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Attribute latencies causally shape
intertemporal decisions

Fadong Chen 1,2,3, Jiehui Zheng 4 , Lei Wang 1,2,3 & Ian Krajbich 5

Intertemporal choices – decisions that play out over time – pervade our life.
Thus, how people make intertemporal choices is a fundamental question.
Here, we investigate the role of attribute latency (the time between when
people start to process different attributes) in shaping intertemporal pre-
ferences using five experiments with choices between smaller-sooner and
larger-later rewards. In the first experiment, we identify attribute latencies
using mouse-trajectories and find that they predict individual differences in
choices, response times, and changes across time constraints. In the other four
experiments we test the causal link from attribute latencies to choice, stag-
gering the display of the attributes. This changes attribute latencies and
intertemporal preferences. Displaying the amount information first makes
peoplemorepatient, while displaying time informationfirst does theopposite.
These findings highlight the importance of intra-choice dynamics in shaping
intertemporal choices and suggest that manipulating attribute latency may be
a useful technique for nudging.

Intertemporal choices that involve tradeoffs between outcomes
available at different times are ubiquitous in our everyday life. These
tradeoffs play an important role inmany personal decisions and policy
questions, such as saving, education, exercise, health care, nutrition,
and so forth. Thus, understanding how people form intertemporal
preferences and act on those preferences are fundamental issues in
economics, psychology, and other social sciences, as well as to
designing public policies or nudge interventions1–9. Economists typi-
cally analyze intertemporal choices and design public policies using
utility models that assume discount rates on delayed rewards10–14. If
we take these utility models as descriptions of how people actually
decide, then we assume a static model of the decision process where
the amount and time attributes are integrated within each option and
the best option is selected, all instantaneously.

On the other hand, there have been efforts to understand the
dynamics of intertemporal choice, with both single- and dual-process
models. In the dual-process studies, intertemporal choices are
described as an interaction between automatic and deliberative pro-
cesses. Some have argued that people automatically favor immediate

rewards15–19, while others have argued the opposite20,21. Time manip-
ulations are often used to induce people to rely more on the intuitive
process or the deliberative process when making decisions. For
instance, past work has argued that time pressure encourages auto-
matic responses, while time delay encourages more deliberative
responses22. However, other work has instead argued that time pres-
sure increases reliance on prior information (predispositions) while
time delay increases the evaluation of the choice options23. More
generally, it is not clear whether changes in choice behavior due to
time constraints are the result of a shift between automatic and
deliberative processes, or due to other components (e.g., processing
biases or attentional priorities) of the choice process24–26.

Single-process studies have attempted to examine the dynamics
underlying intertemporal choice using sequential sampling models
(SSMs), which account for both choice and response time (RT) data.
These studies have argued that intertemporal choice involves
attribute-wise processes in which amount and time are evaluated and
compared separately5,27–31. Hence, this perspective sees intertemporal
choices as resulting from the combination of amount comparisons and
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time comparisons. Moreover, using computational modeling, this line
of studies has shown that people have predispositions and evaluation
biases when making intertemporal decisions24, and participants are
heterogeneous in the relative speed of processing the amount and
time attributes, where the difference between the onset times of the
amount and time attributes is referred to as attribute latency3,28,32.

Prior work has analyzed attribute latencies using computational
modeling based on choice and RT3,28,32 but an alternative approach
would be to directly measure participants’ attribute latencies with
mouse-trajectory data. Mouse-tracking—measuring the computer-
mouse movements made by participants while making decisions—is
a real-time technique to more directly tap into the processes under-
lying choices33–37. The rich temporal data offered by mouse-tracking
allow us to test nuanced models regarding how decisions unfold33.
Recent research has highlighted the usefulness of mouse trajectories
in multi-attribute choice, in particular for inferring when attributes
enter the decision process38–44.

In this work, we use five separate experiments to investigate the
role that attribute latency plays in shaping intertemporal preferences
and whether we can manipulate participants’ attribute latencies to
causally change their intertemporal choices. The first experiment
(Study 1) combines mouse-tracking with a standard intertemporal
choice paradigm where participants chose between smaller-sooner
(SS) and larger-later (LL) monetary rewards with and without time
constraints. We estimate participants’ attribute latencies, i.e., the dif-
ferences between the onset time of processing amount and time
information (time-onset lag, TOL), using the mouse-trajectory data
only. We find that the mouse-trajectory-derived time-onset lag
(MTTOL) predicts individual differences in choices, RTs, and the
behavioral changes across time constraints. We validate these results
using an independent computational modeling analysis in which the
attribute latency is estimated using choice and RT data. The mouse-
trajectory data in Study 1 not only allows us to identify an independent
measure of attribute latency, but also shows how the attribute latency
changes across time constraints. We find that time constraints do not
affect attribute latencies in the same way. Time pressure pushes

attribute latencies in opposite directions depending on whether they
are positive or negative. This aligns with how behavior changes under
time pressure, i.e., patient people become more patient under time
pressure while impatient people become less patient under time
pressure. Given the correlation between attribute latencies and beha-
vior, we also test the causal pathway from attribute latencies to
intertemporal choices using four experiments (Studies 2-5). Specifi-
cally, we manipulate attribute latencies by altering the onset of the
amount and time information. We find that displaying the amount
informationfirstmakes people process the amount information earlier
than the time information, while displaying the time information first
has the opposite effect. More importantly, this causally changes
choices, i.e., people chose more patient (impatient) options when we
display the amount (time) attribute first.

