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Decomposing cortical activity through
neuronal tracing connectome-eigenmodes
in marmosets

Jie Xia1,2, Cirong Liu 3, Jiao Li1,2, YaoMeng 1,2, Siqi Yang4, Huafu Chen 1,2 &
Wei Liao 1,2

Deciphering the complex relationship between neuroanatomical connections
and functional activity in primate brains remains a daunting task, especially
regarding the influence of monosynaptic connectivity on cortical activity.
Here, we investigate the anatomical-functional relationship and decompose
the neuronal-tracing connectome of marmoset brains into a series of eigen-
modes using graph signal processing. These cellular connectome eigenmodes
effectively constrain the cortical activity derived from resting-state functional
MRI, and uncover a patterned cellular-functional decoupling. This pattern
reveals a spatial gradient from coupled dorsal-posterior to decoupled ventral-
anterior cortices, and recapitulates micro-structural profiles and macro-scale
hierarchical cortical organization. Notably, these marmoset-derived eigen-
modes may facilitate the inference of spontaneous cortical activity and func-
tional connectivity of homologous areas in humans, highlighting the potential
generalizing of the connectomic constraints across species. Collectively, our
findings illuminate how neuronal-tracing connectome eigenmodes constrain
cortical activity and improve our understanding of the brain’s anatomical-
functional relationship.

Human and non-human primate brains are structurally and function-
ally organized atmultiple scales1,2. At themacroscale, brain regions are
organized into interconnected networks, as revealed by diffusion
magnetic resonance imaging (dMRI) tractography3. At the mesoscale,
neuroanatomical tracers reveal neuronal populations are intricately
linked via precise synaptic connections4. Understanding how the var-
iation in structural organization underlies the brain’s functional profile
is a fundamental goal of neuroscience5–7.

Structural and functional connectivity are tethered8–11. High-order
interactions among neural populations may give rise to complicated
and imperfect correspondence between structure and function7,12.
Graph signal processing (GSP) innovatively paves the way for probing

high-order structural-functional interactions13–15. GSP exploits the
topographic organization of brain structures to characterize brain
activity, presenting a concise and interpretable framework14,16. Pre-
vious studies have proposed that connectome eigenmodes16–18 derived
from dMRI-based structural connectivity (SC) constraint spatio-
temporal patterns of neural dynamics in humans17,19–21. Functional
activity is decomposed into structurally informed components,
representing varying degrees of activity deviation from the underlying
anatomical architecture16,22. Additionally, the structural-decoupling
index is proposed to quantify the regional coupling strength between
structure and function12, revealing a meaningful sensorimotor-to-
association gradient23,24 across the neocortex in humans. The
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structure-function coupling based on GSP has promising directions in
task decoding25, individual fingerprinting25, and brain dysfunction26–28.
However, given the inherent limitations of dMRI tractography in
examining anatomical connections29,30, the degree to which structural
connectivity constrains functional activity remains largely uncharted.

Neuroanatomical tract-tracing techniques stand unrivaled in
directly detecting monosynaptic connections31. These monosynaptic
transneuronal tracers prove indispensable for mapping long-distance
connections32–34 and the mesoscale cellular connectome (CC)35–39.
Neural tracing elucidates information about directionality of
anatomical projections in mice40, monkeys32, and marmosets
(Callithrix jacchus)35,41. Notably, the marmosets have the most com-
prehensive neuronal tract-tracing data among primates35,41 and have
close homology and similar cortical architecture to the humans42,43,
providing an invaluable resource for investigating anatomical con-
straints on functional activity.

In this study, we aimed to decipher the complex relationship
between neuroanatomical connections and functional activity using
neuronal-tracing data and blood oxygen level-dependent functional
MRI (BOLD-fMRI) during resting-state from awake marmosets.
First, we considered cortical activity as graph signals residing in the
domain of tracer-based CC and decomposed it into low- and high-
frequency components using directed GSP (dGSP)44 via CC eigen-
modes. Second, we quantified cellular-functional decoupling (CFD)
in individual cortical areas to reflect the degree of local (de)coupling
between cortical activity and monosynaptic connections. Third, we
analyzed the spatial correspondence between regional CFD and
microscale and macroscale attributes. Finally, we explored the
potential of marmoset CC eigenmodes to capture intrinsic brain
activity and functional connectivity in humans, determining whether
connectional information from marmosets could be applied to the
human brain.

Results
We decomposed tract-tracing CC into spatial eigenmodes and pro-
jected them onto BOLD-fMRI in marmosets (see Fig. 1 for study
overview). We used retrograde tracing data in adult marmosets
(N = 52; 21 females and 31 males; 1.4–4.6 years) publicly available
from the Marmoset Brain Architecture Project (https://www.
marmosetbrain.org/)35 and BOLD-fMRI data in awake marmosets at
rest from two independents datasets (total N = 19; 1 female and 18
males; 2–9 years) (https://marmosetbrainmapping.org/data)34,45.

Cellular connectome (CC) eigenmodes
Utilizing the Paxinos atlas46,47 of the left hemisphere (Supplementary
Fig. 1; Supplementary Table 1) to extract the mean extrinsic fraction of
labeled neurons (FLNe) in marmosets, we constructed a weighted and
directed CC matrix (55 source areas × 55 target areas)35 (Supplemen-
tary Fig. 2). We then established a symmetric normalized Laplacian
matrix for this directed graph48 (Supplementary Fig. 3; Supplementary
Algorithm 1), which captures the projection directionality and edge
density leveraging the randomwalk operator49,50. The CC eigenmodes,
also known as eigenvectors, were computed by the eigen-
decomposition of the normalized directed graph Laplacian (Fig. 1a).
Note that the sign (polarity) of CC eigenmode is arbitrary. The CC
eigenmodes measured smoothly varying patterns across the marmo-
set’s cortices between positive and negative polarities17,21,51. The
smoothness of each eigenmode could be conceptualized in terms of
graph frequency49. The irregularity and localization of CC eigenmode
patterns increased with increasing eigenvalue (or frequency) (Sup-
plementary Fig. 4). Specifically, the first CC eigenmode was uniformly
distributed throughout the brain. The second one reflected a dorsal-
ventral dimension. The third CC eigenmode showed the dimension
between the anterior cingulate and other brain areas. The fourth CC
eigenmode represented a gradient axis from the sensorimotor cortex

to the visual cortex, resembling the marmosets’ principal structural
gradient52(Fig. 1b).

