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Highly sensitive spatial transcriptomics
using FISHnCHIPs of multiple co-
expressed genes

Xinrui Zhou 1,2, Wan Yi Seow 1,2, Norbert Ha 1, Teh How Cheng1,
Lingfan Jiang1, Jeeranan Boonruangkan1, Jolene Jie Lin Goh 1,
Shyam Prabhakar 1, Nigel Chou 1 & Kok Hao Chen 1

High-dimensional, spatially resolved analysis of intact tissue samples promises
to transform biomedical research and diagnostics, but existing spatial omics
technologies are costly and labor-intensive. We present Fluorescence In Situ
Hybridization of Cellular HeterogeneIty and gene expression Programs
(FISHnCHIPs) for highly sensitive in situ profiling of cell types and gene
expression programs. FISHnCHIPs achieves this by simultaneously imaging ~2-
35 co-expressed genes (clustered into modules) that are spatially co-localized
in tissues, resulting in similar spatial information as single-gene Fluorescence
In Situ Hybridization (FISH), but with ~2-20-fold higher sensitivity. Using
FISHnCHIPs, we image up to 53 modules from the mouse kidney and mouse
brain, and demonstrate high-speed, large field-of-view profiling of a whole
tissue section. FISHnCHIPs also reveals spatially restricted localizations of
cancer-associated fibroblasts in a human colorectal cancer biopsy. Overall,
FISHnCHIPs enables fast, robust, and scalable cell typing of tissueswith normal
physiology or undergoing pathogenesis.

Enormous cellular diversity arises when a single cell develops into an
organism. Recent advancements in single-cell RNA-sequencing
(scRNA-seq) make it possible to unbiasedly define cell types reflecting
ontogeny, functions, or anatomical locations. However, high-
throughput mapping of these cells within intact biological systems is
still a technical challenge1–3. Technologies that enable highly multi-
plexed mapping of cell types within the context of normal tissue
physiology or tumor microenvironment could provide valuable
insights into the diverse biological processes that contribute to human
health and disease.

Spatial indexing combined with next-generation sequencing has
enabled spatial mapping of sequencing reads and in situ reconstruc-
tions of cell types4–6, but sequencing-based spatial transcriptomics
methods are limited by RNA diffusion and capture efficiency. Cell
types can also be imaged by targeting RNAs with multiplexed single-
molecule FISH (smFISH) or in situ sequencing7–14. Imaging-based

spatial transcriptomicsmethods are highly quantitative and scalable to
the whole transcriptome (~10,000 genes)15,16, but they require high-
resolution microscopes, become more laborious with more targets or
need prioritization of marker genes17–20, may suffer from non-specific
noise21, and are limited bymolecular crowding13,22,23. Another approach
is multiplexed immunostaining or spatial proteomics24–26. While the
increased copy number of proteins compared to RNAs may lead to
more robust detection, antibody panels are costlier, less flexible, and
the assays have lower throughputs.

Here, we introduce a sensitive, robust, and scalable FISH-based
spatial transcriptomics method that profiles single cells usingmultiple
co-expressed genes. We reason that since co-expressed genes are
spatially co-localized in the same cells within a tissue, one can design
RNA FISH probes to target a large set of genes to detect any cell
population of interest more reliably (Fig. 1a). We call the method
Fluorescence In Situ Hybridization of Cellular HeterogeneIty and gene
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expression Programs (FISHnCHIPs) and show that it can accurately
map cell types while preserving tissue architecture. Using a reference
scRNA-seq dataset, we identify groups of correlated genes and design
thousands of oligonucleotide probes against their transcripts, which
result in tens of thousands of fluorescent tags per cell (factoring in
number of genes, transcript copy number per cell, and number of
probes per transcript) (Fig. 1b). By further taking advantage of the
array-synthesized oligo-pool and sequential fluidics technologies
(Fig. 1c), we seek to demonstrate FISHnCHIPs based expression pro-
filing in mouse kidney, mouse brain, and human colorectal cancer
tissues.

Results
For the initial testing of our hypothesis, we used a mouse kidney
scRNA-seq dataset27 to design FISHnCHIPs probes for five selected cell
types: renal macrophages, glomerular endothelial cells, loop of Henle
(LOH) cells, collecting duct (CD) cells, and glomerular podocytes—a
rare cell type that functions as a renal filtration barrier (Fig. 2a). We

observed a high degree of co-localization between the top two co-
expressed genes in each of these cell types, confirming that correlated
genes from scRNA-seq are indeed spatially co-localized in the same
cells (Fig. 2b). When using a combination of 14–23 genes to label each
of these cell types (Fig. 2c and Supplementary Data 1), the cells were
much more easily detected compared to labeling only the single top
differentially expressed (DE) gene. Although these 5 cell types repre-
sent only ~12% of the total kidney cell population (estimated from
scRNA-seq), FISHnCHIPs revealed many intricate details of the kidney
tissue architecture, such as the arrangement of podocytes in the highly
fenestrated Bowman’s capsule, where they wrap around the glo-
merular endothelial cells (Fig. 2d–i).

The FISHnCHIPs fluorescence intensity per cell was increased by
~6–39 fold across the five cell types (median of at least 146 cells)
compared to smFISH (Supplementary Fig. 1a). However, we observed
that some of the FISHnCHIPs genes were also expressed in off-target
cell types from the scRNA-seqdata (Fig. 2a). For example, Slc5a3, which
has a Pearson’s correlation (r) of 0.33 to Slc12a1 (a marker for LOH), is
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Fig. 1 | FISHnCHIPs schematic. a Cell-by-gene count matrix from single-cell RNA
sequencing (scRNA-seq) can be used to cluster cell types, which are characterized
by their unique gene expression profiles (red cells express genes A–D; green cells
express genes E–I). b Genes that are co-expressed with each other are spatially co-
localized in the same cells within a tissue. By designing fluorescently labeled

oligonucleotide probes to target a large set of co-expressed transcripts, FISH-
nCHIPs can improve the sensitivity of fluorescence detection. c Combined with
repeated rounds of hybridization and washing, FISHnCHIPs enables robust and
scalable mapping of cell types in tissue samples.
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also expressed in CD cells. To estimate the crosstalk in FISHnCHIPs
data, we computed the Manders’ overlap coefficient across the five
cell-type channels, which ranged from 0.001 to 0.09, suggesting
minimal crosstalk for these cell types (Supplementary Fig. 1b). To
computationally predict the trade-off between improved sensitivity
and potential misidentification for all cell types, we leveraged the

scRNA-seq reference data to compute two metrics, Signal Gain (SG)
and Signal Specificity Ratio (SSR), both expressed as a function of the
number of genes used (ranked by their Pearson’s correlation to the top
DE gene) (Supplementary Fig. 2).We defined SG as the ratio of the sum
of counts for FISHnCHIPs genes to that of the top DE gene, and SSR as
the ratio of the sum of counts for FISHnCHIPs genes in the target cell
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Fig. 2 | Comparison of FISHnCHIPs and single-molecule RNA FISH (smFISH) in
mouse kidney tissue. a Gene expression heatmap from the scRNA-seq reference
data and their corresponding cell clusters. Heatmap shows expression of the 84
FISHnCHIPs genes that are correlated to the top differentially expressed (DE) genes
in the 5 selected cell types, sampling a maximum of 300 cells per cluster. Cell type
labels are distal convoluted tubule (DCT), loop of Henle (LOH), collecting duct
principal cell (CD PC), collecting duct intercalated cell/collecting duct transitional
cell (CD IC/Trans), proximal tubule (PT), unknown1, endothelial cell, podocytes,
T-lymphocytes (T lymph), natural killer cell (NK), unknown2, fibroblasts (fib),
macrophage, B lymphocytes (B lymph), neutrophil (neutro). b Unprocessed

