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Higher order gaps in the renormalized band
structure of doubly aligned hBN/bilayer
graphene moiré superlattice

Mohit Kumar Jat1,5, Priya Tiwari2,5, Robin Bajaj1,5, Ishita Shitut1, ShinjanMandal 1,
Kenji Watanabe 3, Takashi Taniguchi 4, H. R. Krishnamurthy1,
Manish Jain 1 & Aveek Bid 1

This paper presents our findings on the recursive band gap engineering of
chiral fermions in bilayer graphene doubly aligned with hBN. Using two
interfering moiré potentials, we generate a supermoiré pattern that renor-
malizes the electronic bands of the pristine bilayer graphene, resulting in
higher order fractal gaps even at very low energies. These Bragg gaps can be
mappedusing aunique linear combination of periodic areaswithin the system.
To validate our findings, we use electronic transportmeasurements to identify
the position of these gaps as a function of the carrier density. We establish
their agreement with the predicted carrier densities and corresponding
quantum numbers obtained using the continuum model. Our study provides
strong evidence of the quantization of the momentum-space area of quasi-
Brillouin zones in aminimally incommensurate lattice. It fills important gaps in
the understanding of band structure engineering of Dirac fermions with a
doubly periodic superlattice spinor potential.

Heterostructures of graphene encapsulated between two thin, rota-
tionally misaligned hBN flakes form a stimulating platform for probing
topological phases of matter1–6. The difference in the lattice constants
of hBN and graphene and the angularmisalignment between the layers
generate two distinct long-wavelength moiré superlattices at the top
and bottom interfaces of graphene with hBN7–11. The interference
between these patterns forms a supermoiré structure with multiple
complex real-space periodicities, often with a spatial range larger than
that of hBN/graphene moiré at each interface12–20. The supermoiré
potential (caused by atomic scale modulation of the carbon-carbon
hopping amplitudes by the spinor graphene-hBN interactionpotential)
effectively folds the graphene band over a smaller Brillouin zone while
retaining the symmetries of the honeycomb lattice21. To first-order,
this results in additional, finite-energy split moiré gaps (SMG) in the
graphene dispersion2,7,13,16,22–26. It was recently realized that the
superlattice-induced Bragg reflection at the mini Brillouin zone

boundaries has additional subtler effects on the electronic dispersion
of graphene to arbitrary low energies manifested in the formation of a
family of Bragg gaps, van Hove singularities, and even possibly flat
bands13,15,27. Studying these high-order mini-bands and van Hove sin-
gularities in graphene/hBNmoiré superlattice is essential for a detailed
understanding of the emergent quantum properties of
quasicrystals15,28,29 and Dirac fermions in a periodic non-scalar
potential2,16.

Recent momentum-space low-energy continuum model calcula-
tions (valid in the low-energy regime of interest13,30,31) predict that the
positions of these Bragg gaps form a fractal pattern reminiscent of the
Hofstadter butterfly14. Consequently, the number density of charge
carriers at which Bragg scattering (with supermoiré harmonics) occurs
can be described by a unique set of Bragg indices (quantum
numbers)14. These indices, which are integers, relate directly to the
filled bands below the gaps and are associated with the quasi-Brillouin
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Zones (qBZ) formed by the multiple reciprocal lattice vectors of the
supermoiré lattice. These indices are topological invariants of the
system intimately related to the second Chern numbers14,32. Addition-
ally, these minimally incommensurate moiré lattices form an ideal
platform to probe the topological properties of quasicrystals. Despite
concrete theoretical predictions, this aspect of moiré superlattice
remains experimentally unexplored.

Here, we experimentally probe these characteristics of a quasi-
periodic lattice using high-mobility heterostructures of bilayer gra-
phene (BLG) doubly aligned with hBN as a model system. From
combined measurements of quantum oscillations, longitudinal resis-
tance Rxx and transverse resistance Rxy of Dirac fermions in this
supermoiré potential, we observe and identify a multitude of higher
order Bragg gaps and van Hove singularities of the supermoiré struc-
ture; these had escaped detection in previous studies13–18,33. We map
these gaps uniquely to the recently predicted topological Bragg indi-
ces of the underlying supermoiré lattice28. Furthermore, our con-
tinuum modeling of the system shows these zone quantum numbers
to have an elegant physical interpretation based on the quantized
areas of the qBZ at these Bragg gaps. This model explains the Bragg
gaps corresponding to the linear combinations of moiré reciprocal
lattice vectors, pGb

1 +qG
b
2 + rG

t
1 + sG

t
2. Additionally, our analysis

explains several unexplained experimental features in graphene/hBN
supermoiré systems reported in recent publications17 (Supplementary
Note 8), which were previously studied based on symmetry-based
approach26.