CC eigenmodes constrain on marmosets’ cortical activity
We assessed the extent to which CC eigenmodes may explain brain
activity observed in BOLD-fMRI data from marmosets. We began by
decomposing cortical activity into a combination of orthogonal CC
eigenmodes (Fig. 1d). We next tested the accuracy of CC eigenmodes
in capturing spontaneous cortical activity using this decomposition.
We found that increasing CC eigenmodes improved the reconstruc-
tion accuracy of marmosets’ cortical activity concentration (Fig. 2a).
Using all CC eigenmodes (N = 55), the cortical activity could be entirely
reconstructed. The first 20 CC eigenmodes achieved 83% reconstruc-
tion accuracy of cortical activity concentration, which was higher than
utilizing both rewired CC graph53,54 (prewired < 0.001, false discovery
rate (FDR)-corrected) and the Moran spectral randomization (MSR)
surrogate cortical activity55–57 (pMoran < 0.001, FDR-corrected). Simi-
larly, the first 20 CC eigenmodes achieved 88% reconstruction accu-
racy of functional connectivity (FC) in marmosets (Supplementary
Fig. 5). Thesefindings suggest thatCCeigenmodes canonically serve as
a foundation for a compact description of spontaneous cortical
activity and FC.

We next compared the reconstruction accuracy of CC eigen-
modes against dMRI-based SC eigenmodes (Supplementary Fig. 6).
Despite certain similarities, the spatial patterns of CC eigenmodes
were distinct from SC eigenmodes (Supplementary Fig. 7). A direct
comparison of the reconstruction accuracy of two distinct basis sets
revealed that CC eigenmodes numerically outperform the SC eigen-
modes in capturing cortical activity concentration and FC. The CC
eigenmodes could provide a more compact description of cortical
activity patterns than the SC eigenmodes.

We further examined how CC eigenmodes constrain cortical
activity. To this end, we separated the CC eigenmodes into low- (the
first C eigenvectors) and high-frequency (the last N-C eigenvectors).
Here, we set C = 12 as the median-frequency, and provided the sensi-
tivity analyses for filter cut-off selection (Supplementary Fig. 8; Sup-
plementary Section 6). Then, low- and high-frequency eigenmodes
were used to spatially filter the BOLD-fMRI amplitudes for each time
point, resulting in low- and high-frequency components that char-
acterized to what extent BOLD-fMRI fluctuations were strongly or
weakly constrained by the underlyingmonosynaptic connections12,16,22.
The significance of the cortical class-level activity concentrations was
examined statistically using a permutation test (see Statistical
analysis).

Cortical activity constrained by low-frequency eigenmodes was
concentrated within dorsal-posterior cortices such as the visual cortex
(VC), somatosensory cortex (SS), posterior parietal cortex (PPC), and
posterior cingulate, medial, and retrosplenial cortices (PCC) (all
pSR < 0.05, FDR-corrected; Fig. 2c). The high-frequency components
were concentrated in ventral-anterior (frontopolar-temporal) cortices,
including themedial prefrontal cortex (mPFC), dorsolateral prefrontal
cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), orbitofrontal
cortex (OFC), lateral inferior temporal cortex (LIT), and auditory cor-
tex (AU) (all pSR <0.05, FDR-corrected; Fig. 2d). In summary, the pat-
terns of CC eigenmodes constrain cortical activity were circumscribed
by specific brain systems.

Regional cellular-functional decoupling
We further investigated the cellular-functional relationships of the CC
and cortical activity in marmosets. We quantified the binary logarithm
form of the ratio between the L2-norm of high-frequency versus low-
frequency components over time points12 to represent CFD. The CFD
was used to assess the degree of local (de)coupling between cortical
activity and underlying monosynaptic connections. Lower CFD
implied a strong coupling of cortical activity to the neural connections,
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Fig. 1 | Schematic method overview. a Workflow for constructing the mesoscale
cellular connectome (CC) model. b The first four CC eigenmodes (ψ1–ψ4, in
ascending order by eigenvalues) were projected onto the marmoset brain surface.
Colors visualized arbitrary units (arb. u.), i.e., the weights in eigenvectors. c BOLD-
fMRI in awake marmosets. d Decomposition of BOLD-fMRI. The fMRI data at each
time point (tðiÞ) was estimated as the contribution (wtðiÞ

k ) of each CC eigenmode

(ψk ). Cortical activity was then decomposed into low-frequency components
(coupled to CC, i.e., heavily interconnected nodes tend to display similar activity to
one another) and high-frequency components (decoupled from CC, i.e., nodes
exhibit various activities even if they are heavily connected). Cellular-functional
decoupling (CFD) was the ratio between the L2-norm of decoupled and coupled
components over time points.
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Fig. 2 | Cellular connectome (CC) eigenmodes constrain cortical activity in
marmosets. a Reconstruction accuracy was quantified as the ratio between
empirical and reconstructed cortical activity concentration (L2-norm across time
points). The solid line indicates the reconstruction accuracy of the empirical CC
graph. The shading lines indicate the reconstruction accuracy using eigenmodes
derived from rewired CC graphs (1000 repetitions). The shading lines indicate the
reconstruction accuracy using empirical CC eigenmodes to reconstruct the Moran
spectral randomization (MSR) surrogate cortical activity (1000 repetitions). The
shading indicates the 95th percentile interval of the null distributions. bMarmoset
cortical classes were parceled according to the Paxinos atlas46,47. c, d The spatial
patterns of low- and high-frequency components. The low- and high-frequency
components from each of the eleven cortical classes were presented as box plots
ordered by themedian values. Box plots represent the 25th (lower), 50th (median),
and 75th (upper) percentiles; the whiskers represent the non-outlier endpoints of

