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Strong positive selection biases identity-by-
descent-based inferences of recent
demography and population structure in
Plasmodium falciparum

Bing Guo 1,2, Victor Borda 1, Roland Laboulaye1, Michele D. Spring3,
Mariusz Wojnarski3, Brian A. Vesely 3, Joana C. Silva 1,4,5, Norman C. Waters3,
Timothy D. O’Connor 1,6 & Shannon Takala-Harrison 2,6

Malaria genomic surveillance often estimates parasite genetic relatedness using
metrics such as Identity-By-Decent (IBD), yet strong positive selection stem-
ming from antimalarial drug resistance or other interventions may bias IBD-
based estimates. In this study, we use simulations, a true IBD inference algo-
rithm, and empirical data sets from different malaria transmission settings to
investigate the extent of this bias and explore potential correction strategies.
We analyze whole genome sequence data generated from 640 new and 3089
publicly available Plasmodium falciparum clinical isolates. We demonstrate that
positive selection distorts IBD distributions, leading to underestimated effec-
tive population size and blurred population structure. Additionally, we discover
that the removal of IBD peak regions partially restores the accuracy of IBD-
based inferences, with this effect contingent on the population’s background
genetic relatedness and extent of inbreeding. Consequently, we advocate for
selection correction for parasite populations undergoing strong, recent posi-
tive selection, particularly in high malaria transmission settings.

Malaria, a mosquito-borne disease caused by Plasmodium parasites, is
a leading cause of illness and death inmany developing countries, with
an estimated 247 million cases and 619,000 malaria-related deaths in
20211. Plasmodium falciparum (Pf) is responsible for most malaria
cases and deaths. Antimalarial drugs have imposed one of the stron-
gest selective pressures on the Pf genome, with the parasite having
evolved resistance to nearly all drugs used as first-line therapies2–5.
Eastern Southeast Asia (SEA) has historically been an epicenter of
emerging antimalarial drug resistance, leading to intensive malaria
control efforts in this geographic region that have resulted in an 80%

decrease inmalaria incidenceover the last twenty years1. Thedecline in
Pf incidence in SEA is accompanied by a structured Pf population, as
well as decreased genetic diversity or effective population size (Ne)

6–9.
Monitoring the dynamics of Pfdemography, population structure, and
gene flow is a critical component of malaria surveillance efforts to
inform targeted elimination intervention strategies and prevent the
spread of drug-resistant parasites10.

In population genetics, Identity-By-Descent (IBD) is a highly
informative metric used to estimate Ne

11–13 and fine-scale population
structure for recent generations14–17. An IBD segment is a continuous
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genomic region over which a pair of isolates or genomes share an
identical sequence inherited from theirmost recent common ancestor
(MRCA) without being broken down by recombination18–20. In selec-
tively neutral scenarios, the length and positional distribution of IBD
segments, as well as pairwise and population-level aggregates, can
provide valuable insights into the recent evolutionary history of a
population, enabling the estimation of Ne

12,21, population structure,
genetic relatedness9, and migration6,22 in a time-specific manner23,24.
Although many IBD-based inference tools were initially developed for
human studies, they have recently been applied to malaria
parasites6,9,21,25,26, despite the large differences in evolutionary para-
meter values between humans and Pf parasites. These differences
include strong selection coefficients27, high recombination rates (but
comparable mutation rate)28, and declining Ne

1 in Pf compared to
humans. Such differences can potentially affect the quality of IBD
segment detection and the patterns of IBD sharing, and thus must be
considered when applying IBD-based analysis in Pf.

Indeed, Pf parasites have been under strong selection pressure
due to intensemalaria control efforts in recent decades, especially the
widespread use of antimalarial drugs29–32, resulting in the rapid emer-
gence and spread of multidrug-resistant parasites in SEA and other
malaria-endemic areas3. For instance, parasites in this region have
developed resistance to chloroquine, the antifolates, mefloquine, and
more recently, the artemisinin derivatives and their partner drugs33,34.
Haplotypes harboring mutations conferring drug resistance have
undergone strong selective sweeps with high selection coefficients
(0.03–0.32)27,35, multiple orders of magnitude greater than those
usually observed in the human genome, where selection coefficients
are often on the order of 0.00136. Such selective sweeps can bias
inference based on IBD by changing the distribution of IBD segments
and their aggregates. Positive selection increases IBD sharing at the
locus under selection aswell as neutral loci linked to the selected locus
(genetic hitchhiking)37, leading to an increase in linkage disequilibrium
(LD)38, long haplotypes, and long IBD segments37,39. The shift of the IBD
distribution has therefore been used as a signal to detect selection in
both humans37,40 andmalaria parasite populations9,41. Given the known
effects of positive selection on IBD sharing patterns in human
genomes37, it is critical to understand whether and how IBD-based
analysis is biased by positive selection in Pf, where selection coeffi-
cients are substantially greater than in humans.

However, the evaluation of potential selection bias in Pf is com-
plicated by the high genetic relatedness of parasites and inbreeding in
lowermalaria transmission settings, such as SEA, where there has been
a rapid decline of the parasite population. This high background
(genome-wide) LD, and IBD sharing6,9,42,43 as a result of inbreeding and
the low effective recombination rate, can bury the genomically local
signal of positive selection, making it difficult to locate or correct.

Also complicating evaluationof potential selection bias is the high
recombination rate in the Pf genome (including both effective and
actual rate)41,44,45. Although the mutation rates in Pf and humans are
comparable28, the recombination rate is 60–70 times higher in Pf 46.
The relatively low ratio of mutation to recombination rate in Pf (if
ignoring background selection) leads to a small number of variants per
genetic unit (lowmarker density), which is known to impact the ability
to accurately detect IBD segments and to bias the IBD distribution20.
Given these factors, we need a context-specific evaluation of the effect
of positive selection on IBD-based inferences of demography in Pf.

In this study, we employed population genetic simulations and
genealogy-based true IBD segments to evaluate howpositive selection,
with varying parameters, affects the IBD distribution and IBD-based
estimates of Ne and population structure in Pf. We proposed heuristic
strategies to detect and remove genomic regions with excess IBD
due to recent positive selection (IBD peaks) and evaluated whether
the removal of IBD peaks mitigates positive selection-induced bias in
the IBD distribution,Ne estimation and population structure inference.

We then validated the findings from simulation analyses in empirical
whole-genome sequencing (WGS) data sets from low and high malaria
transmission settings.

Results
Parasite isolates and WGS data summary
To investigate the impact of positive selection on the inference of Ne

and population structure, we mainly focused on eastern SEA, as it has
been a hotspot for drug resistance emergence3,47. We analyzed WGS
data from 2055 Pf isolates that passed quality control and data pro-
cessing filters (see “Methods”), including 751 (640 new) isolates from
Cambodia and Thailand that were sequenced in-house and 1304
eastern SEA isolates from the publicly available MalariaGEN Catalogue
of Genetic Variation in P. falciparum v6.0 (Pf6)48. The included isolates
are distributed across 14 years and 18 provinces in four countries
(Cambodia, Thailand, Laos, and Vietnam) (Fig. 1a). Among these iso-
lates, 79.3%, 68.0%, and 46.1% isolates had at least 5x, 10x, and 25x
coverage over >80% of the Pf genome, respectively (Fig. 1b). The Fws
statistic was estimated for each isolate that passed genotype miss-
ingnessfiltering to identifymonoclonal versus polyclonal isolates, with
80% being classified as monoclonal isolates (Fws > 0.95) (Fig. 1c).
Among the polyclonal isolates, 44.3% harbored a predominant clone
(defined in “Methods”), and the predominant haploid genomes of
these isolates (Fig. 1d, with ratio < 1.0), along with the phased haploid
genomes of the monoclonal isolates, were included in the analyzable
data set. Isolates from West Africa (WAF, n = 1674 analyzable isolates)
were also obtained from theMalariaGEN Pf6 database for validation of
results in a high transmission setting (Supplementary Fig. 1). Among
WAF isolates that passed quality control, 50.7% were monoclonal,
consistent with the highermultiplicity of infection (MOI) expected in a
high malaria transmission setting28 (Supplementary Fig. 1c).

