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Fire suppressionmakeswildfiresmore severe
and accentuates impacts of climate change
and fuel accumulation

Mark R. Kreider 1 , Philip E. Higuera2, Sean A. Parks 3, William L. Rice4,
Nadia White5 & Andrew J. Larson 1,6

Fire suppression is the primary management response to wildfires in many
areas globally. By removing less-extreme wildfires, this approach ensures that
remaining wildfires burn under more extreme conditions. Here, we term this
the “suppression bias” and use a simulation model to highlight how this bias
fundamentally impacts wildfire activity, independent of fuel accumulation and
climate change. We illustrate how attempting to suppress all wildfires neces-
sarily means that fires will burn with more severe and less diverse ecological
impacts, with burned area increasing at faster rates than expected from fuel
accumulation or climate change. Over a human lifespan, themodeled impacts
of the suppression bias exceed those from fuel accumulation or climate
change alone, suggesting that suppression may exert a significant and
underappreciated influence on patterns of fire globally. Managing wildfires to
safely burnunder low andmoderate conditions is thus a critical tool to address
the growing wildfire crisis.

Wildfires are becoming more destructive and deadly around the
world1–4. The societal and ecological impacts of fires5,6 are in our col-
lective consciousness—from Australia’s 2019–2020 megafires7, to
destructive wildfires in the Mediterranean8, to beloved giant sequoias
killed by fire in California9—prompting widespread calls to address the
wildfire crisis8,10–14. We understand the broad drivers of increasing fire
activity: changes in climate1,15,16, vegetation and fuel accumulation8,17,18,
and ignition patterns19. However, humans also play a direct role in
modifying fire activity acrossmuch of the globe by engaging with fires
minutes to hours after ignition (i.e., initial attack20,21), and subsequent
suppression of escaped fires22–24. While weather, fuels, topography,
and ignitions determine how fires might burn, humans strongly shape
this into when, where, and how fires do burn (Fig. 1).

Wildfires only burn if they are not extinguished through sup-
pression. Thus, suppression is a “filter” that allows certain types of fire
to pass through while removing other types of fire (Fig. 1b). In some

locations (e.g., a remote wilderness area) this filter may be relatively
porous, and many fires may burn with only minimal suppression25. In
most landscapes, however, aggressive suppression of fire is a cultural
expectation, and the suppression filter is much less permeable, with
only the most extreme fires escaping (e.g., Maximum suppression in
Fig. 1)20,21. Intentional fires (i.e., prescribed fires and cultural burning)
are the only types of fires that do not pass through the suppression
filter, as they are allowed to burn unimpeded if they are within pre-
scription (Fig. 1a). Area that does not burn because it was “removed”
through suppression, results in fuel accumulation and ultimately
increases the likelihood and intensity of future fires26,27 (Fig. 1a). This
well-known consequence has been termed the “fire suppression
paradox”28,29: by putting out a fire today, we make fires harder to put
out in the future26,30–32 (Table 1).

Suppressing wildfires also has an additional and poorly
quantified consequence that we define as the “suppression bias”:
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fire suppression extinguishes some types of fire (e.g., surface
fire) more than others (e.g., crown fire), and thus skews the
resulting fire activity toward those types less likely to be removed
(Table 1). In contemporary fire management, which easily sup-
presses and removes low-intensity fire, this bias is inevitably
toward higher-intensity burning occurring under extreme
weather20,21,33–35. Thus, the fires which ecosystems, species, and
people experience are skewed towards the most severe and
destructive.

We definemanagement approaches that suppress lower-intensity
firemore heavily than higher-intensity fire as “regressive suppression,”
borrowing language from economics (e.g., a regressive tax rate
decreases as taxable income increases) (Table 2). In some instances,
however, management could contain and suppress relatively higher-
intensity fire more heavily than lower-intensity fire, an approach we
term “progressive suppression” (e.g., a progressive tax rate increases
as taxable income increases) (Table 2). Both regressive andprogressive
suppression are subject to the same upper limit, above which fires are