Results
Intertemporal choice task
Study 1 consisted of 300 intertemporal choice trials (the same 300
trials were used in Studies 2–5) with and without time constraints. In
each trial, participants decided between two options, one with a large
reward but delivered at a later time (LL or patient option), the other
with a small reward but delivered at a sooner time (SS or impatient
option) (Fig. 1). That is, making decisions in each trial required
deciding whether the additional money offered at the later date made
it worth the extra delay.

We divided the 300 trials into four blocks. The first and the last
blocks were time-free blocks (with 100 trials in each). The other two
blocks in between were time-pressure and time-delay blocks (with
50 trials in each). Participants had to make each decision within 2 s in
the time-pressure block, and they had to make each decision after the
decision problem had been displayed for 10 s in the time-delay block.
In the two time-free blocks, participants could take as long as they
wanted to make each decision. The order of time-pressure and time-
delay blocks was counterbalanced across participants. The spatial
positions of the LL and SS options were counterbalanced across trials
for each participant.

Start 7 days later
40

30 days later
60

7 days later
40

30 days later
60

Fig. 1 | An example and the timeline of the intertemporal choice task in Study 1.
At the beginning of each trial, participants clicked the “Start” button in the middle
bottomof the screen, and then the decision problemappeared. In this example, the
choice was between getting a reward of 40 in 7 days and getting a reward of 60 in

30days. Participantsmadedecisions bymoving theirmouse to their favoredoption
and clicking the black area of that option. The text was enlarged for display
purposes.
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ThemeanRTswere 2.121 (SD = 1.230), 1.263 (SD =0.283), and 1.192
(SD =0.868, after the 10 s enforced delay) seconds in the time-free,
time-pressure and time-delay conditions respectively. In the time-free
condition, the mean percentage of choosing LL options was 58.9%
(SD = 21.3%). Themeanpercentages of choosing LL options were 65.5%
(SD = 26.2%) and 53.9% (SD = 20.6%) in the time-pressure and delay
conditions, respectively. That is, for our set of trials, participants
generally chose the patient option, and they became more patient
under time pressure and less patient under time delay, on average
(two-sided sign rank tests, pressure vs. free: V = 6526.5, p <0.001; free
vs. delay: V = 6222, p < 0.001; pressure vs. delay: V = 7116.5, p <0.001).

Attribute latency
Prior studies have shown that people start to process the amount and
time attributes at different times when making intertemporal
decisions3,28. Here we take the difference between the onset times of
the amount and time attributes (i.e., time-onset lag, TOL) as the mea-
sure of the attribute latency. A positive TOLmeans that the participant
starts to process the amount attribute earlier than the time attribute,
while a negative TOL means that the participant starts to process the
time attribute earlier than the amount attribute.

We first estimated the attribute latency (TOL) using mouse-
trajectory data only (mouse-trajectory-derived TOL, MTTOL), for each
participant in each time condition (see Methods for details). Figure 2a

shows the distribution of the MTTOL in the time-free condition, and
Supplementary Fig. 1 shows thedistributions of theMTTOL in the time-
pressure and delay conditions. The mean MTTOLs were 25.41 (SD =
41.44), 37.33 (SD = 46.44), 15.24 (SD = 31.19) in the time-free, time-
pressure and time-delay conditions, respectively. That is, on average,
participants processed the amount attribute earlier than the time
attribute (two-sided Wilcoxon signed rank test, free: V = 6609,
p <0.001; pressure: V = 6645.5, p < 0.001; delay: V = 5589, p < 0.001),
and they processed the amount attribute much earlier than the time
attribute in the time-pressure condition compared to the other two
conditions (pressure vs. free: V = 9103.5, p =0.044; pressure vs. delay:
V = 11027, p < 0.001, free vs. delay: V = 9753.5, p =0.002).

