopathologi-
cal slides with slide-level annotations, and thereby providing valuable
insights into the complex interactions between histology and mole-
cular biology.

Methods
Datasets
This study was approved by the Ethics Committee of the Charité Uni-
versity Medicine (#EA4/046/21) and complied with all relevant ethical
regulations. Whole slide images and transcriptome profiling data uti-
lized in the experiments come from TCGA project via National Cancer
Institute (NCI) GenomicData Commons Portal53 and CPTACproject via
the Cancer Imaging Archive (TCIA) Pathology Portal, which comprises
12,299 H&E stained whole slide images and corresponding mRNA
quantification data obtained from 6715 patients diagnosed across 20
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Fig. 7 | Performance onother cancer entities. aHistogramofmodel performance
on the other 11 cancer entities indicated by AUC, accuracy, sensitivity and specifi-
city. The average performance of the group with PDL1 diagnostics is displayed in
the leftmost column. w/PDL1 means the tumors with PDL1 as an established bio-
marker.b Scatter plot showing the correlation between the overall PDL1 expression
level and AUC performance. Box plots displayed alongside the Y and X axes,
represent the distribution of tumour-specific AUCs and the PDL1 FPKM, respec-
tively. The central line in each box represents the median value. The box spans the
interquartile range (IQR),with its lower andupperboundariesmarking the 25th and

75th percentiles, respectively. Whiskers represent the maximum and minimum
values. In the AUC box plots, the groups are divided into those with estab-
lished PDL1 diagnostics (n = 9) and those without (n = 11). For the PDL1 FPKM box
plots, the sample sizes are n = 3830 and n = 3386 for the two groups, respectively.
Groups with and without PDL1 diagnostics are distinguished by dark blue and light
blue markers in the data. w/, with; w/o, without. The error band represents a 95%
confidence interval, calculated using bootstrapmethods. Source data are provided
as a Source Data file.
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different types of cancer. Twenty paired FFPE and IHC colorectal
cancer samples are obtained from Charité-Universitätsmedizin Berlin.
The age, sex and other metadata may not be published due to reg-
ulatory reasons. Furthermore, colon cancer demonstrates no sub-
stantial sex-specific characteristics, and PDL1, a widely recognized
biomarker, is established as independent of both sex and age factors.
Thus, these metadata were not utilized in producing the research
results of this paper, making them irrelevant for data interpretation
and the reproducibility of results. Informed consent from all partici-
pants was obtained and humanparticipants did not receive financial or
any other compensation. Data from CPTAC dataset is employed for
external validation purposes. The sample types comprise mainly pri-
mary solid tumor as well as metastatic tissues. Specifically, the dataset
comprises 8719 fresh-frozen slides and 2966 FFPE slides from TCGA,
along with 614 slides from CPTAC COAD and BRCA. Characteristics of
patients are presented in Supplementary Table S11. We collect all
available whole slide images scanned at a magnification of 20× or
higher, along with their CD274 mRNA expression level read counts
normalized by the upper quartile fragments per kilobase of transcript
per million mapped reads (FPKM-UQ).

According to the biospecimen information available for TCGA
cases, it is confirmed that the digitized fresh-frozen slides and
sequencing data usually originate from the same vial of the same
sample, with the slides typically obtained from either the top or bot-
tom layer of the corresponding section. However, FFPE slides are
sampled from a different vial and the potential mismatch with the
sequencing data could be more pronounced. Thus a thresholding
strategywas implemented on sequencing data converting the task into
a classification task rather than a regression one, thereby enhancing
the alignment between the data and labels. A commonly used split for
data, in which 60% is reserved for training, 15% for validation, and 25%
for testing, was employed for the majority of the tumors analyzed. It’s
worth noting that the splitting was performed based on patient IDs.
This led to a distribution of 5373 slides for training, 1189 slides for
validation, and 3182 slides for testing in the case of fresh-frozen slides,
and 1837, 386, and 743 slides respectively for FFPE slides.

