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Data-driven identification of predictive risk
biomarkers for subgroups of osteoarthritis
using interpretable machine learning

Rikke Linnemann Nielsen 1, Thomas Monfeuga 1, Robert R. Kitchen1,
Line Egerod 1, Luis G. Leal 1, August Thomas Hjortshøj Schreyer1,
Frederik Steensgaard Gade 2, Carol Sun 1, Marianne Helenius 3,
Lotte Simonsen 2, Marianne Willert2, Abd A. Tahrani 4, Zahra McVey1 &
Ramneek Gupta 1

Osteoarthritis (OA) is increasing in prevalence and has a severe impact on
patients’ lives. However, our understanding of biomarkers driving OA risk
remains limited. We developed a model predicting the five-year risk of OA
diagnosis, integrating retrospective clinical, lifestyle and biomarker data from
the UK Biobank (19,120 patients with OA, ROC-AUC: 0.72, 95%CI (0.71–0.73)).
Higher age, BMI and prescription of non-steroidal anti-inflammatory drugs
contributed most to increased OA risk prediction ahead of diagnosis. We
identified 14 subgroups of OA risk profiles. These subgroups were validated in
an independent set of patients evaluating the 11-year OA risk, with 88% of
patients being uniquely assigned toone of the 14 subgroups. IndividualOA risk
profiles were characterised by personalised biomarkers. Omics integration
demonstrated the predictive importance of key OA genes and pathways
(e.g.,GDF5 andTGF-β signalling) andOA-specific biomarkers (e.g., CRTAC1and
COL9A1). In summary, this work identifies opportunities for personalised OA
prevention and insights into its underlying pathogenesis.

Osteoarthritis (OA) is a common chronic degenerative joint disease,
with an estimated 528 million people living with OA. The global pre-
valence of OA has increased by 48% from 1990 to 20191, and expected
to increase further, due to ageing populations and the rise in obesity
rates1,2. In addition to its health burden, OAhas a high impact on health
care expenditure and social care cost3, with the economic impact
ranging from 1 to 2.5% of gross national product (GNP) in some
countries. The average annual cost of OA for an individual is estimated
to be between $700–$15,600 (USD, 2019) across countries in Asia,
Europe, North America and Oceania1. In addition, there are currently
no approved curative treatments or therapies that impact disease
progression. Patients are often diagnosed with late-stage disease4,
where themain treatment option is joint replacement surgery5. Hence,
there is large interest and an unmet need to develop tools that can aid

early diagnosis and identify effective preventative, and disease mod-
ifying strategies.

It is crucial to improve our understanding of OApathogenesis and
develop appropriate prediction strategies to address the unmet
need5,6. This is challenging due to the complexity of OA and its het-
erogeneity spanning multiple biological mechanisms and disease
phenotypes5,6. It has been proposed that it would be beneficial to use
data-driven and machine learning approaches for patient-specific
predictionmodels in OA, to dissect the complex relationship between
risk biomarkers4,7–9. There is also a gap in the use of machine learning
methods for the prediction of OA across multiple joints9. Previous
attempts of OA prediction models had several limitations such as a
focus on knee OA, small sample sizes and restricted sets of input
features4,8,9. Most of these studies have lacked comprehensive
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incorporation of genetics, clinical biomarkers and other environ-
mental factors4,8,10, and the assessment of the impact of changes in
modifiable risk biomarkers9. All of these elements are needed to guide
preventative strategies and precision medicine in OA. Additionally,
multiple studies focused on the prediction of disease progression
rather than prediction of disease incidence or diagnosis4.

In this retrospective study, we develop a machine learning model
to predict individual risk and identify risk biomarkers up to 5-years
prior to an OA diagnosis. Through the integration of multi-modal
patient data, we identify subgroups of OA, with different risk bio-
marker profiles, which is validated to be effective on an unseen sub-
population of the UK Biobank up to 11 years ahead of diagnosis. The
model captures the broad risk biomarker landscape, in a UK cohort of
~20,000 people diagnosed with OA, utilising electronic health records
(EHR), clinical biomarkers, self-reportedquestionnairedata, genomics,
proteomics, andmetabolomics on available subsets of individuals. The
model quantifies the impact of risk biomarkers on the predicted OA
risk at thepopulation and individual level, enablingdetailed estimation
of the contribution of these biomarkers for OA risk.

Results
OA study population
The UK Biobank is a population-based cohort study with health
information fromassessments at the timeof recruitment (2006–2010)
and linkage to electronic health records (EHR) of individuals in the UK
(N = 502,476)11. We identified 103,086 patients with an OA diagnosis
from EHR data (~21% of all UK Biobank participants, Supplementary
Fig. 1). In total, 55,628 OA diagnoses were identified from primary care
settings (general practices, follow-up until 09/2017) and 49,318 OA
diagnoses from secondary care settings (hospital inpatient data,
follow-up until 03/2017). Clinical codes of OA diagnoses are given in
Supplementary Data 1 (primary care: Read v2 and CTV3/Read v3, sec-
ondary care: ICD-9 or ICD-10).

Primary healthcare data is available for ~45% of the UK Biobank
cohort which enabled capture of longitudinal data for a subset of
patients that were diagnosedwithOA (N = 67,772). An equal number of
control participants who were never diagnosed with OA in the avail-
able EHR study period were identified (N = 67,772). Controls were
randomly selected and date-matched with the OA diagnosis dates for
case patients. Cases and controls were then filtered for those with an
OA diagnosis/matched index date a maximum of 5 years after the UK
Biobank recruitment assessment centre. We focussed our study on the
diagnosis of OA up to 5 years after the assessment centre. This was to
capture the risk biomarkers that are predictive of OA diagnosis in the
focused period of 5 years prior to diagnosis, when patients are at high-
risk, and a potential window to explore for preventative interventions
with the deep phenotyping of the aging population. Controls were
required tohaveobservational data andnodeath registeredduring the
5 years prior to the index date (study period: 06/2006–09/2015). This
resulted in a total of 19,120 patients with diagnosed OA and 19,252
controls included in the analysis (Fig. 1A, Supplementary Fig. 1). For the
patients with OA, the specific joints affected were mapped to the fol-
lowing joint categories: foot (4%), spine (10%), arm (11%), hip (13%), and
knee (28%), albeit most OA diagnoses were in unspecified
joints (Fig. 1B).

In addition, an independent hold-out validation population was
generated following the same procedure as above, but with a longer
time between data collection at the assessment centre and OA diag-
nosis (5 years to 11 years). (Fig. 1A, study period: 09/2011–09/2017).
Furthermore, samples with missing data for variables used in the
clustering rules were excluded (non-imputed data used). This resulted
in a population of 7341 cases and 5999 controls.

Comparison of baseline distribution for known OA risk bio-
markers showed thatOA cases in generalwereof older age,with higher
BMI and a higher female-to-male ratio in comparison to controls in

both the OA study population and hold-out validation popula-
tion (Fig. 1C).