smFISH images of a mouse kidney tissue slice in 5 selected cell types are shown in
the left and middle panels. FISHnCHIPs labels 14–23 co-expressed genes simulta-
neously to detect target cell types and their images are shown in the right panels.
The smFISH and FISHnCHIPs images are scaled to the same camera intensity range
for each cell type. Nuclei staining with DAPI is shown in blue. Scale bar, 3μm.
c Composite FISHnCHIPs image with each cell type assigned a pseudo color:
endothelial (green), collecting duct (red), podocyte (magenta), loopofHenle (blue)
andmacrophage (yellow). Scale bar, 250μm. Insert: Zoomed-in region of the white
box. Scale bar, 25μm. d–i Zoomed-in region of the white box insert in (c). Scale
bar, 25 μm.
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type to that in the most likely off-target cell type. When SSR approa-
ches unity, the fluorescence intensity for the cell type of interest
should be equal to that of an off-target cell type, rendering them
indistinguishable. Disappointingly, we found that 7 out of the 16 pre-
viously annotated kidney cell types have a SSR of less than 4, reflecting
a lack of specificity for these cells when using this cell-centric design
and motivating the development of a more refined approach.

We asked if there is a way to design FISHnCHIPs gene-sets that
naturally diminishes crosstalk. We reasoned that since metazoan
genomes are organized by pathways and regulatory modules that
exhibit coordinated expression variability28, the imaging of gene
modules (groups of correlated genes) should result in spatially

coherent FISHnCHIPs signals. Motivated by this idea, we sought to
demonstrate a gene module-based FISHnCHIPs assay (that is without
the a priori clustering of cell types). We performed clustering of the
gene-gene correlation matrix (instead of the gene cell matrix) of a
mouse visual cortex dataset29, selected 255 candidate genes which are
highly correlated (Pearson’s correlation (r) > 0.7) to at least three
genes, and identified 18 gene modules with significant enrichment for
GeneOntology (GO) (Fig. 3a and Supplementary Data 1–3). By profiling
gene modules (an average of 14 genes per module), FISHnCHIPs sig-
nals were predicted to be 1.2 to 22.3-fold brighter than profiling with
individual marker genes. Furthermore, in this gene-centric design,
signals from different modules have low crosstalk with each other
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Fig. 3 | FISHnCHIPs profiling of 18 gene modules in the mouse cortex. a Gene-
gene correlation heatmap (of the pairwise Pearson’s correlation (r) coefficients)
grouped into 18 clusters of gene modules (colored boxes, M1-M18). Each module
(14 genes on average) was imaged sequentially under an automated fluidics-
coupled fluorescencemicroscope system. Example FISHnCHIPs images of amouse
brain tissue slice stained for gene module 1, 2, 3, and 18. Scale bar, 50 μm. b Single
cells were segmented using DAPI stain and the cell masks were applied to define
6180cells after quality control. Heatmapof themeanfluorescence intensity per cell
for each imaged module. The cell-by-module intensity matrix was clustered using
the Louvain algorithm, resulting in eight cell clusters. c–j Spatial maps of the

detectedcells, colored by their cell types: Glutamatergic neurons (gray),GABAergic
neurons (purple), astrocytes (blue), oligodendrocytes (red), endothelial cells
(cyan), microglial cells (orange), peri-vascular cells (green), and vascular leptome-
ningeal cells (yellow). Scale bar, 500μm. k Scatter plot of cell type frequency
detected by MERFISH versus FISHnCHIPs fitted with a linear regression model:
y= � 0:025 + x,R2 =0:96, where x,y is the cell type frequency in FISHnCHIPs and in
MERFISH, respectively. The gray band surrounding the regression line represents
the 95% confidence interval for the linear regression model. Insert is a pie chart
showing the proportion of each FISHnCHIPs cluster. Source data are provided as a
Source Data file.
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(Supplementary Fig. 3). We imaged each gene module sequentially
(Fig. 3a) in a fresh frozen mouse brain tissue section using an auto-
mated fluidics system, and created a software pipeline to align, seg-
ment, and cluster cell types based on the FISHnCHIPs data (Fig. 3b,
Supplementary Fig. 4). Unsupervised graph-based clustering of the
gene module expression from 6180 cells recapitulated the expected
frequency and spatial distribution of the major brain cell types,
including glutamatergic neurons, GABAergic neurons, astrocytes, oli-
godendrocytes, endothelial, microglial, peri-vascular, and vascular
leptomeningeal cells (Fig. 3c–j). The frequency of cell types detected
by FISHnCHIPs was highly correlated to MERFISH30 (Pearson’s corre-
lation r =0.98) (Fig. 3k and Supplementary Data 4) and was reliably
detected across technical replicates (Supplementary Fig. 5).

Next, we showed that FISHnCHIPs can be used to distinguish the
neuronal subtypes that stratify the canonical laminar structure of the
visual cortex. A dimensionality reduction-based algorithm—consensus
non-negative matrix factorization (NMF)31, was previously shown to
infer coordinated gene expression in neurons. So, we performed gene-
gene correlation analysis of the 20 previously annotated identity and
activity gene expression programs and designed a FISHnCHIPs panel
containing an average of 16 genes per program with SG ranging from
1.2 to 7.6 (Supplementary Data 1–2, and Supplementary Fig. 6). The
neuronal programs were clearly detected by FISHnCHIPs: the 14
identity programs (ExcL2, ExcL3… Sub) were more spatially localized
while the 6 activity programs (Erp, LrpD… Syn) were more ubiqui-
tously expressed (Fig. 4a–f). Clustering analysis of 2794 cells with the
identity programs revealed 11 neuronal clusters (Fig. 4g–s). We quan-
tified the distribution of excitatory and inhibitory neurons along the
cortical depth and observed that the excitatory neurons were orga-
nized into six layers (Fig. 4t). The inhibitory neurons also displayed
layer-specific localizations, with IntNpy/CckVip being more con-
centrated in the upper layers, whereas the IntSst and IntPv neurons
populated the deep layers (Fig. 4u–v), consistent with previous
findings30,32. Importantly, FISHnCHIPs also revealed subtle spatial var-
iations of these gene expression programs. We found that the excita-
tory programs (except for ExcL6p1) varied continuously with distance
to the outer edge of the cortex, and some programs had expression
distributions that partially overlapped along the cortical depth (Sup-
plementary Fig. 7), suggesting that spatial gene expression gradients
could underlie the continuous nature of neuronal sub-types30,33.