Data preprocessing
Due to the tremendously large size, whole slide images should be
decomposed into smaller elements so that deep learning techniques
like convolutional neural network could handle them at an acceptable
computational cost. Hysteresis thresholding is applied to exclude the
invalid background by finding contours of stained tissues. The valid
regions within the contours or partly overlapped are cropped into tiles
of 256 pixels × 256pixels at resolution of 20×, which correspond to the
physical size of 128μm× 128μm respectively. In total, 52,587,256 tiles
are extracted for the establishment and verification of the model. To
mitigate the bias introduced by variations in staining protocols and
laboratory conditions, we applied random adjustments to the bright-
ness, contrast, saturation, and hue of generated tiles. In addition,
random rotation and crop of the tiles were also applied to increase the
variability of scales and orientations. Detailed parameter settings for
data augmentation are shown in Supplementary Table S12.

Teacher-student collaborated multiple instance learning
(MILTS) for patch feature extraction
A two-stage strategy is adopted in the diagnosis of a patient’s slide,
starting with patch-level assessment, followed by slide-level feature
aggregation and prediction. This framework enables not only higher-
level diagnosis of thepatient, but also interpretationof the slide’s inner
structure based on the patch-level predictions. Specifically, prediction
of PDL1 expression is formulated as a classification problem using a
specific mRNA quantification value as the threshold. This threshold
was set based on themedian point, upper tertile, and upper quartile of
the mRNA quantification distribution. Classification based on the

patch-level classifier is usually devised under multiple instance learn-
ing framework when only the slide-level property is known and
potential heterogeneity is implied. During the patch-level feature
extraction stage, MILTS made two important improvements. Firstly,
wemodified the optimization ofmultiple instance learning framework
to a class-targeted way considering the heterogeneous composition of
a slide image. Secondly, inspired by the human-decision making pro-
cess, the single model of MIL is decomposed into a teacher and a
student model, in which the teacher model dynamically assigns
probabilities to tiles, and the student model subsequently learns to
predict. These two components work collaboratively to boost the
performance on patch-level pathological feature extraction.

In the classic MIL approaches, the target label Yk is predicted
based on the distribution of the instances (or patches)
x1,k ,x2,k , . . . ,xn,k

� �
from a bag (a slide image in this case) Xk, where the

hypothetical distribution should follow the principle below54:

Yk =
0, if

P
yi,k = 0

1, else

�
ð1Þ

where yi,k is the label for instance xi,k and the principle applies to the
binary classification. This assumption implies that positive instances
should only be present in positive bags, which accurately reflects
certain scenarios in pathological diagnosis, such as distinguishing
between benign and malignant lesions.

However, it is crucial to note that PDL1 expression is quantified by
the accumulation of cancer cell surface PD-L1, rather than simply by its
presence or absence. This implies that elements defined as highly or
lowly expressed could exist in cohorts with contrary macro statistical
properties. Based on this observation, we propose our class-targeted
optimization way, which regularizes the instance-level learning by fil-
trating the representative instances for slides with varying labels.
Instances from different slides are selected based on class-
representative criteria defined by their respective slide labels. Speci-
fically, a maximum-minimum selection criteria is established to
determine the groups of instances involved in model training for
binary classification. In the scenariowherepatients should be classified
as high or low PDL1 expression, instances from positive samples with
maximum response and negative samples with minimum response
tend to be selected and share the same label with bags they belong to.
The criteria could be summarized as:

~ik =
argmax

i
ðfθðxi,kÞÞ, Yk = 1

argmin
i

ðfθðxi,kÞÞ, Yk =0

8
><
>:

ð2Þ

where~ik is the index of the selected instance and fθ is the function of
instance-level classifier which maps the input patch xi,k into a
normalized hidden variable indicative of its typicality for the slide.
To incorporate additional histological pattern references, the criteria
can be further relaxed by allowing M > 1 representative instances in
the slide.