Risk modelling
Following identification of the OA study and validation populations,
diverse multi-modal longitudinal patient data were processed for
integration into an eXtreme Gradient Boosting (XGBoost) machine
learningmodel (Fig. 2A, B). The XGBoostmodel was trained to predict
the 5-year risk of OA diagnosis from retrospective data. The XGBoost
model integrated clinical, sociodemographic, diet, physical activity,
and lifestyle data from the recruitment assessment centre, with clinical
data from the 5-year longitudinal EHR data extracted from available
data ahead of OA diagnosis or matched index date (Clin model,
Fig. 1A). The EHR data captured diagnosis of previous post-traumatic
OA diagnosis, longitudinal blood and urine biomarkers, clinical mea-
surements, as well as medication data for obesity, OA, and type 2
diabetes. Longitudinal data was captured in the 5 years prior to OA
diagnosis/index date using yearly data bins (Supplementary Fig. 2).
Missingness estimation for each feature included in the machine
learning models is presented in Supplementary Data 2. Furthermore,
diverse omics data were integrated into separate models for indivi-
duals where this information was available (genetics (ClinSNP,
ClinWGPRS, ClinGRS, ClinPath), metabolomics (ClinMet), and pro-
teomics (ClinPro), Fig. 2A). The interpretable machine learning fra-
mework was used to explore and quantify risk biomarkers of OA at
population, precision, and personalised levels (Fig. 2C).

Prediction of OA from 5-year multi-modal clinical data
Retrospective longitudinal clinical data were integrated in a XGBoost
model to predict the 5-year risk of OA diagnosis (Clin model). Perfor-
mance was evaluated in the test set in a 5*5 cross-validation (Fig. 2B).
The Clin model achieved a cross-validated ROC-AUC performance of
0.72 (95%CI: 0.71–0.73, Fig. 3A–C). TheClinmodelwas able topredict 7
in 10 patients who developed OA, and out of all the OA case predic-
tions made by the model, 66% of these were true-positive OA cases
(Fig. 3C). Conversely, we were able to predict 6 in 10 individuals who
did not develop OA, with 67% of the predicted controls being true-
negative controls (Fig. 3C). The Clin model’s predictive performance
was robust across random model initialisations and performed sig-
nificantly better than models trained on permuted OA status labels
(Supplementary Table 1). We assessed if the Clin model had a stronger
predictive performance when predicting specific subgroups of OA
across different affected joints, specified for some of the OA diag-
noses, including arm, foot, hip, knee, or spine. Performance ranged
with ROC-AUC: 0.67–0.73 (Fig. 3A) and was highest for weight-bearing
joints (ROC-AUC: 0.73 and 0.72 for knee and hip OA prediction,
respectively). However, performance for joint-stratified models was
only modestly different when compared to the overall Clin model.

A baseline machine learning model predicting the 5-year risk of
OA, using only age, sex, and BMI, that are well-known OA risk bio-
markers, predicted OA with ROC-AUC: 0.67 (95%CI: 0.67–0.68).
Comparison of the predicted risk probabilities at the individual level
showed that the additional features in the Clinmodel compared to the
simpler model (age, sex and BMI) significantly increased the con-
fidence in individual riskpredictions (Supplementary Fig. 3) in addition
to increasing predictive performance.

Population risk biomarkers predictive of OA risk
To interpret which risk biomarkers were most important for the pre-
diction of an OA diagnosis, Shapley additive explanations (SHAP)
values were calculated. SHAP values estimate themarginal conditional
impact of a feature on the model’s prediction in relation to all other
features included in the model. The top three predictors of increased
OA risk included higher age, prescription of non-steroidal anti-
inflammatory drugs (NSAIDs) during the year prior to OA diagnosis,
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and higher BMI compared to individuals that did not develop OA
(Fig. 3D). Following these three risk biomarkers, predictive contribu-
tionsweremadebya variety of features across individuals. Participants
who rated their own health as excellent and had a faster walking pace,
had a lower risk of OA. Higher levels of vitamin D were predictive of
increased OA risk. A post-hoc analysis showed that individuals that
reported taking vitamin D supplements typically had higher levels of
vitamin D, a higher age and was more common in women with
menopause which might contribute to the observed association
between higher vitaminD levels andOA risk (Supplementary Fig. 4A–C
respectively). Additionally, a higher hand grip strength, and a lower

ratio of fat mass to fat free mass were also predictive of lower OA risk.
Individuals that had a higher socioeconomic status, as indicated by
having a college or university degree and higher income, had a lower
risk of OA. In contrast, people working heavy manual or physical jobs,
or doing shift work, had increased risk of OA.

Precision subgroups of OA
The Clin model confirmed that the biological and environmental risk
factors underlying OA are heterogenous across individuals. We
attempted to capture this heterogeneity and categorise patients into
subgroups with differing risk biomarker profiles. Hence, we clustered

Fig. 1 | Study design and population characteristics. AOverview of study design
including example of date matching cases and controls (longitudinal patient data).
For patients (cases) diagnosed with osteoarthritis (OA), the OA diagnosis date was
identified and a data capture period of 5 years prior to diagnosis created. For
individuals not diagnosed with OA (controls), a matched index date, equivalent to
theOAdiagnosis date for the case used formatching, was identified. For controls, a
data capture period of 5 years prior to the index date was created. For both cases
and controls, longitudinal electronichealth record (EHR) data anddata from theUK
Biobank assessment centre were captured in the 5-year data capture period.
BUpset plot of joints affected that couldbe extracted from theOAdiagnosis codes.

It was not possible to map all OA diagnoses to a specific joint (marked as unspe-
cified OA). These groups were used for stratification in the prediction models. The
set size represents the full number of patients that could be identified. When a
patient with OA had multiple joints affected, both diagnoses were included in this
joint mapping and hence the set size reflects the 19,120 OA cases identified. The
intersection sizes represent the number of patients with at least the given set of
diagnoses. C OA risk factors summarised across OA cases (OA) and matched non-
OA controls (No OA) used for modelling in the study. P-values (uncorrected for
multiple testing) were generated by two-sided Welch’s t-test for continuous fea-
tures and chi-squared test of independence for sex (F = Female, M =Male).
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the SHAP values, as estimated by theClinmodel, for all risk biomarkers
across all individuals. The clustering resolution was optimised based
on silhouette scores and prediction metrics (Supplementary Fig. 5)
identifying 14 clusters of individuals (Fig. 4A). The clustering allowed
us to uncover subgroups of individuals predicted to have high risk of
OA (cf. prediction probabilities shown in Fig. 4B). Furthermore, by
using SHAP values, rather than the original input values, we were able
to account for the relative importance of features for OA prediction
(Fig. 4C). Finally, all identified clusters were described using the aver-
age values of the top 6 features in our model, using the original
input values to characterise the differences between clusters.
This generated anoverviewof themostdefining characteristicsof each
OA subgroup, capturing predicted archetypes of OA risk with distinct
biomarker profiles (Fig. 4D). Finally, differential expression analy-
ses were performed on the proteomics data (restricted to the
subset of OA cases with Olink data, N = 1723) to determine which

proteins are differentiating OA cases between each cluster to access
molecular
OA-specific risk biomarkers (Fig. 4D, Supplementary Data 3).