Effects of positive selection on IBD distribution and IBD-based
Ne inference
Empirical data sets sampled froma realPfpopulationoftendeviate from
an ideal population due to various evolutionary factors, such as
declining malaria incidence1, parasite population structuring7,8,49, selec-
tive sweeps3,27,34, and asymmetrical gene flow ormigration6. To evaluate
the direct effect of positive selection on demographic inference, we
conducted population genetic simulations using simplifiedmodels that
reflect parameter values observed in Pf, such as strong positive selec-
tion, decreasing Ne, and a high recombination rate. We designed two
categories ofmodels: (1) a single-populationmodel to test the effects of
selection on the IBD distribution and the estimation of effective popu-
lation size, and (2) a multiple-population model to test the effects of
positive selection on IBD-based population structure inference.

To prevent the confounding of low-quality IBD calls on the eva-
luation of selection effects, we implemented a true IBD inference
algorithm called tskibd. The algorithm directly utilizes ancestral
information from simulated (true) genealogical trees in tree sequence
format50–52 and avoids phased genotype-based IBD inference (Supple-
mentary Fig. 2a). We verified the quality of true IBD by comparing IBD-
based Ne estimates (via IBDNe12) with the true population size in neu-
tral simulations under different demographic scenarios (Supplemen-
tary Fig. 2b).

Different aspects of the IBD distribution represent distinct types
of information about evolutionary histories, such as the time to
most recent common ancestor (TMRCA, inferred based on IBD seg-
ment length)22,24, genetic relatedness or population structure (inferred
based on pairwise genome-wide total IBD)14,16,17,53, and selection
detection (inferred based on IBD positional enrichment)9,37,41. We used
the single-population simulation model to generate genetic data
under neutral (Supplementary Fig. 3a) and other selection scenarios
(Supplementary Fig. 3b–j) consistent with realistic evolutionary para-
meters for Pf (see “Methods”). We found that strong positive
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selection impacts multiple aspects of the IBD distribution, including
increasing the proportion of longer IBD segments (Fig. 2a) and isolate-
pairs sharing larger genome-wide total IBD (Fig. 2b) and enriching
IBD around selected sites (Fig. 2c).More importantly, we found thatNe

(via IBDNe12) is underestimated in recent generations in cases
with selection compared to neutral cases (Fig. 2d), likely due to the

increase in longer IBD segments (thus smaller Ne in more recent time
frames).

We evaluated IBD peak region identification and removal strate-
gies to test whether positive selection-induced bias can be corrected
(Supplementary Fig. 4 and “Methods”). In brief, peaks were identified
on each chromosome using a threshold method, then validated

Fig. 2 | Effects of positive selection on IBD distribution and Ne inference.
a–c Positive selection affects various aspects of the IBD distribution, including IBD
segment length (a), total IBD shared by a pair of isolates (b), and IBD location along
the chromosome (c). Note: (1) the x-axis in (a) uses a custom scale for IBD length L
(bottom) so that the estimated TMRCA (50/L, top) is in a linear scale; (2) for IBD
segment length distribution analysis, shorter IBD segments (0.2–2 centimorgan
(cM)) were included to cover the more distant past (>25 generations ago). Lines of
transparent colors in (c) represent IBD coverage for different chromosomes for the
same genome set; lines of solid colors show the average across chromosomes. The
representative results were generated using a selection coefficient, s, of 0.3, a
selection starting time 80 generations ago, and a single origin of the favored allele

introduced at the position of 33.3 cM of each chromosome. d Strong positive
selection causes underestimation of Ne compared to neutral simulation. The dif-
ference between selection (s = 0.3, red solid line) and neutral (blue solid line)
scenarios can be partially mitigated by removing IBD segments (red dotted line)
located within IBD peak regions. Parameter true population size (black dotted line)
is plotted for reference. Error bands indicate 95% confidence intervals as deter-
mined by IBDNe12. Abbreviations: Neutral, neutral simulation; Selection (Orig),
positive selection with IBD peak regions not removed; Selection Rmpeaks, positive
selectionwith IBDpeak regions removed. Sourcedata are provided as a Sourcedata
file. For results for different selection parameter values, see Supplementary Fig. 3.

Fig. 1 | Summary ofPfparasite isolates andWGSdata fromSEA. aDistribution of
sampling location and collection year for the 2055 analyzable samples. The text and
color in each block indicate the number of isolates sampled at a given year from a
given location (also see colorbar). bDistribution of genome fractions covered by at
least 5, 10, and 25 sequence reads of all analyzable parasite genomes from SEA.
c Distribution of Fws in sequenced isolates that passed genotype missingness

filtering. Note that to obtain amore accurate distribution of Fws, polyclonal isolates
without a predominant clone were included in this analysis. dDistribution of ratios
of predominant haploid genomes (clones) in analyzable SEA isolates. The pre-
dominant clone of a polyclonal infection was determined by dEploid90,92. Source
data are provided as a Source data file.
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through integrated haplotype score54 (iHS)-based selection statistics
XiHS (see “Methods”). IBD segments locatedwithin validated peaks that
have a large, local impact on the genome, as estimated by the peak
impact index (defined in “Methods” and Supplementary Note 1), were
removed. We found that removing IBD peak regions corrects the Ne

estimation in the selection scenario, mimicking the neutral Ne

estimates and true population size (Fig. 2d).
We further evaluated the impact of varying selection parameters,

including selection coefficients (Supplementary Fig. 3b–d), selection
starting times (Supplementary Fig. 3e–g), and the number of origins of
the favored alleles (Supplementary Fig. 3h–j), on IBD distribution and
Ne estimates. In general, stronger selection (Supplementary Fig. 3d),
intermediate selection duration time (Supplementary Fig. 3f), and a
small number of origins (such as a hard sweep) (Supplementary
Fig. 3h) allow the establishment of the selective sweeps (the favored
allele is not lost during the sweep) (Supplementary Fig. 3 first column)
and thus result in selection bias. Signed-rank tests based on replicated
simulations suggested the effects of positive selection onNe estimates
are statistically significant (Bonferroni-adjusted p values < 0.05) (Sup-
plementary Fig. 5).

Effects of positive selection on population structure inference
Given the pronounced effects of positive selection on the IBD dis-
tribution and Ne inference, it is vital to understand its impact on the
inference of population structure. We assessed this impact using a
multi-deme, one-dimensional stepping-stone model55 with spreading
selective sweeps (Fig. 3a) that simulates a pattern of allele frequency

gradients across subpopulations (Fig. 3b), mimicking selective sweeps
in a structured parasite population56.

Under the neutral scenario with a moderate migration rate (such
as 0.01, corresponding to 1% of individuals in a subpopulation being
migrants from adjacent subpopulations in each generation), within-
population IBD sharing dominates the pairwise sharing heatmap
(Fig. 3c [left panel], and d [black line]), the total population is highly
modular57,58 with respect to the true subpopulation labels (Fig. 3e [left
bar]), and community-detection using the InfoMap clustering
algorithm58,59 captures the true population structure with high con-
sistency (Fig. 3f [left panel]).