To validate the mouse-tracking measure of attribute latency, we
estimated a starting-time drift-diffusion model (stDDM, Supplemen-
taryFig. 4)3,28,32,45 at theparticipant level using the choice andRTdata in
the time-free condition (seeMethods and Supplementary Note 2). The
stDDM models the drift rate, which captures the rate of evidence
accumulation in favor of one option over the other, as a linear function
of the attribute differences and a constant. In particular, there is a
delay before one of the attribute differences affects the drift rate. That
is, the stDDM allows the amount and time attributes to enter into the
evidence accumulation process at different times, and thus can
decompose behavior into attribute latency (TOL), predisposition
(starting point), evaluation bias (drift-rate constant), and subjective
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Fig. 2 | Attribute latencies determine intertemporal preferences in Study 1.
aDistribution of themouse-trajectory-derived time-onset lag (MTTOL) in the time-
free condition. b Correlation between the response-time-derived time-onset lag
(RTTOL) in the starting-time drift diffusion model (stDDM) and the MTTOL in the
time-free condition. c Correlation between the MTTOL estimated using half of the
time-free trials and the percentage of LL decisions in the other half of the time-free
trials.dCorrelationbetween theMTTOLand the log(RT)differencebetween LLand
SS decisions in the time-free condition. e The MTTOL and the percentage of LL
decisions across time-pressure and free conditions, separately for participants with
positive and negative MTTOLs in the time-free condition. f Correlation between
MTTOL change and behavioral change across time-pressure and free conditions.

The MTTOL was computed as a fraction of the maximum RT in each condition,
while the RTTOL was computed in seconds. The MTTOL in the time-free condition
was estimated using half of the time-free trials, and the percentage of LL decisions
in the time-free condition was computed using the other half of the time-free trials.
Each dot in b–d and f represents one participant. The blue lines and grey shadings
in b–d and f are the fitted linear regression lines and their standard errors. Each
light blue dot (percentage of LL decision) or light red triangle (MTTOL) in
e represents one participant. The deep blue dot and the deep red triangle in
e represents themean percentage of LLdecisions and themeanMTTOL for a group
of participants with positive or negative MTTOLs. The vertical bars in e represent
standard errors of the mean clustered by participant.
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weights on each attribute in the evidence accumulation process (see
Methods). The parameter recovery exercise revealed that earlier/later
onset of evidence accumulation (TOL) canbedistinguished fromother
components (e.g., predisposition, evaluation bias, and relative attri-
bute weights, see Supplementary Note 2) of the process underlying
intertemporal decisions.

We have to note that it is challenging to estimate the stDDM in the
time-pressure and delay conditions, since it is not clear how the
decision process was affected by the time constraints. For instance,
time limits are usually modeled using collapsing boundaries25,46.
However, whether boundaries collapse over time is still an active
debate47–52. Thus, we cannot confidently estimate stDDM under time
constraints and we only fit the stDDM to the data in the time-free
condition.

The computational modeling results mirrored those from the
mouse-trajectory analysis. On average, participants processed the
amount attribute earlier than the time attribute (Mean=0.330 s, SD =
0.288 s, two-sided Wilcox signed rank test, V = 7380, p < 0.001). In
more detail, the TOLs in the stDDM (response-time-derived time-onset
lag, RTTOL) were correlated with the MTTOLs across participants
(Fig. 2b, two-sided Pearson correlation test, r(124) = 0.676, p <0.001,
t = 10.221, 95%CI = [0.569, 0.761]). The sign of the RTTOLwas the same
as the sign of the MTTOL for 117 out of 126 participants. For the 26
participants whose MTTOL was negative, 18 of them had a negative
RTTOL (two-sidedBinomial test,p = 0.076), and for the 99participants
whose MTTOL was positive, all of them had a positive RTTOL. This
lends credence to the estimation of attribute latency based on the
mouse-trajectory data.

Additionally, we estimated four other versions of the DDM (see
Supplementary Note 2). The cross-validation analysis revealed that the
stDDM and the standard DDM had better out-of-sample predictive
performance than the other threemodels, while the stDDMhadhigher
predictive performance than the standard DDM (though non-sig-
nificantly). Thus, going forward we focus on comparisons between the
stDDM and the standard DDM.

Attribute latency explains individual differences in choices and
response times
Next, we tested whether between-participant differences in MTTOL
could explain variation in choice behavior and RTs. Prior studies have
shown that attribute-wise models can sometimes better describe
participants’ intertemporal choices than option-wise models27,28,31,
while others argue that option-wise utility models work better1,53–55.
Therefore, we opted not to fit a utility model here but used a model-
free measure instead. Specifically, we computed the percentage of LL
decisions for eachparticipant and took this percentage as ameasureof
their intertemporal preferences (i.e., patience).

Figure 2c shows that the MTTOL identified using half of the time-
free trials was correlated with the likelihood of choosing LL options in
the other half of the time-free trials (two-sided Pearson correlation
test, r(124) = 0.895, p < 0.001, t = 22.395, 95% CI = [0.854, 0.925]; also
see Supplementary Fig. 6a). Moreover, MTTOLs were correlated with
the percentage of LL decisions in the time-pressure and delay condi-
tions (Supplementary Fig. 2, pressure: r(124) = 0.920, p <0.001,
t = 26.194, 95% CI = [0.888, 0.943]; delay: r(124) = 0.839, p <0.001,
t = 17.199, 95% CI = [0.779, 0.884]). That is, the attribute latency under
time pressure and delay can also predict participants’ choice behavior.
The OLS regressions in Supplementary Table 3 show that the MTTOL
added additional power in explaining participants’ choice behavior in
the time-free condition. Except the RTTOL, all the other parameters in
stDDM explained 86.8% of the variance of participants’ choice beha-
vior (model 2). Adding the MTTOL (model 3) significantly increased
R2R2 from 0.868 to 0.920 (models 2 vs 3, two-sided partial-F test,
F-value = 78.184, p <0.001). Moreover, the R2 of the regression on
standardDDMparameters (0.938) is less than that of the regression on

stDDM parameters (0.945; models 1 vs. 4, two-sided partial-F test, F-
value = 15:613, p <0.001).