thedistribution; and the circles represent outliers. The sample size for eachboxplot
was the number of brain areas in each marmoset cortical class and summarized in
Supplementary Table 1 (nAU = 5, ndlPFC = 6, nLIT = 4, nmPFC = 3, nMOT = 7, nOFC = 1,
nPCC = 3, nPPC = 10, nSS = 4, nvlPFC = 2, nVC = 10). Asterisks denote statistically sig-
nificant activity concentration in each cortical class compared to the null dis-
tributions generated from graph spectral randomization (SR) (1000 repetitions,
*pSR < 0.05, pSR(SS) = 0.0037, pSR(VC) = 0.0001, pSR(PPC) < 0.0083,
pSR(PCC) = 0.0037, pSR(OFC) = 0.0001, pSR(dlPFC) = 0.0001, pSR(AU) = 0.0001, and
pSR(vlPFC) = 0.0001, pSR(mPFC) = 0.0001, and pSR(LIT) = 0.0018, one-sided, FDR-
corrected). AUauditory cortex, dlPFCdorsolateral prefrontal cortex, LIT lateral and
inferior temporal cortex, mPFC medial prefrontal cortex, MOT motor and pre-
motor cortex, OFC orbitofrontal cortex, PCC posterior cingulate, medial and ret-
rosplenial cortex, PPC posterior parietal cortex, SS somatosensory cortex, vlPFC
ventrolateral prefrontal cortex, VC visual cortex.
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whereas higher CFD indicated the reverse. The spatial pattern of CFD
was regionally heterogeneous (Fig. 3a, left). Regional CFD revealed a
gradient organization that ranged from coupling areas in the dorsal-
posterior cortices (visual, sensorimotor, motor, and premotor cortex
(MOT), and PPC) to decoupling areas in the ventral-anterior cortices
(the temporal, prefrontal, and orbitofrontal cortex) (Fig. 3a, right).

Furthermore, we provided the sensitivity analyses for filter cut-off
selection for patterned CFD (Supplementary Fig. 9). The permutation
testing approach was used to localize brain areas where the CFD sig-
nificantly differed from the graph spectral randomization surrogate
activity (Supplementary Fig. 10). Areas exhibiting coupling (Fig. 3a,
middle), which significantly deviated from null permutations, were
primarily found in the VC (V1, V2, V3A, V4, V6, A19DI), SS (A1-2, A3a,
A3b), MOT (A6Va, A8C, A4ab), and PPC (PE, PG, LIP). Areas with sig-
nificant decoupling (Fig. 3a, middle) were primarily located in the OFC
(A11), dlPFC (A10, A9, A8b, A46D), vlPFC (A45), and mPFC (A32V).
Collectively, a gradual divergence between the CC and cortical activity
inmarmosets was observed, transitioning from the dorsal-posterior to
the ventral-anterior cortices.

We replicated the regional CFD pattern using an independent
dataset from the Institute of Neuroscience (ION) cohort34 (Fig. 3b). We
then conducted a spatial correlation of the CFD pattern between the
NIH and ION site datasets. The results showed a statistically significant
positive correlation (ρ =0.83, pSMASH = 0.0001; Supplementary Fig. 11).
Furthermore, the Dice coefficient was 0.73 and 0.70 for significantly
decoupled and coupled areas, respectively. The differences in the
scanner magnetic fields and the scanning parameters of the two
datasets may drive some discrepancies. As a result, these findings
confirmed the reproducibility of the CFD patterns.

Cellular-functional decoupling follows microscale and macro-
scale hierarchies
We then examined the spatial relationships between CFD and micro-
scale and macroscale spatial profiles. At the microscale levels
(Fig. 4a, b), regional CFD was strongly negatively correlated with
myelin content47 (ρ =0.40, pSMASH = 0.007) and neuronal counts58

(ρ =0.43, pSMASH = 0.008). The prefrontal, lateral parietal, lateral tem-
poral, and medial parietal cortices, which are weakly myelinated and
involved in higher cognitive and affective activities59, showed strong
CFD. Additionally, a primary axis connecting the posterior and medial
areas to the anterior and lateral areas followed the density of
neurons58. Consequently, the spatial pattern of CFD, ranging from
coupling to decoupling, was inversely related to the transmodal-to-
unimodal cortical hierarchy at the microscale level.

At the macroscale level (Fig. 4c), regional CFD positively corre-
lated with the second functional gradient52 (ρ =0.48, pSMASH = 0.004).
TheCFD’s spatial organization, represented as coupling to decoupling,
aligned well with the cortical hierarchy from the unimodal to trans-
modal cortex. Collectively, the patterned cellular-functional relation-
ship resembled the cortical hierarchical axis on the micro- and
macroscale levels.

Generalizability of marmoset CC eigenmodes to the
human brain
We next explored whether human cortical activity and FC could be
inferred frommarmoset-derivedCCeigenmodes.We chose 11 possible
homologous areas60 (Fig. 5a; Supplementary Table 2) from the Paxinos
marmoset parcellation scheme46,47 and the HCP-MMP1.0 human cor-
tical atlas61, taking into account the differences between humans and
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Fig. 3 | Regional cellular-functional decoupling (CFD) in two independent
datasets. a (Left) The pattern of CFD in the National Institutes of Health (NIH)
cohort was plotted. (Middle) The statistically significant areas were grouped into
cellular-functional coupling and decoupling patterns (Binomial test with a sig-
nificance level α =0:05, two-sided, corrected for multiple comparisons across 55
cortical areas). (Right) Box plots represent the CFD values from the eleven classes
ordered by the median values. b The pattern of CFD and the statistically significant
areas in the Institute of Neuroscience (ION) cohort. Box plots represent the 25th

(lower), 50th (median), and 75th (upper) percentiles; the whiskers represent the
distribution’s endpoints; and the circles represent outliers. nAU = 5, ndlPFC = 6,
nLIT = 4, nmPFC = 3, nMOT = 7, nOFC = 1, nPCC = 3, nPPC = 10, nSS = 4, nvlPFC = 2, nVC = 10.
AU auditory cortex, dlPFC dorsolateral prefrontal cortex, LIT lateral and inferior
temporal cortex,mPFCmedial prefrontal cortex,MOTmotor and premotor cortex,
OFC orbitofrontal cortex, PCC posterior cingulate,medial and retrosplenial cortex,
PPC posterior parietal cortex, SS somatosensory cortex, vlPFC ventrolateral pre-
frontal cortex, VC visual cortex.
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marmosets’ cerebral cortices. We then constructed a CC matrix using
these 11 homologous markers. We used a basis set generated from the
CC matrix of homologous areas to reconstruct localized brain activity
patterns in marmosets (Supplementary Fig. 12; Supplementary Sec-
tion 7), implying that localized CC eigenmodes potentially reflect
activity patterns in marmosets.