To identify clusters with high predicted OA risk and understand
subgroup characteristics, we defined the prediction performance of
the Clin model within each cluster (F1/positive predictive value (PPV)/
Sensitivity), the percentage of cases in each cluster and average pre-
diction probability (Fig. 5). The top 3 clusters (12, 11 and 0), repre-
senting 23% of all individuals, were the clusters for which individuals
were best predicted as OA cases, with F1 > 0.83. Another group of 6
clusters (10, 5, 9, 1, 13 and 8; ~35% of all individuals) had more modest
values but were still predictive for OA (0.73 > F1 > 0.61). The last 5
clusters (6, 7, 3, 4 and 2; ~41% of all individuals) were the least pre-
dictive for OA (F1 < 0.35).

We used a decision tree-based algorithm (SkopeRules12) to define
sets of rules, per cluster, based on the input values of the Clin model.

Fig. 2 | Identification of OA risk biomarkers using machine learning. A Data
integration strategy overview for multi-omics data. B Study design for predictive
machine learningmodelling setup for training andmodel validation.C Studydesign

for identification of OA risk biomarkers at population, precision and personalised
risk levels using interpretable AI approaches (SHAP).
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These rules allowed us to scope each predicted OA archetype by
identifying the most distinctive variables and values that determined
an individual’s cluster allocation with high PPV (Fig. 5, Supplementary
Fig. 6). The rules that defined the top 3 high-risk patient groups

included: age, prescription of NSAIDs within the last year, hand grip
strength, self-reported walking pace and health rating, Townsend
deprivation index and IGF-1 levels (Fig. 5). To validate the potential
clinical value of these rules, we applied them to an independent hold-

Fig. 3 | Clinical predictionmodel of osteoarthritis (OA) risk (Clinmodel). AROC
curvesofOApredictionmodels.BPrecision-recallcurvesofOApredictionmodels. ‘OA
all’incudesall casesofOA independentof specific joint subsets (Arm, Foot,Hip,Knee,
Spine).AnOAcasecanhavemultipleOAjointsaffectedandacase is includedper joint
affected (meaning these can be repeated).CPerformancemetrics of Clinmodel on

independent five-fold cross-validation test datasets. PPVpositive predictive value,
NPVnegative predictive value.DRanked feature importance ofOAmodel by SHAP
additive explanations for top 40predictive features in themodel. OAosteoarthritis,
NSAIDs non-steroidal anti-inflammatory steroid drugs, FM/FFMFatmass/Fat-
freemass.
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out validation population (with similar case/control definitions, and
with cases being diagnosed more than 5 years after the assessment
centre visit (up to 11 years); 7341 cases and 5999 controls). While 4% of
individuals could not be accurately mapped to any subgroup based
on these sets of rules, we were able to uniquely assign 88.2% of

individuals to a cluster, and 7.8% to two possible clusters. In the latter
case,weselected the clusterwith thehighest percentageof cases in the
OA study population in order to minimise the risk of false negatives
(Fig. 5 shows cluster attribution). We observed a high correlation in
the percentage of cases between clusters of the OA study and
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value ≤0.05, logistic regression adjusted for sex; p-values Bonferroni-correctedper
cluster. Full results and exact p-values provided in Supplementary Data 3, as well as
cluster sample sizes). OA osteoarthritis, NSAIDs non-steroidal anti-inflammatory
steroid drugs.
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validation populations (R2 = 0.90), as well as a strong correlation in the
proportion of individuals in each cluster (R2 = 0.68) (Supplemen-
tary Fig. 7).

Personalised risk biomarkers of OA
Interpretation using SHAP values from the Clin model enabled
quantification of the impact an individual’s patient data had on their
predicted risk of an OA diagnosis. We extracted and visualised indi-
vidual OA risk profiles using waterfall plots, demonstrating the pre-
dicted positive and negative impact of personal OA risk biomarkers
(Fig. 6). For example, a patient who developed OA fromCluster 1 had
a predicted risk of 64% forOA. This predicted risk was predominantly
driven by a BMI in the obesity range and age of 65 years (Fig. 6A).
However, this patient had not taken NSAIDs 1 year prior to OA
diagnosis, and this decreased the predicted risk for OA diagnosis.
Other risk biomarkers had additional minor contributions to
increasing the predicted OA risk, including a lower muscle strength
(indicated by hand grip strength), and lower socioeconomic status
(indicated by lower average income and level of education). For this
patient, if the BMI was not considered, the predicted OA risk would
have decreased to 57%. While this approach cannot demonstrate
causality between BMI and OA risk, our results are suggestive of
potential intervention opportunities on high impact modifiable risk
biomarkers that may be driving increased risk prior to an OA
diagnosis.

Additional individualOA riskprofiles were examined, including an
individual from cluster 2 with very low predicted OA risk (Fig. 6B),
patient with OA from cluster 12 with multiple signs of poor metabolic
health (Fig. 6C), and a younger individual with high BMI and NSAID
prescription, with additional lifestyle factors such as heavy manual/
physical work and shift work from cluster 9 (Fig. 6D).

Multi-omics OA risk biomarkers
To explore molecular risk biomarkers of OA in the context of the
clinical prediction model (Clin model), we integrated various types of
omics data with the clinical features including OA genetics (ClinSNP,
ClinWGPRS, ClinGRS and ClinPath models), metabolomics (ClinMet
model) and proteomics data (ClinPromodel) for subsets of individuals
where this data were available (Fig. 7A; genetic risk scores (GRS) gen-
eration described in Methods and Supplementary Fig. 8). The pre-
dictive performance remainedunchanged compared to theClinmodel
(ROC-AUC ranging: 0.70–0.72, Fig. 7A). A sensitivity analysis of theClin
model’s predictive performance confirmed the performance on these
specific omics subsets of patients was also unchanged (Supplementary
Table 2). However, the inclusion of OA omics signatures influenced the
rankings of OA risk biomarkers in the models (Fig. 7A–E).

Firstly, when including a whole-genome polygenic risk score
(WGPRS) for OA in our models (ClinWGPRS), it was the sixth most
predictive risk feature for OA risk (Supplementary Fig. 9). At the
population level, the OA WGPRS did not affect the overall
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performance of themodel (ROC-AUC: 0.72) compared to Clinmodel.
However, the predictive performance for the model (F1 and sensi-
tivity) were higher for a population with higher OA WGPRS (Sup-
plementary Fig. 10). Therefore, although the OA WGPRS provided
minimal additional benefit when predicting OA at the population
level, it did provide additional value for subgroups with more
extreme genetic risk.

