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Development and validation of an
interpretable model integrating multimodal
information for improving ovarian cancer
diagnosis

Huiling Xiang 1,2,11, Yongjie Xiao3,11, Fang Li4,5,11, Chunyan Li2, Lixian Liu6,
Tingting Deng2, Cuiju Yan2, Fengtao Zhou7, Xi Wang8,9, Jinjing Ou2,
Qingguang Lin2, Ruixia Hong4,5, Lishu Huang4,5, Luyang Luo7, Huangjing Lin3,9,
Xi Lin2 & Hao Chen 7,10

Ovarian cancer, a group of heterogeneous diseases, presents with extensive
characteristics with the highest mortality among gynecological malignancies.
Accurate and early diagnosis of ovarian cancer is of great significance.Here,we
present OvcaFinder, an interpretable model constructed from ultrasound
images-based deep learning (DL) predictions, Ovarian–Adnexal Reporting and
Data System scores from radiologists, and routine clinical variables. Ovca-
Finder outperforms the clinical model and the DL model with area under the
curves (AUCs) of 0.978, and 0.947 in the internal and external test datasets,
respectively. OvcaFinder assistance led to improved AUCs of radiologists and
inter-reader agreement. The averageAUCswere improved from0.927 to0.977
and from 0.904 to 0.941, and the false positive rates were decreased by 13.4%
and 8.3% in the internal and external test datasets, respectively. This highlights
the potential of OvcaFinder to improve the diagnostic accuracy, and con-
sistency of radiologists in identifying ovarian cancer.

Ovarian cancer remains the most lethal gynecological cancer and
accounted for approximately 14,070 cancer-related deaths and 22,240
new cases of cancer in the United States in 20181. About 58% of ovarian
cancers are initially diagnosed as metastatic ovarian cancers, which
have a 5-year survival rate of only 30%, comparedwith a survival rate of

93% for localised cancers2. An accurate diagnosticmethod for the early
diagnosis of ovarian cancer improves therapeutic outcomes by
enabling early intervention. Patients with ovarian cancer who refer to
gynaecology oncology centre for debulking surgery and systemic
therapies have longer survival compared to those managed in
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community or general hospitals3. For patients with lesions of benign
ultrasound morphology, the 2-year cumulative incidence of major
complications, including invasive malignancy, torsion, and cyst rup-
ture, was less than 0.5%, which can be followed up to prevent unne-
cessary surgeries as well as associated preoperative complications
(~15%) and preserve fertility4. However, only 300,000 out of
2,000,000 women estimated to have exploratory surgery for a sus-
picious mass annually worldwide, were newly diagnosed with ovarian
cancer5,6, indicating the urgent need of a more accurate non-invasive
diagnostic tool.

Compared with computed tomography (CT) and magnetic reso-
nance imaging (MRI), transvaginal ultrasound (TVUS) is the most used
diagnostic imaging tool for adnexal masses, for its lack of contra-
indications, lowcost, andwidespreadavailability. Various classification
systems have been proposed but with limited acceptance, for the lack
of standardised terminology or objective criteria. In contrast, the
Ovarian–Adnexal Reporting and Data System (O-RADS) provides
standardised terminology for lesion description and all risk categories
with their corresponding management strategies, with the aim of
improving diagnostic efficiency and realising tailored management7.

Recently, deep-learning (DL) models have shown remarkable suc-
cess in various diagnostic tasks. For example, DL has shown great pro-
mise in distinguishing papilloedema from other optic disc
abnormalities in fundus photographs, with areas under the receiver
operating characteristic curve (AUCs) ranging from0.96 to0.998, and in
identifying breast cancer inmammography, where it outperformed five
specialists with a mean increase in sensitivity of 14%9. For adnexal
masses diagnosis, Zhang et al.10 devised a ultrasound-based DL system,
but it lacked additional external validation and clear clinicopathological
information. Subsequently, Gao et al.5 developed and validated another
ovarian cancer diagnosis model using ultrasound images from 117,746
patients of 10 hospitals across China. They demonstrated the expert-
level performance of theirmodel and showed that it helped radiologists
achieve significant improvements in diagnosis.