With respect to RT, we expected MTTOL to be negatively corre-
lated with the RT difference between LL and SS decisions in the time-
free condition. The reason is that, on average, participants who pro-
cess the amount information earlier (later) than the time information
are quicker (slower) in making LL decisions than SS decisions. Fig-
ure 2d shows that the MTTOL was correlated with the RT difference
between LL and SS decisions (two-sided Pearson correlation test,
r(123) = −0.635, p <0.001, t = −9.120, 95%CI = [−0.729, −0.517]; also see
Supplementary Fig. 6b). The regressions in Supplementary Table 4
show that, except RTTOL, all the other parameters in stDDMexplained
48.6% of the variance of the RT differences (model 2). Adding the
MTTOL (model 3) significantly increased R2 from 0.486 to 0.533
(models 2 vs. 3, two-sided partial-F test, F-value = 12.910, p <0.001).
The R2 of the regression on the standard DDM parameters (0.553) is
less than that of the stDDM parameters (0.573; models 1 vs. 4, two-
sided partial-F test, F-value=6:656, p = 0.011). Therefore, taking attri-
bute latency into account adds power in explaining RT differences.

Attribute latency predicts behavioral changes across time
constraints
Supplementary Fig. 7 shows an S-shaped pattern of the choice beha-
vior across time constraints, especially in the cases of time-pressure
versus free (Supplementary Fig. 7a) and time-pressure versus delay
(Supplementary Fig. 7c) conditions. Participants with a high percen-
tage of LL decisions in the time-free condition (i.e., patient partici-
pants) chosemore LL options under time pressure and chose fewer LL
options under time delay, while participants with a low percentage of
LLdecisions (i.e., impatient participants) did theopposite. That is, time
constraints did not affect participants’ choice behavior in the same
way, and the effects depended on the level of participants’ patience. In
particular, the behavioral changes across time-pressure and delay
conditions were correlated with the percentage of LL decisions in the
time-free condition (Supplementary Fig. 7d, two-sided Pearson corre-
lation test, r(124) = 0.367, p <0.001, t = 4.390, 95% CI = [0.205, 0.509]).
Participants who weremore patient in the time-free condition became
more patient when going from time delay to time pressure.

Recent studies have shown that behavioral changes across time-
pressure and delay conditions can be predicted by the pre-decisional
bias (captured by the starting-point parameter in the DDM), the eva-
luation bias (captured by the drift-rate constant), or the attentional
priorities on different attributes (captured by the subjective
weights)23–25. Here we investigate whether attribute latency canpredict
behavioral changes across time constraints. Supplementary Fig. 8c
shows that the MTTOL in the time-free condition was correlated with
the behavioral changes across time-pressure and delay conditions
(two-sided Pearson correlation test, r(124) = 0.329, p <0.001, t = 3.885,
95%CI = [0.164, 0.477]). TheOLS regressions in Supplementary Table 5
show that taking attribute latency into account can better explain the
directions and magnitudes of behavioral changes across time condi-
tions (see Supplementary Note 4 for more details).

Attribute latency changes are in line with the behavioral chan-
ges across time constraints
In the time-delay condition, participants could only start to move the
mouse after the options had been displayed for 10 s. Moreover, par-
ticipants’ decisions were fastest (on average, after the 10 s enforced
delay) in the time-delay condition (mean= 1.192 s). Thus, it is clear that
participants began to make their choices before moving the mouse.
Therefore, here we only analyze how theMTTOL changed across time-
free and pressure conditions.

Participants whoseMTTOLwas positive in the time-free condition
processed the amount attribute much earlier than the time attribute
under time pressure (Fig. 2e, two-sided Wilcoxon signed rank test,
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V = 1148, p <0.001), while participants whose MTTOL was negative
processed the time attribute earlier than the amount attribute under
time pressure (Fig. 2e, V = 231.5, p = 0.065). This shows a similar
S-shaped pattern as the behavioral change across time-pressure and
free conditions (Supplementary Fig. 9). That is, time pressure sped up
the processing of one attribute over the other. More importantly, the
MTTOL changes were aligned with the behavioral changes for the two
groups of participants (Fig. 2e). Compared to the time-free condition,
participants with positive MTTOLs chose more LL options (two-sided
Wilcoxon signed rank test, V = 4481.5, p <0.001), while participants
with negativeMTTOLs chose fewer LL options (V = 89, p =0.027) in the
time-pressure condition. The MTTOL change was correlated with the
behavioral change across participants (Fig. 2f, two-sided Pearson cor-
relation test, r(124) = 0.515, p <0.001, t = 6.693, 95% CI = [0.374,
0.633]).

