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CMOSplus stochastic nanomagnets enabling
heterogeneous computers for probabilistic
inference and learning

Nihal Sanjay Singh 1,11, Keito Kobayashi1,2,3,11, Qixuan Cao1,11, Kemal Selcuk1,
Tianrui Hu1, Shaila Niazi1, Navid Anjum Aadit 1, Shun Kanai 2,3,4,5,6,7,8,
Hideo Ohno 2,4,5,9, Shunsuke Fukami 2,3,4,5,9,10 & Kerem Y. Camsari 1

Extending Moore’s law by augmenting complementary-metal-oxide semi-
conductor (CMOS) transistors with emerging nanotechnologies (X) has
become increasingly important. One important class of problems involve
sampling-based Monte Carlo algorithms used in probabilistic machine learn-
ing, optimization, and quantum simulation. Here, we combine stochastic
magnetic tunnel junction (sMTJ)-based probabilistic bits (p-bits) with Field
Programmable Gate Arrays (FPGA) to create an energy-efficient CMOS + X (X =
sMTJ) prototype. This setup shows how asynchronously driven CMOS circuits
controlled by sMTJs can perform probabilistic inference and learning by
leveraging the algorithmic update-order-invariance of Gibbs sampling. We
show how the stochasticity of sMTJs can augment low-quality randomnumber
generators (RNG). Detailed transistor-level comparisons reveal that sMTJ-
based p-bits can replace up to 10,000 CMOS transistors while dissipating two
orders of magnitude less energy. Integrated versions of our approach can
advance probabilistic computing involving deep Boltzmann machines and
other energy-based learning algorithms with extremely high throughput and
energy efficiency.

With the slowing down of Moore’s Law1, there has been a growing
interest in domain-specific hardware and architectures to address
emerging computational challenges and energy efficiency, particularly
borne out of machine learning and AI applications. One promising
approach is the co-integration of traditional complementary metal-
oxide semiconductor (CMOS) technology with emerging nano-
technologies (X), resulting in CMOS + X architectures. The primary

objective of this approach is to augment existing CMOS technology
with novel functionalities, by enabling the development of physics-
inspired hardware systems that realize energy-efficiency, massive
parallelism, and asynchronous dynamics, and apply them to a wide
range of problems across various domains.

Being named one of the top 10 algorithms of the 20th century2,
Monte Carlomethods have been one of themost effective approaches
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in computing to solve computationally hard problems in a wide range
of applications, from probabilistic machine learning, optimization to
quantumsimulation. Probabilistic computingwith p-bits3 has emerged
as a powerful platform for executing these Monte Carlo algorithms in
massively parallel4,5 and energy-efficient architectures. p-bits have
been shown to be applicable to a large domain of computational
problems, from combinatorial optimization to probabilistic machine
learning and quantum simulation6–8.

Several p-bit implementations that use the inherent stochasticity
in different materials and devices have been proposed, based on dif-
fusive memristors9, resistive RAM10, perovskite nickelates11, ferro-
electric transistors12, single photon avalanche diodes13, optical
parametric oscillators14 and others. Among alternatives sMTJs built out
of low-barrier nanomagnets have demonstrated significant potential
due to their ability to amplify noise, converting millivolts of fluctua-
tions to hundreds of millivolts over resistive networks15, unlike alter-
native approaches with amplifiers16. Another advantage of sMTJ-based
p-bits is the continuous generation of truly randombitstreamswithout
the need to be reset in synchronous pulse-based designs17,18. The
possibility of designing energy-efficient p-bits using low-barrier
nanomagnets has stimulated renewed interest in material and device
research with several exciting demonstrations from nanosecond
fluctuations19–21 to a better theoretical understanding of nanomagnet
physics22–25 and novel magnetic tunnel junction designs26,27.

Despite promising progress with hardware prototypes28–32,
large-scale probabilistic computing using stochastic nanodevices
remains elusive. As we will establish in this paper, designing purely
CMOS-based high-performance probabilistic computers suited to
sampling and optimization problems is prohibitive beyond a certain
scale (>1M p-bits) due to the large area and energy costs of pseu-
dorandomnumber generators. As such, any large-scale integration of
probabilistic computing will involve strong integration with CMOS
technology in the form of CMOS+X architectures. Given the una-
voidable device-to-device variability, the interplay between con-
tinuously fluctuating stochastic nanodevices (e.g., sMTJs) with
deterministic CMOS circuits and the possible applications of such
hybrid circuits remain unclear.