However, with strong selection, both within- and between-
population IBD sharing increases (Fig. 3c [middle panel]). This
change results in an elevated ratio of inter-population to intra-
population IBD sharing (Fig. 3d [blue line]), reduced network mod-
ularity (Fig. 3e [middle bar]), and collapsed community groups (Fig. 3f
[middle panel]), making it difficult to distinguish one population from
adjacent populations. We observed consistent patterns across varying
selection strengths (Supplementary Fig. 6) and repeated simulations
(Supplementary Table 1), suggesting the blurring effect is selection
strength-dependent.

The effect of selection on structure inference can be partially
mitigated by removing IBD segments located within genomic regions
harboring IBD peaks (Supplementary Fig. 4). After the selection cor-
rection, the dominance of within-population IBD sharing and the
modularity of population is restored (Fig. 3c [right panel], d [dashed
red line], and e [right bar]), and the collapsed communities become

Fig. 3 | Effects of positive selection on the IBD-based population structure
inference. a Schematic of the one-dimensional stepping-stone model55 with
spreading selective sweeps. Five subpopulations (p1 to p5) were split from an
ancestral population. There is symmetrical migration between adjacent sub-
populations. A favored allele was introduced into the deme from one side of the
chain and spread to the other side. b Frequency trajectory of favored alleles
(average over chromosomes) in different subpopulations. c Heatmap of pairwise
genome-wide total IBD under neutral, selection (s = 0.3, Selection Orig), and
selection with IBD peaks removed (Selection Rmpeaks). Rows and columns are
ordered by true population labels. d Normalized inter-population IBD sharing
between nearby subpopulations. eModularity of IBD networks with respect to the

true population labels before and after removing IBDpeaks. f IBDnetwork InfoMap
community detection before (left, and middle) and after (right) removing IBD
peaks. For each subplot, rows are true subpopulations labeled as p1–p5 (assigned in
simulation), and columns represent the largest 5 detected communities labeled as
C0–C4 (with columns re-ordered to facilitate the comparison of true and inferred
labels). The color of each block represents the number of genomes with the given
true labels and detected community labels, with darker colors indicating a larger
number of genomes. Source data are provided as a Source data file. For results for
different selection coefficients and repeated simulations, see Supplementary Fig. 6
and Supplementary Table 1.
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distinguishable and consistent with the true population labels (Fig. 3f
[right panel]).

Genome-wide IBD sharing and selection signals in SEAPf isolates
To evaluate the effects of positive selection on IBD-based inferences in
empirical Pf data sets, we first identified genomic regions that are
under positive selection using similar methods as for simulated data,
and then compared IBD-based inferences of Pf Ne and population
structure using IBD segments before and after peak removal.

Previous studies have shown that IBD can be used as a metric to
identify genomic regions under positive selection, including regions
harboring drug-resistance mutations9,41. Based on the same logic, we
identified genomic regions with high IBD sharing (see Supplementary
Fig. 4 and “Methods”) and correlated themwith knowndrug-resistance
genes. For empirical data (without genealogical trees generated from
simulations), we chose to use the haploid-genome-oriented HMM-
based IBD caller (hmmIBD) for IBD inference60. The IBD coverage
profiles called by hmmIBD show high IBD sharing surrounding: (1)
known drug resistance genes and genes associated with the genetic
architecture of resistant parasites, such as multidrug resistance pro-
tein 1 pfmdr161, amino acid transporter gene (pfaat1)41,62, chloroquine
resistance transporter gene (pfcrt)63,64, dihydropteroate synthase gene
(dhps)65, protein phosphatase gene (pph, PF3D7_1012700)66, GTP
cyclohydrolase I gene (gch1)67, kelch1368–70, and apicoplast ribosomal
protein S10 gene (arps10)66; (2) genes related to altered sexual
investment and increased transmission potential of resistant parasites,
including Apicomplexan-specific ApiAP2 family genes ap2-g and ap2-
g2 43,71 (Fig. 4).

When including all parasite genomes, highly related and distantly
related, we observe a high level of average (baseline) IBD sharing
across the genome in SEA (Fig. 4a) compared to other geographic
regions, such as WAF (Supplementary Fig. 7), which is consistent with
declines in malaria transmission owing to intensive elimination efforts
in SEA9. To avoid the confounding effects of high relatedness on fur-
ther analysis, we applied a heuristic method to remove highly related

isolates by iteratively excluding the isolate with the highest number of
strong connections (defined as IBD sharing larger than half of the
genome) with others. The resulting subset of isolates, hereafter called
unrelated isolates, exhibits a five-times lower baseline IBD proportion
(Fig. 4b). The low baseline IBD sharing is less noisy and more readily
allows the identification of IBD peaks, including those surrounding
pfmdr1, and pfaat1 (Fig. 4b). Thus, we used unrelated isolates and IBD
peaks identified from this subset for downstream analyses.

IBD-based inference of Ne and population structure in a low
transmission setting with high background parasite genetic
relatedness
Our simulation analyses showed that strong positive selection sig-
nificantly impacts the IBD distribution, as well as demography and
population structure inferences. In these simulations, removing IBD
segments within IBD peak regions significantly improved the accuracy
of Ne estimates and structure inferences. We assessed this pattern in
empirical data from a low transmission setting (SEA).

First, we estimated Ne before removing IBD peaks. Given the high
relatedness of parasite isolates in the full data set (Fig. 4a), we focused
on the unrelated isolates (n = 701). The Ne estimates based on IBD
before removing the peaks via IBDNe suggest a decreasing pattern of
Ne in SEA, from around 104 to less than 103 in the most recent 60–80
generations (Fig. 5a, blue), consistent with a rapid decrease in malaria
incidence in the last decades owing to malaria elimination efforts in
this geographic region1.

Second, we performed population structure inference before
peak region removal via IBD network analyses. Using the total IBD
matrix for unrelated isolates as input, we performed unsupervised
community detection via InfoMap. Among the 701 unrelated isolates
from SEA, we identified five communities (defined via IBD network
structure analysis instead of geopolitical boundaries) with sizes > 20
isolates. The largest community, labeled as C0 (Fig. 5b) was enriched
for parasites sampled from Western Cambodia (Battambang,
Kratie, Oddar Meanchey, and Pursat) (Supplementary Fig. 8 and

Fig. 4 | IBD coverage profile of all and unrelated Pf isolates in SEA. a IBD cov-
erage/proportions of all parasite genomes (n = 2055), including highly related and
unrelated, in SEA. Labels on the top indicate the center of known or putative drug-
resistance genes or genes involved in sexual commitment (*). b IBD coverage/
proportions of unrelated genomes in SEA (n = 701). Annotations in (a) are shared
with (b); regions with red shading indicate validated peaks (defined in “Methods”).

Note: (1) different scales for y axes (IBD coverage on the left y-axis; IBDproportions
on the right y-axis) were used in (a) versus (b) to better reveal the peaks; (2) the
peaks around pph in (b) andap2-g in (a) and (b) are IBDpeak candidates that do not
pass the peak validation step (see “Methods”). Source data are provided as a Source
data file.
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Supplementary Fig. 9a). In contrast, the second-largest community
(C1) was comprised of isolates from awider geographic area, including
Northeastern Cambodia (Ratanakiri), Laos, and Vietnam (Supplemen-
tary Fig. 8 and Supplementary Fig. 9a). Isolates within C1were distantly
related given the low-average within-community IBD sharing (Fig. 5b,
top left block) compared with other communities. Hierarchical clus-
tering of the community-level average IBD sharing matrix revealed
other major communities such as C2/3/4 are closer to C0 rather than
C1. The detected communities also displayed temporal dynamics. For
instance, parasites from Pursat, initially belonging to different com-
munities, converged into the main community C0 in recent years; a
similar pattern occurred in OddarMeanchey 2–3 years later relative to
Pursat (Supplementary Fig. 9b, c). These changes are consistent with
the spread of artemisinin-resistant parasite lineages from the west to
the north over time.