At the gene locus level, the highest ranked gene-level GRS by the
ClinGRS models were TGFB1, GDF5, PTCH1 and FAM53A (Fig. 7B, Sup-
plementary Fig. 11). The relevance of TGFB1 to OA was further
supported by the TGF-β signalling pathway being the top ranked
pathway-level polygenic risk score (pathway-PRS in ClinPath, Fig. 7C
and Supplementary Fig. 12). Other pathways identified as being

predictive of OA, in the context of clinical features, included glyco-
sphingolipid biosynthesis, adipocytokine signalling and cytokine-
cytokine receptor interactions. No strong predictive signal was iden-
tified for previously reported OA-associated single nucleotide
variants5,13 (ClinSNP). Blood plasmametabolites that were identified as
being important for the prediction of OA (ClinMet) included acetate,
valine, 3-hydroxybutyrate, citrate and the percentage of saturated
fatty acids to total fatty acids (Fig. 7D). Strong predictive proteomic
signatures were identified (ClinPro) including CRTAC1, COL9A1,
ACTA2, EDA2R and TACSTD2, which were the most predictive of OA
risk together with higher age, prescription of NSAIDs during the year
prior to OA diagnosis, and higher BMI as seen in the Clin model
(Fig. 7E). There were significant differences in the normalised
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expression levels of all five proteins between OA cases and controls.
Higher levels of CRTAC1, COL9A1, ACTA2, EDA2R were observed in
patients with OA, whereas lower levels of TACSTD2 were observed in
patients with OA. Interaction dependencies in the XGBoost model
(ClinPro) between these top five proteins and the most predictive

clinical features of OA risk (age, NSAIDs prescriptions 1 year before
diagnosis andBMI)were tested. Significant interactionswere identified
between age and CRTAC1, COL9A1, EDA2R and TACSTD2 (Supple-
mentary Fig. 13). Protein levels of COL9A1 weremore important forOA
prediction in peoplewith an age above 55. EDA2Rwasgenerally seen in

Fig. 7 | Multi-omics osteoarthritis (OA) risk models and biomarkers. A Top
ranked features from omics models in the context of multi-modal clinical features.
The top five omics features that appeared important for prediction of OA based on
the average marginal SHAP value ranking amongst top 40 predictive features. For
ClinSNP, ClinGRS and ClinPath, several sensitivity checkswere done for the genetic
features including results marked with: (1): GRS obtained with proxy, (2): GRS
obtainedwithout proxy, and * Identified formodelswith genetic features corrected
for population stratification (Supplementary Table 3 for details). For the column
Gene OA Risk Score, italic refers to the defined gene loci. B Ranked feature

importance of ClinGRS (proxy) model by SHAP additive explanations for top 40
predictive features in the model. C Ranked feature importance of ClinPath (proxy)
model by SHAP additive explanations for top 40 predictive features in the model.
D Ranked feature importance of ClinMet model by SHAP additive explanations for
top 40 predictive features in the model. E Ranked feature importance of ClinPro
model by SHAP additive explanations for top 40 predictive features in the model.
OA Osteoarthritis, NSAIDs non-steroidal anti-inflammatory steroid drugs, FM/FFM
Fat mass/Fat-free mass.
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lower protein levels for individuals under 60 years old, while increased
importance of EDA2R as an OA risk biomarker was seen in older
individuals.

OA risk biomarker heterogeneity across joints
To further explore impact of risk biomarkers in different joints diag-
nosed with OA, we retrained our Clin model on subsets of individuals
thatwerediagnosedwithOA in anyof thefive joints identified from the
clinical OA diagnoses (Fig. 1B). No major differences in predictive
performance were observed when comparing the Clin model to the
joint-specific models except for the foot-specific model which had
lower predictive performance (ROC-AUC 95%CI for models: arm-spe-
cific: 0.70 (0.67–0.72), foot-specific: 0.64 (0.62–0.66), spine-specific:

0.68 (0.67–0.70), hip-specific: 0.72 (0.70–0.74), knee-specific: 0.74
(0.73–0.75)). Themodels had different rankings of themost predictive
features (Fig. 8A and Supplementary Figs. 14–18). Age and prescription
of NSAIDs one year ahead of the OA diagnosis was still important for
prediction of OA risk stratified per joint. However, BMI had varying
importance, with increased importance for predicted risk of an OA
diagnosis in weight-bearing joints (knee, hip and foot) compared to
arm and spine.

OA patients diagnosed in the knee represented the best-powered
OA subgroup and to further explore the importance of BMI relative to
multi-omics signals, we retrained the ClinGRS, ClinPath, ClinMet, and
ClinPromodels for these subsets of patients. BMI on its own predicted
OA risk with ROC-AUC: 0.65 (95%CI: 0.64–0.66, Fig. 8B). Performance

Fig. 8 | Osteoarthritis (OA) joint-specificmodels. A Feature importanceof the top
15 features ranked by SHAP additive explanations are provided for joint-specific
models of people with diagnosis of OA in the arm, foot, spine, hip or knee. Detailed
descriptions of the features listed are found in Supplementary Data 4. B ROC-
curves of knee-specific models trained only using only patients diagnosed with
knee OA using BMI only (BMI), or similar features as in the Clin (5341 patients with

knee OA, 19,252 controls), ClinGRS with proxy (5205 patients with knee OA, 18,779
controls), ClinPath with proxy (5205 patients with knee OA, 18,779 controls),
ClinMet (1265 patients with knee OA, 4519 controls), or ClinPro (488 patients with
knee OA, 1816 controls) models. C Ranked feature importance of ClinPro knee-
specific model by SHAP additive explanations for top 40 predictive features in
the model.
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improved when including additional features beyond BMI, but no
major differences in predictive performance was observed across the
knee-specific Clin, ClinGRS, ClinPath, ClinMet and ClinPro models
(ROC-AUC ranging: 0.71–0.74, Fig. 8B). The knee ClinPro model
resulted in ROC-AUC: 0.71 (95%CI: 0.68–0.75) with BMI being ranked
the most important feature for prediction of knee OA risk. CRTAC1,
COL9A1 and EDA2R were still observed amongst the top 10 predictors
of OA risk, as was seen in the ClinPro model (Fig. 8C). Other proteins
also important for prediction in the knee-specific ClinPro model
included FABP9 and CHI3L1, CTRC and KRT18.

Discussion
We present a large-scale study of OA, in a UK cohort of ~20,000
patients with OA and ~20,000 controls, encompassing a broad set of
longitudinal OA risk biomarkers. We utilised interpretable machine
learning to address gaps in thefieldof prediction andunderstandingof
OApathogenesis. Ourmodels advanceour understanding of risk ofOA
diagnosis, generating hypotheses for early screening, prevention and
treatment of OA. The presented models predict an individual’s 5-year
risk of anOAdiagnosis fromEHRdatawhich encompasses the range of
OAheterogeneity and pathophysiology in real-life clinical settings. The
complexity of OA risk was captured using multi-modal clinical data,
biochemical and molecular signatures of OA. We identified distinct
subgroups of OA risk profiles and derived simple clinical association
rules for these subgroups. We also mapped differentially expressed
molecular biomarkers between OA cases in risk subgroups. Finally, we
demonstrated how individual patient journeys can be dissected to
identify risk biomarkers for OA, contributing to the development of
personalised preventative strategies.