Having established the reliability of FISHnCHIPs for profiling
modules and programs, we sought to demonstrate how it improves
imaging throughput over conventional single gene-based methods.
With the improved signal, cells labeled with FISHnCHIPs were well
detected even when imaged under low magnification, thus enabling
largerfieldsof viewandmore cells tobeprofiled in the sameamountof
time (Supplementary Fig. 8). In addition, we sought to demonstrate a
more comprehensive cell typing for both neuronal and non-neuronal
cells within the mouse brain. We turned to an unsorted scRNA-seq
dataset34 anddesigned a FISHnCHIPs assay containing 53modules (674
genes), with SG ranging from 1.9 to 20.2 (Supplementary Fig. 9a, and
Supplementary Data 1–3). To further evaluate the panel, we simulated
the 53 FISHnCHIPs modules with the scRNA-seq dataset (sum of gene
expression within each module) and assessed the clustering accuracy
with respect to the reference annotations using the Adjusted Rand
Index (ARI) (Supplementary Fig. 9b–f). The 53 modules panel has an
ARI score of 0.814, suggesting that it could recapitulate the known
brain cell types to a large extent. For comparison, the ARI score with
1000 highly variable genes (simulating a conventional assay profiling
1000 genes individually) is only slightly higher at 0.846.

We proceeded to image a whole tissue section using the 10×
instead of 60× objective lens (see Supplementary Fig. 10 for example
images). This allowed us to cover a 36-fold larger area in the same
amount of assay time (21 h). We observed that co-expressed gene
modules co-localized in the same cells and biologically related

modules clustered closely in the expression space (Fig. 5a). Unbiased
clustering of 54,834 cells revealed 18 cell types with unique gene
expression profiles and spatial organization, including inhibitory and
excitatory neurons, astrocytes,microglia, pericytes, oligodendrocytes,
ependymal cells, endothelial cells, and other blood vessel associated
cells (Fig. 5b–u). Cell types identified by FISHnCHIPs showed good
correspondence to scRNA-seq (Supplementary Fig. 11). Further sub-
clustering of some of the cell types uncovered finer subtypes with
distinctive spatial distributions (Supplementary Fig. 12). For example,
we observed distinct localizations for the subtypes of blood vessel
associated cells, such as CNN1+ smooth muscle cells, DCN+
fibroblasts35, MRC1+ (also known as CD206) border-associated
macrophages36 that resided almost exclusively at the cortical surface,
and GKN3+ arterial endothelial cells that formed large penetrating
vascular structures. To further validate the performance of our high
throughput FISHnCHIPs assay, we compared the frequency and spatial
distribution of cell types observed under 10× versus 60× objectives
using two closely adjacent cryo-sections. The cluster sizes were highly
correlated between the 10× and 60× datasets (Pearson’s correlation,
r =0:95), indicating that there was no observable degradation of data
quality despite the increased throughput (Supplementary Fig. 13).
Notably, we observed that a much higher proportion of cells (97%)
passed quality control (QC) in this 53-module library compared to
previous libraries (Supplementary Fig. 14). This indicates that if FISH-
nCHIPs is designed to target a broad range of cell types, almost all cells
imaged can be profiled, further demonstrating the high detection
efficiency and sensitivity of FISHnCHIPs.

Another advantage of FISHnCHIPs is its robustness. The use of
redundant genes and high SG should facilitate the imaging of clinical
samples that may suffer from lower RNA quality. As a final demon-
stration, we used FISHnCHIPs to analyze a frozen biopsy of human
colorectal cancer (CRC) tissue by imaging two cancer-associated
fibroblasts (CAFs) subtypes that we previously identified from a
scRNA-seq study37 (Fig. 6a–f and Supplementary Fig. 15). We also co-
stained the epithelial cells (tumor marker genes) and immune cells
(human leukocyte antigen, HLA genes) in the CRC tissue using FISH-
nCHIPs. We observed distinct spatial organization of the two CAF
subtypes, with the CAF-2 subtype expressing the muscle contraction
program appearing to promote an immuno-suppressive micro-
environment, where fewer immune cells (0.74-fold, p = 1.4 × 10−72 (2-
sided Mann-Whitney U test) were detected in the vicinity of CAF-2
compared to CAF-1 (Fig. 6g–h and Supplementary Fig. 16). The
observed staining pattern is in agreement with immunofluorescence
(IF) labeling (Supplementary Fig. 17). In contrast, smFISH against
individual genes, DCN or MMP2 (markers for CAF-1), as well as TAGLN
or ACTA2 (markers for CAF-2), were dim and the CAFs subtypes were
hardly distinguishable from the hazy background fluorescence (Sup-
plementary Fig. 18), reinforcing the benefit of labeling cell types with
multiple co-expressed genes.

In summary, we showed that FISHnCHIPs can be used to robustly
image cell types inmouse and human tissues, aswell as to characterize
cell types through unsupervised clustering. scRNA-seq studies have
repeatedly highlighted the importance of gene modules or transcrip-
tional programs in diseases, but they have not been imaged directly.
We leveraged the key insight that correlated genes are spatially
coherent to image them via in situ hybridization in a high throughout
manner. We found that some gene modules, or combinations of
modules, marked discrete cell populations localized to specific brain
regions while others varied continuously along certain spatial axes in
the brain. Accurate mapping of both types of transcriptional state is
critical for understanding the phenotypic properties of any tissue.

Discussion
The key advantage of FISHnCHIPs is that it provides ~2–20-fold
higher sensitivity for mapping cell types (depending on the desired
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cell type “resolution”) compared to conventional FISH. In contrast to
existing marker genes selection strategies that minimize
redundancy18,38 or use compressed sensing to improve the multi-
plexing efficiency for individual genes17, FISHnCHIPs leverages the
redundancy of correlated genes to boost sensitivity and robustness.
For example, the amplified signal can be harnessed for rapid whole-
tissue imaging under a lower magnification objective lens. The high-
throughput, large field-of-view profiling enabled by FISHnCHIPs

could facilitate detection of rare cell populations within complex
tissues. For instance, stem cell niches housing slowly dividing stem
cells often occur at low frequencies interspersed throughout a
tissue39. By performing rapid whole-tissue scans, FISHnCHIPs can
help identify these niche locations based on their expression sig-
natures. Linking rare cell gene expression patterns to their sur-
rounding microenvironments could resolve external events or cell-
cell interactions that influence cell fates. This is especially important
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programs ExcL2, ExcL5p3, ExcL6p1, ExcL6p2, IntSst, and IntPv. An average of 16 co-
expressed genes were imaged concurrently. Scale bar, 500μm. g Single cells were
segmented and a total of 2794 passed quality control. Heatmap of the mean
fluorescence intensity per cell for each imaged program. The cell-by-program
intensity matrix was clustered using the Louvain algorithm, resulting in 11 clusters.
We used the program annotations to label the cluster identities. h Uniform mani-
fold approximation and projection (UMAP) colored by cluster. i–s Spatial maps of
the detected cells, colored by their cell types: L2/3 excitatory neurons (blue), L3/4
excitatory neurons (purple), L4/5 excitatory neurons (orange), L5p1 excitatory

neurons (gray), L5/6 excitatory neurons (red), L6p1 excitatory neurons (white),
IntPv inhibitory neurons (cyan), IntSst inhibitory neurons (light green), IntNpy/
CckVip inhibitory neurons (yellow), hippocampus (light blue), and subiculum (dark
green). Scale bar, 400 μm. tComposite image of the detected cell clusters. Cortical
depth distance (for u, v) was calculated based on the two white arcs (see materials
and methods). Some programs exhibited gradual intensity variation along the
cortical depth (see cell-by-program intensity heatmap ordered by increasing cor-
tical depth in Supplementary Fig. 7). Kernel Density Estimate (KDE) of cell density
for excitatory neurons (u) and inhibitory neurons (v) along the cortical depth.
Source data are provided as a Source Data file.
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for revealing the potentially pathologic roles of certain tumor
microenvironments in seeding cancer stem cells.