We also tested whether MTTOL mediated the effect of time con-
straint on the choice behavior. Both time condition and MTTOL
entered into a linear regressionmodel predicting choice behavior. The
mediation analysis revealed that the effect of time constraint was
significantly reduced (from β =0.065, p = 0.032 to β = 0.006,
p =0.632), and that MTTOL was a significant predictor of choice
behavior (β =0.005, p <0.001). Using a bootstrapping method (with
10, 000 iterations), we tested the significance of the indirect effect of
time constraint on choice behavior through MTTOL. The 95% con-
fidence interval for the indirect effect did not include zero (0.003,
0.110), indicating significant mediation (Supplementary Fig. 10).

Manipulating intertemporal choice behavior via attribute
latency
The results above show that attribute latency (TOL) is malleable. To
test the causal link from attribute latencies to intertemporal choices,
we ran four experiments (Studies 2–5) with two different manipula-
tions and with/out mouse-tracking. Studies 2 and 3 are purely beha-
vioral studies. In these two studies, wemanipulated the order in which
wedisplayed the amount and time information and testedwhether this
altered the likelihood that participants made a patient choice. Com-
pared to Study 1, we changed the time-pressure and time-delay blocks
into amount-first and time-first blocks in Study 2. In the amount-first
block, the amount attribute for each option was first displayed for 3 s,
followed by the time attribute (along with the amount information). In
the time-first block, the time attribute for each option was first dis-
played for 3 s, followed by the amount attribute (along with the time
information). Participants were free to make decisions at any time. In
Study 3, we first displayed one attribute for 1.5 s, before the other
attribute appeared. Moreover, participants could not make decisions
in the first 1.5 s in Study 3. Otherwise, the two studies (2 and 3) were
identical. Studies 4 and 5 were replications of Studies 2 and 3 respec-
tively, with mouse-tracking.

The central idea here is that displaying one attribute first may
induceparticipants to start processing this attribute first.We expected
that, compared to the control condition, the TOLwould increase in the
amount-first condition and decrease in the time-first condition. Based
on the results of Study 1, this would make participants more patient
(choose LL options more) in the amount-first condition and less
patient (choose LL options less) in the time-first condition.

In line with our predictions, participants chosemore LL options in
the amount-first condition (Study 2:mean = 0.630, SD =0.285; Study 3:
mean=0.570; SD =0.274; Study 4: mean = 0.666, SD = 0.255; Study 5:
mean = 0.639, SD =0.224) than the control condition (Study 2: mean =
0.578, SD =0.258; Study 3: mean=0.528; SD = 0.249; Study 4: mean =
0.593, SD =0.273; Study 5: mean=0.592, SD = 0.215; two-sided Wil-
coxon signed rank tests, Study 2: V = 151, p < 0.001; Study 3: V = 222.5,
p =0.007; Study4:V = 180,p <0.001; Study 5:V = 345.5,p < 0.001), and
chose fewer LL options in the time-first condition (Study 2: mean =
0.527, SD =0.270, V = 206.5, p <0.001; Study 3: mean=0.481, SD =

0.245, V = 159.5, p <0.001; Study 4: mean =0.548, SD = 0.290, V = 365,
p <0.001; Study 5: mean =0.548, SD =0.223, V = 393, p < 0.001;
Fig. 3a–e; Supplementary Figs. 11–14).

However, there are potentially many reasons why our manipula-
tion might have changed participants’ behavior. To verify that our
manipulation affected attribute latency, and thus choice, we turn to
Studies 4 and 5 and compare the MTTOL across conditions. Fig-
ure 3c, d show that, compared to the control condition, the attribute
latency (MTTOL) increased in the amount-first condition and
decreased in the time-first condition (two-sided Wilcoxon signed rank
tests, Study 4: amount-first vs. control, V = 143, p <0.001; control vs.
time-first, V = 1492.5, p < 0.001; Study 5: amount-first vs. control,
V = 257.5, p < 0.001; control vs. time-first, V = 1425, p = 0.004; see
Supplementary Figs. 15 and 16 for details, and see Supplementary
Figs. 17 and 18 for the correlations betweenMTTOLand thepercentage
of LL decisions within each condition). That is, compared to the con-
trol condition, displaying the amount information first induced parti-
cipants to process the amount attribute earlier than the time attribute,
while displaying the time information first induced participants to
process the time attribute earlier than the amount attribute. The
exogenous manipulation indeed altered participants’ attribute laten-
cies in the expected way.