We present a retrospective case-control study that extracted 5
years of longitudinal data prior to OA diagnosis, or control index date,
for risk modelling. A strength of this retrospective design is the use of
all available data 5 years prior to OA development. This contributes to
our understanding of potential windows for preventative interven-
tions, identifying risk biomarkers when patients are at high-risk. The
Clinmodel demonstrated strong performance, alignedwith previously
published models14. Previous models that reached above ROC-AUC
0.75 usually included imaging variables (e.g., X-rays), pain scores, or
data regarding osteoporosis and previous leg injury15–17. These vari-
ables were not available in our model and might impact real-life
applicability, as this data may not be widely available in primary care.
The comparison to other published OA models is limited by differ-
ences in prediction horizons, age and sex distributions, and OA defi-
nitions. Ourmodel considered a diverseOAphenotype identified from
EHR codes across patients diagnosed with OA, across mostly undif-
ferentiated joints specifications. Furthermore, it quantified the pre-
dictive impact for a range of OA risk biomarkers, including genetics,
clinical biomarkers and environmental factors, to which previous stu-
dies have provided limited insights4,8,9. Some of these risk biomarkers
are recognised asOA risk biomarkers (e.g., age and BMI)11, while others
are not traditionally considered OA risk biomarkers (e.g., personal
health rating, hand grip strength, body composition, and walking
pace). This highlights the novelty of the OA risk models in our study,
offering new opportunities for prevention by addressing novel mod-
ifiable risk factors. These biomarkers improved the predictive perfor-
mance and confidence across individual-level predictions, compared
to a simplermodel based only on well-knownOA risk biomarkers (age,
sex and BMI). Preventative interventions may need to target multiple
risk biomarkers to reduce OA incidence. Most of the predictors
included in the Clin model are easy to obtain in clinical practice,
although some may require specific testing (e.g., hand grip strength
and regional body composition) which might be challenging depend-
ing on the health care system and the setting. Risk biomarkers that are
easy to obtain clinically may enable preventative strategies that
prioritise interventions to those with the highest risk.

BMI is an established risk biomarker for OA18 and was the 3rd
predictor of OA in the Clin model. The impact of BMI on the risk of OA
waspresent even in thosewhodid not have BMI ≥ 30 kg/m2, with lower
BMI levels reducingOA risk. This is unsurprising since increases in BMI
levels, regardless of the BMI category inwhich the increase occurs, can
increase the risk of obesity-related complications, as seen in type 2
diabetes19. This is possibly due to the presence of a personal fat
threshold, as it has been seen that weight loss can lead to type 2 dia-
betes remission even in those who do not have obesity20.

NSAID prescription 1 year prior to OA diagnosis was the second
most important predictor. This likely reflects the delay or clinical
inertia in the diagnosis of OA, reflecting several barriers to OA man-
agement in primary care that have been described previously21,22. The
model was trained to predict OA diagnosis, as indicated by EHRs. To
minimise the risk of contamination ofOA patients in the control group
we used previously published clinical codes23, in addition to a curated
search for OA codes, when defining the OA study and validation
populations. However, it is likely that more severe OA cases are cap-
tured with a clinical diagnosis. Hence, control contamination is most
likelydue to less severeOAcases, potentiallyminimising the impact on
model performance and outputs.

Additionally, lower socioeconomic status, indicated by a lower
income and level of education, was predictive of an increased OA risk.
This agrees with previous work, that demonstrated that social depri-
vation, including lower education, was associated with increased OA
risk24,25. Lower social deprivation and increased OA risk were pre-
viously linked to obesity24.

Sex is an established risk factor for OA, with women being at
higher risk of developingOA compared tomen1. In our Clinmodel, sex
only modestly contributed to prediction of OA, being ranked the 85th
most predictive feature. This is likely because the Clin model included
other features that potentially reflect sex as an OA risk factor. Sex was
strongly correlated (R2 > 0.75) with testosterone (ranked 35th most
predictive feature) as well as all measurements of body composition
metrics of fat mass to fat free mass (ranked between 24–60th most
predictive features). Based on SHAP, lower total testosterone and
higher fat mass/fat-free mass ratio were associated with higher risk of
OA and female sex. It is also possible that sex was not highly ranked
due to the complex relationship with vitamin D levels. In this study,
higher vitamin D levels were associated with higher risk of OA. Our
analysis showed that individuals that reported taking vitamin D sup-
plements were older and had higher levels of vitaminD. Additionally, a
higher proportion of individuals taking vitamin D supplements was
observed amongst post-menopausal women (a known high-risk group
for OA26,27), compared to men or pre-menopausal women. Therefore,
vitamin D levels in the Clin model may be capturing an older popula-
tion and post-menopausal women who take vitamin supplements.
These findings suggest that other parameters in themodel account for
not identifying sex as a highly ranked in our model.

Disentangling these risk biomarkers at an individual level has
previously been limited by differential impacts of various risk bio-
markers at the individual level. A strength of our study is using inter-
pretable AI approaches (SHAP estimation) for quantifying the impact
of individual risk biomarkers, in the context of all integrated variables,
at a subgroup and individual level. This might aid the prioritisation of
future preventative strategies, by selecting the modifiable factors with
highest contribution to risk. However, this needs tobe tested in clinical
trials. Our study cannot assess whether intervention on risk bio-
markers would decrease OA risk, the extent of this decrease, or the
causal relationship between the risk biomarkers and OA. However, it
has previously been shown that reduction in modifiable risk bio-
markers corresponded with a reduced individual probability of
developing knee OA10.

In our study, most participants had an undifferentiated diagnosis
of OA, potentially introducing noise in the model, reflecting
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heterogeneous biological mechanisms and phenotypes5,6. To address
this further, we explored joint-specific models and concluded, in line
with previous studies, that BMI is a higher risk biomarker for OA in
weight-bearing joints, among other joint-specific risk biomarker pro-
files. However, future studies in larger subset of patients with joint-
specific effects should further validate these findings and allow better
understanding of joint-specific OA pathogenesis.

There have been efforts to identify subgroups of OA to enable
targeted treatment and management of patients. Previous studies
are limited by using restricted sets of biomarkers, narrowly defined
OA populations, and by identifying subgroups of established/diag-
nosed disease6,28. BymodellingOA risk biomarkers prior to diagnosis,
we identified opportunities for early intervention and prevention.
Our results suggest that simple sets of rules may be used to assign
most individuals to specific subgroups, which differ in their pre-
dicted OA risk and risk biomarkers. This may inform clinicians and
patients in assessing the potential for belonging to high-risk groups,
the threshold for initiating an OA diagnostic assessment, and iden-
tifying the most important risk biomarkers to address. These sub-
groups were validated in a hold-out population evaluating the 11-year
OA risk (5- to 11-year window). A high consistency in the subgroups
was observed across the 5-year and 11-year risk populations, indi-
cating that the major risk biomarkers, and associated risk profiles,
remained relevant for the prediction of OA diagnosis across these
time periods. Therefore, interventions addressing themodifiable risk
factorsmay have an impact on OA risk, although this requires further
testing.

Although the integration of omics did not improve overall model
performance, it did change risk biomarker ranking. Other studies have
included genetic factors, but also failed to improve model
performance15,29. A strength of our study is the interpretable AI, with
the impact of omics highlighting relevant biological pathways and
guiding OA-specific prevention strategies. Currently, omics data may
not be readily available in routine clinical practice; however, this may
change as the utility of omics biomarkers matures.