By utilizing redundant genes, FISHnCHIPs is also more robust
when analyzing clinical tissues. Furthermore, optical crowding in small

cells would typically hinder the accurate decoding of highly expressed
RNA transcripts, but FISHnCHIPs turns this into an advantage by
simultaneously profiling co-localized genes at the level of single cells.
FISHnCHIPs may be combined with split-probe21, tissue clearing40, or
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amplification41–44 to further enhance the signal. The development of
more precise and scalable scRNA-seq methods45,46 and the availability
of more comprehensive cell atlas reference datasets should facilitate a
wider array of cell types that can be mapped using FISHnCHIPs. In
addition to scRNA-seq, prior information on biochemical pathway47,
transcription factor motif48, chromatin accessibility49, bulk gene
expression50, or even sequencing based spatial transcriptomics51 may
be used to inform the design of FISHnCHIPs gene panel.

Compared to multiplexed immunostaining methods, FISHnCHIPs
offers greater flexibility and throughput, as it can exploit custom-
designed but relatively inexpensive oligonucleotide probes. Besides,
labeling of antibody panels often requires individual optimization, but
the fluorescence signal from FISHnCHIPs is likely to be more con-
sistent because the hybridization of probes is highly efficient across
the transcriptome15,16. FISHnCHIPs is applicable to any cell population
for which transcriptomic characteristics are known, thus allowing the
interrogation of cell states not accessible by antibody-based methods.
As an alternative to immunolabeling, FISHnCHIPs could be highly
useful for the validation of novel cell types identified from scRNA-seq
studies. Similar to multiplexed smFISH, FISHnCHIPs can be used to
quantify cell types, derive zonation patterns, and analyze cell-cell
interactions. However, FISHnCHIPs is not able to count the copy
number of a single gene, determine its localization at the sub-cellular
level or analyze signaling between specific receptors and ligands.
Where it is necessary to obtain transcriptomic information at both
levels, FISHnCHIPs could be combined with multiplexed smFISH to
enable simultaneous cell-level and transcript-level analysis.

We foresee that the high sensitivity of FISHnCHIPs will allow the
design of simpler and lower-cost spatial omics instruments, thereby
improving the accessibility of spatial assays for the broader biomedical
research community. Besides neuroscience and oncology, FISHnCHIPs
could find broad use in other biological studies, such as mapping gene

programs during embryonic development or defining multi-cellular
ecosystems of infectious pathogens. We also expect FISHnCHIPs to be
useful for the molecular histopathology of Formalin Fixed Paraffin
Embedded tissues, where clinically actionable cell states could be
diagnosed accurately and at scale.

Methods
Ethics statement
Experiments in this study involving human tissue were conducted in
accordance with institutional ethical regulations. This study is
approved by the A*STAR Research Integrity, Compliance, and Ethics
Office for the use of non-individually identifiable human biological
materials for in vitro research studies under application number
IRB F-112.

FISHnCHIPs gene panel design and evaluation software
Supplementary Fig. 19 summarizes the software workflow for FISH-
nCHIPs panel design and evaluation. To target specific cell types,
FISHnCHIPs (cell-centric) either accepts user input of reference mar-
kers and cell labels or performs de novo clustering of cell types and
identifies DE gene(s) as the reference marker(s). The default measure
of co-expression is the Pearson’s correlation coefficient. Other possi-
blemeasures includemutual information, Spearman’s rank correlation
coefficient, and Euclidean distance52. To explore gene expression
activities without a priori cell type clustering of the scRNA-seq data,
FISHnCHIPs (gene-centric) performs either feature selection and/or
dimensionality reduction (e.g., using NMF), followed by clustering
analysis of the gene-gene correlation matrix to identify gene modules.
In the feature gene-based method, genes that were highly correlated
(>min :corr) with a minimum number of genes (>min :genes) were
used as nodes in a network that was constructed from the gene-gene
correlation matrix and partitioned using the Leiden algorithm53. Gene
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Fig. 6 | FISHnCHIPs imaging of cancer associatedfibroblasts (CAFs) subtypes in
human colorectal cancer (CRC) tissue. a–d FISHnCHIPs images of cancer asso-
ciated fibroblasts 1 (CAF-1), cancer associated fibroblasts 2 (CAF-2), colon epithe-
lium, immune cells (HLA genes). Scale bar 200um. eComposite imagewith pseudo
colors: colon epithelium (white), CAF-1 (cyan), CAF-2 (purple) and immune cells
(yellow). Scale bar, 200μm. f Zoomed-in region of the white box insert in (e). Scale
bar, 25 μm. g Centroids of the segmented cell masks for CAF-1 (cyan), CAF-2
(purple), immune cells (yellow). Scale bar, 200μm. h Box plots of the number of

immune cells within 100μm radius of CAF-1 (cyan) and CAF-2 (purple) cells.
Immune cells were found0.74-fold less frequently in the vicinity of CAF-2 thanCAF-
1. Number of cells, n: CAF-1: 2946, CAF-2: 2671, examined over 1 experiment. A
technical replicate is provided as Supplementary Fig. 16. The box plots show the
median (center line), the first and third quartiles (box limits), and 1.5 × the inter-
quartile range (whiskers). p = 1.4 × 10−72, 2-sided Mann-Whitney U test. Source data
are provided as a Source Data file.
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partitions can be further sub-clustered using hierarchical clustering
based on their log-transformed expression matrix. For the dimen-
sionality reduction-basedmethod, a non-negativematrix factorization
(NMF) algorithm31 that identifies gene programs and their relative
contributions can be used. The top N genes from each program are
chosen to construct the gene-gene correlation matrix. Clustering of
the matrices can be refined by setting correlation ranges. We also
designed a hybrid FISHnCHIPsmethodwhere the DE genes are used as
features to construct the gene-gene correlationmatrix to identify gene
modules. We recommend FISHnCHIPs users to perform clustering in
the gene-gene space to reduce crosstalk. We evaluated the output
genepanel by predicting the SG and specificity, aswell as by simulating
the expected cell-module expression profile and clusters. We demon-
strated cell-centric FISHnCHIPs for the mouse kidney library (Fig. 2),
gene-centric FISHnCHIPs for themouse cortex libraries (Figs. 3, 4), and
hybrid approach for the mouse brain (Fig. 5) and human CRC library
(Fig. 6). The following paragraphs describe the FISHnCHIPs panel
design and evaluation process in more detail:

Data preprocessing. We preprocessed the scRNA-seq count matrix
using the Seurat pipeline54. First, the QC filters empty droplets and cell
doublets, i.e., cells expressing too few or toomany unique genes. After
QC, three versions of the gene count matrix will be prepared for dif-
ferent downstream analyses: (1) Scale the total counts of cells to a
constant by dividing the total counts of cells and multiplying a scale
factor. The cell-scaled matrix would be used for predicting the
expected signal of a FISHnCHIPs panel. (2) Add a pseudo-count to the
cell-scaled matrix and apply a natural log transformation. The log-
transformed matrix would be used for the differential gene analysis
and gene-gene correlation analysis; (3) Apply a linear transformation
to the gene expression vectors, so that the mean expression of genes
across cells is 0 and the variance across cells is 1. The gene-scaled
matrix would be used for dimensionality reduction and heatmap
visualization of the expression of individual genes.