In this paper, we first introduce the notion of a heterogeneous
CMOS + sMTJ system where the asynchronous dynamics of sMTJs
control digital circuits in a standard CMOS field programmable gate
array (FPGA). We view the FPGA as a “drop-in replacement” for even-
tual integrated circuits where sMTJs couldbe situated on top of CMOS.
Unlike earlier implementations where sMTJs were primarily used to
implement neurons and CMOS or analogue components circuits for
synapses28,29, we design hybrid circuits where sMTJ-based p-bits con-
trol a large number of digital circuits residing in the FPGA without
dividing the system into neurons (sMTJ) and synapses (CMOS). We
show how the true randomness injected into deterministic CMOS
circuits augments low-quality random number generators based on
linear feedback shift registers (LFSR). This result represents an exam-
ple of how sMTJs could be used to reduce footprint and energy con-
sumption in the CMOS underlayer. In this work, we present a small
example of a CMOS + sMTJ system, however, similar systems can be
scaled up to much bigger densities, leveraging the proven manu-
facturability of magnetic memory at gigabit densities. Our results will
help lay the groundwork for larger implementations in the presence of
unavoidable device-to-device variations. We also focus beyond the
common use case of combinatorial optimization of similar physical
computers33, considering probabilistic inference and learning in deep
energy-based models.

Specifically, we use our system to train 3-hidden 1-visible layer
deep and unrestricted Boltzmann machines that entirely rely on the
asynchronous dynamics of the stochastic MTJs. Second, we evaluate
the quality of randomness directly at the application level through
probabilistic inference and deep Boltzmann learning. This approach

contrasts with the majority of related work, which typically conducts
statistical tests at the single device level to evaluate the quality of
randomness21,34–38 (see Supplementary Notes VIII, XI, and XII for more
randomness experiments). As an important new result, we find that the
quality of randomnessmatters inmachine learning tasks asopposed to
optimization tasks that have been explored previously. Finally, we
conduct a comprehensive benchmark using an experimentally cali-
brated 7-nm CMOS PDK and find that when the quality of randomness
is accounted for, the sMTJ-based p-bits are about four orders of
magnitude smaller in area and they dissipate two orders of magnitude
less energy, compared to CMOS p-bits. We envision that large-scale
CMOS + X p-computers (>>105) can be a reality in scaled-up versions of
the CMOS + sMTJ type computers we discuss in this work.

Constructing the heterogeneous p-computer
Figure 1 shows a broad overview of our sMTJ-FPGA setup along with
device and circuit characterization of sMTJ p-bits. Unlike earlier p-bit
demonstrationswith sMTJs as standalone stochastic binary neurons, in
this work, we use sMTJ-based p-bits to generate asynchronous and
truly random clock sources to drive digital p-bits in the FPGA
(Fig. 1a–c).

The conductance of the sMTJ depends on the relative angle θ
between the free and the fixed layers, GMTJ / ½1 +P2 cosðθÞ�, where P is
the interfacial spin polarization. When the free layer is made out of a
low barrier nanomagnet θ becomes a random variable in the presence
of thermal noise, causing conductance fluctuations between the par-
allel (P) and the antiparallel (AP) states (Fig. 1d).

The five sMTJs used in the experiment are designed with a dia-
meter of 50 nm and have a relaxation time of about 1–20ms, with
energy barriers of ≈14–17 kBT, assuming an attempt time of 1 ns39 (see
Supplementary Note II). In order to convert these conductance
fluctuations into voltages, we design a new p-bit circuit (Fig. 1b, e).
This circuit creates a voltage comparison between two branches
controlled by two transistors, fed to an operational amplifier. As we
discuss in Supplementary Note III, the main difference of this circuit
compared to the earlier 3 transistor/1MTJ design used in earlier
demonstrations28,29 is in its ability to provide a larger stochastic
window to tune the p-bit (Fig. 1h) with more variation tolerance (see
Supplementary Note IV).

Figure 1c, e, f, g showhow the asynchronous clocks obtained from
p-bits with 50/50 fluctuations are fed to the FPGA. Inside the FPGA, we
design a digital probabilistic computer where a p-bit includes a lookup
table (LUT) for the hyperbolic tangent function, a pseudorandom
number generator (PRNG) and a digital comparator (see Supplemen-
tary Note V).

The crucial link between analog p-bits and the digital FPGA is
established through the clock of the PRNG used in the FPGA, where a
multitude of digital p-bits can be asynchronously driven by analog
p-bits. As we discuss in Sections 3, 4, depending on the quality of the
chosen PRNG, the injection of additional entropy through the clocks
has a considerable impact on inference and learning tasks. The
potential for enhancing low-quality PRNGs using compact and scalable
nanotechnologies, such as sMTJs, which can be integrated as a BEOL
(Back-End-Of-Line) process on top of the CMOS logic, holds significant
promise for future CMOS + sMTJ architectures.