However, there remains room for improvement in the above-
mentioned approaches. First, despite its high diagnostic performance
in awide rangeof diseases,DL is often criticized as a blackbox. In other
words, it lacks transparency and explanation for its decisions, making
it difficult for radiologists to understand what the DL models have
learned from training images. Second, readily available clinical vari-
ables thatmay be of use in ovarian cancer diagnosis, such as the serum
biomarker cancer antigen 125 (CA125), were not included in previously
proposed DL models. The CA125 increases by 82% in patients with
ovarian cancer and is widely used in clinical practice and screening
programmes11,12. During the diagnostic process, multimodal informa-
tion is generally needed before reaching the conclusion. However, to
the best of our knowledge, there lacks studies that integrated multi-
modal information into an ovarian cancer risk stratification method.

Hence, the purpose of this study is to develop and validate the
OvcaFinder to discriminate benign from ovarian cancer with the inte-
gration of ultrasound images-based DL predictions, assessments from
radiologists, and routine clinical parameters. Our results show that
OvcaFinder yields the highest performance when comparing with any
single model or radiologists, with AUCs of 0.978 in the internal test
dataset, and 0.947 in the external test dataset, respectively. Ovca-
Finder boosted the diagnostic performance of radiologists and
decreased their false positive rates. In addition to identifying ovarian
cancer, OvcaFinder is able to offer explanations to its predictions by
highlighting the most important areas in heatmaps and reveal the
impact of each parameter with Shapley values13.

Results
Baseline information
As shown in Table 1, there were 3972 B-mode and colour Doppler
ultrasound images of 296 (40.9%) benign and 428 (59.1%) malignant

lesions from 724 patients in SYSUCC (mean age: 48 ± 13 years; range:
16–82 years). The lesion diameter ranged from 10 to 224mm, with a
mean diameter of 74.3mm (standard deviation (SD): 35.5mm). The
concentration of CA125 ranged from 4 to 37,827 U/mL. These patients
were randomly split into the training (2941 images of 532 lesions),
validation (334 images of 63 lesions), and the internal test dataset (697
images of 129 lesions). In the external dataset, there were 2200 images
from 387 patients (mean age: 43 ± 12 years; range: 18–83 years). The
mean lesion diameter was 71.2mm (SD: 35.0mm). The concentration
of CA125 ranged from 2 to 46,090U/mL. Among 509 malignant
lesions, therewere 57 borderline tumors (11.2%). Formalignant lesions.
the average lesion diameter was 83.4mm (range: 13–225mm). Taking
35U/mL as threshold, nearly 88.2% (449/509) patients had evaluated
CA125 levels. Ascites and peritoneal thickening or nodules were found
in 272 and 306 patients in ultrasound images, respectively.

Performance of readers with O-RADS
After completing training, five readers showed high diagnostic per-
formance in adnexal tumour classification. The O-RADS assessment
scores were normalized into a range of 0 to 1, in order to calculate the
performance of the AUCs. The average AUCs were 0.927 for the
internal test dataset and 0.904 for the external dataset, respectively.

Table 1 | Demographic characteristics of the participants

SYSUCC CQUCC

Training Validation Internal test
dataset

External test
dataset

No. of patients 532 63 129 387

Age (y)

Mean ± SD 48± 12 46 ± 13 48 ± 14 43 ± 12

Range 16–82 16–69 20–79 18–83

Menopausal status

Premenopausal 291 (54.7) 37 (58.7) 70 (54.3) 272 (70.3)

Postmenopausal 241 (45.3) 26 (41.3) 59 (45.7) 115 (29.7)

CA125 concentration

Mean ± SD 1218 ± 3119 919 ± 1923 1274 ± 2902 245 ± 2413

Range 4–37,827 9–12,684 7–20,308 2–46,090

Lesion diameter (mm)

Mean ± SD 74.0 ± 36.5 74.8 ± 31.9 72.4 ± 32.9 71.2 ± 35.0

Range 10–224 30–161 15–164 19–334

Histological type

Benign (%) 215 (40.4) 27 (42.9) 54 (41.9) 306 (79.1)

Teratoma 72 (33.5) 12 (44.5) 20 (37.0) 86 (28.1)

Endometriosis 48 (22.3) 9 (33.3) 17 (31.4) 102 (33.3)

Cyst 33 (15.3) 2 (7.4) 5 (9.3) 33 (10.8)

Cystadenoma 19 (8.8) 2 (7.4) 4 (7.3) 50 (16.4)

Inflammation 17 (8.0) 0 (0.0) 2 (3.7) 1 (0.3)