To investigate the potential drivers of the observed population
structure, we examined the distribution of non-synonymous muta-
tions in knowndrug-resistance genes in the detected communities.We
discovered that different communities or community groups exhibit
distinct mutational landscapes at drug resistance loci (Fig. 5c). The
group clustered with C0—C0/2/3/4—demonstrates relatively high fre-
quencies of several resistance variants, including those associatedwith
artemisinin-resistance or its associated genetic background, e.g.,
arps10 V127M, pfcrt I356T, ferredoxin (fd) D193Y, kelch13 C493H,
R539T, and C580Y, and pph V1157L, as well as mutations associated
with resistance to other antimalarial drugs, e.g., dhfr I164L and dhps
A581G (associated with resistance to the antifolates) and pfcrt H97Y,
I218F and G353V (mutations associated with piperaquine resistance
found in C0)8,66,72. In contrast, the C1 communities had relatively low
frequency or no mutations (including kelch13mutations) at these loci.
The mutation landscapes for the largest 5 communities show distinct
kelch13 resistance mutation patterns, consistent with the presence of
multiple artemisinin-resistant founder populations and an artemisinin
susceptible population previously observed in this geographic region8.
These results suggest that the population structure of Pf in SEA is
heavily influenced by drug resistance and positive selection and con-
firms that different founder populations harbor distinct combinations
of resistance mutations8.

Finally, we compared the IBD-based inferences before and after
peak removal. In the SEA data set, the removal of IBD peak regions did
not significantly alter estimates of Ne. The trajectories of Ne estimates
heavily coincide, with point estimates of pre- (Fig. 5a, blue) and post-
IBD-peak removal (Fig. 5a, red) having overlapping 95% confidence

intervals. The inferred population structure patterns were also similar
before and after the correction, with the community assignments
before removing IBDpeaks being consistentwith those after IBDpeaks
were removed (Fig. 5d). Although there are some minor changes in
population structure inference, the size of the main communities and
the Adjusted Rand Scores73 are largely unchanged (Supplementary
Table 2).

Effects of removing IBD peaks on IBD-based inferences in a high
transmission setting with low background parasite genetic
relatedness
The effects of positive selection on IBD-based inferences observed in
simulations are not corroborated by the empirical results observed in
the analysis of data from parasites sampled in SEA. We hypothesized
that this discrepancy stemmed from high baseline genetic relatedness
observed in recent time frames in SEA (Supplementary Fig. 10), even
after having pruned highly related isolates (the equivalent of first-
degree relatives) (Fig. 4b versus Supplementary Fig. 7b). To test this
hypothesis, we took two approaches: (1) we incorporated high relat-
edness/inbreeding into simulations; and (2) we evaluated an empirical
data set from a high transmission setting, WAF, where parasite relat-
edness and inbreeding are known to be lower than in SEA9.

We modeled high relatedness/inbreeding in our simulations in
three different ways, by incorporating decreasing population size
(Supplementary Figs. 11 and 12), positive assortative mating (Supple-
mentary Figs. 13 and 14) and selfing (Supplementary Figs. 15 and 16), to
simulate parasite populations with different levels of inbreeding. Our
results show that, in high-inbreeding populations simulated via
decreasing population size or positive assortative mating (Supple-
mentary Figs. 11–14, bottom rows), selective sweeps have a lower local
impact on the genome (measured as peak impact index) and a higher,
chromosome-wide global impact (measured as global impact index,
Supplementary Fig. 17 row 3; see Supplementary Note 1 for defini-
tions). Thus, removing IBD peaks, in this case, provides a less effective
and necessary bias correction (estimates are similar before and after
IBD peak removal) for both Ne estimation (Supplementary
Figs. 11 and 13) and population structure inference (Supplementary
Figs. 12 and 14), when compared with low-inbreeding simulations
(Supplementary Figs. 11–14 top rows). In these low-inbreeding simula-
tions, inbreeding level tends to be negatively correlated with local
impact on the genome and positively correlated with global impact on
the genome (Supplementary Fig. 17, left two columns). The pattern is
different when inbreeding is modeled via selfing, where both local

Fig. 5 |Ne andpopulation structure inference in anempirical data set fromSEA.
a Ne estimates for SEA before and after removing IBD peaks. Error bands indicate
95% confidence intervals as determined by IBDNe12. b IBD network analysis of SEA
data (before removing IBD peaks), including community-level IBD sharing matrix
(heatmap), community size (blue circles below), and dendrogram showing hier-
archical clustering of the community-level IBD matrix (left). Only the largest 5

communities, labeled as C0 to C4, are plotted. The rows and columns in the
heatmap, each representing one of the 5 communities, are re-ordered such that
heatmap and hierarchical clustering share the detected community labels (y axis
tick labels). c Frequencyof drug resistancemutations indifferent IBDcommunities.
dConsistency of InfoMap assignment of unrelated isolates before (x-axis) and after
(y-axis) removing the peaks. Source data are provided as a Source data file.
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impact and global impact increase with the inbreeding levels (Sup-
plementary Figs. 15 and 16, and Supplementary Fig. 17 last column),
likely due to a synergistic effect of selfing on selection (i.e., a faster
increase in the frequency of selected alleles in the presence of a high
selfing rate, Supplementary Fig. 15c). Despite these differences, the
results suggest that selective sweeps tend to have strong global impact
in populations with high levels of inbreeding and low effective
recombination rates; in this case, IBD-peak removal-based bias cor-
rection is either less necessary or less beneficial (see Supplementary
Note 2 and 3 for detailed methods and analyses).

Second, to further test our hypothesis, we explored the effects of
removing IBDpeaks in a highmalaria transmission setting by analyzing
parasite isolates from WAF. Using the same criterion for unrelated
isolates as in the SEA data set, we found that removing IBD peaks in the
WAF data set (n = 1496 unrelated isolates), resulted in larger estimates
of Ne for the most recent generations, with non-overlapping con-
fidence intervals approximately 20 generations ago (Fig. 6a). Addi-
tionally, we were able to uncover finer population structure using IBD
network-based community detection after removing IBDpeaks. Before
selection correction, most isolates were collapsed into a dominant
community (Fig. 6b), while after IBD peak removal, these isolates were
assigned tomultiple smaller communities (Fig. 6c), with differences in
the inferred population structure before and after IBD peak removal
being statistically significant based on Jackknife resampling (Supple-
mentary Table 2). The change in detected communities before and
after removal of IBD peaks is similar to the results from simulations
without high-relatedness or inbreeding (Fig. 3). Together, these results
suggest that background genetic relatedness and inbreeding are key
modifiers of the effect of selection on IBD-based inferences and the
necessity for bias correction.

Discussion
Pf parasites have undergone strong and multiple selective sweeps
owing to selection for resistance to antimalarial drugs, which is known
to alter IBD patterns. Our simulations and analysis of field isolates
demonstrated that strong positive selection can alter IBD distribu-
tions, resulting in an underestimation of Ne and a blurring of popula-
tion structure. Our new IBD peak removal strategy can partially
mitigate this bias, particularly in areas with low background related-
ness (high transmission settings). Thus, we recommend excluding
genomic regions under positive selection when using IBD-based
approaches to estimate parasite population demography in areas

with high malaria transmission rates and low parasite genetic relat-
edness, such as sub-Saharan Africa. However, in scenarios with low
transmission and high relatedness, as in SEA, correction for selection
may not be necessary, as such correction did not significantly change
IBD-based inferences.