We found that increasing CC eigenmodes of homologous areas
improved the reconstruction accuracy of brain activity patterns in
humans (Fig. 5b). The first five CC eigenmodes achieved 90% and 86%
reconstruction accuracy of brain activity concentration and FC,
respectively. Reconstructing human brain activity concentration
(Fig. 5b) and FC (Fig. 5c) using homologous CC eigenmodes was more
accurate than rewired CC connectomes (prewired < 0.001, FDR-cor-
rected) and randomly selected non-homologous areas’ cortical activity
(pperm < 0.001, FDR-corrected). These findings suggest that CC eigen-
modes derived from marmosets may help estimate human sponta-
neous brain activity and FC of homologous areas.

Additionally, we calculated the relationship between the marmo-
set’s CFD and the three canonical hierarchies in humans described by
myelin content, allometric scale, and cortical gene expression across 11
homologous areas to determine the correspondence of hierarchical
organization across species between humans and marmosets. We
discovered that the CFD pattern in homologous areas of marmosets
matched the myelin content62 (ρ = −0.69, pSMASH = 0.02; Fig. 5d), allo-
metric scaling63 (ρ =0.81, pSMASH = 0.002; Fig. 5e), and the first princi-
pal component of gene expression64 (ρ = 0.88, pSMASH = 0.0001; Fig. 5f)
in humans. These findings showed a dimension with comparable
hierarchical structure in marmosets and humans, suggesting that this
dimension may be phylogenetically preserved24.

Discussion
We quantified how the marmosets’ intrinsic cortical activity derived
from BOLD-fMRI data was bounded by CC-eigenmodes from

retrograde tracing. The cellular-functional relationships were gradu-
ally decoupled from the dorsal-posterior to ventral-anterior cortices,
following microscale and macroscale hierarchies. Furthermore, the
marmoset’s CC eigenmodeswould capture human cortical activity and
FC in homologous areas, underlining the potential of generalizing the
connectomic constraints across species.

Extended previous structural-functional coupling focused on a
single summary process8,10,11, we considered these couplings con-
tribute to multiple repertoires through eigenmode decomposition12,14.
Eigenmodes provide a powerful framework for connecting brain
anatomy with the spatiotemporal patterns of neural dynamics. Pre-
vious studies have extensively utilized eigenmode approaches to
understand human brain function15–17,19,65. The SC eigenmodes
obtained from dMRI-based undirected networks capture local gray
matter and white matter fiber connections, which serve as the foun-
dation for human functional networks16–18. Furthermore, geometric
eigenmodes derived from thebrain’s geometry (e.g., its shape) capture
local spatial relations, representing the underlying anatomical
restrictions on humanbrain function15. Our workwithmarmosets used
a similar approach, but the fundamental anatomical features differed.
The neuroanatomical tracing connectome represents an asymmetric
(directed) network. Graph signal models based on asymmetric net-
workoperatorsmaybebetter for signal and informationprocessing on
directed projections44. The CC eigenmodes produced from Laplacian’s
normalized directed graph may capture the projection directionality
and edge density, emphasizing the importance of projection direc-
tionality information. Different methods of generating anatomical
connections and deriving eigenmodes may lead to different spatial
patterns ofCC andSCeigenmodes. Importantly, CC eigenmodes could
be the fundamental building blocks for reconstructing cortical activity
patterns with different frequency oscillations, facilitating the estab-
lishment of relationships between temporal fluctuations and under-
lying anatomy in the marmoset brain.
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Fig. 4 | Marmoset cellular-functional decoupling (CFD) is related to micro-
structures and macroscale hierarchical organization. a, b The pattern of
regional CFD (n = 55 brain areas) negatively correlates with microstructures,
including marmoset myelin content (T1w/T2w ratio) and neuronal counts.
c Patterned CFD positively correlates with the second functional gradient (FG2).

The regression lines are shown for both relationships. Shaded bands represent the
95% confidence intervals; and histograms correspond to each variable. The sig-
nificance (pSMASH) of Spearman’s correlation coefficients (ρ) is evaluated using
spatial autocorrelation-preserving surrogate brain maps (1000 repetitions,
two-sided).
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We provided a critical viewpoint on how CC constrains func-
tional activity. Previous studies have used correlation and regression
analyses34,37, and whole-brain computational modeling52 to assess
the local or global correspondence between FC and CC in marmo-
sets. However, in these investigations, FC was represented by BOLD-
fMRI temporal correlations measured throughout time periods,
which may give a degraded depiction of brain connectivity22,66. In
contrast, our work decomposed cortical activity into CC
eigenmodes-informed components, which may represent how
BOLD-fMRI amplitudes were strongly or weakly constrained by
monosynaptic connections at a specific time point. Our findings
showed that monosynaptic connections strongly constrained cor-
tical activity, particularly in the dorsal-posterior cortices such as the

VC, SS, PPC, and PCC, which were engaged in sensation, perception,
and action processes67. Furthermore, weakly constrained cortical
activity was primarily concentrated within frontopolar-temporal
cortices, potentially requiring more diversified functional commu-
nication relative to the underlying wiring diagram68,69. Notably, the
activity of the posterior core regions (PPC and PCC) in the default
mode network (DMN)45 was strongly constrained by connections,
whereas the activity of the anterior DMN (dlPFC)45 was weakly
restricted by connections, indicating that the DMN architecture in
marmosets may have a divergent anterior-posterior axis. According
to a recent cross-species study, the anterior DMN areas have weak
connections and spatially irregular connection topology compared
to the posterior DMN areas60. Consequently, the patterns of
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Fig. 5 | Generalizability of marmoset-derived eigenmodes to cortical activity
patterns in humans. a Humans and marmosets share 11 common homologous
landmarks. b Reconstruction accuracy of cortical activity concentration (L2-norm
across time points) in humans across 11 homologous areas. c FC reconstruction
accuracy in humans across 55 edges (C2

11 = 55). The observed reconstruction accu-
racy (solid lines) was compared to the accuracy obtained from rewired CC con-
nectomes (shading lines, 1000 repetitions) and randomly selected non-
homologous areas’ cortical activity (shading lines, 1000 repetitions). The shading
indicates the 95th percentile interval of the null distributions. Asterisks denote a
statistically significance level at p <0.05 (one-sided, FDR-corrected). The exact

p-values are provided in the Source data. d, e, f Cross-species association. The
association between the CFD pattern of 11 homologous areas inmarmosets and the
myelin content quantified by T1w/T2w ratio (d), allometric scaling quantified as
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intervals. The significance (pSMASH) of Spearman’s correlation coefficients (ρ) is
evaluated using spatial autocorrelation-preserving surrogate brain maps (1000
repetitions, two-sided).
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marmoset brain activity constrained by CC eigenmodes were con-
fined by specific brain systems.