Corpus luteum 11 (5.1) 0 (0.0) 1 (1.9) 14 (4.7)

Thecoma 6 (2.8) 1 (3.7) 1 (1.9) 5 (1.6)

Fibroma 4 (1.9) 0 (0.0) 1 (1.9) 5 (1.6)

Hydrosalpinx 2 (0.9) 0 (0.0) 2 (3.7) 5 (1.6)

Other 3 (1.4) 1 (3.7) 1 (1.9) 5 (1.6)

Malignant (%) 317 (59.6) 36 (57.1) 75 (58.1) 81 (26.5)

Serous carcinoma 237 (74.8) 23 (63.9) 60 (80.0) 47 (58.0)

Borderline tumor 30 (9.5) 6 (16.7) 5 (6.6) 16 (19.7)

Endome-
trioid carcinoma

9 (2.8) 1 (2.8) 2 (2.7) 5 (6.2)

Clear cell 9 (2.8) 3 (8.3) 2 (2.7) 2 (2.5)

Other 32(10.1) 3 (8.3) 6 (8.0) 11 (13.6)

Data in parentheses are percentages. SD Standard deviation.
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The readers showed amean sensitivity of 96.2% and specificity of 73.3%
in the internal dataset, and a mean sensitivity and specificity of 85.7%
and 81.8%, respectively, in the external dataset.

Performance of the image-based DL predictions
DenseNet121, DenseNet169, DenseNet201, ResNet34, EfficientNet-b5,
and EfficientNet-b6 achieved AUCs ranging from 0.898 to 0.923 in the
internal test dataset and from 0.806 to 0.851 in the external test
dataset (Supplementary Table 1) at the lesion level using B-mode and
colour Doppler images, which was inferior to the final ensemble DL
model. The ensemble model showed an AUC of 0.970, a sensitivity of
97.3%, and a specificity of 74.1% in the internal dataset. In the external
dataset, the AUC was reduced to 0.893, the sensitivity was 88.9%, and
the specificitywas68.6% (Table 2). As shown inFig. 1, the red regions of
the heatmaps contributedmost to a given classification, while the blue
regions were less important. To be more specific, areas with irregular
solid components or projections on B-mode images were highlighted
in the heatmap and were valuable features for malignancy prediction.
With regard to colour Doppler images, the heatmap focused on areas
with abundant angiogenesis. These were consistent with the

diagnostic criteria of ovarian tumors in clinical practice. For benign
lesions, there were 27.8% (15/54) and 19.8% (60/306) cases with hot-
spots shown in the internal and external test datasets, respectively. As
for cancerous lesions, a percentage of 4.0% (3/75) in the internal test
dataset and 12.3% (10/81) in the external test dataset were observed
without hotspots displayed, respectively.

Performance of the clinical model
In the internal test dataset, the clinical model achieved an AUC of
0.936, a sensitivity of 97.3%, and a specificity of 40.7%. Within the
external test dataset, the clinical model yielded an AUC of 0.842, a
sensitivity of 85.2%, and a specificity of 53.3% (Table 2).

Performance of the OvcaFinder
As shown in Fig. 2, with the integration of clinical information, O-RADS
scores, and image-base DL predictions, OvcaFinder showed higher
performance (AUC: 0.978 [95% CI: 0.953, 0.998]) than the clinical
model (AUC: 0.936, p = 0.007) and image-based DL predictions (AUC:
0.970, p = 0.152) in the internal test dataset. OvcaFinder, with an AUC
of 0.947 (95% CI: 0.917, 0.970) also outperformed the clinical model
(AUC: 0.842, p = 4.65 × 10−5) and image-based DL predictions (AUC:
0.893, p = 3.93 × 10−6) on the external test dataset. For a fair compar-
ison, we compared the specificities of threemodels via keeping similar
sensitivities. With the internal test dataset, when the sensitivity was
maintained at 97.3%, OvcaFinder showed a higher specificity (83.3%)
than the clinical model (40.7%, p = 1.52 × 10−5) and DL predictions
(74.1%, p =0.062). On the external test dataset, while maintaining a
similar sensitivity to other models, OvcaFinder showed a specificity of
90.5%, which outperformed the clinical model (53.3%, p = 2.21 × 10−29)
and image-based DL predictions (68.6%, p = 1.36 × 10−20; Table 2). We
observed that (Fig. 3) the image-based DL predictions weighed the
most importantly regarding the decision prediction of OvcaFinder,
followed by O-RADS, CA125 concentration, patient’s age, and lesion
diameter.