In our models, some omics biomarkers replaced clinical risk bio-
markers, with someof thembeingmore predictiveofOA risk thanBMI.
CRTAC1 was the most predictive protein and has previously been
proposed as an OA risk biomarker30–32. CRTAC1 is associated with OA
diagnosis across multiple joints and with the severity of OA30–32. It has
been suggested that CRTAC1 is upregulated in joints in OA by pro-
inflammatory cytokines33. COL9A1 was also predictive of OA diagnosis
and is both genetically and epigenetically linked to OA33–37. Addition-
ally, mutations in COL9A1 are associated with multiple epiphyseal
dysplasia, a hereditary condition characterised by early onset OA33.
Another predictive protein was ACTA210, which has previously been
associated with subgroups of OA38 and is associated with clusters of
smooth muscle cells in the OA synovium39. Lastly, the predictive pro-
tein EDA2R has previously been associated with TNF mediated
inflammation, in the context of rheumatoid arthritis40.

In the knee-specific ClinPro model, other proteins predictive of
OA included FABP9, CHI3L1, KRT18, and CTRC. The function of FABP9
is insufficiently understood, with no direct link with OA41. However,
other proteins in the FABP family are involved in inflammatory
response and oxidative stress42,43. CHI3L1 is involved in tissue injury,
inflammation, tissue repair, and is associated with OA44. KRT18 has no
known association with OA but has been suggested as a biomarker of
intervertebral disc degeneration in vitro45. Lastly, CTRC is a serum
calcium-decreasing factor and may be involved in LPS-induced
inflammatory responses46.

We also explored which proteins were differentially expressed
across subgroups of OA risk. These may reflect differences in relevant
biological pathways such as inflammation (e.g., IL6, CXCL6), body
weight regulation/energy homoeostasis (e.g., LEP, GDF15), but also in
proteins directly relevant to osteoarthritis, such as the proteoglycan

ACAN (aggrecan)47 and AMBP (bikunin precursor)48. Furthermore,
HGF, which has previously been shown to be involved in both obesity49

and OA biologies50, is significantly over-expressed in OA cases from
most clusters with higher BMI and under-expressed inmost lower BMI
clusters. Therefore, despite HGF being associated with OA in osteo-
blasts, its plasma levels may be more heterogenous.

Multiple genetic risk variants are associated with OA5. Although
the OA WGPRS had limited predictive value across the general popu-
lation, we found it may be informative for those with more extreme
genetic risk. Only a small proportion of variance in OA can be
explained by genetics5 and, in prior work, genetics was limited in
predicting OA15,51. This highlights the importance of including clinical
andbiological data inpredictionmodels, to provide contextual disease
information.

Our ClinGRS model enabled us to estimate the contribution from
OA-associated genes on OA risk. The TGFB1 locus was a predictive
feature, and TGF-β signalling affects multiple cell types in OA devel-
opment andprogression52.Multiple components of the TGF-βpathway
have been genetically associated with OA52,53. In phase 3 clinical trials,
TGF-β1 cell and gene therapy improved function andpain in kneeOA54.
The GDF5 GRS was predictive for OA and GDF5 has a role in
chondrogenesis55. Higher levels of GDF5 were seen in OA with
advanced cartilage damage56, and GDF5 is currently a target in clinical
development for cartilage regeneration indications53. Lastly, the PTCH1
GRS was predictive of OA, and PTCH1 encodes a receptor for Hedge-
hog ligands. Hedgehog signalling is associated with multiple OA
mechanisms and disease severity in OA5,57,58. PTCH1 is genetically
associated with total hip, knee and joint replacements5, and targeting
the Hedgehog pathway may be a therapeutic opportunity for OA57.

Multiple metabolites were relevant for predicting OA diagnosis
and have previous associations with OA metabolism. Acetate was the
most predictive metabolite for OA. ACOT12 breaks down acetyl-CoA
into acetate and CoA, and ACOT12 is a novel regulator of de novo
lipogenesis (DNL) associated cartilage degradation in OA59. Valine was
also predictive for OA and is an essential branched chain amino
acid (BCAA). Valine has previously been associated with the severity
of inflammation in synovial tissue60. BCAAs may play a role in
increased inflammation, reduced autophagy, and increased insulin
resistance in OA61. The ketone body 3-hydroxybutyrate (βHB, β-
hydroxybutyrate) may have anti-senescence effects which delay OA
progression62. Finally, citrate levels in synovial fluid have conflicting
associations with knee OA63 and may be linked to altered energy
metabolism64.

The relationship between fatty acids and OA may be impacted by
sex, obesity, OA joint and whether measured in the fasted or post-
prandial state65,66. Different fatty acids have distinct effects on OA67.
Longer chain saturated fatty acids inducemetabolic syndromeandOA-
like cartilage degradation68,69 and systemic inflammation, independent
of weight-gain, in obesity related OA70.

In summary, we present a retrospective study using large-scale
predictivemodels for the diagnosis ofOA, incorporating a broad range
of risk biomarkers. The use of interpretable machine learning for
individual patients enabled the identification of personalised modifi-
able risk biomarkers, opening the opportunity for tailored OA pre-
ventative strategies. Our integration of omics features identified OA-
specific risk biomarkers and highlighted the predictive importance of
underlying OA disease biology. Taken together, these findings may
advance early screening, prevention, and treatment of OA, reducing
both disease incidence and progression. External validation of the
identified risk biomarkers and models in an independent cohort is
needed to investigate the replicability of the model and identified
subgroups. Finally, validation in a range of cohorts representing a
diversity of genetic, cultural backgrounds and healthcare practices
would further our understanding of the impact of this contextual
information on OA risk.

Article https://doi.org/10.1038/s41467-024-46663-4

Nature Communications |         (2024) 15:2817 12



Methods
UK Biobank
The UK Biobank is a human cohort comprising ~500,000 individuals,
aged between 40 and 69 years at recruitment, from 2006 to 201011. At
a recruitment assessment centre, participants contributed to in-depth
data collection and banking of biological samples. Biological samples
were subsequently used for the generation of various omics data and
biomarker measurements. Clinical outcomes for participants can be
followed-up through linkage to secondary health care data (hospitali-
sations, available data until 03/2017) and for ~45% of participants
primary health care data (general practices, available data until 09/
2017). The machine learning models integrated both clinical,
metabolomics, proteomics and genetic data from the recruitment
assessment centre as well as longitudinal information captured from
the EHR data.

Ethical approval
UK Biobank is available to researchers following application to
the UK Biobank database (https://www.ukbiobank.ac.uk/enable-your-
research/apply-for-access). The UK Biobank has ethical approval from
the North West Multi-centre Research Ethics Committee (REC refer-
ence number: 16/NW/0274). Written informed consent was obtained
for all UK biobank study participants. Analyses for this study were
conducted under application numbers 53639 and 65851.

Pre-processing of assessment centre data
Clinical assessment centre data. Diverse participant data from the
recruitment assessment centre was processed for input into machine
learning models to integrate multi-modal signals in the models (Sup-
plementary Data 4). This included data on socio-demographics
(including Townsend deprivation index), lifestyle, diet, and physical
activity. Additionally, a panel of blood and urine biomarkers were
measured at recruitment (Supplementary Data 4) and included as
input features. Biomarker data from recruitment was processed to
assign outliers outside the 1st and 99th percentiles to the value of the
1st and 99th percentile. Body impedance data reflecting body com-
position was taken from the first assessment instance and included
derived measurement of the fat mass (Kg) to fat-free mass (Kg) ratio
across whole body, and specific body areas including trunk area, legs,
and arms (legs and arms indicated by differences in right and left side
of an individual’s body composition).