Although positive selection is known to increase the likelihood of
allele IBD9,37,40 and accumulation of longer haplotype blocks sur-
rounding the selected sites39,74, the effect of recent positive selection
on the IBD segment distribution in the Pf genome is difficult to assess
owing to the action of opposing and confounding factors, such as: (1)
strong selection that increases local IBD sharing in the genome; (2)
high genome-wide background IBD sharing (due to decreasing Ne and
structuring of parasite population) that hides selection effects; and (3)
low SNP density (due to high recombination) that affects IBD call
quality and the evaluation of selection effects. Our simulation
approach circumvented IBD quality issues by using true IBD and
mimicked high background IBD sharing by introducing high related-
ness and inbreeding into the simulations. We provide evidence that
positive selection can significantly alter IBD distributions despite the
above complex context of Pf. Thus, ignoring selection bias in Pf could
lead to inaccurate IBD-based inferences, particularly in high trans-
mission settings.

The change in IBD segment length due to selection can have sig-
nificant implications for time-specific inferences. This shift challenges
the assumed correlation between the length of an IBD segment and its
age (TMRCA), as IBD segments tend to be longer in selected regions
than in neutral regions even from ancestors of similar ages. As a result,
IBD-based Ne estimators (such as IBDNe)12, time-specific migration
surface estimators (such as MAPS)22, and other time-specific IBD ana-
lyses that rely on TMRCA estimates inferred from IBD segment
length24,53, could all suffer from selection bias. Similarly, LD-based Ne

estimates75 are potentially biased by strong positive selection because
of increased long-distance LD, which can violate the assumption that
LD over longer genetic distances is informative for Ne estimation in
more recent time frames and over shorter distances for Ne at distant
time frames76,77. Although our finding is consistent with the predicted
influence of selection on the estimates of Ne

77, it contrasts with the
recent finding that LD-based Ne estimates are virtually unaffected by
natural selection78. The different conclusions are likely due to the
distinct ways of simulating selective sweeps. Novo et al. used smaller
selection coefficients and did not strictly control selection loci and
time (randomly chosen), which generally focuses on the relatively

Fig. 6 | Removing IBD peaks changes the inference of Ne and population
structure in theWestAfrican (WAF) data set. aNe estimates of Pf in theWAFdata
set before (blue) and after (red, dotted) removing IBD peaks. Error bands indicate
95% confidence intervals as determined by IBDNe12. b, c Distribution of the sizes of
detected communities from IBD networks using the WAF data set before (b) and
after (c) removing IBD peaks. Only communities with at least 20 isolates are shown.
The y axis indicates the number of isolates assigned to a detected community. The
x-axis tick labels are the detected communities labeled as C0,…, C(n−1). Note that
in (b) the leftmost red bar labeled C0 represents the dominant community in the

original IBDnetwork,with a sizeof 1222 isolates. Panel (c), on the other hand, shows
the distribution after removing IBD peaks. This process leads to a reassignment of
isolates from the dominant community (C0 in (b)) into smaller, distinct commu-
nities, labeled as C0-C14 in (c). To visually convey how community assignments
have shifted as a result of this reassignment, each bar in (c) is split into two color
components: red and gray. The redportion represents isolates thatwere part of the
original dominant community (community C0 in b), while the gray portion indi-
cates isolates that arenot from thisdominant community. Sourcedata are provided
as a Source data file.
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long-term effects of less-constrained, weak selective sweeps that
mimic the human scenario. We instead conditioned on the establish-
ment of positive selection at specific loci starting at designated time
points such as 50 generations ago which mimics the recent, strong,
and multi-locus selective sweeps observed in empirical Pf data.

The effect of selection on the distribution of IBD segment length
can similarly impact estimates of genome-wide IBD, such as pairwise
genome-wide total IBD sharing. Pairwise total IBD, similar to the frac-
tion of sites sharing IBD, is a measure of genetic relatedness used for
network-based analysis of population structure6,9,14,17,25,53,79,80. As an
aggregate of IBD shared across the genome, including that from neu-
tral and non-neutral regions, pairwise total IBD-based relatedness
estimates can be driven by at least two components, genomically local
enrichment of IBD (due to non-neutral evolution), and genome-wide
alteration in IBD sharing (due to changes in population structure, Ne,
and inbreeding). Positive selection increases pairwise total IBD by
increasing IBD sharing around selected loci (chromosomally local). In a
panmictic malaria parasite population of large Ne and low inbreeding
where average IBD sharing is low (such as in Africa), pairwise total IBD
is dominated by the excess local IBD due to selection, which yields
artificial patterns of relatedness unrelated to subpopulation structure.
Thus, failure to correct selection bias can cause overestimation of
genetic relatedness and make underlying fine-scale population struc-
ture (defined by neutral regions) hard to discern.

Given the presenceof selectionbias, it is important to identify and
correct the bias to improve the accuracy of IBD-based analyses. While
there are existing heuristic methods to classify genomic loci as selec-
ted, linkedneutral, or neutral81,82, there areno specificmethods tofilter
IBD segments for correction of positive selection-induced biases. One
related exception is the IBDNe program12, which internally excludes
regions sharing extremely high IBD. Our peak removal strategy bor-
rows from this idea but lowers the peak identification threshold for
selected loci, expanding the selected region to the chromosomal
median, in an attempt to include neutral loci that are linked with the
selected locus. Our work demonstrates that this peak removal method
can successfully mitigate selection-induced bias in IBD-based infer-
ence of Ne and population structure.

The influence of positive selection on IBD-based demographic
inferences is closely linked to the baseline level of relatedness or IBD
sharing across the genome. In malaria parasite populations char-
acterized by high average IBD sharing (indicating high background
genetic relatedness), there tends to be increased inbreeding and
reduced effective recombination83. In such populations, strong posi-
tive selection can have expansive effects, potentially impacting broad
genomic regions (as shown in Supplementary Figs. 15 and 16, peak
width) or even entire chromosomes84 (as depicted in Supplementary
Fig. 17, based on our global impact index). The magnitude of selection
bias and the need for peak-removal-based correction are influenced by
both the local and global impacts of these selective sweeps on the
genome. Generally, given an identical selection coefficient, selective
sweepsoccurring in populationswith higher inbreeding exhibit amore
pronounced global impact on the genome, which inversely correlates
with the effectiveness of and necessity for peak-removal-based cor-
rection. Conversely, in populations with lower background genetic
relatedness where selective sweeps have a limited global impact, the
local impact (measured by our peak impact index) can serve as a
valuable quantitative metric to determine the need for selection cor-
rection (see Supplementary Note 1 for instructions on how to calculate
peak impact index). For example, based on our analyses we might
recommend removal of IBD peaks with a peak impact index >0.01;
however, sensitivity analyses using different thresholds is recom-
mended. We caution against selection correction in scenarios with
high background relatedness. In these cases, correction is often less
effective at enhancing the accuracy of IBD-based estimates and may
lead to over-correction. This over-correction could arise from a

secondary shift in IBD distribution, where cutting IBD segments at
peak region boundaries inadvertently increases the frequency of
shorter IBD segments.