In the reader study, the AUCs of readers ranged from 0.900 to
0.958. But with the aid of OvcaFinder, the AUCs were substantially
increased, ranging from 0.971 to 0.981 with the internal test dataset,
without any decrease on sensitivity. Similar improvements were
observed for all readers on the external test dataset. Moreover,
OvcaFinder boosted the readers’ diagnostic accuracy with fewer false
positives (Fig. 4, andTable 3). The average false positive rate decreased
from 26.7% (range: 13.0–38.9%) to 13.3% (range: 7.4–18.5%, p = 0.029)
and from 18.2% (range: 10.8–29.4%) to 9.9% (range: 8.2–12.4%,
p =0.033) on the internal and external test datasets, respectively,
which would potentially obviate the need for unnecessary biopsies or
surgeries.

The inter-reader agreement for ovarian cancer diagnosis were
summarized in Table 4. Inter-reader kappa values ranged from0.711 to
0.924 and from0.588 to 0.796 in the internal and external test dataset,
respectively, indicating fair to excellent agreement. With OvcaFinder,
the inter-reader kappa values improved to 0.886 to 0.983 in the
internal test dataset and 0.863 to 0.933 on the external test dataset,
suggesting excellent agreement.

Discussion
Ovarian cancer is a group of heterogeneous disease with highly com-
plex features. Differential diagnosis before surgery requires the inte-
gration of multimodal information. The diagnostic values of image-
based DL predictions, O-RADS scores from readers, and clinical para-
meters in ovarian cancer diagnosis, have been explored previously.
However, little is known about the capacity of combining multimodal
features to improve diagnosis. Here, we developed OvcaFinder by
integrating image-based DL predictions, readers’ assessments, and
clinical parameters, for the identification of ovarian cancer. Ovca-
Finder outperformed the image-based DL model, clinical model, and

Table 2 | Diagnostic performance of different models

Internal test
dataset

Clinical model Image based-DL
predictions

OvcaFinder

AUC 0.936 0.970 0.978

(0.902, 0.975) (0.934, 0.993) (0.953, 0.998)

p 0.007 0.152 Reference

Sensitivity (%) 97.3 97.3 97.3

(93.3, 100.0) (93.3, 100.0) (93.3, 100.0)

p 1.00 1.00 Reference

Specificity (%) 40.7 74.1 83.3

(28.3, 52.8) (62.3, 84.9) (73.6, 92.4)

p 1.52 × 10−5 0.062 Reference

Accuracy (%) 73.6 87.6 91.5

(68.0, 79.7) (82.0, 92.2) (86.7, 96.1)

PPV (%) 69.5 83.9 89.0

(65.5, 74.8) (78.5, 90.1) (83.3, 94.9)

NPV (%) 91.7 95.2 95.7

(79.2, 100.0) (88.6, 100.0) (88.9, 100.0)

External test dataset

AUC 0.842 0.893 0.947

(0.776, 0.895) (0.855, 0.933) (0.917, 0.970)

p 4.65 × 10−5 3.93 × 10−6 Reference

Sensitivity (%) 85.2 88.9 88.9

(76.5, 92.6) (81.5, 95.1) (81.5, 95.1)

p 0.581 1.000 Reference

Specificity (%) 53.3 68.6 90.5

(047.7, 58.5) (64.0, 73.5) (87.3, 93.8)

p 2.21 × 10−29 1.36 × 10−20 Reference

Accuracy (%) 59.9 72.9 90.2

(55.3, 64.3) (68.5, 77.3) (87.1, 93.0)

PPV (%) 32.5 42.9 0.713

(29.5, 35.7) (38.6, 47.8) (64.2, 79.1)

NPV (%) 93.1 95.9 96.9

(89.8, 96.3) (93.3, 98.2) (94.8, 98.6)

Data in parentheses are 95% confidence intervals; DL Deep learning, AUC Area under the
receiver operating characteristic curve, PPV Positive predictive value, NPV Negative predictive
value.WeusedanaveragevalueofO-RADS scores as the input factor ofOvcaFinder.p values are
for a comparison with OvcaFinder. The p-values of AUC were calculated using the function
‘roc_test’ in the python package of pROC. The p-values of sensitivity and specificity were cal-
culated via two-sided McNemar test.
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readers, achievingAUCsof 0.978 and0.947 in the internal and external
test datasets, respectively. Without reducing sensitivities, OvcaFinder
significantly improved the performances of readerswith an increase of
5% and 3.8% in mean AUCs and a reduction of 13.4% and 8.3% in the
false positive rate in the internal and external test datasets, respec-
tively. Improvements in inter-reader agreement were also observed.
These results highlight the potential of OvcaFinder to serve as a non-
invasive tool to improve the accuracy, and consistency of radiologists
in distinguishing benign from malignant ovarian lesions and reducing
the number of false positives.