Genetic data. The imputed genetics data was generated and provided
by the UK Biobank and processed using PLINK (v.2.00a3LM)71,72. Single
nucleotide polymorphisms (SNPs) were subsequently removed if they
had a minor allele frequency (MAF) < 1%, a missingness >1%, an impu-
tation score (INFO) < 0.8 or with a Hardy-Weinberg Equilibrium exact
p <0.00001. This resulted in a set of around 9.4M high quality
imputed common genetic variants that were used to generate genetic
risk scores (GRS).

Genetic information was integrated into the machine learning
models through several representations of the genetic information by
(i) individual SNPs, (ii) whole genome polygenic risk score of OA
(WGPRS) as well as genetic risk scores for either (iii) specific gene-level
genetic risk scores (gene-GRS) or (iv) pathway-level polygenic risk
scores (pathway-PRS). An overview of the generation of the genetic
risk scores is presented in Supplementary Fig. 8

Genetic risk scores were generated using the software PRSice
(v.2.3.3)73 and the weights of variants associated with OA from a recent
meta-analysis5 (summary statistics of a sub-analysis excluding the UK
Biobank samples).

For gene-GRS, SNPs within 5 kb upstream and 1.5 kb downstream
of a gene were used for scoring after clumping. Furthermore, analyses
were run with and without a linkage disequilibrium proxy (LD proxy):
including SNPs in LD with the clumped region, with R2 > 0.8. The gene

regions were defined using GENCODE annotations (v.43lift37); only
protein-coding genes were considered for analyses.

For pathway-PRS, SNPs within genes (as described above)
belonging to specific gene-sets were aggregated together into a score
(with and without LD proxy). The gene-sets used for the pathway-PRS
were generated using KEGG pathways obtained via the Molecular
Signature Database (MsigDB; v.2022.1).

The default PRSice clumping parameters were used. For
WGPRS and gene-GRS/pathway-PRS, no p-value based thresholding
was applied to maximise the number of SNPs included in the
analyses.

SNPs andgenes tobe included in themodelswere guidedbyusing
previously identified variants and loci associated with OA risk genes
from two recent large GWAS-based studies5,13. Indels were removed
from individual genetic variants, resulting in a set of 85 SNPs. Specific
gene-GRS features to include were prioritised based on the genes
annotated to the GWAS-significant loci. This included 77 high effector
OA genes identified by ref. 5 and 134 OA genes annotated to genome-
wide significant SNPs by ref. 13. In total, 204 unique genes associated
toOA riskwere identified, where 193 genes were protein-encoding and
prioritised for the list of gene-GRS used. All 186 pathways from KEGG
were tested for pathway-PRS.

Metabolomics data. Circulating metabolite biomarkers from blood
EDTA plasma samples were quantified from a subset of UK Biobank
participants (N = 118,021) using Nightingale’s high-throughput proton
NMR metabolomics platform74–76. A total of 249 metabolites were
quantified (168metabolites given in absolutemolar concentration units
(differs per biomarker, see details: https://research.nightingalehealth.
com) and 81 ratios of these) spanning amino acids, (apo-)lipoproteins
(incl. subclasses), cholesterol, cholesteryl esters, fatty acids, biomarkers
of fluid balance, glycolysis related metabolites, inflammation bio-
markers, ketone bodies, phosphor- and/or other lipids.Metabolites that
were measured by absolute concentrations were normalised by square
root. Metabolites given as ratio or percentages were not processed
further before including in the machine learning models.

Proteomics data. A subset of UK Biobank participants (as previously
described77) had biomarkers measured from plasma blood samples by
Olink Proximity Extension assays across 58,634 samples for 54,308
individuals. The data was filtered to only include individuals with
samples obtained from the first assessment centre, samples were
processed and no withdrawn consent as per reported by UK Biobank
(48,040 samples and 46,673 individuals). In total, 1472 proteomics
markers were measured across four Olink panels (cardiometabolic
panel: 369, inflammation: 368, neurology: 367, oncology: 368). The
quality of the assay and sample quality was checked by Olink’s built-in
quality control. Sample with <85% of assays not completely passing
Olink’s built-in quality control were excluded for analysis. The protein
expression was normalised into Normalised Protein eXpression (NPX),
which is Olink’s arbitrary unit (Log2 scale). NPX values were compared
across individuals and extremeoutlierswere removed if themeanNPX
for an individual was <0.2% or >99.8% percentile of the overall cohort
mean NPX values. Proteins that were identified by non-normal/bimo-
dal residuals from age, sex, BMI were removed from the analysis.
CXCL8, IL6, and TNFweremeasured across all fourOlink assays and an
average NPX value was calculated. Furthermore, some samples were
assayed twice for replication and for machine learning analyses, an
average NPX value was calculated.

Pre-processing of electronic health record data
Longitudinal data was captured 5 years prior to OA diagnosis/matched
index date from the primary and secondary health care data to capture
information of biomarkers and medication during the 5 years pre-
index date (Fig. 1A and Supplementary Figs. 1–2). Primary care datawas
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used as a source of longitudinal biomarkers, clinical measurements,
and prescription data. Biomarkers and clinicalmeasurements included
haematological measurements, liver biomarkers, anthropometric
measurements, cardiovascular biomarkers, renal biomarkers, bone &
joint biomarkers, lifestyle measurements, hormonal measurements,
and diabetes biomarkers. Two EHR coding systems are used in UK
primary care (GP) data: Read v2 and CTV3/Read v3 codes (CTV3/Read
v3 represent an updated coding system). Both are used for filtering of
clinical data in this study, see Supplementary Data 5 for list of codes
used. Where appropriate, data was processed to align units and out-
liers. Medications for type 2 diabetes, obesity and OA was extracted
from prescription data (BNF and dm+d clinical codes in Supplemen-
tary Data 6).

Longitudinal data was captured in yearly snapshots 5 years prior
to OA diagnosis. For continuous data, this was represented as the
median value across an 11-month period in the year. The 11-month
period was used to capture the majority of the available data from the
year, while also leaving a time-gap to avoid overlap between snapshots
and the diagnosis/index date. For medication data, prescriptions were
grouped into medication classes and a binary value indicated whether
the patient had a prescription for themedication class during the year.

Finally, primary and secondary health care data was used to indi-
cate if OA patients had a diagnosis of posttraumatic OA before onset of
their OA diagnosis, as this has been shown to increase individual OA
risk78. Diagnoses of post-traumatic OAwere identified and annotated if
any codes were given ahead of the OA date/control proxy day.

OA study and validation populations
OA diagnoses were identified from primary and secondary health care
data linked to individual participants (>18 years old) using Read v2,
CTV3/Readv3, ICD-9and ICD-10 clinical codes (SupplementaryData 1).
This list was generated using a published list of OA read codes23, a
curated search for OA EHR codes in UK Biobank and review by authors
with extensive clinical experience in the UK. Further inclusion criteria
for the study included filtering of patients with available primary care
data in the UK Biobank. An equal number of control participants, who
never developed OA and had observational data during the entire
study period (e.g., due to death), were identified. Controls were date-
matched with the OA diagnosis dates for case patients to enable ret-
rospective capture of longitudinal data 5 year before OA diagnosis or
OA proxy date. Cases and controls were then filtered for those with an
OA diagnosis/matched index date after the date of the recruitment
assessment centre, and maximum 5 years between the OA diagnosis
and assessment centre, allowing the use of this recruitment data in
predictive models to estimate the five-year risk (Fig. 1A).