Results
Probabilistic inference with heterogeneous p-computers
In the p-bit formulation, we define probabilistic inference as generat-
ing samples froma specifieddistributionwhich is theGibbs-Boltzmann
distribution for a given network (see Supplementary Note I for details).
This is a computationally hard problem40, and is at the heart of many
important applications involving Bayesian inference41, training prob-
abilistic models in machine learning42, statistical physics43 and many
others44. Due to the broad applicability of probabilistic inference,
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improving key figures of merit, such as probabilistic flips per second
(sampling throughput) and energy-delay product for this task are
extremely important.

To demonstrate this idea, we evaluate probabilistic inference on a
probabilistic version of the full adder (FA)45 as shown in Fig. 2a. The
truth table of the FA is given in Fig. 2b. The FA performs 1-bit binary
addition and it has three inputs (A, B, Carry in =Cin) and two outputs
(Sum= S, and Carry out = Cout). The probabilistic FA can be described
in a 5 p-bit, fully connected network (Fig. 2a). When the network
samples from its equilibrium, it samples states corresponding to the
truth table, according to the Boltzmann distribution.

We demonstrate probabilistic sampling on the probabilistic FA
using the digital p-bits with standalone LFSRs (only using the FPGA),
sMTJ-clocked LFSRs (using sMTJ-based p-bits and the FPGA), and
standalone Xoshiro RNGs (only using the FPGA). Our main goal is to
compare the quality of randomness obtained by inexpensive but low-
quality PRNGs such as LFSRs46 with sMTJ-augmented LFSRs and high-
quality but expensive PRNGs such as Xoshiro47 (see Supplementary
Note VI).

Figure 2c shows the comparison of these three different solvers
where wemeasure the Kullback-Leibler (KL) divergence48 between the
cumulative distribution based on the number of sweeps and the ideal
Boltzmann distribution of the FA:

KL½PexpjjPideal�=
X

x

PexpðxÞ log
PexpðxÞ
PidealðxÞ

, ð1Þ

where Pexp is the probability obtained from the experiment (cumu-
latively measured), and Pideal is the probability obtained from the
Boltzmann distribution. For LFSR (red line), the KL divergence
saturates when the number of sweeps exceeds N = 104, while for
sMTJ-clocked LFSR (blue line) and Xoshiro (green line), the KL
divergence decreases with increasing the number of sweeps. The
persistent bias of the LFSR is also visible in the partial histogram of
probabilities measured at N = 106 sweeps as shown in Fig. 2d (see
Supplementary Note VII for the full histograms). It is important to
note here, that in our present context where sMTJs are limited to a
handful of devices, we use sMTJ-based p-bits to drive low-quality
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using 5 sMTJs obtained from the p-bit circuit (see Supplementary Note III), showing
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LFSRs, observing how they perform similarly to high-quality PRNGs.
In integrated implementations, however, sMTJ-based p-bits can be
directly used as p-bits themselves without any supporting PRNG (see
Supplementary Note XVI for details on projections of integrated
implementations).

The mechanism of how the sMTJ-clocked LFSRs produce random
numbers is interesting: even though the next bit in an LFSR is always
perfectly determined, the randomness in the arrival times of clocks
from the sMTJs makes their output unpredictable. Over the course of
the full network’s evolution, each LFSR produces an unpredictable
bitstream, functioning as truly random bits.

The observed bias of the LFSR can be due to several reasons: first,
the LFSRs generally provide low-quality random numbers and do not
pass all the tests in the NIST statistical test suite49 (see Supplementary
Note XII). Second, we take whole words of random bits from the LFSR
to generate large random integers. This is a known danger when using
LFSRs50,51, which can be mitigated by the use of phase shifters that
scramble the parallelly obtained bits to reduce their correlation52.
However, such measures increase the complexity of PRNG designs,
further limiting the scalable implementation of digital p-computers
(see Supplementary Note XI for detailed experimental analysis of
LFSR bias).

The quality of randomness in Monte Carlo sampling is a rich
and well-studied subject (see, for example, refs. 53–55). The main
point we stress in this work is that even compact and inexpensive
simple PRNGs can perform as well as sophisticated, high-quality
RNGs when augmented by truly random nanodevices such
as sMTJs.