A strength of this study is thatweused theO-RADS scoring system
in the reader study to ensure accurate and reproducible assessments.
The external validations in previous studies have suggested that
O-RADS performed well, with AUCs ranging from 0.90 to 0.9814–17,
thereby confirming the feasibility of usingO-RADS in ourmodel. In our
study, the readers achieved high-level performance, with AUCs of
0.927 and0.904 in the internal and external test datasets, respectively.
The sensitivities of readers in the internal test dataset were inferior to

those in the external test dataset. This difference may be explained by
distribution shift due to factors like relatively higher proportion of
typical cases with heavier tumor burden in the internal test dataset, as
evidenced by significantly higher CA125 levels (p < 0.0001)18.

Here, we develop and evaluate a multimodal ovarian cancer ana-
lysis model (OvcaFinder) that comprises routinely available clinical
information, radiologists’ assessments, and DL predictions. Ovca-
Finder achieved high performance in both the internal and external
test datasets. As shown in Fig. 3, we found that CA125, together with
lesiondiameter and thepatient’s age, didprovide additional benefits in
tumour diagnosis. We also developed an image-based DL model that
achieved anAUCof 0.970with the internal dataset but only 0.893with
the external dataset, which showed that the generalisability of the
image-based DL model in real-world setting was confined19,20. Ovca-
Finder correctly identified cases that it has never seen before (AUC:
0.893 vs. 0.947, p = 3.93 × 10−6), suggesting higher generalisability on
external data. Chen et al.21 constructed a DL model and showed that
their model had comparable diagnostic accuracy to expert subjective
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Fig. 1 | Heatmap visualisation of image-based deep learning predictions of
malignancy. Visual explanations of DL models are definitely important for quali-
tative review and clinical relevance, namely irregular solid components, projec-
tions, and areas with abundant blood flow signals. a Carcinosarcoma of a 44-year
old female; b high-grade serous carcinoma of a 65-year old female; and (c)

hydrosalpinx of a 49-year old female that was misdiagnosed by all readers but
showed a low probability of malignancy in the heatmap. In the first row of each
case, the first two images are B-mode images, and the following one is the colour
Doppler image. The images in the second row are their corresponding heatmaps.
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assessments and O-RADS assessments in a single-centre setting. Gao
et al. (9) showed that DL improved the performance of radiologists.
However, these studies did not clarify how DL could be used to
streamline workflows. In this study, we showed that OvcaFinder using
multimodal information significantly outperformed all readers
(p < 0.05) with improved inter-reader agreement. Specifically, it
reduced the false positive rates by 13.4% and 8.3% in internal and
external datasets, respectively, while maintaining similar sensitivities.

Efforts were also made to enhance the interpretability of Ovca-
Finder. Most DLmodels built previously for adnexal tumour diagnosis
from ultrasound images did not show the most important features or
areas that were highly relevant to their final classification, which hin-
ders the building of trust that readers have in DL models5,10. Here, we
found that heatmaps facilitated the assessment of adnexal masses by
highlighting areas with irregular solid components, projections, or
abundant blood signals, which is in accordancewith current guidelines
(Fig. 1)7,22,23. However, we observed some benign lesions (27.8% in the
internal test dataset and 19.8% in the external test dataset) were also
highlighted in the heatmaps. These lesions often contained thick
septations or were adjacent to normal ovarian tissues, which needs to
be further optimized by enrolling more healthy controls and benign
cases. In addition, local and global Shapley values demonstrated the
relative contributions of each modality in OvcaFinder on individual

patient and cohort, respectively. We observed that the features of
image-based DL prediction clearly had the greatest overall effect on
thedecisionmadebyOvcaFinder.Moreover,O-RADS scores alsomade
a large contribution. CA125 concentration, the patient’s age, and the
lesion diameter had less of an influence on the decision. Abnormal
CA125 levels could be found in 5% of patients with menstruation or
benign diseases, such as endometriosis, which might partially explain
why CA125 showed less contribution than OvcaFinder24. Timmerman
et al.25 also reported that CA125was less informative thanultrasound in
ovarian cancer diagnosis.