Fig. 1 | Conceptual diagram of how suppression influences fire. a Potential fire
behavior depends on the fire triangle (topography, weather, fuel) and ignitions.
Intentional ignitions (i.e., prescribedfires and cultural burning)donot pass through
the suppression filter, as they are allowed to burnunimpeded if within prescription.
Unplanned human ignitions and lightning ignitions only burn if they successfully
pass through the “suppression filter.” Fire “removed” by the suppression filter leads
to fuel accumulation, influencing fires fromall ignition types (suppressionparadox,
brown color). Wildfires that do burn are biased toward the fire that was not
removed (suppression bias, red). These wildfires, together with intentional fires,

form the realized fire regime with the suppression paradox and suppression
bias inherently incorporated. b The suppression filter. 1) Initial attack success
probability as a function of fireline intensity and fire size at initial attack (from
Hirsch et al.69); 2) Proportion of escaped fire suppressed as a function of fire
intensity. Suppression becomes increasingly impossible at high fire intensities.
Colors depict the suppression scenarios used in the simulation. c Fire perimeters
(viewed from overhead) after the first day of burning for an example ignition.
Colors correspond to suppression scenarios shown in panel b. Fire intensity of the
burned area is displayed with a color ramp.

Table 1 | Comparison of the fire suppression paradox and bias

Term Definition Mechanism Impact Time lag

Fire suppression paradox By suppressing fire today,we increase fuel loads,making fires harder to suppress in
the future

Fuel accumulation Indirect Future

Fire suppression bias By suppressing some fire types more than others, the remainder reflects a biased
representation of fire types

Differential suppression filter Direct Immediate
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simply too intense to suppress (Fig. 1b)36; however, within the domain
where suppression is possible, regressive and progressive approaches
can have profoundly different impacts (i.e., biases) on the way
fires burn.

Although the fire suppression bias has been referenced tangen-
tially in the literature8,28,33,37–39, the emergent impacts of the suppres-
sion bias have not been assessed. This is largely due to the difficulty of
isolating the impact of suppressionwith empirical data. Suppression is
so ubiquitous that we have virtually no control landscapes wherefire is
completely unsuppressed; even in remote wilderness areas, some fires
are still suppressed40. Furthermore, it is difficult to measure the mag-
nitude of suppression efforts because even relatively direct proxies
such as suppression cost are confounded by other factors, including
terrain accessibility, human infrastructure at risk, and availability of
suppression resources41. Finally, data on suppression efforts are gen-
erally only available for larger fires42, obscuring themany ignitions that
arequickly and easily suppressedduring initial attack20,21. Toovercome
these constraints, we used a simulation approach to assess and
quantify the magnitude of the fire suppression bias on fire behavior
and ecological impacts, relative to the influence of climate change and
fuel accumulation.

Our modeling framework simulates fundamental components of
fires:weather and fuelmoisture; ignitions;fire growth;fire suppression
(through initial attack and containment of escaped fires); and ecolo-
gical effects. To isolate the effect of fire suppression, we simulated
thousands of fires with identical biophysical conditions, but which
differed only in their suppression scenario, including three “regressive
suppression” scenarios (Moderate, High, and Maximum; Fig. 1b), one
“progressive suppression” scenario (Progressive; Fig. 1b), and a control
scenario with no suppression. For each fire, we calculated the pro-
portion burned at high severity, average fire severity, daily and total
fire size, and the diversity offire severity43. To compare the influence of
suppression to that of climate change and fuel accumulation, we
simulated fires across a range of plausible current and future fuel
aridity (vapor pressure deficit; VPD) and fuel loading conditions in
forest ecosystems in North America. These ranges represent a 240-
year time period of modeled increases (e.g., increased VPD based on
RCP 8.5 climate scenario44; fuel loading rates based on historical fuel
modeling45).

Using this modeling framework, we show how the suppression
bias directly influences fire activity and subsequent fire effects. Spe-
cifically, we asked: 1) How does fire suppression influence patterns of
area burned, ecological impacts (i.e., fire severity), and the diversity of
both factors over space and time? 2) How does the magnitude of this
influence compare to that fromclimate change and fuel accumulation?