We demonstrate that the BLG supermoiré is different from its
single-layer counterpart in several critical aspects – for example, in the
symmetry of the moiré Brillouin zone, which has direct consequences
for the anomalous Hall effect34 and electron-electron scattering35,36, in

terms of the positions and magnitudes of the higher order Bragg gaps
(SupplementaryNote 11). Additionally, the ability to electrically control
the layer and valley degrees of freedom in BLG promises exotic phases
that are absent in its single-layer counterpart, e.g. electric field
switchable Chern insulators37.

Results
Device characteristics
Heterostructures of BLGdoubly alignedwith hBNwith twist angles less
than 0. 5° were fabricated using the dry transfer technique38,39 (see
Supplementary Note 1). The device is in a dual-gated field-effect tran-
sistor architecture, allowing independent control on the charge carrier
density n and displacement field D via n = [(CtgVtg +CbgVbg)/e + n0] and
D = [(CbgVbg −CtgVtg)/2 +D0] across the device. Here Cbg (Ctg) is the
back-gate (top-gate) capacitance, and Vbg (Vtg) is the back-gate (top-
gate) voltage. The values of Ctg and Cbg are determined from quantum
Hall measurements. n0 and D0 are the residual charge carrier density
and displacement field due to channel impurities, respectively. A plot
of the longitudinal resistance Rxxmeasured atD =0 and zeromagnetic
field is shown in Fig. 1c. The appearance of split moiré resistance peaks
at nb = ± 2.36 × 1016m−2 and nt = ± 2.80× 1016m−2 indicates the alignment
of the BLG with both the bottom and top hBN layers. Their presence is
also apparent in the 2D map of Rxx in the Vbg −Vtg plane (Fig. 1d).

Figure 1e shows the 2Dmap of Gxx(n, B) at D =0 V/nm in the n −B
plane – one finds Landau fans emerging from the charge neutrality
point (CNP) and from the secondaryDiracpointsnb andntwith Landau
filling ν = ± 4m (m∈ integer) (Supplementary Note 9). The faint hor-
izontal streaks in the plot are the Brown-Zak oscillations originating
from the recurring Bloch states in the superlattice40,41. These features
get accentuated at high temperatures, where thermal smearing
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Fig. 1 | Characteristics of the doublemoiré device. a Schematic of doubly aligned
BLGwith top and bottomhBN. The black and thewhite hexagonsmark the primary
moiré and supermoiré plaquettes, respectively. b An optical image of the device
(before adding the top gate) labeled with the measurement configuration (scale
bar: 5 μm). Top inset: Schematic of the layer-stacking, with the direction of
increasing displacement field D marked. c Plot of the longitudinal resistance
Rxx(B =0) as a function of n. The black dashed line marks the charge neutrality
point. Magenta and dark green lines indicate the secondary Dirac points emerging
from top and bottom moiré respectively, with carrier density (moiré wavelength)

nt = ± 2.80× 1016m−2 (λt = 12.84 nm) and nb = ± 2.36 × 1016m−2 (λb = 13.97 nm),
respectively. Yellow and blue arrows mark the higher order Bragg gaps at carrier
density n = − 3.3 × 1016m−2 and n = − 4.8 × 1016m−2, respectively. d Map of Rxx as a
function of the back gate voltage, Vbg and top gate voltage, Vtg. The black andwhite
arrows indicate the directions of increasing D and n, respectively. The color of the
small arrows has the same interpretation as in c. e Landau-fan diagram Gxx(n, B)
showing the emergence of Landau levels from the primary Dirac point and the two
secondary Dirac points. The cyan horizontal arrows on the right of the plot mark
the weak Brown-Zak features. The measurements were done at T = 2 K.
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diminishes the effect of Landau quantization on the magnetotran-
sport. This is seen clearly from Fig. 2a, which presents the magneto-
conductance ΔGxx(B) plotted in the n − 1/B plane; the data were
measured at 100K. The Fourier transform of a representative data
measured at n = 3.3 × 1016 m−2 (Fig. 2b) yields multiple frequencies
f = 24.5T, 29T, and 4T (Fig. 2c). f is related to the real-space area Sof the
superlattice by f =ϕ0/S, where ϕ0 = h/e is the flux quantum42–45. The
carrier densities (considering two-fold spin and two-fold valley
degeneracies) that fill the two first-order moiré Bloch bands are cal-
culated from f = 24.5 T and 29T to be 2.36 × 1016m−2 and 2.80× 1016m−2.
These number densities match nb and nt exactly, identifying these two
oscillation frequencies to be associated with the moiré supercell
formed at the bottom and top interfaces of BLG, respectively (Sup-
plementary Note 2). The corresponding moiré wavelengths are
λb = 13.97 nmand λt = 12.84nm, respectively. TheBrown-Zak frequency
fs = 4 T yields ns =0.39 × 1016m−2 – this number density corresponds to
a real-space wavelength of λs = 34.6 nm which is the size of the super-
moiré unit cell in our heterostructure (SupplementaryNote 2).We thus
identify fs to be the supermoiré Brown-Zak frequency.