Machine learning models
Extreme Gradient Boosting (XGBoost) models with decision-tree
based learners were implemented by R v.4.2.0 using the publicly
available R libraries; xgboost (v.1.6.0.1), pROC (v.1.18) and caret (v.6.0-
93). XGboost models were trained using a nested two-level five-fold
case-control stratified cross-validation. Missing values were handled
by imputation within each cross-validation fold based on the median
value available across cases and controls in the training dataset. Fea-
tures with >50% missing data were excluded from analysis. Addition-
ally, near zero variance features were excluded using near0var from
the caret library. Hyperparameters for the cross-validatedmodels were
optimised via a cross-validation grid search, where optimal parameters
were selected based on highest cross-validated ROC-AUC in the inner
cross-validation fold. The grid optimised for the following parameters
eta: (0.05, 0.10, 0.15, 0.20, 0.25, 0.30) and nrounds: (50, 100, 200, 300,
500, 700, 1000) with the following other parameters fixed in the
XGBoost model; booster: gbtree, max depth: 10, eval_metric: logloss,
objective: binary:logistic, subsample =0.8, sample:method = uniform
and min_child_weight = 50. For models where omics data (genomics,

metabolomics, or proteomics) were integrated the XGBoost model
also had colsample_bytree =0.8. The short depth of each decision tree
was set to help guide feature selection and reduce risk of overfitting.
The selected hyperparameters were selected for re-training of one
model in the outer cross-validation level.

The model performance was validated on the outer test set that
has been held out from any model training. Model performance was
estimated by evaluating classification of true positive (TP), false posi-
tive (FP), true negative (TN) and false negative (FN) classifications done
by the machine learning model at a standard threshold of 0.5. To
account for variance between the five cross-validation sets, both the
average and 95% confidence interval (CI) across the five validation
datasets were reported. The classification performance is reported by
the area under the receiver operating characteristic curve (ROC-AUC),
sensitivity (recall, ( TP

TP+FN)), positive predictive value (PPV, precision,
( TP
TP+FP)), specificity ( TN

TN+FP) and negative predictive value (NPV, TN
TN+FP).

ROC and precision-recall curves were generated using the R library
yardstick (v.1.1.0). The robustness and stability of themachine learning
models was evaluated across 100 random model initialisation and
against 100 random model initialisations with a permuted prediction
outcome of OA cases and controls that both accessed impact on pre-
dictive performance. Transparent reporting of a multivariate predic-
tion model for individual prognosis or diagnosis (TRIPOD) checklist
for predictionmodel development were followed to ensure clarity and
reproducibility of the multivariate prediction model of individual OA
risk (Supplementary Data 7).

Model interpretation
To explore how each individual features contribute to the risk pre-
diction of OA, Shapley Additive explanation (SHAP) values were cal-
culated from the XGBoostmodels using Tree SHAP79. The SHAP values
were given as the log-odds of the individual contributions and were
visualised using the R libraries SHAPforxgboost (v.0.1.1) and shapviz
(v.0.4.1). For global estimation of feature importance across the five
outer test datasets, the mean absolute SHAP values were calculated,
which quantifies, on average, the magnitude of a feature’s ability to
predict individual risk of osteoarthritis.

Cluster analyses
To explore differences in feature importance in the prediction model
between subgroups of individuals, clustering was performed on the
SHAP values. For this, the Seurat80 (v.4.3.0) implementation of the
Louvain clustering algorithm81 was used after reducing the data to 10
dimensions by principal component analysis (PCA). A three-steps
approach was used to determine the number of clusters. First, the
package chooseR (v.12062020)82 was used to perform a subsampling-
based approach to generate silhouette scores (as a measure of cluster
robustness) for various resolutions (number of clusters). Secondly, the
PPV, sensitivity and F1 (a balanced metric evaluating accuracy of case
classification, 2

sensitivity�1 +PPV�1) values of each cluster were calculated,
based on the prediction results of the XGBoost model. Finally, these
two steps were integrated by looking at the cluster resolutions leading
to the best combination of these metrics as per Eq. 1:

cluster score=
weighted mean silhouette scoresð Þ

1�weightedmedian prediction valuesð Þ ð1Þ

After manually selecting the optimal resolution parameter to
maximise cluster robustness, number of clusters and per-cluster F1
values (resolution =0.5, n = 14 clusters), each cluster was first char-
acterised by averaging the values of the top6predictive features toplot
as a heatmap using the ComplexHeatmap R package (v.2.13.1)83. Sec-
ondly, the SkopeRules Python package (v.1.0.1)12 was employed to gen-
erate interpretable rules to define each cluster using the original input
values used in the XGBoost model (n_estimators: int = 10, recall_min:
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float=0.2, max_depth: int = 5, max_depth_duplication: int = 7). When
multiple set of rules were given for a cluster, the rules appearing in the
highest numbers of decision trees were chosen, and the rules with
highest out-of-bag PPV and sensitivity in case of equality. Differential
expression analyses were performed on the proteomics data (Olink) to
identify the most differentially expressed protein per cluster. For this,
Seurat’s FindAllMarkers() function was employed (min.pct =0, only.-
pos = FALSE, test.use = “LR”). The analyses were corrected for sex as a
covariate; p-values were adjusted for multiple comparison using Bon-
ferroni correction, per cluster. The full list of differentially expressed
proteins per cluster is available in Supplementary Data 3. Analyses were
performed in subsets of the samples: OA cases-only (Fig. 3, Supple-
mentary Data 3), controls-only and all samples (Supplementary Data 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank is available to researchers following application to the UK
Biobank database (https://www.ukbiobank.ac.uk/enable-your-
research/apply-for-access). All field IDs and clinical codes used for
extraction of data have been provided in SupplementaryData. The use
of UK Biobank for this study was performed under research applica-
tion numbers 53639 and 65851. Source data that is not patient-
sensitive data are provided with this paper to reproduce figures and
tables in the main manuscript in https://github.com/novonordisk-
research/xOAML, including links to any publicly-available datasets
used in the analyses. In the case of individual-level sensitive data from
UK Biobank mock data describing input file formats is provided
alongside code used to reproduce the figures and tables. The OA
GWAS summary statistics files used to generate the genetic risk scores
were created as part of a published study by Boer et al., Cell 2021.

Code availability
All analyses were performed on publicly available software, and all
parameters are provided inmethodswherever relevant. The codeused
for this study was tailored to the UK Biobank data and is no use as a
standalone without access to the UK Biobank. However, code to
reproduce the machine learning model, figures as well as files
describing input data formats, are provided at https://github.com/
novonordisk-research/xOAML. The authors welcome being contacted
to providemore information to reproduce the results presented in this
paper if needed.
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