Besides selection bias, the application of IBD-based approaches in
Pf research can potentially suffer from IBD call quality issues, for
instance, due to relatively low SNP density (low ratio of mutation to
recombination rate). Currently, IBD calling for Pf is performed pre-
dominantly via one of two HMM-based tools, isoRelate or hmmIBD,
which report the fractionof site IBD (allele IBD) as themetricof genetic
relatedness, with the individual IBD segments not fully evaluated or
utilized9,60. Our simulationmodels and true IBD algorithmdesigned for
selection bias evaluation provide the foundation for development of
an IBD benchmarking framework for high recombining species
(ongoing work). This benchmarking framework will differ from the
methods used by the top two IBD callers for Pf. While hmmIBD and
isoRelate were validated via simple pedigree-based simulations and
parent-offspring trio simulations, our framework utilizes genealogy
simulation and recording (msprime/SLiM, tskit respectively)51,52,85, and
a tree sequence-based IBD inference algorithm (inspired by ref. 12) to
provide a complementary, but more flexible population-based fra-
mework for benchmarking IBD quality for different IBD callers, or
evaluating IBD-based methods in non-human species. The importance
of this IBD-validation framework is also highlighted in an independent
work focusing on benchmarking IBD callers for human genomes86.

Despite our efforts to conduct comprehensive analyses, our pre-
sent work is accompanied by several caveats. First, Pf evolutionary
parameters are not all well-characterized and vary greatly across stu-
dies. Thus, we had to make assumptions about the realistic values of
these parameters and ignore genome heterogeneity for simulation.
These assumptions, if biased, might affect the accuracy of simulation
analyses. Second, we simulated single-site selection simultaneously on
more than one chromosome to mimic multiple selective sweeps, but
this approach may inflate the positive selection-induced bias of IBD-
based estimates. In real-world scenarios, selective sweeps may occur
sequentially as drug policies change over time. Third, the empirical
data has high heterogeneity in sampling location and time. The mix-
ture of isolates from different years might complicate temporal
interpretation of Ne estimates over past generations and the corre-
spondence of IBD segment length with TMRCA. Furthermore, the
presence of structure among isolates from different geographic
regions as reported previously in SEA could violate the population
homogeneity assumption of IBDNe12 and bias Ne estimates. This could
be partially addressed by running Ne estimation on isolates from a
smaller time window and a specific geographic region if high variation
due to a smaller sample size is tolerable. The small sample size issue
could be resolved by incorporating data from the recently released,
much larger MalariaGEN Pf 7 WGS database87.

In conclusion, our study demonstrates the impact of strong
positive selection on IBD-based estimates of Ne and population struc-
ture in Pf. We show that removing excess IBD within genomic regions
corresponding to selective sweeps can partially correct the biases
induced by positive selection and emphasize the importance of con-
sidering selection effects when using IBD-based methods for either
demography inference or population structure analysis, particularly in
high malaria transmission areas. Our novel population simulation and
true IBD inference framework, which employs flexible selection
simulation and tree-sequenced-based IBD inference, provides a valu-
able tool for benchmarking IBD callers and evaluating IBD-based
methods in species with extreme evolutionary parameters relative to
humans.

Methods
Parasite isolates and whole-genome sequencing
The analyzed data were obtained from a publicly available repository
(MalariaGEN Catalogue of Genetic Variation in P. falciparum v6.0, Pf6)

Article https://doi.org/10.1038/s41467-024-46659-0

Nature Communications |         (2024) 15:2499 8



or from our in-house sequencing data sets (NCBI SRA under access
number PRJNA1004408 and PRJNA312679). Information about
informed consent for the publicly availableMalariaGENdata have been
described previously48. In-house P. falciparum WGS data were gener-
ated from samples collected from individuals with symptomatic
malaria participating in research studies conducted by the Armed
Forces Research Institute of Medical Sciences with approval from the
Walter Reed Army Institute of Research and local ethics committees.
All study participants or their guardians provided informed consent.
Parasite sequencing and genomic analyses were undertaken with the
approval of the University of Maryland School of Medicine Institu-
tional Review Board. Patient clinical and demographic information
(e.g., sex and age) were not used in the analyses, which focused strictly
on parasite population genomics. DNA was extracted from leukocyte-
depleted blood samples using a Qiagen DNAMidi Kit (Qiagen, Hilden,
Germany) and sequencing libraries generated using the KAPA Library
Preparation Kit (Kapa Biosystems, Woburn, MA). Whole-genome
sequencing was performed on an Illumina HiSeq 4000 or Illumina
Novaseq 6000 (Illumina, San Diego, CA) using 150 bp paired-
end reads.

Weperformed joint variant callingon theWGSdata using aunified
variant calling pipeline (see snp_nf_call pipeline in “Code availability”)
that follows GATK best practices and the MalariaGEN Pf6 data-
generating protocol48. Briefly, raw reads were first mapped to the
human GRCh38 reference genome to remove host reads, with the
remaining reads being mapped to the Pf3D7 reference genome (Plas-
moDB_44). Mapped reads were processed using GATK (version 4.2.2)
MarkDuplicates and BaseRecalibrator tools, after which analysis-ready
mapped reads for each isolate were used to generate per-sample calls
(HaplotypeCaller/GVCFmode). These per-sample calls were combined
and run through a joint-call step (GenotypeGVCFs) to obtain unfiltered
multi-sample VCFs. We then used a machine learning-based variant
filtration strategy, GATK VariantRecalibrator, to retain high-quality
variants. Only biallelic SNPs were used in our analyses. Sites and
samples were filtered based on genotype missingness and allele fre-
quency, ensuring both per-sample and per-sitemissingness for filtered
data were less than 0.3 and minor allele frequency ≥0.01.

Polyclonal parasite isolates were identified by calculating Fws, a
metric analogous to Wright’s inbreeding coefficient, that is used to
distinguish monoclonal from complex infections88. Monoclonal iso-
lates were defined as those with Fws > 0.95 (inferred by the moimix
package, version: 802eaf1)89, and phased using dEploid (version: v0.6-
beta)90, with missing genotypes imputed using Beagle (version: 5.1)91.
Monoclonal isolates then served as the reference panel to extract and
phase the predominant clones in polyclonal isolates, using dEploidIBD
(version: v0.6-beta)92, of which the performance in predominant hap-
lotype deconvolution has been verified by single-cell sequencing79. To
further ensure high deconvolution quality, we used the inferred ratios
of clones (haploid genomes) within an isolate to determine whether a
polyclonal infection has a dominant clone: the ratio of themajor clone
should be greater than 0.7 and at least 3 times larger than the minor
clone. The combined biallelic, phased, and imputed data, including
haploid genomes from the monoclonal infections and dominant
clones from the polyclonal infections, were used in downstream ana-
lyses. The details of empirical data analyses are available in the pos-
seleff_empirical pipeline (see “Code availability”).

Single-population genetic data simulation
In general, simulated data were generated using forward (SLiM, ver-
sion: 4.0.151) and coalescent (msprime, version: 1.2.085) simulators and
encoded in tree sequence format52,93. The advantages of combining
these simulators include their efficiency (msprime), and flexibility in
simulating different modes of selection (SLiM), demography, and
structure. We used SLiM to perform forward-time simulations with
selective sweeps of different parameter values. We then performed

simplification and coalescent simulation steps52. Briefly, as SLiM
explicitly models each diploid individual, the recorded tree sequences
from SLiM simulation contain all explicitly modeled individuals (equal
to population size N), which ismore than the specified sample size.We
simplify the tree sequence by subsetting so that only the requested
number (sample size) of present-day genomes are kept. As the sim-
plified tree sequences might not have fully coalesced (for instance,
havingmultiple roots), we ran an additional backward-time simulation
via msprime to fill in the top of genealogical trees, and ensure that
trees coalesce into a single root, the grand common ancestor. These
steps, including the forward simulation, simplification, and coalescent
simulation, together generate the full genealogy ancestry for the
specified samples. The full ancestry (without mutation information)
was then used for two purposes: (1) to generate true IBD segments,
which are elaborated below and only rely on tree topology, and (2) to
allow the addition of simulatedmutations viamsprime onto geological
tree branches and the generation of phased genotype data in variant
calling format (VCF). The simulated genome consists of 14 chromo-
somes, eachwith a length of 100 centimorgans (cM), the total ofwhich
resembles a real Pf genome.We assume a constant recombination rate
of 6.67 × 10−7 per generation per bp (15 kb/cM)41,44. The mutation rate
was assumed to be 1 × 10−8 per generation per bp28,84 based on which
phased genotype data (VCF file) is generated. Of note, mutation
information is not required for tree topology-based true IBD
generation.