Results
Regressive fire suppression makes fires more severe
Across the simulated range of fuel aridity, regressive suppression
scenarios (Moderate, High, and Maximum) increased the ecological
impacts of wildfire, as reflected by higher fire severity metrics. We
simulated fire severity by linking fire intensity to the Composite Burn
Index (CBI), which runs from zero (unburned) to three (maximum fire
severity), with values above 2.25 considered high-severity46. Under the
Maximum fire suppression scenario, a greater proportion of each
wildfire burned at high severity (Fig. 2a, b). On average, wildfires
burning under the Maximum suppression scenario had over twice as
high proportion that burned at high severity, compared to fires

burning with no suppression. Across all fuel aridity simulations, Max-
imum suppression increased mean fire severity by an average of 0.21
CBI units, relative to fires with no suppression (Fig. 2c). This increase in
fire severity is equivalent to the cumulative effects of 102 years of
increased fuel aridity from climate change alone, under the no-
suppression scenario (i.e., an increase in mean summer VPD of
+0.85 kPa) (Fig. 2c inset). Similarly, across the simulated range of fuel
loading values, Maximum suppression increased mean fire severity by
an average of0.22CBI units, relative to control scenarios (Fig. 2d). This
increase is equivalent to the effect of 102 years of additional fuel
accumulation under no fire suppression (i.e., an increase in 100-h
surface fuel loading of +3.7Mg ha−1) (Fig. 2d inset).

In contrast, Progressive suppression reduced the proportion of
eachwildfire that burned at high severity, formost levels of fuel aridity
and fuel loading (Fig. 2a, b). Compared to fires burning with no sup-
pression,wildfires burning under the Progressive suppression scenario
had an average of 17% (across fuel aridity gradient) and 15% (across fuel
loading gradient) less proportion that burned at high severity. Mean
fire severity was also lower under the Progressive fire suppression
scenario, across most of the simulated range of fuel aridity and load-
ing, with an average reduction of 0.04 and 0.03 CBI units, respectively
(Fig. 2c, d). Givenmodeled rates of fuel aridity and fuel loading change,
these differences are equivalent to burning under scenarios of no
suppression from 17 and 14 years in the past (i.e., changes of −0.15 kPa
VPD and −0.49Mg ha−1), respectively (Fig. 2c, d insets).

Regressive fire suppression accentuates trends of increasing
area burned
While increasing fuel aridity and fuel loading led to a rise in area
burned for wildfires under all scenarios (i.e., suppression or not), fires
under the regressive suppression scenarios displayed higher sensitiv-
ity to increasing fuel aridity and fuel loading (Fig. 3). Across the gra-
dient of increasing fuel aridity, area burned under the Maximum
suppression scenario increased by 5.0% per year, compared to only
1.8% per year for wildfires under the no-suppression scenario. Thus,
across the 240-year range of increased fuel aridity, yearly burned area
doubled nearly three times as fast under Maximum fire suppression,
compared to scenarios without fire suppression (i.e., 14 vs. 39 years).
This difference was even more marked under increasing fuel loading:
area burned under the Maximum suppression scenario increased by
3.7% per year, compared to only 0.7% per year for wildfires that were
not suppressed (Fig. 3). Thus, across the 240-year range of increased
fuel loading, yearly burned area doubled over five times faster under
Maximum suppression, compared to scenarios without fire suppres-
sion (i.e., 19 vs. 94 years). Fires simulated under the Progressive sup-
pression scenario had the lowest sensitivity to increasing fuel aridity
and fuel loading of any suppression strategy, including no suppres-
sion. Yearly burned area doubled every 44 years across the simulated
increases in fuel aridity, and only every 133 years across the simulated
gradient of fuel accumulation. Patterns were similar for area burned at
high severity, with regressive scenarios leading to faster proportional
increases in area burned and the Progressive scenario maintaining the
slowest increase in area burned (Supplementary Fig. S1).

Regressive fire suppression decreases the diversity offire effects
Relative to unsuppressed fires, regressive suppression decreased the
diversity of fire effects (i.e., diversity of burn severity) at all levels of
fuel aridity and fuel loading values (Fig. 4). In the Maximum

Table 2 | How the type of suppression influences the resulting suppression bias

Type of suppression Definition Direction of suppression bias

Regressive suppression Suppresses lower-intensity fire more heavily than higher-intensity fire Toward higher-intensity fires, more extreme fires

Progressive suppression Suppresses higher-intensity fire more heavily than lower-intensity fire Toward lower-intensity fires, more moderate fires
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suppression scenario, 97–99% of fires were contained under 121 ha
(300 ac) for all but the most extreme levels of fuel aridity and loading
(Supplementary Fig. S2). Under the regressive fire suppression sce-
narios, a higher proportion of area burned came from a small pro-
portion of extreme fires (Fig. 4c). For example, under the Maximum
suppression scenario, 91% of the area burned came from the largest 1%
of fires, compared to only 4% of the area burned that came from the
largest 1% offires under the scenario of nofire suppression. In contrast,
under the Progressive fire suppression scenario, fires had the highest
diversity of fire effects across the entire range of fuel aridity and fuel
loading values, with especially pronounced increases in diversity
under more extreme conditions. Progressive suppression also led to
fires with the most even distribution of area burned across fires of any
suppression scenario (Fig. 4c).