We further introduced a CFD index to quantify the cellular-
functional relationship per brain area in marmosets, enhancing our
knowledge of the associations between the mesoscopic connectome
and macroscale function. The approach differed from traditional
pairwise correlations between anatomical and functional networks37.
Instead, we exploited the topology of the anatomical network to
inform neural activity, which could improve the statistical properties
of BOLD-fMRI fluctuation20. We found that the spatial layout of CFD
was non-uniform and appeared to vary gradually across the marmoset
cortex. The regional CFD showed a macroscale gradient from coupled
dorsal-posterior cortices to decoupled ventral-anterior cortices. Cou-
pling in the dorsal-posterior corticesmight suggest thatmonosynaptic
connections directly supported functional communication. One
potential explanation was that the dorsal-posterior cortices require a
quick, accurate response to external and internal stimuli12,70. In con-
trast, the decoupling of ventral-anterior cortices, including the OFC
(A11), dlPFC (A10, A9, A8b, A46D), vlPFC (A45), and mPFC (A32V),
suggests that functional processing was not bounded by anatomical
architecture, likely reflecting functional flexibility and information
integration11,24. One recent study reported that the frontopolar A10
received projections from a broad area of the rostral temporal asso-
ciation cortex extending toward the temporal pole and might be a
DMN candidate68. Area 10 is associated with higher-level planning
forms, abstract reasoning, and processing multiple competing task
demands68. The OFC, vlPFC, and mPFC are essential functions in
emotional regulation and decision-making in marmosets71. Hence,
these likely provided the interpretation that ventral-anterior cortices
with high-level cognitive processing were more decoupled from
structural wiring.

Cortical hierarchy is a significant organizational featureof primate
cortical anatomy and function23,24. Our regionally heterogeneous CFD
pattern was consistent with previous studies that have described
similar hierarchical organization between microstructural and func-
tional attributes in the marmoset brain51,58,59,68. Indeed, the spatial
variations of CFD were inversely associated with micro-architectural
properties, such as intracortical myelin59 and neuronal counts58, sug-
gesting micro-circuit and histological underpinnings for cellular-
functional interaction. Moreover, regional variations of CFD were
positively correlated to macroscale functional gradients. Recent stu-
dies found that functional gradients in marmosets revealed brain
network hierarchies ranging progressively outward from primary
cortices to high-order multimodal association areas34,52,68. The func-
tional organization was highly constrained by structural wiring in
large-scale gradient aspects52. Here, we provided evidence that these
cortical hierarchies were partially determined constraints on cortical
activity imposed by monosynaptic connections. Our findings might
contribute to understanding the hierarchical axis of the marmoset
cortex that encompasses structural and functional variation at micro-
and macro-spatial scales.

Our study was crucial to facilitate the translation of ground truth
connectional knowledge from marmoset to human. Non-human pri-
mate neuroimaging integrated monosynaptic connections and neu-
roanatomical tracing to overcome the constraints of human
neuroimaging34 and could advance our understanding of the evolution
of the brain33,59. Human neuroanatomical connections were derived
primarily from homology studies in non-human experimental
models72. The identification of probable homologous landmarks has
been used to make cross-species comparisons52,60,73. Our results
showed that marmoset’s CC eigenmodes may reflect human sponta-
neous cortical activity in homologous areas, which were not driven by
general mathematical properties of basis set expansions but could be
derived by some biologically relevant evolutionary process. These
findings suggested that CC may be used to restrict brain function

across species. In addition, the CFD pattern of homologous areas in
marmosets recapitulated three classical hierarchies in humans
described by intracortical myelin62, allometric scale63, and brain-wide
gene expression64. A cross-species comparison of the topographic
organization across marmosets and humans was phylogenetically
conserved, which might provide critical insight into the evolution of
brain organization23,24,73. Thus, translational studies of marmoset neu-
roimaging could compensate for the constraints of ground truth
connections in humans, which would contribute to uncovering the
correspondence between mesoscale connectome and macroscale
function.

The current study has several limitations. First, retrograde tracer
injections did not cover entire cortical areas, and subcortical infor-
mation wasmissing35. Thus, neuronal tracing data with greater cortical
coverage will facilitate mapping the complete cellular-resolution
connectome and accurately quantify the relationship between the
cellular-scale connectome and functional activity. Second, although
retrograde tracer accurately maps cellular-level connectome by
staining cell bodies, it cannot reveal local graymatter connectivity and
white matter axonal fibers17,18. Neuronal tracing data might be inte-
grated into cortical surface mesh and fiber tractography in future
investigations39. Another caution is that the normalized directed graph
Laplacian is suitable for strongly connected graphs, guaranteeing that
the random walk’s transition probability matrix is ergodic48. If the
directed network was not strongly connected, the PageRank
algorithm74 may be utilized49,50. Fourth, our research was based on a
restricted number ofmapped areas due to the absenceof documented
marmoset-human homologous areas. Fifth, BOLD-fMRI collection for
the marmosets concerning the discovery dataset (all males) and
replication cohort (11males vs. 1 female) was sex-biased. Finally, BOLD-
fMRI images used a consistent parcellation for all participants, which
assumed that each participant’s brain areas could be mapped to the
exact spatial location. Future works should consider the effect of
individual variation in functional boundaries7,10.