Panel evaluation. A FISHnCHIPs panel can be evaluated by the SG and
SSR: denoting a FISHnCHIPs panel with n genes as
Pt = fg1,g2, . . . ,gi, . . . ,gng targeting the cell type Ct ; the number of
probes for genes corresponds to K = fk1,k2, . . . ,ki, . . . ,ktg. The pre-
dicted signal of one gene gi in cell type Ct , denoted as signalðgi,CtÞ, is
defined as the product of ki and the average expression of gi in cell
type Ct . The signal of a panel Pt in a cell type Ct , which is denoted as
signalðPt ,CtÞ, is the sum of all gene signals in the target cell type or
module. Denoting g1 as the reference gene, and gmax as the gene with

themaximal signal. The general SG is defined as signalðPt ,Ct Þ
signalðg1 ,Ct Þ, i.e., the ratio

of the panel signal to the signal of the referencegene. The conservative

SG is defined as signalðPt ,Ct Þ
signalðgmax,Ct Þ, i.e., the ratio of the panel signal to the

highest gene signal. The crosstalk can be estimated by calculating the

SSR of a panel Pt , between cell type Ct and Ct 0, defined as signalðPt ,Ct 0Þ
signalðPt ,Ct Þ ,

i.e., the ratio of panel signal in Ct to the ratio of panel signal in Ct 0. The
general signal specificity is defined as the ratio of thepanel signal in the
target cell type to the panel signal in all off-target cell types. The
conservative signal specificity is defined as the ratio of the panel signal
in the target cell type to the panel signal in the cell cluster with the
highest predicted crosstalk.We used the general SG for the cell-centric
mouse kidney panel and the conservative SG for all other FISHnCHIPs
panels. A FISHnCHIPs panel can be further evaluated by re-clustering
the scRNA-seq dataset using the module-cell expression matrix. The
module-cell expression matrix is calculated from the cell-scaled
expression matrix, by taking the sum of cell counts of genes in the
same group. Considering the module as a meta-gene, the module-
expression matrix can be taken as a meta-gene expression matrix.
Consequently, conventional clustering methods used to process

single-cell gene count matrices can be applied. A module-cell expres-
sion heatmapanddimensionality reductionvisualization tools (suchas
UMAP or tSNE) could be used to simulate the reconstruction of cell
types from a FISHnCHIPs assay.

Mouse kidney panel (Fig. 2)
The scRNA-seq data and cell labels of themouse kidney were retrieved
from NCBI Gene Expression Omnibus (GEO) under accession
GSE11574627. Genes with the highest log fold-change of the average
expression between the targeting clusters and other clusters were
selected as reference markers. Cells with <200 or >3000 unique
expressed genes were removed. Cells with mitochondrial genes >50%
were removed. Genes that were expressed in <10 cells were removed.
Cells were then scaled to a sequence depth of 10,000 per cell and log-
transformed with a pseudo-count of 1. Genes were scaled so that the
mean expression across cells was 0 and the variance across cells was 1.
For each cluster, genes correlated to the reference markers and with
Pearson Correlation >0.5 were selected. If there were <15 genes highly
correlated with the reference, the top 15 genes were selected. For all
clusters, we removed genes that appeared more than once. For glo-
merular endothelial cells, the top maker Plat was only expressed in
59.5% of glomerular endothelial cells, and it was also highly expressed
in glomerular podocytes. Therefore, the Emcn was used as the refer-
ence marker instead of Plat. For renal macrophages, both C1qa and
C1qb were used as references. We chose 5 cell types for imaging
(Fig. 2), but computationally evaluated all the previously annotated
cell types (Supplementary Fig. 2).

Feature gene-based mouse cortex panel (Fig. 3)
A scRNA-seq dataset29 of the mouse primary visual cortex (VISp) was
used for the mouse brain panel design. First, the cells were scaled to
10,000, then the gene expression in cells was binarized by the mean
expression of all genes across all cells. Genes that were expressed in <5
cells or >80% of the total number of cells were filtered out. Gene names
starting with “Mt” or “Gm” followed by digits were removed. 330 genes
highly correlated to at least 5 geneswith a correlation >0.7were selected
as candidates. A graph was created from the 330 by 330 correlation
matrix, removing edges with low correlation (<0.6). Leiden partitioning
on the graphwith 330 candidate genes generated 11 clusters. We further
performed hierarchical clustering on the Leiden clusters based on gene
expression, cutting the dendrogramof genes into k subclusters: k=6 for
big clusters (>30 genes); k=4 for mid-size clusters (11-30 genes); k=2
for small clusters (6–10 genes); k= 1 for very small clusters (<6 genes).
There were 255 genes distributed in 18 modules after removing sub-
clusters with single genes, genes not found in our probe design tran-
scriptome database (Hsp25-ps1 and Gstm2-ps1) or associated with
multiple IDs in our probe design transcriptome database (Schip1).
Functional enrichment analysis, known as gene set enrichment analysis,
on the panel genes was performed using g:GOSt55.

Dimensionality reduction-based mouse cortex panel (Fig. 4)
Non-negative matrix factorization (NMF) provides a low rank approx-
imation of the gene cell matrix by a product of two non-negative
matrices, and is able to capture the structures of coordinated gene
expression in scRNA-seq data31,56. The gene-contribution matrix of the
mouse visual cortex neurons was downloaded from31. The highest
contributing 50 genes were selected from the 20 factors. Gene names
starting with the “Gm” followed by digits were removed. Clustering of
the gene-gene correlation matrices resulted in one or more gene
modules per program. By comparing the gene expression heatmap
and the gene-gene correlation matrices, we noticed that most genes
with Pearson’s correlation (r) higher than 0.3 showed expression that
spanned multiple programs and were markers associated with the
major cell types (such as for all inhibitory neurons). Therefore, we
removed genes with r higher than 0.3 and lower than 0.02. There were

Article https://doi.org/10.1038/s41467-024-46669-y

Nature Communications |         (2024) 15:2342 9

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746


311 genes distributed in 20 programs after further discarding genes
with no probes found.

674-gene mouse brain panel (Fig. 5)
Utilizing the subcluster labels provided by the mouse brain Drop-seq
scRNA dataset34, we identified amaximum of 50 DE genes with at least
0.25-fold difference for all subclusters, employing the Wilcoxon Rank
Sum test algorithm implemented in Seurat. For each subcluster, genes
with the lowest correlation to any DE gene were removed until the
minimal Pearson correlationmatrix of the remaining geneswasgreater
than 0.1. To further refine the quality of the panel, genes starting with
“mt” and small modules with fewer than 5 genes were excluded,
resulting in 53 gene modules containing 674 genes. To evaluate the
panel, we re-clustered the scRNA-seq dataset using the 53 modules as
features and calculated the Adjusted Rand Index using the “aricode”
package inR. Toprovide further comparisons, we also simulated single
gene-based multiplexed FISH assays by re-clustering the scRNA-seq
data using 1000, 2000, and 3000 highly variable genes as features
detected by the “vst’ method provided in the Seurat package (Sup-
plementary Fig. 9b).

Human colorectal cancer panel (Fig. 6)
We previously identified two cancer-associated fibroblasts (CAFs)
subtypes using scRNA-seq37. We further confirmed these two subtypes
using a more recent scRNA sequencing dataset57 (Supplementary
Fig. 15). Genes that were expressed in <5 cells or >70% of the total
number of cells were filtered out. Gene names starting with “Rp”, “Mt”
or “Gm” followed by digits were removed. Based on the 125 selected
marker genes, a graph was created from the gene-gene correlation
matrix, removing edges with low correlation (<0.7). Leiden partition-
ing on the graph yielded ~20 modules and we selected 4 modules
highly expressed in the two CAFs, epithelial, and immune cells for
demonstrating FISHnCHIPs.