Discussion
We show with a simulation experiment how decades of regressive fire
suppression have likely contributed to observed rates of increased
burned area and high-severity area burned, independent of climate
change and fuel accumulation. While some wildfires have always
burned under extreme conditions and at high severity, the fire sup-
pression bias magnifies the proportional representation of these fires
by removing fires that would have burned with low or moderate
severity (Supplementary Fig. S3). The result is akin to the over-
prescriptionof antibiotics: in our attempt to eliminate all fires,wehave

only eliminated the less intense fires (that may best align with man-
agement objectives such as fuel reduction47) and instead selected for
primarily the most extreme events (suppression bias) and created
higher fuel loads and more “suppression-resistant” fires (suppression
paradox). Through regressive fire suppression, we are effectively
bringing a more severe future to the present—experiencing average
fire severities that would not otherwise happen for a century. Our
findings suggest that the abnormally high proportions of high-severity
firewitnessed inmany areas globally (e.g. refs. 48–51), is due, in part, to
the influence of the suppression bias itself.

The suppression bias also has profound impacts on society and
social perceptions of fire. By disproportionately removing fires with
desirable impacts47, regressive fire suppression ensures that most
people interact with wildfires that burn during extreme events. This in
turnmakes it less likely for individuals to value the beneficial aspects of
less-extreme fires, and less likely to support or desire active fire
management52, further exacerbating the suppression bias10.

Though regressive suppression keeps many fires at small sizes
(Supplementary Fig. S2) and reduces the absolute amount of burned
area (relative to a world with no suppression), in the face of climate
change and fuel accumulation, it counter-intuitively leads to a higher
relative rate of increasing area burned over time. This is because
regressive suppression amplifies thedifferencebetween the amount of
fire that burns under less fire-conducive climates (e.g., in the recent
past) and how much will burn despite heavy suppression under more

Fig. 2 | Effects of fire suppression on fire severity. Panels a and b show the
proportion of high-severity fire (CBI > 2.25) across ranges of fuel aridity and fuel
loading. Panels c andd showmeanfire severity across ranges of fuel aridity and fuel
loading. Insets show the average number of years of modeled climate change
(vapor pressure deficit increase of 0.008 kPa yr−1) or fuel accumulation (100-h fuel
accumulation rate of 0.036Mg ha−1 yr−1) to yield the difference in fire severity

between suppressed and unsuppressed fires. Variability across the 40 simulation
replications is shown with 95% confidence intervals (too small to see for some) or
error bars (insets on c and d). Fuel loading in panel b and d depicts 100-h surface
fuel loading values. Simulations across the fuel aridity range were run at a constant
100-h surface fuel loadingof 11.23Mgha−1; simulations across the fuel loading range
were run at constant mean fire season vapor pressure deficit of 1.17 kPa.
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fire-conducive future climates. For example, across simulated climate
change, area burned doubled nearly twice as quickly under regressive
suppression, compared to not suppressing fires at all. Our work thus
suggests that observedhigh rates of increasing areaburned around the
world (e.g. refs. 3,53) are at least partially driven by the suppression
bias. People and societies are adapted to what they experience to be
“normal,” and deviations from this baseline require adaptation; by
causing the baseline to shift at an even faster rate, regressive sup-
pression further heightens the stress on societies responding to
changing conditions54,55.