In summary, we quantified the degree of correspondence
between cellular connectome and cortical functional activity in mar-
mosets. The cellular-functional relationships revealed a spatial gra-
dient, resembling microstructural profiles and macroscale brain
organization. Notably, the connectional information derived from
cellular-resolution tracing inmarmosets was translatable to the human
brain. These findings contribute to our understanding of howneuronal
tracing connectome shapes cortical activity.

Methods
Neuronal tract-tracing data in marmosets
We included the retrograde neuroanatomical tract-tracing data in
marmosets from the publicly available Marmoset Brain Architecture
Project (https://www.marmosetbrain.org/)35. All experiments proce-
dures were approved by the Monash University Animal Experimenta-
tion Ethics Committee. This dataset consists of 143 retrograde tract-
tracing experiments inmarmosets (N = 52; 21 females and 31males; 1.4-
4.6 years), injected with six fluorescent retrograde tracers35,41. The
strength of the tract-tracing CC from the labeled neurons (source) to
the injection area (target) was quantified by the FLNe32.

Localization of the tracer injections and labeled neurons was
based on the Paxinos parcellation46,47 with 116 cortical areas of the left
hemisphere. The injection areas were concentrated in 55 of 116 areas,
including the premotor, prefrontal, superior temporal, parietal, and
occipital complexes35. An asymmetric CC matrix (55 × 116) described
the log10(FLNe) value for each target-source pair across injections
within the same target area (Supplementary Fig. 2a). To reflect the
main features of the whole interareal network36,75, we used an edge-
complete weighted asymmetrical matrix A (55 × 55), which included
only 55 injected areas with pairwise-complete connection values
(Supplementary Fig. 2b). Furthermore, those 55 injection areas were
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assigned into eleven cortical classes46,47 (Supplementary Fig. 1; Sup-
plementary Table 1). The CC matrix A quantified according to the
Paxinos atlas46,47 of the left hemisphere was used to construct a
directed graph G55 × 55 for the following analysis, unless otherwise
stated.

MRI data in marmosets
We collected MRI data from the Marmoset Brain Mapping project
(https://marmosetbrainmapping.org/data). All experimental proce-
dures were approved by the Animal Care and Use Committee (ACUA)
of the National Institute of Neurological Disorders and Stroke. Seven
marmosets (all males; 3–9 years) from the National Institutes of Health
(NIH) cohort were scanned using a 7 T/30 cmhorizontal MRI to obtain
structural information and resting-state BOLD-fMRI data34,45. All rs-
fMRI data were collected in ParaVision 6.0.1 software using a 2D gra-
dient echo planar imaging (EPI) sequence (TR = 2 s, 512 volumes
(17min) per run). After each rs-fMRI session, a T2-weighted image was
scanned for spatial registration. Furthermore, in vivo diffusion MRI
(dMRI) datawere acquired using a 2Ddiffusion-weighted spin-echo EPI
sequence. A detailed account of image acquisition protocol can be
found in Supplementary Section 1.1.

All rs-fMRI data were corrected for slice-timing, headmotion, and
EPI distortion. Further preprocessing procedures included regression
covariates, band-pass filtering (0.01–0.1 Hz), and registration of the
preprocessed images to the template space of Marmoset Brain Atlas
Version-3 (MBMv3, https://marmosetbrainmapping.org/v3.html)47.
Finally, fMRI data were smoothed using a 1mm full-width at half-
maximum (FWHM) Gaussian kernel. A detailed account of fMRI data
preprocessing was described in Supplementary Section 1.2.

After preprocessing and quality control of each scan, all pre-
processed fMRI data were parcellated into 116 cortical areas based on
the Paxinos atlas46,47. The averaged time series were obtained for each
brain area. We extracted the time series of the 55 injected areas cor-
responding to the CCmatrix.We showed the temporalmean, standard
deviation, and activity concentration distribution of regional BOLD-
fMRI signals for eachmarmoset (Supplementary Fig. 13). The standard
deviations of the BOLD-fMRI signals exhibited a non-uniform dis-
tribution across regions. To overcome the activity concentration bias
at the region level, we normalized the BOLD-fMRI signals by sub-
tracting their temporal mean and dividing them by their temporal
standard deviation (i.e., z-score). Note that normalization is unneces-
sary to avoid introducing bias if the signals in all regions have similar
amplitudes (or at least standard deviation). Finally, the FC matrix was
constructedby estimating the Pearson correlation coefficient (r) of the
time series between paired brain areas.

All dMRI data were preprocessed using the MRtrix3 package (v3,
https://www.mrtrix.org/)76. Briefly, probabilistic diffusion tracto-
graphy was used to reconstruct each individual’s structural con-
nectivity (SC) matrices based on the Paxinos atlas46,47. The number of
streamlines normalized by the total streamlines corresponds to the
connection weights. More information regarding the individual SC
reconstructions is available at ref. 34. By averaging all individual SC
matrices, a group SCmatrix ASC was generated.We thresholded the SC
matrix to construct a connection matrix that matched the density of
CC since the connection density of CC and SC varied. Finally, SC
eigenmodes were derived according to previous methods12,16,20, which
were obtained by eigen-decomposition of normalized undirected
graph Laplacian13,14, Lundir = I � D�1

2ASCD
�1

2, where D stands for the
diagonal degree matrix of the adjacency matrix ASC , and I is the
identity matrix.

MRI data in humans
We used resting-state BOLD-fMRI datasets from the 100 unrelated
subjects (N = 100; 54 females and 46 males; 22–36 years) provided
by the Human Connectome Project (HCP) (https://db.

humanconnectome.org/)77. The HCP data was acquired using proto-
cols approved by the Washington University Institutional Review
Board. All participants were volunteers and provided informed con-
sent. We analyzed rs-fMRI data acquired in the first scanning session
using a left-to-right (LR) encoding direction. The scan lasted 14.4min
(TR= 0.72 s)with 1200 timepoints. A detailed description of the image
acquisition protocol is available at ref. 77.

The BOLD-fMRI data was preprocessed according to the HCP
minimal preprocessing pipelines78. The rs-fMRI data was adjusted for
gradient nonlinearity, headmotion, and geometric distortions. Further
preprocessing procedures included registration of the corrected
images to the T1 weighted images, brain extraction, global intensity
normalization, high-pass filtering (cut-off at 2000 s)79, and elimination
of residual confounds through the ICA-FIX method80. We did not
conduct any additional preprocessing steps. Finally, the preprocessed
time series were parcellated into 180 cortical areas of the left hemi-
sphere using the HCP-MMP1.0 parcellation61.