FISHnCHIPs library design and probe sequences
For all the genes, 25-nucleotide target regions were identified using a
previously published algorithm58. Briefly, reference transcript
sequences were downloaded from the GENCODE website (human v24
and mouse m4). A specificity table was calculated using 15-nucleotide
seed and 0.6 specificity cutoff was used. Quartet repeats (“AAAA”,
“TTTT”, “GGGG”, and “CCCC”) were excluded from the possible target
regions. The list of FISHnCHIPs and readout probe sequences can be
found in Supplementary Data 1. We generated 56 readout probe
sequences initially, but B16, B48 and B55 were not used.

Probe amplification and preparation
The oligonucleotide pools (Genscript) were amplified enzymatically to
generate the encoding probes used for sample staining8. First, the
oligonucleotide poolwas amplifiedby limited-cycle PCRusing Phusion
Hot Start Flex 2× Master Mix, with an annealing temperature of 68 °C.
The T7 promoter sequence was introduced on the reverse primer
during PCR. Further amplification was achieved by in-vitro transcrip-
tion that was performed overnight using a high-yield in vitro tran-
scription kit (NEB, cat. no. E2050S). Reverse transcription was then
performed on the RNA template using Maxima H- Reverse Tran-
scriptase (ThermoFisher, cat. no. EP0753) to create aDNA-RNAhybrid.
The RNA part was then cleaved off with alkaline hydrolysis, leaving
behind a single-stranded DNA (ssDNA) which was then purified via
magnetic bead purification and eluted in nuclease-free water (Ambion,
cat. no. AM9930). The primers used for PCR are as follows:

Mouse Kidney Library for Fig. 2:
Forward primer: 5′-CTATGCGCTATCCCGGACGC-3′
Reverse primer: 5′-TAATACGACTCACTATAGGGTCGCATATCCG
TACCGGC-3′.
Mouse Cortex Library for Fig. 3:

Forward primer: 5′-CCGTTCAAGACTGCCGTGCTA-3′
Reverse Primer: 5′-TAATACGACTCACTATAGGGCTAGGGAGCCT
ACAGGCTGC-3′
Mouse Cortex Library for Fig. 4:
Forward primer: 5′- TTGCGTTCGGTCTGAATGCG-3′
Reverse Primer: 5′- TAATACGACTCACTATAGGGACTCCTGCTCT
TTGGGTCCG-3′
Mouse Brain Library for Fig. 5:
Forward primer: 5′-CGCCCTAATCTCCGCTTGGG′−3′
Reverse Primer: 5′-TAATACGACTCACTATAGGGGCTTCGACCGAG
GGCGAAAT′−3′
Human Colorectal Cancer Library for Fig. 6:
Forward primer: 5′- TGCCCGCCTTTCGTTACTCA −3′
Reverse Primer: 5′- TAATACGACTCACTATAGGGCGCAATCGT
CGGCTAACGGT −3′.

Coverslip functionalization
Coverslips were coated before being used for tissue sectioning21,59. The
coverslips (Warner Instruments, cat. no. 64–1500) were cleaned by
gently shaking in 1M KOH for 1 h and rinsed thrice with Milli-Q water.
The coverslips were rinsed with 100% methanol, then immersed in an
amino-silane solution (3% vol/vol (3-aminopropyl) triethoxysilane
(Merck cat no. 440140), 5% vol/vol acetic acid (Sigma, cat. no. 537020)
in methanol) for 2min at room temperature before being rinsed three
times with Milli-Q water and dried in an oven at 47 °C overnight.
Functionalized coverslips were then used immediately or stored in a
dry, desiccated environment at room temperature for several weeks.

Mouse tissue sample preparation
8-week-old C57BL/6nTAc female mice, purchased from InVivos, were
used for all animal experiments in this study. All animal care and
experiments were carried out in accordance with Agency for Science,
Technology and Research (A*STAR) Institutional Animal Care and Use
Committee (IACUC) guidelines (IACUC #211580). The mice were
euthanized on the day of arrival, and their kidneys and brains were
quickly collected and frozen immediately in optimal cutting tem-
perature compound (Tissue-Tek O.C.T. Compound; Tissue-Tek, SKU
#4583), before storing at −80 °C. The fresh frozen samples were then
sectioned with a cryostat into 7μm sections directly onto functiona-
lized coverslips. For the comparison between 10× and 60× objectives
(Supplementary Fig. 13), adjacent mouse sagittal brain sections were
used. Sections were air-dried for 5min at room temperature before
being fixed with 4% vol/vol paraformaldehyde in 1 × PBS for 15min.
Following fixation, samples were rinsed once with 1 × PBS and were
either permeabilized immediately in 0.5% TritonX-100 in 1 × PBS for
10min at room temperature, or permeabilized in 70% ethanol over-
night at 4 °C, or stored at −80 °C. No sample-size estimate was per-
formed, since the goal was to demonstrate a technology.

Human colorectal cancer tissue sample preparation
To demonstrate the FISHnCHIPs technology, an aliquot from a non-
individually identifiable tumor colon tissue was collected and frozen
on dry ice immediately after resection and stored at −80 °C. Prior to
sectioning, tissue was embedded in optimal cutting temperature
compound. Sections were obtained as described above, and following
fixation, samples were rinsed once with 1 × PBS before being permea-
bilized immediately in 70% ethanol overnight at 4 °C. Sections were
further permeabilized in 0.5% TritonX-100 in 1 × PBS at room tem-
perature for 15min.

FISHnCHIPs and smFISH staining
After permeabilization, the tissue sample was rinsed thrice with
1 × PBS, followed by a rinse with 2 × SSC. The encoding probes were
diluted in a 20% or 30% hybridization buffer to a final concentration of
1–2 nM per probe. The 20% hybridization buffer composed of 20%
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deionized formamide (Ambion™ Cat: AM9342) (vol/vol), 1mg ml-1
yeast tRNA (Life Technologies, cat. no. 15401-011) and 10% dextran
sulfate (Sigma, cat. no. D8906) (wt/vol) in 2× SSC. The sample was
stained with the encoding probes for 16 to 48 h at 37 °C or 47 °C.
Following hybridization, the sample was washed in a 20% formamide
wash buffer, containing 20% deionized formamide and 2 × SSC, twice,
incubating for 15-30min at 37 °C or 47 °C per wash. The wash buffer
was then removed, and the sample was washed twice with 2 × SSC. The
staining and washing conditions were optimized individually for each
sample type. DAPI (Sigma, cat. no. D9564) was stained at a con-
centration of 1 µg/ml in 2 × SSC for 10min at room temperature. The
sample was then washed thrice with 2x SSC and were either imaged
immediately or stored at 4 °C in 2 × SSC for no longer than 12 h before
imaging. For smFISH of DCN, MMP2, TAGLN, ACTA2, and SPARC (Stel-
laris RNA FISH probe sets, LCG Biosearch Technologies), the probes
were diluted with 10% hybridization buffer, and samples stained
overnight at 37 °C. Samples were then washed twice with a 10% for-
mamide wash buffer for 15min at 37 °C per wash, before rinsing with
2 × SSC and subsequent imaging. Sequences of the smFISH probes can
be found in Supplementary Data 5.