Building on our improved class-representative MIL approach, we
further consider data composition in this task as a mixture of labeled
and unlabeled instances and introduce the teacher-student colla-
borative learning into MIL according to the characteristics of whole
slide images and weakly annotations. Typically, the representative
instances selected from a slide are considered as labeled data and
assigned the same label as the slide. Nevertheless, these instances only
represent a small portion of the entire slide image. Relying solely on
these instances for training can result in overfitting and suboptimal
performance due to their limited representation of the entire slide
image. There still exist a considerable number of instances within
whole slide images that also contain pathological information and can
be utilized for representation learning. Usually to address the
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challenge of interpreting slides containing both clear and ambiguous
regions, a pathologist typically relies on their own expertise to inter-
pret the clear parts of the slide (labeled) and consults with more
experienced or senior pathologists for guidance on the ambiguous
regions (unlabeled). And this process also benefits senior pathologists
by exposing them to difficult cases. Taking inspiration from this pro-
cess, wepropose todecompose the singlemodel in theMIL framework
into a temporal ensemble model consisting of a teacher model, acting
as the senior pathologist retrieving regularization of unlabeled data on
feature representation, and a student model, learning from the
teacher model. The mean teacher method55 is adopted to constructed
the teacher model and ResNet3456 as baseline architecture for
teacher&student model. Specifically, labeled instances Xlabeled =
x1,1, x1, 2,::, xK , 1, ::, xK ,n

� �
selected by the teacher model, where K

instances of each slide are assigned with the label consistent with the
sample, and unlabeled instances Xunlabeled = ∁XXlabeled (i.e., the comple-
ment of Xlabeled) are both inputted into student model and compute a
probability of high PDL1 expression in every iteration of training. The
weighted cross-entropy loss function, which is used as the classifica-
tion cost, penalizes the difference between the output and pseudo
label for the clear regions of the slide represented by Xlabeled. Mean-
while, the consistency cost is applied to the ambiguous regions
representedbyXunlabeled and constrains the distance to thedistribution
given by the teacher model. The loss function was formulated as:

L= LWCE ðXlabeled , θÞ+ λLconsðXunlabeled ,θ,θ
0Þ

= �
X

xi2Xlabeled

ðω0yilogðf θðxiÞÞ+ω1ð1� yiÞð1� logf θðxiÞÞÞ

+ λ
X

xj2Xunlabeled

f θ0 ðTðxjÞÞ � f θðTðxjÞÞ
���

���
2

ð3Þ

where ωi is the weight to balance the class frequency and f θ0 is the
function of the teacher model generated by exponential moving
average (EMA) of previous student models. T() is a combination of
transforms including random rotation and color jitter. The parameters
of the teacher model would be updated after the student model is
optimized in each iteration.

In other words, the proposed approach constructs a teacher
model to assess the reliability of knowledge and pairing the reliable
parts with corresponding answers for the student model to learn. For
datawith greater uncertainty judgedby the teachermodel, the student
model will attempt to imitate the teacher model’s response even if an
exact answer is not available. The teachermodelwill then use feedback
from the student model to update itself and improve its own knowl-
edge. Among different epochs of training, labels are dynamically
assigned for instances according to the predicted probability of the
teacher model via the above mentioned MIL manner, where mean-
ingful histopathological patterns are expected to be uncovered
through aggregated information distilled frommean teacher. And the
studentmodel optimized by gradient descent with regard to objective
function Lwould promote the prediction of the teacher model in turn
by a weighted average behavior over training steps. This iterative
process allows for continuous learning and refinement of both the
teacher and student models to capture the effective histopathological
features associated with PDL1 expression. Usually both models could
be utilized to output the positive probability at the end of the training
which share similar performance for patch-level prediction.