To evaluate the effect of selection on IBD distribution and IBD-
based Ne inference, we simulated data using the single-population
model, where no population structure and migration are allowed.
Under this model, we simulated genealogies with varying values of
selection parameters, including selection strength, number of origins,
and selection starting time. Due to genetic drift (especially for low
initial allele frequency or weak selection coefficient), the favored allele
(under selection) can be lost and in turn no effective selection would
be observed in the present-day samples. To condition on the estab-
lishment of selection, we rerun the simulation with different seeds up
to 100 times until the favored allele is not lost at the present-day time.

We ran simulations under different Ne scenarios, including con-
stant Ne, and exponential decrease, where the ancestral population
size was assumed to be 10,000. Our choice of Ne 10,000 is an inter-
mediate valuewithin the large range ofNe estimates for Pf in Southeast
Asia from 103 to 105 27,94,95. To evaluate the effect of selection on IBD
distribution and Ne estimates, we chose to use the exponential
decrease demographic model to mimic the Pf demography in SEA.

The details of simulation studies, including single- or multiple-
population simulations, inbreeding modeling, and associated down-
stream analysis can be found in posseleff_simulations pipeline (see
“Code availability”).

IBD calling and removal of highly related isolates
We implemented a true IBD inference algorithm (tskibd, version:
v0.0.1, available at: https://github.com/bguo068/tskibd) based on true
genealogical trees, to circumvent the bias due to low-quality IBD calls
from mutation information (phased genotype data), and directly test
the effect of selection on IBD and IBD-based inferences. The tskibd
algorithm was implemented on top of the tskit C API85. Our definition
of IBD segments closely follows Browning et al.’s work20. The main
concept in this algorithm is that for each pair of haploid genomes, if
the most recent common ancestor (MRCA) stays the same across
adjacent marginal trees so that the span is longer than a specified
threshold such as ≥2 cM, this unbroken, long, and shared ancestral
segment is defined as an IBD segment for this pair of haploid genomes.
The algorithm produces IBD segment records for all pairs of haploid
genomes, chromosome by chromosome. In addition to start and end
coordinates, the produced IBD records contain additional useful
information, such as whether the segment contains the favored allele

Article https://doi.org/10.1038/s41467-024-46659-0

Nature Communications |         (2024) 15:2499 9

https://github.com/bguo068/tskibd


(if recorded from SliM simulation) andMRCA and its age, on which we
can depend for accurate segment filtration that could not be done
using other IBD callers. We apply this algorithm for all simulated data
where true genealogy is already available.

Whenworkingwith an empirical data set, the true genealogy is not
available. We chose to use hmmIBD (version: a2f796e) for IBD calling
from our empirical data set as it was developed specifically for haploid
parasites including Pf and has been commonly used in the malaria
research community60,96,97. As instructed in hmmIBD documentation,
we modified the recombination rate in the source code to make it
consistent with our simulations (15 kb/cM) and specified the -n option
to 100 to call IBD segments fromMRCAs in the recent 100 generations.
The input includes phased and imputed genotype data from all
monoclonal samples and the dominant haploid genome from poly-
clonal samples (see criteria above). Tracts < 2 cM in length were
excluded, as these short tracts lack statistical support to be confidently
called IBD9,20.

We used a heuristic method to remove isolates that are highly
related while maximizing the number of remaining isolates. First, we
definedapairof isolates (representedbyhaploidgenomes, either from
monoclonal infections or the dominant clone from polyclonal infec-
tions) as highly related if their genome-wide (chromosome
PF3D7_01_v3 to PF3D7_14_v3 for empiricalPfdata) IBD sharing is no less
than half of the genome size. We then built an adjacency matrix
including all highly related isolates. The relatedness of each pair is
either high (represented by 1) or low (represented by 0). We made a
network/graph based on the above high relatedness adjacencymatrix.
From the graph, we iteratively deleted the node with the highest
number of connections (degrees) and the node’s related connections
and append the deleted node to a list until no connection was present
in the graph. The list of deleted nodes (from the high relatedness
network) is the subset of isolates to be removed such that all remaining
isolates are unrelated (not highly related). Finally, we removed all IBD
segments involving the to-be-deleted isolates from input IBD. IBD
shared among unrelated isolates was used for Ne and population
structure inference.

IBD coverage profiling and peak identification and removal
We calculated IBD coverage as the number of IBD segments over-
lapping each position of a list of evenly spaced (0.1 cM) sampling
points along each chromosome. To allow comparing IBD coverage
across data sets with different sample sizes, we calculated IBD pro-
portion for each sampling point as its IBDcoveragedividedby the total
number of possible pairs of haploid genomes in a data set. IBD peak
candidates were identified as regions with IBD sharing higher than two
5%-trimmed standard deviations above the trimmed mean (core
region) which is extended on both sides until the coverage reaches the
median coverage of the chromosome (extension regions). To differ-
entiate noise from real selection signals, we calculated an integrated
haplotype score54 (iHS)-based positive selection statistic, XiHS for each
SNP with minor allele frequency >0.05. Unstandardized iHS scores
calculated via scikit-allel (version: 1.3.5) ihs function are standardized
within their allele frequency bins (standardize_by_allele_count)98. We
squared the standardized iHS score so that the new summary statistic,
XiHS, follows a chi-squared distribution with 1 degree of freedom. We
treated each SNPwith a statistically significant p value as a hit. We then
overlaid IBD peak candidates and XiHS-based hits. An IBD peak candi-
date that contains ≥1 hit was defined as a verified IBD peak.

The identified and verified peak regions (core and extension
regions) correspond to selective sweeps. We evaluated the local
impact of each peak via the peak impact index (defined in Supple-
mentary Note 1) and marked peaks with an impact index >0.01 as
target peaks for removal. For each IBD segment, we removed the
whole segment if it was contained within a target peak region, or
removed the part of the segment that was overlapping with any target

peak regions. The remaining segment(s) longer than 2 cM were
retained. The removal of IBD peaks creates empty ranges of zero IBD
coverage. When preparing input for IBDNe12, we followed the internal
algorithm used in IBDNe and split chromosomes into contigs by
treating each contiguous region with non-zero IBD coverage as an
independent contig (chromosome). We implemented the peak iden-
tification and removal algorithm in the ibdutils Python package (see
“Code availability”).

Effective population size estimation
The trajectories ofNewere estimated via IBDNe (verion: 23Apr20.ae9).
We used IBD segments no shorter than 2 cM as input for IBDNe. To be
compatible with tools designed for diploid species, such as IBDNe, we
processed the haploid-level IBD to diploid-level IBD by treating each
haploid genome (isolate) as a pseudo-homozygous diploid.