Moreover, Fig. 3c, d show that the behavioral change was in line
with the MTTOL change across manipulation conditions (see Supple-
mentary Figs. 13–16 for more details). The MTTOL change was corre-
lated with the behavioral change across manipulation conditions in
Study 5 (two-sided Spearman correlation tests, Fig. 3g: amount-first vs.
time-first, ρ =0.525, p <0.001, S = 22772; Supplementary Fig. 20a:
amount-first vs. control, ρ =0.494, p <0.001, S = 24264; Supplemen-
tary Fig. 20b: control vs. time-first, ρ = 0.330, p = 0.007, S = 32080). In
Study 4, theMTTOL changewas correlatedwith the behavioral change
across amount-first and control conditions (Supplementary Fig. 19a,
ρ = 0.382, p =0.001, S = 33851) and across control and time-first con-
ditions (Supplementary Fig. 19b, ρ = 0.406, p < 0.001, S = 27169), but
not across amount-first and time-first conditions (Fig. 3f, ρ =0.174,
p =0.165, S = 37792).

A mediation analysis based on bootstrapping (with 10,000 itera-
tions) revealed that the 95% confidence interval for the indirect effect
of manipulation on choice behavior through MTTOL did not include
zero (Study 4: (0.058, 0.140), Study 5: (0.014, 0.090)). This indicates
that the effect of manipulation on choice behavior was mediated via
MTTOL (see Supplementary Figs. 21 and 22 for details).

The likely reason for the non-significant correlation between
MTTOLchange andbehavioral change across amount-first and time-first
conditions in Study 4 is that participants could choose before seeing the
second attribute (i.e., before 3 s was up); this occurred in 45.3% of trials
in the amount-first condition and in 17.2% of trials in the time-first
condition. The IQR method eliminated most of the trials that were
shorter than 3 s in the time-first condition, but not in the amount-first
condition (see Methods for details). Supplementary Note 6 shows that
the correlations between MTTOL change and behavioral change across
time-first and amount-first conditions are significant if we exclude trials
shorter than 3 s (Supplementary Fig. 23c), or if we keep trials shorter
than 3 s and only exclude trials with extremely long RTs (Supplementary
Fig. 24c). Thus, we are reasonably confident that the relationships
betweenMTTOLchange andbehavioral change thatwe found in Study 5
(which sidesteps these issues), are also present in Study 4.

In summary, these results show that manipulating the order of
displaying information alters participants’ attribute latencies and
affects their choices. This confirms the causal role of attribute latency
in shaping intertemporal decisions.

Discussion
This paper describes the results of five separate studies designed to
investigate the role of attribute latencies in determining intertemporal
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choices. We estimated attribute latencies using mouse-trajectory data
and found that most (but not all) people process amount information
before time information. These attribute latencies predicted individual
differences in intertemporal choices, RTs, and behavioral changes
across time constraints. We validated these results using an indepen-
dent computational modeling analysis where the attribute latency was
identified based on choice and RT data. Moreover, the behavioral
changes under time constraints were in line with the attribute latency
changes across participants. Then we tested whether exogenously
manipulating the order of displaying amount and time information
would influence attribute latency and causally change intertemporal
preferences. Consistent with this hypothesis, our results revealed that

manipulating the display order of the amount and time information
altered the attribute latency and changed preferences. In particular,
displaying amount before time makes people more patient, while
displaying time before amount makes people less patient.

These results deepen our understanding of the nature of inter-
temporal decisions. The focus on intertemporal decisions is typically
on just the choice itself, rather than the process underlying decisions.
Researchers often treat observed differences in intertemporal choices
as fixed differences in underlying parameters (e.g., discount rate) of
the utility-based choice models. In contrast, we have shown that intra-
choice dynamics, i.e., attribute latency, can explain individual differ-
ences in intertemporal choices and RTs. Because attribute latencies
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Fig. 3 | Attribute latencies causally shape intertemporal choices in Studies 2–5.
a,bThepercentage of LLdecisions acrossmanipulation conditions in Studies 2 and
3; c,d The percentage of LL decisions (blue dots) and themouse-trajectory-derived
time-onset lag (MTTOL, red triangles) across manipulation conditions in Studies 4
and 5;e thepercentageof LL decisions across time-first and amount-first conditions
for each participant in Studies 2–5. f,gCorrelation between theMTTOL change and
thebehavioral change across time-first and amount-first conditions in Studies 4 and

5. Each light blue dot or light red triangle in a–d represents one participant. The
deep blue dot in a–d represents themean percentage of LL decisions and the deep
red triangle in c, d represents the meanMTTOL. The vertical bars in a–d represent
the standard errors of the mean clustered by participant. Each data point in
e–g represents one participant. The black dashed line in e is the identity line. The
blue solid lines and gray shadings in f, g are the fitted linear regression lines and
their standard errors.
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can depend on how choices are presented, this indicates that inter-
temporal preferences are not purely outcome-based.

Wehave shown that timepressure anddelayhaveopposite effects
on participants’ intertemporal preferences. The behavioral changes
across time constraints cannot be parsimoniously explained by static
utility models because those models do not account for the dynamics
of the choice process. On the other hand, attribute latencies yield
accurate predictions about the effects of time constraints on the
direction and magnitude of behavioral changes.