The fire suppression bias also has fundamental effects on the
longstanding ecological and evolutionary role of fire in terrestrial
ecosystems56. Fire suppression not only reduces how often plants and
animals are exposed to fire, which is detrimental to fire-dependent
organisms57, but it also guarantees that a greater proportion of these
encounters arewith high-intensity fire. By preferentially removing low-
intensity fire through regressive suppression, we have likely shifted the
selective pressures of natural selection, unintentionally favoring traits
that confer resistance or resilience to high-intensity fire over traits
supporting persistence through lower-intensity fire. Fire is also an
important catalyst for community reorganization and adaptation in
the face of changing environmental conditions such as global

warming58. However, by reducing the prevalence of fire, suppression
limits opportunities for reorganization; instead, ecosystems accumu-
late inertia from the current species composition and structure, which
may not be well-aligned to future conditions59–61. Furthermore,
because regressive suppression biases fire toward more severe con-
ditions, with decreased seed and propagule availability and more
stressful post-fire climatic environments, any reorganization that does
occur is more likely to lead to state-shifts61–64.

We demonstrate that progressive suppression leads to less
extreme simulated fire behavior and effects. Indeed, empirical data
from protected areas (which tend to have lower rates of suppression65

and may represent the closest existing examples to progressive sup-
pression) show lower fire severities66,67 and a greater diversity of fire
effects43, consistent with our conclusions. In our simulations, fires
under the Progressive suppression scenario had equivalent fire
severity to unsuppressed fires burning under less fire-conducive con-
ditions—in other words, effectively reversing the impacts of climate
change or fuel accumulation by one to nearly two decades. Area
burned under the Progressive suppression scenario also doubled
much slower in response to climate change, compared to regressive
suppression scenarios. A society living under progressive suppression
would be less stressed by climate change, as their perceived “normal”

Fig. 3 | Effects of fire suppression on burned area increase. Panels a and b show
trends in average fire size across ranges of fuel aridity and fuel loading. Fuel loading
in panel b depicts 100-h surface fuel loading values. Yearly rates of increase in
panels c and d are calculated with a yearly increase in fuel aridity of 0.008 kPa yr−1

or a yearly increase in fuel accumulation (100-h fuel accumulation rate) of0.036Mg
ha−1 yr−1, respectively. White numbers at the base of bars are the doubling time, in

years, of burned area. Variability across the 40simulation replications is shownwith
95% confidence intervals (a and b; too small to see on some curves) or error bars
(c and d). Simulations across the fuel aridity range were run at a constant 100-h
surface fuel loading of 11.23Mg ha−1; simulations across the fuel loading range were
run at constant mean fire season vapor pressure deficit of 1.17 kPa.
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conditions would change half as fast. By allowingmore lower-intensity
fire, progressive suppression could buy time, helping societies and
ecosystems adapt to climate change54.

Our simulations are grounded in fundamental physical aspects of
fire behavior68 and reveal important and underappreciated con-
sequences of fire suppression; however, our model is not intended to
predict fine-scale fire behavior. For example, we did not incorporate
spatial variability in topography, wind direction, or fuel loading within
any individual fire. Additionally, each modeled fire is unaffected by
fires that have occurred in prior years (i.e., the model does not incor-
porate the effects of the fire suppression paradox; Table 1). This may
make our results a conservative estimate of the total impact of
regressive suppression, since landscapes under regressive suppression
would accumulate fuel faster than those with no suppression, further
heightening the difference in fire intensity.

While our model includes practical implementations of
suppression36,69, it does not incorporate dynamic resource allocation

as the number of fires increase across a landscape. This means it does
not explicitly account for scenarios where suppression resources are
depleted from numerous fires burning simultaneously, such as during
National Wildland Fire Preparedness Level 5 in the U.S.41,70. Conse-
quently, the simulation may overestimate suppression effectiveness
and underestimate suppressed fire sizes in these conditions. However,
the model assumes near-complete ineffectiveness of suppression
during extreme weather events when fire intensity is high (Fig. 1b),
effectively incorporating resource scarcity. Regardless, in conditions
when fire suppression is effective, our results show that it inherently
biases resulting fire patterns.