We acknowledge the limitations of this study. First, theremight be
a selection bias in this retrospective study. Pathology-proven adnexal
tumors from two cancer hospitals were enrolled, which resulted in a
relatively higher malignancy rate than usual. The applicability of the
strategy to lower risk populations where the prevalence of cancer is
low remains to be determined. A large-scale dataset, containing
pathology-proven lesions, healthy controls and followed-up cases, not
only from cancer hospitals but also general hospitals, would be useful
for validating the OvcaFinder in a prospective setting to confirm its
reliability. Second, other factors including personal history, family
history, BRCAmutations, and theuseof hormone replacement therapy
were also of importance in the risk classification1,26. In the future study,
we will further explore the added value of such factors. Third, other

Fig. 2 | Receiver operator characteristic curves of the three models and the readers. a Internal test dataset; and b external test dataset. O-RADS Ovarian-adnexal
reporting and data system, R Radiologist.

Fig. 3 | Global Shapley values for the interpretation of OvcaFinder. The horizontal ordinate represents the mean absolute Shapley value, indicating the global
importance weights of the features. Each dot represents an individual patient (n = 129). The higher the Shapley values, the greater probability of ovarian cancer.
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imaging examinations such as CT, MRI, PET-CT, also play important
roles in ovarian cancer diagnosis, and combining the information from
thesemodalities could potentially further improve the performance of
OvcaFinder.

In this study, we present clear evidence for the utility of the
interpretable OvcaFinder in ovarian cancer diagnosis. OvcaFinder
integrated ultrasound images, clinical information, and interpretations
from radiologists and achieved the highest performance in both
internal and external datasets, which highlighted the necessity of
multimodal information integration for automatic ovarian cancer
diagnosis. By analysing heatmaps and Shapley values, the decisions of
OvcaFinder can be further explained, and the importance of each fea-
ture canbe revealed. UsingOvcaFinder led to significant improvements
in radiologists’ performance, increase in inter-reader agreement, and

reduction in the false positive rate, indicating potential for real-world
usage as a promising non-invasive assistant tool.

Methods
Study design and participants
The study protocol was approved by Sun Yat-sen University Cancer
Center’s Institutional ReviewBoard (B2022-112-01), with awaiver of the
requirement for informed consent due to its retrospective nature.
Patients were eligible if they presented with at least one pathology-
proven adnexal lesion visible on TVUS examination. To ensure a
complete evaluation, transabdominal examinations were included if
the lesionswere too large tobe fully evaluatedbyTVUS.Whenmultiple
lesions were detected, the lesion with the most complex morphology
was chosen for analysis. If lesions had similar features, the largest

Fig. 4 | Performance of image-based deep learning model, clinical model,
readers, and the OvcaFinder. We reported the observed values (measure of
centre) and 95% confidence intervals (error bars) of the AUCs, accuracies, specifi-
cities, sensitivities, PPVs, and NPVs of five readers (R1-R5), the image-based deep
learning model, the clinical model, and OvcaFinder in the internal (a, n = 129) and

external (b, n = 387) test datasets. OvcaFinder improved the readers’ AUCs,
accuracies, specificities, and PPVs, while maintaining equivalent sensitivities and
NPVs. AUC Area under the receiver operating characteristic curve, PPV Positive
predictive value, NPV Negative predictive value.
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one was included. Anonymised clinicopathologic information and
ultrasound findings were obtained from the password-protected
database. Women aged more than 50 years were defined as post-
menopausal. The exclusion criteria were: (1) physiological changes,
such as a follicle or corpus luteum with a diameter less than 3 cm in
premenopausal women; (2) a prior diagnosis of ovarian cancer; (3) loss
of clinicopathologic information; or (4) a time interval between ultra-
sound examination and biopsy or surgery exceeding 120 days. Bor-
derline tumours were assigned to the malignancy group5,21,27.