To verify that the split peaks at nb and nt are not artifacts due to
large angle-inhomogeneity in the device, we repeated the measure-
ments on a control device (labeled Dsingle) where only the top-hBN
forms amoiré with the BLG (Supplementary Note 2). To achieve this, a
single-layer WSe2 was interposed between half of the BLG and the
lower hBN. The n −Rxx plot of this single-moiré device had a single
secondary peak at n = nt (See Supplementary Fig. 3). This helps ascer-
tain that both the top- and bottom-hBN crystals have the same relative
rotation direction with the intervening graphene layer for the double-
moiré device, with twist angles θb = 0.03° ± 0.03° betweenbottomhBN
and graphene and θt =0.44° ± 0.03° between top hBN and graphene
(SupplementaryNote 2). The very small values of the twist angles place
our device in the commensurate limit46.

Continuum Hamiltonian
Having established the presenceof the supermoiré structure, wemove
on to discuss its effect on the bilayer graphene band structure using
the Bistritzer-MacDonald continuum model47. The 4 × 4 effective
Hamiltonian (eliminating the sub lattice basis of hBN using second-
order perturbation theory) is written as:

Hef f =
HG +V

b
hBN Uy

BLG

UBLG HG +V
t
hBN

" #
ð1Þ

where, in the low-energy limit,

V ‘
hBN =U‘yð�HhBNÞ�1U‘ = v0 + v1e

iξG‘
1 :r + v2e

iξG‘
2 :r + v3e

iξG‘
3 :r ð2Þ

Here ℓ = t, b and ξ = ± 1 is the valley index. G‘
1 and G‘

2 are the reciprocal
lattice vectors of the ℓmoiré andG‘

3 = � G‘
1 � G‘

2.UBLG is the inter-layer
potential between the layers of the BLG.

Figure 3a shows the theoretically constructed density of states
(DOS) versus carrier density plot; the zeros in the DOS correspond to
the gaps in the energy spectrum. To gain a physical understanding of
the origin of these gaps, we follow the procedure laid out in ref. 14.
Recall that a nearly commensurate system with dual periodicity is
defined by a set of four distinct reciprocal wave vectors:Gt

1,2 being the
two primitive reciprocal lattice vectors of the moiré lattice at the top
hBN-graphene interface and Gb

1,2 those for the second moiré lattice at
the bottom graphene-hBN interface. One can form quasi-Brillouin
zones bounded by multiple Bragg planes defined by a linear combi-
nation of these four primary reciprocal vectors. The m1,m2:m3,m4

� �th
– order Bragg-gap appears in the electronic spectrum when the total

charge carrier density equals14,33:

nðm1,m2,m3,m4Þ=4
X4
i = 1

miAi=ð2πÞ2: ð3Þ

Here A1 = jGb
1 ×G

b
2j, A2 = jGt

1 ×G
t
2j, A3 = jGb

1 ×G
t
2j, and A4 = jGt

1 ×G
b
2j are

the areas of the projections of the parallelograms formed by the four
reciprocal lattice vectors Gi. The quantity

P4
i= 1 miAi is the area (in

reciprocal space) of the multifaceted quasi-Brillouin zone, and the
factor of four on the right-hand side of Eq. (3) arises from the spin and
valley degeneracies. The areas Ai for the experimentally obtained twist
angle θb = 0.03° and θt = 0.44° are 0.277, 0.233, 0.181 and 0.290 nm−2.
The integers mi are Bragg indices (quantum numbers) of the gap and
are topological invariants of the system14,28. Note that this formalism is
mathematically identical to that utilized by previous workers based on
differences between the multiples of the aligned and rotated
reciprocal vectors13,15,17,33 with the added advantage of being intuitively
transparent.