Our model generates patterns of fire behavior that align with
empirical data. For example, burned area patterns under Maximum
suppression (e.g., nearly all fires contained before reaching 121 ha (300
ac); 1% of fires accounting for 91% of area burned) closely resemble
long-term trends observed in the U.S. (97–99% of fires contained
before reaching 121 ha (300 ac); 1% of fires accounting for 98% of area

Fig. 4 | Effects of fire suppression ondiversity offire effects. Panels a and b show
the effects of fire suppression on the diversity of fire effects across ranges of fuel
aridity and fuel loading. Diversity of fire effects is calculated as the mean absolute
deviation of fire severity (CBI) sensu Steel and colleagues43. Fuel loading in panel
bdepicts 100-h surface fuel loading values. Simulations across the fuel aridity range
were run at a constant 100-h surface fuel loading of 11.23Mg ha−1; simulations
across the fuel loading rangewere run at constantmean fire season vapor pressure

deficit of 1.17 kPa. c Lorenz curves for each suppression scenario;fires are rankedby
increasing area burned. Simulations run atmean seasonal vapor pressure deficit of
1.17 kPa and fuel loading of 11.23Mg ha−1 (100-h fuel load). The dashed line repre-
sentshypotheticalfire activitywhere the areaburned is spreadequally across allfire
days. Variability across the 40 simulation replications is shownwith 95% confidence
intervals but which are too small to see for some curves.
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burned71). Thus, our results reveal important general expectations of
the impacts of fire suppression, relevant to any flammable location
worldwide where suppression is used. Future empirical work can test
these expected impacts across a variety of ecological and cultural
settings.

Although safely allowing low- and moderate-intensity fire is
essential for learning to co-exist with wildfire72, implementing pro-
gressive suppression faces a range of challenges that span social-
ecological systems41. Numerous land management agencies have
ingrained cultures and policies that incentivize regressive fire
suppression8,10,33, and shifts inmanagementmaybehamperedby a lack
of trust and support from the public73, in addition to the widespread
public expectation that all wildfires should be suppressed74. Pro-
gressive suppression would let low-intensity fire spread relatively
unencumbered, while more strongly suppressing higher-intensity fire
—a management approach that may not always be practical, safe, or
possible. Additionally, the operating space for progressive suppres-
sion (i.e., maintaining a gradient where higher-intensity fire is more
heavily suppressed than lower-intensity fire) is increasingly con-
strained as conditions become more fire-conducive (Supplementary
Fig. S4), and as more valued human resources are built in flammable
environments5. Finally, while lower- and moderate-intensity fires can
reduce the smoke-related health impacts of large, high-intensity
wildfires75, moving toward progressive suppression would likely
increase the frequency of low-level smoke emissions, much like the
increased use of prescribed fire75,76. As such, paradigm shifts in fire
management would necessitate public health interventions at all
levels: from individual behavioral strategies to public policies and
community resources (e.g., facilitating the use of publicly available air-
quality data, subsidizing or providing high efficiency particulate
air [HEPA] air filters, and creating publicly accessible clean-air
spaces)4,77.

Even when and where progressive suppression is infeasible, our
results show that less aggressive implementations of regressive sup-
pression (e.g., moving from Maximum to Moderate suppression, ana-
logous to calls for increased fire use10) can dramatically reduce the
suppression bias. Adaptive management frameworks that facilitate
risk-informed differences in management approaches (e.g., the PODs
framework78) could likewise help lessen the impact of the suppression
bias. For example, such fire management could implement regressive
suppression approaches when necessary (e.g., near human infra-
structure) and progressive or no suppression approaches when and
wheremore feasible. Finally, intentional fires (i.e., prescribed fires and
cultural burning; Fig. 1) also play an important role in tandem with
progressive suppression10,79,80. While these practices support a range
of values on their own47, they also facilitate the implementation of
progressive suppression strategies by introducing low-intensity fire
and creating landscape heterogeneity.

We demonstrate that the suppression bias is a major driver of fire
activity and ecological impacts. While the negative impacts of fuel
accumulation are commonly recognized as an indirect consequence of
fire suppression, integrating the impacts of the suppression biaswould
improve our understanding of fire-human relationships, and ongoing
changes in fire activity. Part of the solution to coexisting with wildfire
now and into the future requires developing and applying technolo-
gies and approaches that allow us to safely manage wildfires under
moderate burning conditions. Arguably, this will be as effective as
other needed interventions, such as mitigating global warming, mini-
mizing unintentional human-related ignitions, and modifying forest
structure to reduce fire severity when fires occur.