Although dual-process theories are usually introduced to explain
behavioral changes under time constraints, we offer an alternative
explanation for such changes. Our results indicate that the attribute
latency within a single evidence accumulation process might be a
better explanation for the effects of time pressure on behavior. Prior
work has also identified predispositions (i.e. starting-point biases) as
an important factor in predicting the effects of time pressure23. Pre-
dispositions and attribute latencies both capture similar things,
namely differences between the fastest and slowest decisions. Here
(and elsewhere) there is evidence for both factors impacting
choices3,24,25,32. In our study the stDDMdid not significantly improve on
the standardDDM inout-of-samplepredictions. This is likely due to the
high degree of mimicry between attribute latencies and predisposi-
tions. However, these two constructs are theoretically different and
possible to distinguish in behavior. Predispositions occur prior to
processing any information from the current choice problem and thus
do not depend on trial-level variables. Attribute latencies capture a
tendency to consider one attribute sooner than the other, and so their
effects depend on trial-level attribute values45. It is still a debated issue
how much the effects of time constraints on choices are due to
predispositions23, attentional priorities25,56, or attribute latencies45.
Futureworkwill need to carefully disentangle thesecomponents of the
decision process.

Different from Fisher26 which finds thatmanipulating exposure to
the amount versus time information alters people’s patience while the
order of displaying the two types of information has no significant
effects on people’s choice behavior, the current study shows that
simply manipulating the order of displaying information alters parti-
cipants’ attribute latencies and affects their choices. The reason that
there was no order effect in Fisher26 could be that this effect was
dominated by the strong exposure manipulation.

The current study is also related to the research on order effects
during information searching and choice tasks inmarketing57–59, which
are referred to as primacy and recency effects60. Studies in psychology
and economics have explained these effects as decision-makers
choosing the item they pay more attention to, and therefore choices
can be manipulated via information search61–64. Here we reveal an
underlyingmechanism, attribute latency, that determines information
processing order and can also be manipulated to influence choice
behavior.

Many previous studies have neglected the role of individual dif-
ferences and missed opportunities to link variability in the process to
variability in behavior (Stillman et al.36) The current study seeks to
address this issue by incorporating evidence related to heterogeneity
across participants, linking aspects of the process-tracing data and
model parameters to response latencies and choices. Future studies
can examine how the manipulation interacts with people’s prior
inclination to process attributes with different latencies. It would also
be interesting to link the attribute latency with the actual timing with
which the information is acquired using other process-tracing data,
e.g., eye-tracking.

An important goal of this literature is the design of policies or
interventions to ameliorate negative real-world outcomes. Knowing
whether changes in attribute latencies causally influence intertemporal
choices is useful because nudgingmight be easier than changingmore
hard-wired preference parameters65. Though intertemporal choice is

not solely determined by the attribute latency, the current paper
suggests that simplymanipulating the attribute latency has substantial
impacts on intertemporal choices. In particular, we show that manip-
ulating the display order of the time and amount attributes is an
effective way to manipulate participants’ intertemporal choices66.
Moreover, policies ofwaiting periods (timedelay) have been applied in
real life to prompt a shift towards more deliberative thinking and lead
to less myopic decisions16,67,68. Our results indicate that we should be
careful when using such interventions since they might only be
effective for some people, and push other people in the opposite
direction.

Methods
Participants
The Institutional Review Board of the Neuromanagement Lab at Zhe-
jiang University approved the experiment (Studies 1–5). 126 university
students (70 females, mean age = 22.7 years, SD = 2.4 years) partici-
pated in Study 1 from June 2019 to June 2020 (interrupted by COVID-
19), 49 students (29 females, mean age = 22.9 years, SD = 2.7 years)
participated in Study 2 in April 2021, 43 students (22 females, mean
age = 23.3 years, SD = 2.6 years) participated in Study 3 in May 2021,
69 students (43 females, mean age = 22.56 years, SD = 2.6 years) par-
ticipated in Study 4 in January 2022, and 66 students (46 females,
mean age = 21.62 years, SD = 2.1 years) participated in Study 5 inMarch
2022 at the Neuromanagement Lab, Zhejiang University. Informed
consent was obtained from all participants before the experiment.

Experimental design and procedure
Studies 1–5 used the same 300 trials. In these 300 trials, the payment
times in the SS and LLoptions included today, 7 days, 30 days, 60 days,
and 180 days. The reward amount in SS and LL options varied from 10
to 99 units. We provided participants with instructions before each
block/condition. They could only start the experiment when they
correctly answered the comprehension questions after reading the
instructions. In Study 1, we tracked the mouse-trajectories of each
decision using MouseTracker37 with a temporal resolution of 70Hz.
Participants were instructed to start moving the mouse as soon as the
two options were displayed, and if they did not start to move the
mouse in 750ms, they were given a reminder message following that
trial. In Studies 2 and 3 we programmed the experiment using Python
and did not record themouse-trajectories. The experiments in Studies
4 and 5 were also programed using Python and participants’ mouse-
trajectories were recorded with a temporal resolution of 70Hz. At the
end of the experiment in each study, one trial was randomly selected
for each participant and we transferred money to the participant via
Alipay based on his/her decision on the date in the selected trial. On
average, participants earned 56.5 RMB in Study 1, 55.4 RMB in Study 2,
61.0 RMB in Study 3, 63.3 RMB in Study 4, and 60.0 RMB in Study 5
(including the show-up fee of 15 RMB).