Processed IBD segments and a constant-rate (15 kb/cM) recom-
bination map were used to estimate Ne over the last 150 generations
using IBDNe, with a focused interpretation on the latest 100
generations12. Theminregionparameterwas changed from50 to 10 cM
to include shorter Pf contigs/chromosomes. For selection-aware Ne

estimation, we removed and/or split IBD segments corresponding to
IBD peaks as described above. The default bootstrap sampling para-
meter values (nboots = 80) was used to estimate uncertainty for
empirical data sets. The finalNe estimate is scaled by a factor of 0.25, to
account for the haploid to homozygous diploid conversion.

Multiple-population genetic data simulation
To evaluate the effects of selection on population structure, we
simulated genealogies of genomes under positive selection involving
multiple subpopulations using a 1-dimensional stepping-stone model.
Five subpopulations, split from the same ancestral population (Ne =
10,000) 500 generations ago, eachwith an effective population size of
10,000, areconnectedby symmetricalmigrationbetweenneighboring
populations (p1↔p2↔p3↔p4↔p5,with amigration rate of 10−5 until
selection starts). A favored allele (hard selective sweep) originates
from the leftmost population (p1) at a specified time (such as 80
generations before the present), expands and spreads toward the
rightmost population (p5) via migration. The selection pressure (with
selection coefficients varying from 0 to 0.3) on this allele is the same
across all populations (i.e., uniform selection rather than hetero-
geneous selection). With appropriate combinations of the selection
and migration parameters (0.01 is used after selection starts), this
model mimics the gradient of allele frequencies that occur when a
selective sweep spreads across populations3. Similar to the single-
population simulation model, we reran each simulation up to 100
times until the present-day allele frequency in the subpopulation p2 is
at least 0.5, in order to reduce the possibility of the favored allele being
lost during the sweep process, and measure effects of established
positive selection.

Population structure inference
We inferred the population structure based on a pairwise genome-
wide total IBD matrix. For the empirical data set, we used only longer
segments (≥4 cM) to build a total IBDmatrix that reflects amore recent
structure. We set elements of the total IBD matrix to zeros if they are
less than 5 cM to reduce noise and reduce the density of thematrix. To
test if there is an isolation-by-distance pattern, weplotted aheatmapof
an unclustered IBD matrix that was ordered by sampling location or
true population label. For unsupervised clustering, we combined two
different approaches: (1) Run InfoMap algorithm (a community-
detection method implemented in python-igraph58 package (version:
0.10.0) on an IBD network that is built upon the square-transformed
IBDmatrix (yij = x

2
ij). This square transformation can help better reveal

the fine-scale structure within the simulated population. (2) Run an
agglomerative hierarchical clustering via themean linkage criterion on
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a community-level average IBD sharing matrix to assess how commu-
nities were related. For hierarchical clustering, we converted the IBD
matrix from a similarity matrix to a dissimilarity matrix via the formula
Y= max Xð Þ= X�min Xð Þ+ δð Þ, where δ is a small number 0.001.

Additionally, when the true population structure was known (in
simulateddata from themultiple-populationmodel),we calculated the
(1) modularity of the IBD network with respect to the true structure to
measure how the genomes within each true population are separated
from other groups using the Graph.modularity method in the python-
igraph package, and (2) the normalized inter-population IBD sharing
defined as the ratio of inter-population sharing Ii,j to the square root of
the product of the intra-population sharing Ii and Ij. To evaluate the
effect of removing IBDpeaks (selection effects), the above inference or
calculation was repeated on IBD data with peak regions excluded.

Simulation of high background relatedness/inbreeding
Incorporation of high relatedness/inbreeding into the single-
population or multiple-population models was implemented in the
SLiM simulation script via three different strategies, including incor-
poration of (1) decreasing population size, (2) assortative mating, and
(3) selfing. Simulations with varying values of inbreeding-related
parameters were performed to mimic populations with different
inbreeding coefficients. The relationship between the level of
inbreeding and the impact of selective sweeps was analyzed via three
metrics: inbreeding potential, peak impact index, and global impact
index. The details of the inbreeding simulations are provided in Sup-
plementary Notes 1–3.

Statistical methods
To verify IBDpeaks, we calculated the IBD-based statistic, XiHS, for each
SNP as described above. To compare Ne estimates based on filtered
(corrected) and unfiltered (uncorrected) IBD inputs for IBDNe, 95%
confidence intervals were generated from bootstrap sampling. For
simulated data, we used a two-sided Wilcoxon signed-rank test to
examine point estimates of 30 replicated simulations before and after
removing IBD peaks for each generation. The p values were adjusted
using a Bonferroni correction as estimates from nearby generations
are highly correlated.

For comparing community-detection-based population assign-
ments in empirical data sets, we calculated the Adjusted Rand Score73

to quantify the level of consistency between memberships before and
after removing IBD peaks. We used jackknife resampling to obtain
confidence intervals by randomly excluding one chromosome and
rerunning the community detection analyses for each sampling.
Assignment differences were considered statistically significant when
the upper bound of the confidence interval (the third quartile + 1.5
interquartile range) did not contain the value 1.0, given an expected
value of 1.0 for identical assignments. For simulated data with known
true population labels, we calculated the Adjusted Rand Scores against
the true population labels. To determine uncertainty in the simula-
tions, we ran 30 replicates of the same model and parameter values
using different seeds. We compared the Adjusted Rand Scores (each
against the truth) before and after removing IBD peaks using a two-
sided paired t-test. A p value, or an adjusted p value if corrected, <0.05
was considered statistically significant, unless otherwise indicated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Reads of new whole-genome sequence data (n = 640 Pf isolates)
are deposited to NCBI Sequence Read Archive (SRA) and publicly
available under the accession number PRJNA1004408. Other publicly
available WGS data can be found in MalariaGEN Catalogue of Genetic

Variation in P. falciparum v6.0, Pf6 (meta information: https://www.
malariagen.net/resource/26/; raw reads: https://www.ebi.ac.uk/ena/
browser/home, n = 2978 analyzed) and NCBI SRA under the acces-
sion number PRJNA312679 (https://www.ncbi.nlm.nih.gov/bioproject/
?term=PRJNA312679, n = 111 analyzed)99. The accession numbers and
hyperlinks for each individual isolate are provided in Supplementary
Data 1. Source data for relevant Figures, Supplementary Figs., and
Supplementary Tables are available in a Source data file. The sequence
of reference genome PlasmoDB-44_Pfalciparum3D7 is available at
PlasmoDB (https://plasmodb.org/common/downloads/release-44/
Pfalciparum3D7/fasta/data/). Source data are providedwith this paper.

Materials availability
Original DNA samples used to generate in-house WGS data are only
available after discussion with corresponding authors and approval
from the local investigators (at AFRIMS) who conducted the studies
during which clinical samples were collected.

Code availability
Source code for custompackages or scripts are all publicly available as
GitHub repositories under the MIT license, including: (1) tskibd, the
true IBD inference tool (https://github.com/bguo068/tskibd, v0.0.1);
(2) ibdutils, a small python package to facilitate identity-by-descent-
based analysis (https://github.com/bguo068/ibdutils, v0.1.0); (3)
snp_call_nf: a Nextflow pipeline for Plasmodium SNP calling (https://
github.com/bguo068/snp_call_nf, v0.1.0); (4) posseleff_simulations: a
Nextflowpipeline to assess the impact ofpositive selection on Identity-
by-Descent (IBD)-based inferences, utilizing population genetic simu-
lations and true IBD methodologies (https://github.com/bguo068/
posseleff_simulations, v0.1.0); (5) posseleff_empirical: a Nextflow
pipeline for analyzing empirical WGS data for the effect of positive
selection on IBD-based inference (https://github.com/bguo068/
posseleff_empirical, v0.1.1).
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