Methods
Our model simulates individual fire events independently, and it is
not intended to represent a specific real-world landscape. All
models are tradeoffs between fine-scale precision and large-scale

generalizability81, and we designed our simulation approach to be
generalizable while incorporating fundamental physical aspects of fire
behavior. We use a wide range of fuel loading and climate parameters,
to both demonstrate the global applicability of our results and address
the variability and uncertainty inherent in complex real-world
environments82 and demonstrate that the consequences of the sup-
pression bias are not unique to a specific biophysical setting (i.e., a fire
regime). The parameters and simulations described below are gen-
erally informed by variables and ranges of variability representing
forest ecosystems in western North America. Full details are provided
in the Supplementary Information (Supplementary Methods).

Simulating ignitions & fire spread
For each fire, we randomly chose an ignition day from a hypothetical
150-day fire season. Ignitions could smolder for up to three days,
duringwhichfire spreadwould occur if the daily fuelmoisture was less
than the moisture of extinction (25%). If fuel moisture never fell below
25% during this three-day period, the ignition was assumed to be
extinguished naturally.

We assumed elliptical fire shape83 and modeled daily fire growth
based on Huygens’ principle84, which assumes that the growth of each
point on the fire perimeter can be independently modeled as an
expanding ellipse. The shape of this ellipse becomes longer and nar-
rower at higher wind speeds83 (Supplementary Fig. S5). We modeled
daily heading-direction fire spread rate, using the rothermel function
in the R package firebehavioR85, which incorporates potential transi-
tions to crown fire spread86,87 (Supplementary Fig. S5). We converted
themodeled heading-direction fire spread rates to elliptical expansion
factors and distances at any angle from the ignition (Supplementary
Methods).We calculated twometrics of fire intensity—fireline intensity
and flame length—using equations from the rothermel function in the
R package firebehavioR85 and extended them to elliptical fireline
intensity using equations of Catchpole and colleagues88. We estimated
fire severity by linking flame length to estimated tree mortality from
mixed-conifer ecosystems89 and finally to Composite Burn Index (CBI),
a measure of fire-caused vegetation mortality and soil organic matter
consumption46.

Simulating suppression
We tested several different suppression scenarios: three regressive
suppression scenarios (Moderate, High, Maximum), one progressive
suppression scenario (Progressive), and one control scenario (No
suppression). We simulated suppression of fires with a two-step pro-
cess: 1) initial attack, and 2) subsequent suppression of fires that
escape initial attack23,24. To simulate initial attack success, we used a
modeled relationship from Hirsch and colleagues69 that estimates the
probability of escape as a function of heading fireline intensity and fire
size at the time of initial engagement. For regressive suppression
scenarios, we stochastically simulated whether initial attack was suc-
cessful (i.e., the fire was fully contained) using different times of initial
engagement, and thus fire size (Moderate = 4 h; High = 2 h; Max-
imum= 1 h). For the progressive suppression scenario, we assumed
ignitions were managed without any initial attack but with subsequent
suppression. For fires where initial attack was not successful, we
modeled subsequent suppression using suppression functions to
relate fireline intensity to the expected proportion of fire suppressed
(Fig. 1b). The Maximum suppression filter roughly equates to the
maximum possible effectiveness of on-the-ground fire suppression
efforts, where suppression becomes virtually impossible above a cer-
tain fireline intensity36.

We calculated daily elliptical distance burned under each sup-
pression scenario as the unsuppressed distance burned (with the
assumption that fire actively spread for half of the day length) multi-
plied by the proportion of fire remaining after suppression. Points on
the ellipse were considered permanently extinguished if the daily
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distance burned was less than 5m. Other points on the ellipse could
continue burning, and a fire was not considered extinguished until
points at all angles were extinguished or until after the 150th day of the
fire season. Supplementary Fig. S6 shows the daily fire weather and
progression of burning for an example ignition, across all suppression
scenarios.

Fire behavior model inputs
For each ignition, we simulated daily fire weather: windspeed and
temporally autocorrelated live and dead fuel moistures. We modeled
daily windspeeds as arising from a Weibull distribution, with a single
wind direction for each fire event. We simulated canopy fuel moisture
as varying temporally across a sinusoidal seasonal trend. We also
simulated daily live and dead surface fuel moisture (i.e., 1-, 10-, and
100-h fuel moisture, live woody and herbaceous fuel moisture) using a
sinusoidal seasonal trend around a mean seasonal fuel aridity value,
with random variation in amplitude and daily, temporally auto-
correlated fluctuations. For a given ignition, we assumed a terrain
slope of 40% (20.8°) and uniform and continuous fuel loading,
meaning that simulated fires never experienced fuel breaks and would
continue burning as long asweather conditions allowed for fire spread.