Note that in our theoretical calculations, we used the lattice
constant of graphene and hBN to be 0.246nm and 0.2504nm,
respectively (corresponding to a strain, ϵ =0.018). We also considered
other values of the strain parameter in the commonly used range
0.0165 ≤ ϵ ≤0.0185. The theoretical values generated with ϵ = 0.018
match best with our measured experimental results.

Experimental observation of the Bragg gaps
Using the above formalism, the band gaps corresponding to the den-
sities nb, nt, and ns are identified to be Bragg gaps with Bragg indices
(0, 1, 0, 0), (1, 0, 0, 0), and ð1,1,�1,�1Þ respectively (see Supplementary
Note 5). We obtain the positions of additional Bragg gaps by com-
paring calculated DOS (Fig. 3a) with the experimentally determined
transverse resistance Rxy(B) and the extracted Hall carrier density
nH =B/(eRxy) measured in the presence of a small, non-quantizing
magnetic field B = 0.7T (Fig. 3b, c).

The zeroes (and several prominent non-zero dips) in the calcu-
lated DOS are reflected in the experimental data as a discontinuity in
the nH − n plot. Recall that in a multi-carrier type system and for small
B, a change in sign of Rxy (or a corresponding divergence in nH) can
either indicate a bandgap or a van Hove singularity48,49. The sign of nH
on either side of a band gap reflects the local band curvature (and
hence, the carrier type). Thus, for instance, with EF > 0, one can have
both positive and negative nH; a positive (negative) value of nH implies
an electron-like (a hole-like) band (we take the electronic charge
to be e). A band gap can be said to exist at a certain number density if
the following three conditions are simultaneously met: (1) the DOS in
Fig. 3a goes to zero, (2)nH in Fig. 3c changes sign, and (3) there is a local
maximum in the d2Gxx/dn2 (minima in Gxx) data in Fig. 3d. Using this
criterion, we identify the principal gaps at nb = − 2.36 × 1016m−2,
nt = − 2.80× 1016m−2, and nCNP =0 m−2 as Bragg gaps with quantum
numbers ð0,�1,0,0Þ, ð�1,0,0,0Þ, (0, 0, 0, 0), and respectively. We also
identify several higher order Bragg gaps, for example, at
n = − 3.3 × 1016m−2 ð2,2,�1,�4Þ and − 4.8 × 1016m−2 ð�4,�1,0,3Þ. Wemark all the
Bragg gaps with solid gray lines in Fig. 3a–f.

There are certain number densities for example, at
−0.39 × 1016m−2 ð�1,�1,1,1Þ and − 6.6 × 1016m−2 ð�1,2,�3,�1Þ, (marked by dotted
blue lines in Fig. 3a–d) where the DOS goes to zero and the Gxx has a
minima, however nH does not reach zero. We tentatively identify them
as narrow Bragg gaps that are masked by thermal/impurity broad-
ening. Note also that there are no gaps at positive energies with the
exception of the supermoiré gap at ns = 0.39 × 1016m−2 ð1,1,�1,�1Þ. The
reason why the supermoiré gap survives the band overlaps (that
quenches all other gaps at positive energies) is at present unclear.

Additionally, there are features at which nH changes sign accom-
panied byminima in d2Gxx/dn2 (maxima in Gxx) and a peak in DOS –we
identify these to be due to van Hove singularities. Two of these
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(at n = − 2.05 × 1016m−2 and n = − 2.6 × 1016m−2) have been marked with
purple dotted lines in Fig. 3e, f. Note that, in addition to the ones
marked, the calculated DOS plotted in Fig. 3a shows several dips at
which the measured longitudinal and Hall resistances are featureless.
We find that at these points, either the DOS is finite with no band gap,

or the calculated band gaps Δ are substantially smaller than 1meV (e.g.
at n = − 2.18 × 1016m−2, Δ = 0.74meV) and hence not resolvable in our
electrical transport measurements.