Graph signal processing on the marmoset data
Connectome Laplacian and eigenmodes of the CC. We assumed the
CC as a weighted directed graph G= ðV ,E,AÞ, where V = fv1,v2, � � � ,vNg
is a finite set of nodes, N is the number of nodes, E 2 V ×V is a set of
directed edges, and adjacencymatrix A= fAijg1≤ i, j ≤N 2 RN ×N

+ is defined
as the FLNe value of the CC.

The graph Laplacian linked a bridge between spectral graph the-
ory and signal processing13,14,16. It was difficult to generalize the typical
normalized undirected graph Laplacian to directed graphs since its
symmetries were no longer verified44. A suitable reference operator
had to be found to expand the Laplacian-based Fourier analysis from
undirected graphs to directed graphs.

As an acceptable reference operator for expanding the signal
processing framework to directed graphs, the random walk operator
on graphs was presented49. The random walk operator was related to
the concept of diffusion on graphs, which could transform any graph
into a Markov chain50. Chung48 defined a symmetric normalized
Laplace operator for strongly connected directed graphs. Notably, the
normalized directed graph Laplacian, which has been used in spectral
clustering81, graph embedding82, and classification applications83, may
represent the graph’s directionality and edge density by leveraging the
random walk operator.

The normalized directed graph Laplacian48 is defined as (Supple-
mentary Section 2.1),

L= I � Π1=2PΠ�1=2 +Π�1=2PTΠ1=2

2
, ð1Þ

where P =D�1A is the transition matrix of the ergodic Markov chain
(Supplementary Fig. 14; Supplementary Section 5)84,85, D =

PN
j = 1Aij

denotes the diagonal matrix of the out-degrees of A,
Π =diag π v1

� �
, � � � ,π vN

� �� �
is the diagonal matrix of the stationary

distribution π (Supplementary Fig. 15), i.e., πP =π of the random walk
with the transition matrix P, and I is an identity matrix. The Laplacian
satisfies LT =L, i.e.,L is a symmetric matrix.

TheCCeigenmodeswereobtainedby the eigen-decompositionof
normalized directed graph Laplacian L,

LΨ =ΛΨ, ð2Þ

where Λ=diagðλ1,λ2,� � �,λNÞ is the eigenvalues ofL ordered according
to 0≤ λ1 ≤ λ2 ≤ � � �≤ λN86, and associated Ψ = fψkgNk = 1 is a set of ortho-
gonal eigenvectors. The Dirichlet energy of the eigenvectors of the
random walk operator on a directed graph is associated with eigen-
values, which can be regarded as graph frequencies49. Hence, the
eigenvalues can be interpreted as frequencies, and the eigenvectors
are known as connectome eigenmodes. Low-frequency eigenmodes
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vary slowly over the graph, whereas high-frequency eigenmodes vary
more rapidly16,87.

Connectomeeigenmode decomposition of fMRI inmarmosets. The
cortical activity over the node vi at time-point t was denoted as
f vi ðtÞ 2 RN ×T , i= 1,2, � � � ,Nf g,t 2 f1,2, � � � ,Tg. Then, we used the eigen-
vector matrix Ψ to define the graph Fourier transform (GFT) of the
graph signal f vi ðtÞ as wkðtÞ=ΨT f vi ðtÞ. The GFT coefficient wkðtÞ
describes how much each CC eigenmode contributes to the observed
functional activity f vi ðtÞ

22.
The original signal f vi ðtÞ can be decomposed as a linear combi-

nation of the set of CC eigenmodes. The inverse GFT (IGFT) ofwkðtÞ to
L is defined as (Fig. 1d)

f vi ðtÞ=w1ðtÞψ1 +w2ðtÞψ2 + � � � +wNðtÞψN =
XN

k = 1

wkðtÞψkðviÞ ð3Þ

Graph energy spectral density and activity concentration. The
magnitude of each CC eigenmode fψkgNk = 1 in the cortical activity pat-
tern at any given time point t was called graph energy spectral density
(ESD). The ESD describes the energy present in each connectome
eigenmodeduring a graph time-varying signal,whichwas computed as
the absolute square of the amplitudes for a specific connectome
eigenmode ψk :ESDðψk ,tÞ= wkðtÞ

�� ��2.
In addition, to measure the cortical activity concentration of the

graph frequency component at the brain area vi, we defined the
L2-normof BOLD-fMRI signal f vi ðtÞ across all timepoints:Evi

= kf vi ðtÞk2,
which provided an interpretation of energy for each graph frequency
component12,16,22.

Measuring cellular-functional decoupling
Given a graph signal f vi ðtÞ with graph spectral coefficients wkðtÞ, cor-
tical activities can be isolated into low-frequency components (cou-
pled to the CC) and high-frequency components (decoupled from the
CC)12,22. To determine the cut-off frequency C, we used the graph
spectrum dichotomization method12 to divide the graph spectra into
two parts with equal energy based on average ESD (across time and
subjects). The graph low-pass filter matrix ΨðlowÞ 2 RN ×N only keeps
the first C eigenvectors (columns ofΨ) and sets other components to
0. The graph high-pass filtermatrixΨ ðhighÞ 2 RN ×N keeps the lastN � C
eigenvectors (see Supplementary Section 6 for robustness of results to
parameter selection). Therefore, the filtered low-frequency f lowvi

ðtÞ 2
RN ×T and high-frequency f highvi

ðtÞ 2 RN ×T components (Fig. 1d) are
expressed as

f lowvi
ðtÞ=Ψ lowð ÞΨT f vi ðtÞ ð4Þ

f highvi
ðtÞ=Ψ ðhighÞΨT f vi ðtÞ ð5Þ

The cellular-functional decoupling (CFD) of eachbrain area canbe
quantified as the ratio between the L2-norm of high-frequency versus
low-frequency components across time points12, resulting in

CFDvi
= log2

kf highvi
ðtÞk

2

kf lowvi
ðtÞk

2

0
@

1
A ð6Þ

We chose the binary logarithmic formof this index, so CFD values
of 0 represent a perfect balance between cellular-functional coupling
and decoupling. CFD values around −1 imply that cortical activity is
strongly coupled to underlying monosynaptic connections, whereas
CFD values around 1 indicate the reverse.