Estimation of the mouse-trajectory-derived time-onset
lag (MTTOL)
We normalized the coordinates of the center of the start box to ð0,0Þ,
and the center of the left and right options to ð�1,1Þ and ð1,1Þ,
respectively. Prior studies have often normalized the mouse trajec-
tories into 100 intervals before performing analysis38,44. This might
distort onset times because a unit of MTTOL in trials with longer
durations is longer in absolute time than a unit of MTTOL in trials with
shorter durations. Therefore, we extended the mouse-position at the
last time point of each trial out to the maximum RT in each time
condition45. Before doing this, we excluded trials with extremely long
or short RTs using the IQR method (see Supplementary Fig. 3 for the
correlations between the MTTOL based on the extended mouse-
trajectory data and the MTTOL based on the raw mouse-trajectory
data). That is, we eliminated trials where RTs were above the 0.75
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quartile by more than 1.5 times the interquartile range, or below the
0.25 quantile by more than 1.5 times the interquartile range in each
time condition. In Study 1, 6.2%, 0.02% and 7.8% of the trials were
excluded from the time-free, time-pressure, and time-delay condi-
tions, respectively. In Study 4 (5), 6.9% (6.5%), 1.0% (7.0%) and 22.2%
(6.7%) of the trials were excluded from the control, amount-first, and
time-first conditions, respectively. The reason that 22.2% of the trials
were excluded from the time-first condition in Study 4 was that there
were many trials faster than 3 s that were eliminated (see Supple-
mentary Note 6). After this adjustment, all the mouse-trajectories in
each condition had the same duration, i.e., the maximum RT of that
condition. Then we equally split each extended trajectory into 100
intervals starting at time t = 1 and ending at t = 101. For each time t, we
calculated the angle between the current cursor position and the start
position (0, 0). Thus, an angle of 45�=� 45� indicates directmovement
toward the right/left option, and an angle of 0� indicates direct
movement upwards.

To identify the onset time that the participant started to consider
and process each attribute, we estimated linear regressions at the
participant level for how the trajectory angle at each time point t was
affected by the time (DiffTime =Timeright –Timeleft) and the amount
differences (DiffAmount = Amountright –Amountleft) between the two
options. The regression for participant i at time point t in each con-
dition is:

Angleitj = γitc + γitT ×DiffTimej + γitA ×DiffAmountj ð1Þ

where γitc is the constant, γitT is the coefficient for the time difference,
γitA is the coefficient for the amount difference, and j is the index of
trials (observations). Consistentwith Sullivan et al.38 and Limet al.44, we
carried out a one-tailed test of the hypothesis that the estimated
regression coefficient of interest was significantly positive at the 5%
level at time t. Using this procedure, we identified the earliest time t at
which the test was satisfied and remained significant until the end of
the trial. We defined the difference between the onset times of the
amount and time attributes as the attribute latency, i.e., mouse-
trajectory-derived time-onset lag (MTTOL).

Estimation of the starting-time drift diffusion model (stDDM)
We estimated the stDDM using the toolbox in Maier et al.3. The stDDM
(Supplementary Fig. 4) allows one attribute to start affecting the drift
rate later than the other. Specifically, if the amount attribute enters
into the process first, the update equation of the relative evidence is:

Rt + 1 =Rt + ωc + t >
TOL
dt

�
�
�
�

�
�
�
�

� �

� ωT � DiffTime+ωA � DiffAmount
� �

� dt + ε

ð2Þ

If the time attribute enters into the process first, the update
equation of the relative evidence is:

Rt + 1 =Rt + ωc +ωT � DiffTime+ t >
TOL
dt

�
�
�
�

�
�
�
�

� �

� ωA � DiffAmount
� �

� dt + ε

ð3Þ

where TOL (time-onset lag) is the onset time that the amount attribute
begins to affect the decision process minus the onset time that the
time attribute begins to affect it, and ε represents the amount of zero-
mean Gaussian noise. In addition to these drift-rate parameters, the
stDDM includes three additional parameters for: (1) Boundary
separation (a), (2) non-decision time (t0), and (3) starting point (z).
Without loss of generality, we fixed the noise parameter (ε) to 1 in the
estimation. In the estimation,we coded thedecision of choosing the SS
option as 1 and the decision of choosing the LL option as 0. That is, a
starting point greater than0.5 represents a predisposition towards the

SSoption, and a starting point less than0.5 represents a predisposition
towards the LL option.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited to the Open
Science Framework (https://doi.org/10.17605/OSF.IO/CY4GR).

Code availability
The code for the analyses presented in this article have been deposited
to the Open Science Framework (https://doi.org/10.17605/OSF.
IO/CY4GR).
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