FISHnCHIPs imaging cycle
A flow chamber (Bioptechs, cat. no. FCS2) that could be secured to the
microscope stage was used to mount the sample. Readout probe
hybridization was performed directly in the flow chamber by buffer
exchange that was controlled by a custom-built, computer-controlled
fluidics system8. All the buffer solutions (~1ml per exchange) were flo-
wed within 1min. 10 nM of fluorescently labeled readout probe in 10%
high-salt hybridization buffer was flowed into the chamber and incu-
bated for 10min at room temperature. The 10% high-salt hybridization
buffer was composed of 10% deionized formamide (vol/vol) and 10%
dextran sulfate (Abcam, cat. no. ab146569/Sigma, cat. no. D8906) (wt/
vol) in 4 × SSC. Following hybridization, the sample was rinsed with
2 × SSC before flowing in 10% formamide wash buffer containing 0.1%
TritonX-100. 2 × SSC was flowed once more before imaging buffer. The
imaging buffer consisted of 2 × SSC, 10% glucose, 50mM Tris-HCl pH 8,
2mM Trolox (Sigma, cat. no. 238813), 0.5mg/ml glucose oxidase
(Sigma, cat. no. G2133) and 40μg/ml catalase (Sigma, cat. no. C30). To
remove the fluorescent signals, the samples were washed with 55% for-
mamide wash buffer containing 0.1% TritonX-100. This hybridization
and wash cycle were repeated until all the readout probes were imaged.

Imaging set-up 1
FISHnCHIPs imaging was performed on a home-mademicroscope and
fluidics set-up21. Briefly, the microscope was constructed around a
Nikon Ti2-E body, Marzhauser SCANplus IM 130mm×85mm motor-
ized X–Y stage, a Nikon CFI Plan Apo Lambda 60× 1.4-n.a. oil-
immersion objective, and an Andor Sona 4.2B-11 sCMOS camera. For
the whole slide imaging experiment (Fig. 6), the Nikon CFI Plan Apo
10× 0.5-n.a. water-immersion objective was used. The DAPI channel
was excited by a Coherent Obis 405 100-mW laser. MPB Commu-
nications fiber lasers were used as illumination for Alexa594 (592 nm),
Cy5 (647 nm) and IRDye 800CW (750nm), respectively: 2RU-VFL-P-
500-592-B1R (500mW), 2RU-VFL-P-1000-647-B1R (1000mW) and
2RU-VFL-P-500-750-B1R (500mW). The Nikon Perfect Focus system
was used to maintain focus while imaging, and in each imaging cycle,
one Z position was imaged for each field of view. The Perfect Focus
system was not used when imaging under the 10× water-immersion
objective. Images were acquired at different exposure times (1 s,
500ms, and 1 swith 60× and 3 s, 3 s, and 5 swith 10× for Alexa594, Cy5,
and IRDye 800CW respectively) to avoid saturating the camera.

Imaging set-up 2
A custom-built microscope constructed around a Nikon Ti2-E body,
Marzhauser SCANplus IM130mm×85mmmotorizedX–Y stage, and a

pco.edge 4.2 BI-USB Back Illuminated sCMOS camera was used. A
custom, fiber-coupled laser box from CNI laser was used as illumina-
tion for DAPI (405 nm), Alexa Fluor 488 (488 nm), Alexa Fluor 594
(588 nm), Cy5 (637 nm) and IRDye 800CW (750nm). Custom multi-
wavelength filters, 445/503/560/615/683/813 (Semrock) and 405/473/
532/588/637/730 (Semrock), were used. The following objectives were
tested: Nikon CFI Plan Apo Lambda 10× 0.45-n.a. air objective
(MRD00105), Nikon CFI Plan Apo 10× 0.5-n.a. water-immersion
objective (MRD71120), Nikon CFI Plan Fluor 20× 0.75-n.a. water-
immersion objective (MRH07241), Nikon CFI S Plan Fluor ELWD 20×
0.45-n.a. air objective (MRH08230), NikonCFI Apo LWDLambda S 40×
1.15-n.a. water-immersion objective (MRD77410), and Nikon CFI Plan
Apo Lambda 60× 1.4-n.a. oil-immersion objective (MRD01605). At 40×
and 60×, the focus was maintained using the Nikon Perfect Focus
system.One Z positionwas imaged per field of view. This set up is used
for objective lenses comparison experiment (Supplementary Fig. 8)
and for immunofluorescence imaging (Supplementary Fig. 17).

Immunofluorescence staining
Tissues were rinsed with 1 × PBS thrice at room temperature. Blocking
was done with 1% BSA (NEB) and 0.1% Tween-20 in 1 × PBS for 1 h at
room temperature. Tissues were stained at 4 °C overnight using the
following antibodies diluted in blocking solution: anti-LUM (Abcam,
ab168384; clone EPR11380(B); Lot GR121948-4; 1:75), anti-MMP2
(Abcam, ab97779; Lot GR3448382-1; 1:200), anti-α-SMA (Abcam,
ab7817; clone 1A4; Lot 1009584-11;1:600), and anti-PDGFA (Santa Cruz
Biotechnology, sc-9974; clone E-10; Lot C0222; 1:600). PDPN was
detected using AF488-conjugated primary antibody (BioLegend,
337005; clone NC-08; Lot B360564; 1:75). Secondary antibody staining
was then carried out for 1 h at room temperate using anti-mouseAF594
(ThermoFisher, A11005; Lot 2538976; 1:1000) and anti-rabbit AF488
(ThermoFisher, A11008; Lot 2557379; 1:1000). Finally, samples were
stained with anti-CD68 (Cell Signaling Technology, #79594; clone
D4B9C; Lot 779594S; 1:50) overnight at 4 °C. Afterwashingwith 1 × PBS
three times, tissues were counterstained with DAPI (Sigma) before
mounting (Vectashield, H-1700-10).

FISHnCHIPs image processing and data analysis software
A custom pipeline (Supplementary Fig. 4) was created to align the
images (DAPI images, FISHnCHIPs images, and background images),
segment, and cluster cell types. First, nuclei masks were obtained by
performing nucleus segmentation using the deep learning based
Cellpose algorithm60 or the watershed algorithm. FISHnCHIP images
were registered to the DAPI image by phase correlation using a sub-
pixel registration algorithm provided in the Scikit-Image package61.
Subsequently, background images (after the 55% formamide wash,
images were taken and used to estimate tissue autofluorescence
background) were subtracted from the FISHnCHIPs images after
alignment (i.e., applying the same shifts). The nuclei masks obtained
from the segmentation ofDAPIweredilated to create cellmasks,which
were applied to all background subtracted FISHnCHIPs images. A
FISHnCHIPs intensity matrix was constructed for cell type clustering
and subsequent analyses. The intensity matrix was clustered using the
Louvain algorithm after QC and normalization. Cell clusters were
visualized in a heatmap, dimensionality reduction plot, as well as a
cluster map.