The fact that the data from measurements of three independent
physical quantities (quantum oscillations, Hall resistance, and
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zero-magnetic-field longitudinal resistance) and from continuum-
model-based calculations match emphasizes the validity of our ana-
lysis. We note in passing that the positions of the primary gaps in
number density are independent of applied small displacement
fields (Fig. 3g).

From the activated temperature-dependent resistance data, we
extract the band-gap at CNP to be 6meV at zero displacement field.
This value is in the same range as our theoretically calculated band gap
4meV and is in agreement with the recent theoretical work in super-
moiré system31 and experimental studies in transport19. The energy
gaps at the primary moiré gaps on the hole-side are extracted to be
Δb = 1.46meV and Δt = 3.39meV respectively.

Quasi Brillouin Zones
The electronic carrier densities at which we observe the gaps in our
doubly-periodic 2D system are related to the areas of the underlying
qBZ. In order to identify these zone boundaries, wefind the k-points at
which the gaps open. One can observe the gap opening points by
unfolding the supermoiréband structure to theunit cell of theBLG.We
modulate the strength of top and bottom moiré potential in the
reduced Hamiltonian (Eq. (1)) with strength parameter η ranging from
0 to 1 (See Supplementary Note 6). The unfolded band structure
(Fig. 4a) can be seen along a given k-path using unfolded spectral
weights as:

Aðq,ϵÞ=
X
nk

X
X

j q,X jψnk

� �j2δðϵ� ϵnkÞ ð4Þ

where X =A1, B1,A2, B2 denote the atoms of bilayer graphene, ∣ψnk

�
and

ϵnk denote the eigenstates and eigenvalues, respectively, q is the
crystalmomentum in the bilayer graphene unit cell BZ. Theq is related
to k in the supermoiré BZwith amoiré reciprocal lattice vectorGSM via
the relation q =k +GSM

21.
Figure 4b–e shows the calculated qBZ for a few Bragg indices

using the above procedure. These shapes and the corresponding
Bragg indices have simple geometrical interpretations. Consider, for
example, the qBZ of the supermoiré cell plotted in Fig. 4c; it is formed
by the reciprocal lattice vectors Gb

1 � Gt
1 and Gb

2 � Gt
2. The area of this

qBZ can be expressed as:

ðGb
1 � Gt

1Þ× ðGb
2 � Gt

2Þ= ðGb
1 ×G

b
2Þ+ ðGt

1 ×G
t
2Þ � ðGb

1 ×G
t
2Þ � ðGt

1 ×G
b
2Þ

= jA1j+ jA2j � jA3j � jA4j
ð5Þ

This gives the Bragg indices of the qBZ of the supermoiré to be ð1,1,�1,�1Þ
(see Eq. (3)) with the number density required to fill the band
ns =0.39 × 1016m−2.We thus find the area of the supermoiré qBZ arrived
at using two very different theoretical routes (continuum model cal-
culations and band geometric considerations) to be in excellent
agreement with that extracted frommeasured Brown-Zak oscillations.

A closer inspection reveals that several of the qBZ are three-fold
symmetric; two examples are provided in Fig. 4c, d. The source of this
C3 symmetry can be traced back to the triangular symmetry of the
constant energy contours of bilayer graphene energy dispersion (See
Supplementary Note 7). Figure 4e shows an example of the fractal or
flower-like qBZ for higher order gap Bragg predicted for doubly
aligned graphene14.

Discussion
We note in passing that throughout the above discussion, we have
avoided any mention of the strength of the interlayer coupling. As
noted in previous studies, the interlayer coupling strength affects only
the magnitude of the Bragg gaps, leaving their positions unaffected13.

To summarize, we have shown that the low-energy dispersion of
bilayer graphene can be significantly altered by the supermoiré
potential. Our study provides an elegant physical picture of the Bragg
gaps opening in themoiré spectrum (basedon areaquantization of the
qBZ) and helps identify the relevant topological quantum numbers.
Our experimental results match very well with the predictions of the
subtle effects of nearly commensurate supermoiré structures on gra-
phene bands. Importantly, our calculations establish that the qBZ of
the supermoiré lattice in bilayer graphene are C3 symmetric (in con-
trast to single-layer supermoiré), making it an ideal system to host
intrinsic Berry curvature dipoles. The scope of topology has been
limited to strictly periodic systems, but our study represents a crucial
step toward expanding it to encompass quasicrystals and their topo-
logical properties. To fully comprehend the physics of these intriguing
materials and unlock their complete potential, additional experiments