Image collection and reader study
B-mode and colour Doppler images were acquired by using commer-
cially available equipment, including GE Logiq S8 (GE Healthcare,
Milwaukee, WI, USA) or Aplio 300, 400, or 500 (Toshiba Medical
System, Tokyo, Japan) systems. We retrospectively collected 3972
images of 724 lesions from patients in Sun Yat-sen University Cancer
Center (SYSUCC) from February 2011 to May 2021. We randomly
divided these images into training, validation, and internal test data-
sets at a ratio of 7:1:2. The external validation dataset was composed of
2200 images of 387 lesions obtained from patients in Chongqing
University Cancer Hospital from December 2018 to June 2021.

Readers A, B, C, D, and E had 2, 3, 5, 9, and 19 years of experience,
respectively. Blinded to any clinicopathologic information, they were
trained in feature description and lesion categorisation using 60
additional cases. The trained readers then independently assessed all
anonymised and randomised lesions, and assigned each lesion one of
the following O-RADS risk scores7: 2, almost certainly benign (<1% risk
of malignancy); 3, low risk of malignancy (1–10%); 4, intermediate risk
of malignancy (10–50%); and 5, high risk of malignancy (≥50%).

Model construction
Image-based DL model. The image-based DL model was designed to
identify ovarian cancer based only on ultrasound images, without any
additional information. The proposed image-based DL model was an
ensembled model of six different backbones: DenseNet12128,
DenseNet16928, DenseNet20128, ResNet3429, EfficientNet-b530, and

EfficientNet-b630. Specifically, all models were first initialised with
ImageNet31 pretrained weights and then fine-tuned on our training
dataset. All models have the same training configurations as follows.
We used Adam as the optimizer with a learning rate of 0.0001. The
input image resolution was set to 512 × 512, and the batch sizes was set
to 8. The models were trained 100 epochs on the training dataset and
validated after every epoch on the validation dataset. During training,
several data augmentation strategies were used to increase the gen-
eralization ability of the model, including random horizontal flipping,
rotation, and colour jitter operation. We selected the weights with the
best performance of AUC on the validation dataset as the final weights
for each model. Finally, we ensembled the predictions of the six
models by averaging their predicted probabilities as the final score.
The code was developed using the public framework PyTorch on a
workstation equipped with two NVIDIA TITAN Xp graphic
processing units.

OvcaFinder and clinical model
The OvcaFinder and the clinical model were constructed based on
Random Forest (RF) algorithm. OvcaFinder was a multimodal
information-based model with human in the loop. Three clinical fac-
tors (patient’s age, lesion diameter, andCA125 concentration), O-RADS
scores diagnosed by readers, and DL-based predictions were used to
build the input with 5-dim vectors to develop OvcaFinder (Fig. 5).
Moreover, the clinical model only used three aforementioned clinical
factors to build the input with 3-dim vectors during the model devel-
opment. Specifically, The RF models were set to train with N estima-
tors. For each estimator, we use Bootstrapping method to randomly
resample the training set with replacement 1000 times to create
simulated datasets. A simulated dataset was used to grow a decision
tree. Therefore, we obtained a forest of N decision trees with different
structures, as the trees were developed using different simulated
datasets. The majority voting algorithmwas then used to combine the
predictions of each decision tree to generate the final output. For the
OvcaFinder and the clinical model, we both developed 291 RF models
with different numbers of estimators ranging from 10 to 300. Finally,

Table 4 | Inter-reader Agreement (Kappa Coefficients) for Diagnostic Performance

Readers Internal test dataset External test dataset

Inter-reader O-RADS A vs. B 0.760 (0.640, 0.873) 0.649 (0.576, 0.720)

A vs. C 0.711 (0.601, 0.817) 0.588 (0.521, 0.653)

A vs. D 0.837 (0.739, 0.929) 0.693 (0.627, 0.763)

A vs. E 0.924 (0.844, 0.982) 0.667 (0.602, 0.736)

B vs. C 0.800 (0.679, 0.901) 0.669 (0.597, 0.742)

B vs. D 0.826 (0.711, 0.914) 0.742 (0.673, 0.812)

B vs. E 0.802 (0.694, 0.909) 0.760 (0.685, 0.828)

C vs. D 0.835 (0.741, 0.932) 0.681 (0.603, 0.760)

C vs. E 0.782 (0.679, 0.878) 0.760 (0.687, 0.826)

D vs. E 0.911 (0.829, 0.982) 0.796 (0.732, 0.856)

OvcaFinder A vs. B 0.886 (0.798, 0.951) 0.869 (0.812, 0.921)