Relation to cortical microstructure profiles and macroscale
gradients
To reveal the potential biological interpretation of CFD at different
biological scales, we further analyzed its relation to the cortical
microstructural attributes and connectivity gradients. We used
Spearman correlation to measure the spatial correspondences across
brain areas. The significance of correlations was assessed using
BrainSMASH, a spatial autocorrelation (SA)-preserving surrogate
method88 (Supplementary Section 4).

First, we characterized the relationships between the CFD and
cortical myeloarchitecture. The map of marmoset myelin content was
acquired from MBMv3 (https://marmosetbrainmapping.org/v3.
html)47. The myelin content was quantified as the ratio of T1-
weighted and T2-weighted in cortical gray matter (T1w/T2w)59. Sec-
ond, we assessed the spatial concordance between the CFD and neu-
ronal distribution. The map of marmoset neuronal counts was
acquired via a freely accessible repository (http://www.
marmosetbrain.org/cell_density)58.

We further quantified the spatial concordance between CFD and
macroscale functional gradients in the marmoset brain. We used dif-
fusion embedding mapping23,89,90 to identify spatial axes of inter-
regional functional changes via BrainSpace (http://github.com/MICA-
MNI/BrainSpace)91 (Supplementary Section 3).

Generalizingmarmoset-derived eigenmodes to the humanbrain
We attempted to use the marmoset’s CC eigenmodes to capture
intrinsic brain activity and connectivity in the human brain. First,
we obtained the homologous landmarks, including 11 candidate
cortical areas across humans and marmosets (Supplementary
Table 2). Specific details regarding homologous landmark selection
can be found in ref. 60. Second, we extracted an asymmetrical
weighted homologous connection matrix (11 × 11) from the mar-
moset’s tracer-based CC. Third, we estimated the connectome
eigenmodes of this homologous CC matrix (Supplementary
Fig. 11a). Then, the human intrinsic brain activity was decomposed
into a combination of the marmoset’s CC eigenmodes. Using this
decomposition, we reconstructed human cortical activity at each
time point via marmoset’s CC eigenmodes (ordered by eigenva-
lues), and further generated an area-to-area FC matrix. Finally, we
quantified reconstruction accuracy by calculating the ratio
between the observed and reconstructed cortical activity con-
centration, and the correlation between the empirical and recon-
structed FC matrix.

Statistical analysis
We performed a nonparametric permutation test to examine the
spatial significance of the cortical class-level activity concentra-
tions. We generated 1000 permutations for low- and high-
frequency components using graph spectral randomization
(SR)16 (Supplementary Section 2.2) and computed a null dis-
tribution of mean activity concentrations for each cortical class.
The mean activity concentration was greater than 95% (>95th
percentile) of the null permutations, which was identified to be
significantly concentrated in a given class16. Significance was set
at pSR < 0.05 with FDR-correction for multiple comparisons across
eleven cortical classes.

We performed a nonparametric permutation test to localize
empirical CFD of each cortical area that was significantly more
coupled or decoupled than the graph surrogate activity12. At a
significance level of α = 1=ð19 + 1Þ=0:05, we first generated 19
graph spectral randomization surrogate signals to threshold the
CFD for every animal. Furthermore, the binomial distribution PðnÞ
with nðn= 100Þ tests was utilized to threshold the group average
CFD across individuals, correcting for multiple comparisons
across 55 cortical areas.
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Sensitivity and reproducibility analyses
The cut-off frequency of CC eigenmodes was determined using the
graph spectrum dichotomy approach12. We also examined separating
the CC eigenmodes into low, medium, and high components22,87 to
further validate the sensitivity of parameter selection on the results.
Specifically, we chose different lowest KL and highest KH CC eigen-
modes to decompose the observed BOLD-fMRI into low- and high-
frequency components. The spatial correlations of low- and high-
frequency components, as well as the CFD patterns between the ori-
ginal and robustness analyses were compared.

To examine the reproducibility of patterned CFD, we included
another independent rs-fMRI data (N = 12; 1 female and 11 males; 2–4
years) from ION, China (https://marmosetbrainmapping.org/data). All
experimental procedures were approved by the ACUA of the Institute
of Neuroscience, Chinese Academy of Sciences. The marmosets from
the ION cohort were scanned in a 9.4T/30 cm horizontal MRI scanner.
Additional information regarding image acquisition protocol is avail-
able at ref. 34. We repeated the CFD pattern in this data and then
estimated the spatial correlation of regional CFD between the original
and replication analysis. Moreover, we calculated the Dice coefficient
to assess the overlap of significantly coupled or decoupled areas in the
two datasets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The retrograde neuroanatomical tract-tracing data is publicly available
from the Marmoset Brain Architecture Project (https://www.
marmosetbrain.org/)35. The NIH and ION awake marmosets MRI data-
sets are available from the Marmoset Brain Mapping (https://
marmosetbrainmapping.org/data)34. The HCP dataset77 is publicly
available at https://db.humanconnectome.org/. The Paxinos marmo-
set parcellation is publicly available from theMBMv3 resource (https://
marmosetbrainmapping.org/v3.html)47. The HCP-MMP1.0 human cor-
tical atlas61 is publicly available at https://balsa.wustl.edu/study/show/
RVVG. The myelin content, allometric scale, and cortical gene
expression in human is available through neuromaps (https://github.
com/netneurolab/neuromaps)92. Source data are provided in
this paper.

Code availability
The code used to conduct the main results in this study is available at
https://github.com/weiliao81/Marmoset_CFD and on Zenodo (https://
doi.org/10.5281/zenodo.10728317)93. The code for spatial
autocorrelation-preserving surrogate brain maps can be implemented
through the brainSMASH toolbox (https://github.com/murraylab/
brainsmash)88. The code for gradient analysis and the Moran spectral
randomization can be performed via BrainSpace (http://github.com/
MICA-MNI/BrainSpace)91. The brain surfaces were visualized using
Connectome Workbench (v1.5.0, https://www.humanconnectome.
org/software/connectome-workbench)94 and Python script (https://
github.com/netneurolab/marmoset_connectome)75.
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