Γ

K
MA

B

150

100

50

0

-50

-100

-150

En
er

gy
 (m

eV
)

A K B

G2

t

G1

t

G2

b

G1

b

G2

t

G1

t

G2

b

G1

b

G2

t

G1

t

G2

b

G1

b

G2

t

G1
t

G2

b

G1

b

K

(0 1 0 0) (1 1 1 1)

(1 0 0 0) (1 1 0 3)

kxkx

k y
k y

n = -3.64 x 1016m-2

n = -2.36 x 1016 m-2 n = -0.38 x 1016m-2

n = -2.78 x 1016 m-2

a b

d e

c

Fig. 4 | Unfolded band structure and qBZs. a Unfolded band structure along the
path AKB (shown in the subplot). Primary gaps from the top and bottommoiré are
shown in red and blue. Gaps arising from both layers, i.e. supermoiré gaps, are
shown in green. b–e Plots of the calculated qBZ for the Bragg gaps at number

densities −2.36 × 1016m−2, −0.38 × 1016m−2, −2.78 × 1016m−2, and −3.64 × 1016m−2,
respectively. The Bragg indices are indicated in the insets of each panel. The
k-pointswhere the gapopens are shown as dots in red,blue andgreen. The kx and ky
range between [−0.8,0.8] nm−1.

Article https://doi.org/10.1038/s41467-024-46672-3

Nature Communications |         (2024) 15:2335 5



and theoretical calculations that incorporate interaction effects are
necessary.

Methods
Device fabrication
Devices of bilayer graphene (BLG) heterostructures doubly aligned
with single crystalline hBN were fabricated using a dry transfer tech-
nique (for details, see SupplementaryNote 1). Flakes of hBNandbilayer
graphene were exfoliated on the Si/SiO2 substrate with a thickness of
280nm. Raman spectroscopy and AFM were used to determine the
number of layers and thickness uniformity, respectively. A poly-
dimethylsiloxane (PDMS) dome coatedwith a sacrificial polycarbonate
(PC) layer was used to pick up the flakes sequentially. The rotation
stage was coupled with the 3D stage manipulator to control the dis-
tance and angle between the flakes independently. The hetero-
structure was aligned under the microscope to form a moiré
superstructure with less than 1° misalignment. The final constructed
device was vacuum annealed at 280 °C for 10 h. The devices were
patterned using standard electron beam lithography, followed by
reactive ion etching (using mixture of CHF3 (40sccm) and O2 (4sccm))
and thermal deposition of Cr/Au (5 nm/55 nm) contacts. The dual-
gated device architecture allows for independent tuning of charge
carrier density and displacement field. The capacitance values of the
top gate and back gate were extracted from quantum hall
measurements.

Transport measurements
Electrical transport measurements were performed in a cryogen-free
refrigerator (with a base temperature of 2 K and magnetic field up to
14 T). Thesemeasurements were performed at low frequency (18.8Hz)
using standard low-frequency measurement techniques at a bias cur-
rent of 10 nA.

Uncertainity in twist angle estimation
The twist angle is estimated using the relation

n=
8½ϵ2 + 2ð1 + ϵÞð1� cosðθÞÞ�ffiffiffi

3
p

a2ð1 + ϵÞ2
ð6Þ

Here, n is carrier density corresponding to the fully filled
superlattice unit cell, a = 0.246 nm is the lattice constant of gra-
phene, ϵ = 0.018 is the lattice mismatch between the hBN
and graphene, and θ is the relative rotational angle between
the two lattices. Uncertainty in the twist angle (δθ) is estimated
from the uncertainty in the carrier density (δn) by the following
relation:

δθ=

ffiffiffi
3

p
a2ð1 + ϵÞ

16 sinðθÞ δn ð7Þ

The impurity carrier concentration from the transport measure-
ment is extracted to be δn = 7 × 1014m−2. At the twist angle of θ ≈0. 5°,
uncertainty in the twist angle is extracted to be δθ =0.03°.

Data availability
The authors declare that the data supporting the findings of this study
are available within the main text and its Supplementary Information
and at https://doi.org/10.6084/m9.figshare.25195817. Other relevant
data are available from the corresponding author upon request.

Code availability
The code that support the findings of this study are available from the
corresponding author upon request.
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