Enhancing patient-level diagnosis by fused slide tokens with
statistical summary of patch-level predictions
In the slide-level feature aggregation stage, statistical summary of
patch-level predictions aremerged with slide tokens by leveraging the
local details extracted by the patch-level CNN and the global per-
spective of a transformer model. Given the trained model f θ0 or fθ at

patch level, the typicality of all effective patches in a slide would be
computed, which could be further interpreted as positive or negative
probability according to the slide-level property. Based on the patch-
level prediction, several statistical features of the slide were extracted
including percentage of positive patches, histogram of probability
distribution, median value and mean value of positive probability.
Specifically, patches with typicality over 0.8 and below 0.2 are
removed when computing the above features because a trimmed
estimator is supposed to better reflect the central tendency of data.
Further, features e = [e1, e2,…, em] extracted by the patch-level back-
bone (i.e., feature vectors output by the adaptive pooling layer of
ResNet34 in the end) are aggregated to form the global representation
of the slide through the attention mechanism. Transformer is utilized
to fuse these features into a class tokenHð0Þ

k which could be formulated
as46:

Hk = LNðMSAðeÞÞ ð4Þ

where LN(⋅) is layer normalization andMSA(⋅) indicates multi-head self
attention operation. The first row vector of correlationmatrixHð0Þ

k i.e.,
class token is taken as the aggregation of all local features in a slide.
Training details follow the settings in ref. 46. Along with the statistical
features mentioned above, the representation of the slide E 2 R1 × 523

was constructed by concatenation and conducted the diagnosis by
using MLP to classify the slide representation as PDL1 high expression
or low expression. The MLP model is trained with cross-entropy loss
and SGD optimizer, where the learning rate is set as 2 × 10−4.

Implementation details
Data preprocessing mainly including segmentation and patching of
whole slide images was implemented on multiple workstations con-
sidering massive amount of data, whose central processing units are
respectively AMD Ryzen 5950X, Intel i9-12900K, and Intel i9-10900K.
Our weakly supervised framework MILTS and patient-level feature
aggregation&diagnosis models were then trained and evaluated on a
platform of GIGABYTE GeForce RTX 3090Ti with 24 GB of graphics
memory. Algorithms were mostly programmed with Python (version
3.8.10) and libraries mainly involved were OpenCV (version 4.5.3),
OpenSlide (version 1.1.2), Pillow (version 8.4.0), scikit-image (version
0.18.3) and Numpy (version 1.19.5). We utilized Pytorch57 as the basic
machine learning framework for data loading, enhancement, training
and inferencepipeline. Before the startofMILTS training,we initialized
ResNet34with ImageNet44 pretrained parameters for both teacher and
student model. A mini-batch size of 512 was adopted to accelerate
computation and we used a stochastic gradient descent (SGD) opti-
mizer with an initial learning rate of 1 × 10−2 to optimize weights of the
models. The proportions of labeled instances within a single slide were
defined as 0.25, 0.35, and 0.45 for the quartile, tertile, and median
points, respectively. The consistencycostweight λ for the loss function
was determined to be 100. EMA decay α for updating the teacher
model was set to 0.99 throughout training. The strategy of cosine
annealing was applied to schedule the learning rate and the minimum
value was set as 1 × 10−4. All the models were trained for 30 epochs,
during which two circles of learning rate change were completed. On
our platform using a single GPU, the typical inference time for a 20×
whole slide imagewith non-overlap patcheswas 6.96s, which indicated
a high efficiency and may be further promoted by large-scale parallel
computing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The TCGA data (images, as well as transcriptomic and clinical data)
used in this study are publically available from http://gdc.cancer.gov.
CPTAC image data are publically available from https://wiki.
cancerimagingarchive.net/display/Public/CPTAC+Imaging
+Proteomics and transcriptomic data from http://gdc.cancer.gov. The
imaging data from Charité-Universitätsmedizin Berlin is accessible
upon request. Thedatawill be sharedonly under the condition that the
request is for non-profit, purely academic research purposes, and the
requesting researchers must provide valid ethics approval from their
institution. The data generated in this study for the creation of the
figures are provided in the Source Data file. Source data are provided
with this paper.

Code availability
The code in this paper is available through a Code Ocean compute
capsule (https://codeocean.com/capsule/9197393/tree/v1)58.
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