We ran simulations across ranges of mean fuel aridity and fuel
loading to emulate changes in both time (i.e., climate change, fuel
accumulation) and space (i.e., moving from one climatic region or
forest type to another). Fuel aridity and fuel loading ranges spanned
240 years of modeled climate change or fuel accumulation in the
Western U.S., respectively. To estimate a rate of yearly fuel aridity
change under an RCP 8.5 climate change scenario, we used Ficklin &
Novick’s44 projectedmedian increase in summer vapor pressure deficit
(VPD) of 0.72 kPa for the continental U.S. from the historical period
(1979–2013; midpoint 1996) to the future period (2065–2099; mid-
point 2082) to calculate a mean annual increase between midpoint
years of 0.00837 kPa yr−1. Because fire spread models are input with
fuel moisture, we converted VPD to dead fuel moisture, using a sta-
tistical relationship parameterized with gridMET data90 from across
Western U.S. temperate conifer forests. To estimate plausible yearly
increases in fuel loading, we estimated the slope of modeled dead
wood carbon accumulation (i.e., the difference in fuel loads between
suppressed and unsuppressed model scenarios) in the Western U.S.
from 1980–2010 from Boisramé and colleagues45. We assumed that
carbon made up 50% of total fuel weight and that 100-h fuels com-
prised 50% of all dead fuels (in keeping with ratios of Fuel Model 10 91),
yielding a yearly 100-h fuel load increase of 0.036Mg ha−1 yr−1.

Simulation structure
We ran simulations where we varied either mean fuel aridity or fuel
loading, while holding the other at constant mean values. A single
simulation replicate involved 1000 ignitions, each of which had a
unique, randomly simulated ignition day and timeseries of fuel
moisture values and windspeeds (i.e., weather scenario). Using this
ignition-day and weather scenario, we then simulated fire spread
independently for either 1) all levels of fuel loading, while holding
mean fire season fuel aridity constant (VPD of 1.17 kPa), or 2) all levels
of mean fuel aridity, while holding fuel loading constant (100-h fuel
loading of 11.23Mg ha−1). For each of these simulated fire-spread
events, we also modeled all four scenarios of fire suppression (Max-
imum, High, Moderate, and Progressive) in addition to the no-
suppression scenario. We then replicated a single simulation 40
times, for a total of 5million simulated fires across each range ofmean
fuel aridity or fuel loading (1000 ignitions ×25 levels of fuel aridity or
fuel loading ×5 levels of suppression ×40 replicates).

Summarizing the cumulative impacts of fire suppression
To assess the effect of fire suppression on patterns of fire severity, for
eachfirewe calculated theproportion that burned athigh severity (CBI

values ≥ 2.25; sensu Parks & Abatzoglou53) and the weighted mean fire
severity. For each simulation we calculated the required change in
mean fuel aridity or fuel load for fires with no suppression to yield the
same fire severity as suppressed fires. We divided this value by esti-
mated yearly rates of change in mean fuel aridity and fuel loading, to
evaluate how many years of climate change or fuel accumulation it
would take for unsuppressed fires to burn at the same mean fire
severity. To investigate how fire suppression affected patterns of
burned area, we calculated the total area burned for each fire. For each
simulation, we also calculated the average multiplicative yearly rate of
increase (4) in burned area across the 240-year ranges of fuel aridity
and fuel loading. We calculated the diversity of fire severity for each
fireusing themethoddetailedbySteel and colleagues43, withCBI as the
single input fire trait—which is equivalent to the mean absolute
deviation of CBI values. We investigated how equally burned area was
spread across fires by calculating Lorenz curves of area burned under
each suppression scenario.

Within a replicate (i.e., 1000 ignitions × 25 fuel aridity or fuel
loading levels), for each suppression scenario we calculated the mean
values for parameters of interest, at each level of fuel aridity or fuel
loading. We then calculated overall means across the 40 simulation
replications and used 95% confidence intervals to display variability.
We conducted all simulation and analysis in R92.

Data availability
The source data generated in this study have been deposited in a
public database93 [https://doi.org/10.5281/zenodo.10729478].

Code availability
The R code to reproduce all our results and figures is provided in a
public database93 [https://doi.org/10.5281/zenodo.10729478].
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