Gain and crosstalk analysis for mouse kidney (Fig.2)
The nuclei segmentation and image alignment were performed as
described above. Nuclei masks smaller than 3000pixels were dis-
carded. Nuclei masks were dilated by 5 pixels for creating cell masks.
Images were normalized by dividing by the 99th percentile of pixel
intensities. A cell-by-channel-intensity matrix was constructed by cal-
culating the mean fluorescence intensity per cell using the cell masks.
Since we chose to image only five kidney cell types in this experiment,
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cells with normalized intensity lower than 0.5 were dropped (keeping
only ~18.6% of the cells that were brightly labeled by FISHnCHIPs).
Qualified cells with the highest normalized intensity across the chan-
nels were assigned to be the corresponding cell type. The FISHnCHIPs
fluorescence SG was calculated by taking the ratio of the mean FISH-
nCHIPs intensity to the mean smFISH intensity in the same cell (the
same cell masks were applied to both FISHnCHIPs and smFISH images
as theywere imaged sequentially on the same sample). The crosstalkof
FISHnCHIPs was estimated by calculating the Mander’s overlap
coefficient62, a metric that quantifies the degree of co-localization of
objects in a pair of images (andwas originally developed for dual-color
confocal microscopy). It is the fraction of overlap between two chan-

nels:M1 =
P

C1>t1ð Þ&ðC2>t2ÞP
C1>t1ð Þ ;M2 =

P
C1>t1ð Þ&ðC2>t2ÞP

C2>t1ð Þ , where t1 and t2 were the

thresholds for binarizing the two channels C1 and C2 respectively.

Figure 3 18-module mouse cortex data analysis
The nuclei segmentation and image alignment were performed as
described above. Nuclei masks smaller than 3000pixels were dis-
carded. Nuclei masks were dilated by 15 pixels for creating cell masks.
Images were normalized to their 99th percentile of pixel intensities.
The cell-by-module-intensity matrix was constructed by taking the
mean intensity of the segmented cell masks. Cells with total intensity
lower than the 15th percentile were removed for QC, resulting in
72.04% nuclei passing QC. The cell-by-module-intensity matrix was
used for clustering using the Seurat package. Modules were z-scaled
before calculatingprincipal components anddimensionality reduction
projection. Clustering analysis was performed using the Louvain
clustering algorithm. Cells were clustered at a resolution of 0.8 using
the top 10 PCs with 20 nearest neighbors. Finally, the cell clusters were
mapped back to the location of cell masks to reconstruct the
spatial map.

Figure 4 mouse cortex neuronal subtypes data analysis
The nuclei segmentation and image alignment were performed as
described above. Nuclei masks smaller than 3000pixels were dis-
carded. Nuclei masks were dilated by 10 pixels for creating cell masks.
Images were normalized to their 99th percentile of pixel intensities.
The cell-by-program-intensity matrix was constructed by taking the
mean intensity of cell masks. Images were cropped to contain only the
cortical region as shown in Fig. 4. Cells with total intensity lower than
the 20th percentile were removed for QC. The clustering analysis was
performed as described above but at a higher resolution of 1.2. 5 out of
18 clusters (29.7%of the cells) contained cells withweak or noneuronal
expression signature, which were then removed. As a result, 50.3% of
all cells (defined by DAPI) were qualified as neurons. To quantify the
cortical depth of neuron cells, edges from two circles with the same
radius R = 25,500pixels were used to cover the regions with excitatory
neurons as shown in Fig. 4. The distance between the two centers was
10,000pixels. The normalized depth of cells was defined as the dis-
tance to the outer edge divided by the distance between the two
centers. The cortical depth cell intensity heatmap was plotted by
arranging cells with increasing depth (Supplementary Fig. 7). The cell
density along the cortical depth was estimated by applying a kernel
density estimate with a 0.05 Gaussian kernel.

Figure 5. 53-module large FOV mouse brain data analysis
To generate the cell-by-module intensity matrix and cell positions, we
normalized the nuclei images to the 99th percentile of pixel intensities
and utilized the same nuclei segmentation pipeline as mentioned
above. Each FISHnCHIPs image was registered to their corresponding
DAPI images, and the shifts were recorded. Shifts exceeding 50pixels
in any direction were discarded. The average shifts were then applied
to all fields of view. To correct illumination variations between fields of
view, we subtracted the 60th percentile intensity of pixels outside the

cell masks. Cells with low intensity (<0.2%) across all modules, or with
high intensity (>98%) across over 30 modules were removed. We
initially constructed a graph of cells based on 15 nearest neighbors
using the top 20 PCs and performed Leiden clustering at a resolution
of 2. 133 cells (0.25%) from 2 of the preliminary clusters were affected
by the autofluorescence of a dust particle in the sample and were
dropped from further analysis. 54,834 (97.3%) qualified cells were
clustered with a lower resolution of 0.6, resulting in 18 clusters or cell
types. The blood vessel associated cells cluster and the inhibitory
neurons cluster showed finer structure in the UMAP and were further
sub-clustered. To verify the cluster annotations, we performed inte-
gration analysis using the Harmony algorithm63 between FISHnCHIPs
and scRNA-seq (Supplementary Fig. 11). To ensure compatibility, we
cropped the FISHnCHIPs data to the frontal cortex region. Addition-
ally, we subsampled the scRNA-seq data randomly to balance the
number of cells, following the recommendation by the Harmony
authors. Normalization and scaling were applied to both scRNA-seq
and FISHnCHIPs data before integration. We were unable to annotate
one of the clusters (2773 or 5% of the cells), as they exhibit low level
expression across both the neuronal and non-neuronal modules and
are spatially heterogeneous. From the integration analysis63, we
observed that these cells are in closeproximity to the polydendrocytes
and excitatory neuron clusters. Based on this observation, the
“Unknown” cluster may represent one or multiple genuine cell popu-
lations that was not resolved by our current probe set.

Proximity of cancer-associated fibroblasts (CAFs) to immune
cells in human colorectal cancer tissue (Fig. 6)
Thefibroblasts and immune cells were segmentedusing thewatershed
segmentation algorithm provided in the Scikit-image package61. The
cutoff threshold and opening threshold for watershed segmentation
were adjusted manually for each cell type. Using the centroids of the
segmented cell masks, we calculated the number of immune cells
within a 100μm radius of CAF-1 or CAF-2 cells. We found that there
were significantly greater numbers of immune cells closer to CAF-1
cells compared to CAF-2 cells (2-sided Mann-Whitney U test). This
result was consistent with a visual inspection of cell positions (Fig. 6
and Supplementary Fig. 16).

Statistics and reproducibility
FISHnCHIPs was demonstrated inmultiple tissue types, indicating that
themethod is robust and reproducible. All results shown are fromn = 1
experiment. Figures 2, 3, 4, 5, and 6 experiments were repeated at least
once independently with similar results. All Supplementary Figs.
experiments (except for Supplementary Figs. 8, 13, 17, and 18) were
repeated at least once independently with similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The mouse kidney scRNA-
seq dataset used in this study is available in the NCBI GEO database
under accession code GSE10758527. The mouse brain scRNA-seq
datasets used in this study are available in the NCBI GEO database
under accession code GSE115746 and the Dropviz website [http://
dropviz.org/]29,34. The human colorectal cancer scRNA-seq datasets
used in this study are available in the NCBI GEO database under
GSE81861 andGSE17834137,57. The raw image files are available from the
corresponding authors (chenck@gis.a-star.edu.sg; nigel_chou@gis.a-
star.edu.sg). We prefer to share the dataset electronically and are
committed to responding to such requests within a week upon rea-
sonable request. They can be used for academic and non-commercial
purposes. Source data are provided with this paper.
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Code availability
The software to design FISHnCHIPs gene panel and analyze FISH-
nCHIPs data is available at the following repository: https://github.
com/KHChenLab/FISHnCHIPs. It is also available at Zenodo: https://
doi.org/10.5281/zenodo.10146111.
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