A vs. C 0.902 (0.834, 0.968) 0.868 (0.815, 0.925)

A vs. D 0.983 (0.949, 1.000) 0.910 (0.862, 0.954)

A vs. E 0.983 (0.949, 1.000) 0.896 (0.841, 0.940)

B vs. C 0.952 (0.889, 1.000) 0.863 (0.804, 0.917)

B vs. D 0.902 (0.840, 0.967) 0.894 (0.839, 0.941)

B vs. E 0.902 (0.825, 0.967) 0.906 (0.854, 0.952)

C vs. D 0.918 (0.855, 0.983) 0.892 (0.840, 0.940)

C vs. E 0.918 (0.855, 0.983) 0.891 (0.834, 0.939)

D vs. E 0.967 (0.916, 1.000) 0.933 (0.893, 0.973)

Data in parentheses are 95% confidence intervals; O-RADS Ovarian-Adnexal Reporting and Data System.
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we found that N = 70 for the OvcaFinder and N= 20 for the clinical
model would lead themodels achieve the best performance of AUC on
the validation dataset.

Interpretation of OvcaFinder
Heatmaps and Shapley values were used to enhance the interpret-
ability of OvcaFinder at both the image and feature levels. To allow a
clear visual understanding of the underlying basis of image-based
malignancy prediction, we used the gradient-weighted class acti-
vation mapping32 technique. Specifically, after feeding an image
into the well-trained CNN model, we extracted feature maps with
multiple channels of the final convolutional layer through the for-
ward propagation. Also, we obtained the gradient weights, that
contained the importance of each channel, by using the final pre-
diction score of ovarian cancer to calculate the gradient informa-
tion back to the final convolutional layer through back propagation.
Then, we multiplied feature maps and gradient weights to generate
the weighted combination of feature maps. Finally, we generated
the heatmap by averaging the feature maps into one channel and

resizing it to the original resolution of the input image. We then
averaged six heatmaps into one, as the model was an ensemble
model of six backbones.

Furthermore, the Shapley values were used to calculate the spe-
cific contribution rank on each input feature of OvcaFinder. Local
Shapley values were calculated for individual features of each instance
(Fig. 6) to demonstrate the interpretability of OvcaFinder in terms of
how the model decided for an individual sample. First, the expected
value (mean value) was estimated for OvcaFinder’s decision prob-
abilities for all training samples andwas set as the base value. The local
Shapley values of all given features were then added to the base value
to construct the final decision probability. Global Shapley values,
which indicated the average impact of each feature on the magnitude
of the model output, were computed by averaging the absolute local
Shapley values across all instances.

Statistical analysis
Diagnostic performance was evaluated by calculating the AUC, accu-
racy, sensitivity, specificity, positive predictive value, and negative

Fig. 5 | Development of OvcaFinder using image-based deep learning predictions, O-RADS scores from radiologists, and clinical parameters. a Data acquisition;
b multimodal information; c model development; and d global and local interpretation of OvcaFinder (n = 129). O-RADS Ovarian-adnexal reporting and data system.
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predictive value with 95% confidence intervals (CIs). The 95% CIs were
calculated using the nonparametric bootstrap method with 1000
resampling events, while keeping a constant ratio of positive and
negative cases. The mean AUC of five readers was calculated by aver-
aging their AUC values. Comparisons were made between the perfor-
mance of themodels and readers in both the internal and external test
datasets. We calculated p values to determine significant differences
between differentmodels, or between theOvcaFinder and the readers,
using the pROC library in R (version 3.6.3) for AUCs and McNemar’s
test for sensitivities and specificities. Interobserver agreement were
assessed using Cohen kappa values, whichwere interpreted as follows:
0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial;
0.81–1.00, excellent33. Two-tailed p <0.05were considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original ultrasound images and clinical data used in this study are
not publicly available due to the restrictions of hospital regulations
and patient privacy. All data supporting the findings of this study are
available on requests for non-commercial purposes from the corre-
sponding authors X.L. and H.C. typically within two weeks. The data
generated in this study for creation of figures and tables are provided
with this paper. Source data are provided with this paper.

Code availability
The codes of the proposedmodel in this study have been deposited at
github (https://github.com/Xiao-OMG/OvcaFinder) and Zenodo
(https://doi.org/10.5281/zenodo.10691378), which can only be used for
non-commercial research purposes.
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