Boltzmann learning with heterogeneous p-computers
We now show how to train deep Boltzmann machines (DBM) with our
heterogeneous CMOS + sMTJ computer. Unlike probabilistic infer-
ence, in this setting, the weights of the network are unknown, and the
purpose of the training process is to obtain desired weights for a given
truth table, such as the full adder (see Supplementary Note IX for an
example of arbitrary distribution generation using the same learning
algorithm). We consider this demonstration as a proof-of-concept for
eventual larger-scale implementations (Fig. 3a, b). Similar to prob-
abilistic inference, we compare the performance of three solvers:
LFSR-based, Xoshiro-based and sMTJ+LFSR-based RNGs. We choose a
32-node Chimera lattice56 to train a probabilistic full adder with 5
visible nodes and 27 hidden nodes in a 3-layer DBM (see Fig. 3b top
panel). Note that this deep network is significantly harder to train than
training fully visible networks whose data correlations are known a
priori29, necessitating positive and negative phase computations (see
Supplementary Note VII and Algorithm 1 for details on the learning
algorithm and implementation).

Figure 3c, d show the KL divergence and the probability dis-
tribution of the full adder Boltzmann machines based on the fully
digital LFSR/Xoshiro and the heterogeneous sMTJ-clocked LFSR RNGs.
The KL divergence in the learning experiment is performed like this:
after each epoch during training, we save the weights in the classical
computer and perform probabilistic inference to measure the KL dis-
tance between the learned and ideal distributions. The sMTJ-clocked
LFSR and the Xoshiro-based Boltzmannmachines produce probability
distributions that eventually closely approximate the Boltzmann dis-
tribution of the full adder. On the other hand, the fully digital LFSR-

Fig. 2 | Inference on a probabilistic full adder. a Fully-connected full adder
network45, where p-bits are clocked by the sMTJs. b Truth table of the full adder
where Dec. represents the decimal representation of the state of [A B Cin S Cout]
from left to right. c Kullback-Leibler (KL) divergence between the ideal and mea-
sured distributions vs. the number of sweeps. Results are shown for LFSR-based p-
bit (red line), sMTJ-clocked LFSR-based p-bit (blue line), and Xoshiro-based p-bit

(green line).dHistogram for themeasured and ideal distributions at the 106 sweep.
The red, blue, and yellow bars show LFSR, sMTJ-clocked LFSR, and Boltzmann
distribution, respectively. The histogram shows all 8 high probability states deno-
ted in (b) and with a clear bias for the LFSR distribution (see Supplementary
Note VII for full histograms for all PRNGs, including Xoshiro).
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based Boltzmann machine produces the incorrect states [A B Cin S
Cout] = 2 and 29 with a significantly higher probability than the correct
peaks, and grossly underestimates the probabilities of states 0, 6, 18,
and 25 (see Supplementary Fig. 4 for full histograms that are avoided
here for clarity). As in the inference experiment (Fig. 2a), the KL
divergence of the LFSR saturates and never improves beyond a point.
The increase in the KL divergence for Xoshiro and sMTJ-clocked LFSR
towards the end is related to hyperparameter selection and unrelated
to RNG quality57. For this reason, we select the weights at epoch=400
for testing to produce the histogram in Fig. 3d.

In linewith our previous results, the learning experiments confirm
the inferior quality of LFSR-based PRNGs, particularly for learning
tasks (see Supplementary Note X for MNIST training comparisons
between p-bits based on Xoshiro and LFSR). While LFSRs can produce
correct peaks with some bias in optimization problems, they fail to
learn appropriate weights for sampling and learning, rendering them
unsuitable for these applications. In addition to these results, statistical
tests on the NIST test suite corroborate our findings that sMTJ-clocked
LFSRs and high-quality PRNGs such as Xoshiro outperform the pure
LFSR-based p-bits (see Supplementary Note XII).
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Our learning result demonstrates how asynchronously interacting
p-bits can creatively combine with existing CMOS technology. Scaled
and integrated implementations of this concept could lead to a
resurgence in training powerful DBMs58.

Energy and transistor count comparisons
Given our prior results stressing how the quality of randomness can
play a critical role in probabilistic inference and learning, it is beneficial
to perform precise, quantitative comparisons with the various digital
PRNGs we built in hardware FPGAs with sMTJ-based p-bits15. Note that
for this comparison, we do not consider augmented CMOS p-bits, but
directly compare sMTJ-based mixed signal p-bits with their digital
counterparts (see Supplementary Note XVI for details on projections
of integrated implementations using sMTJ-based mixed signal p-bits).
Moreover, instead of benchmarking the voltage comparator-based p-
bit circuit shown in Fig. 1 or other types of spin-orbit torque-based
p-bits3,59, we benchmark the 3T/1MTJ-based p-bit first reported in ref.
15. The reason for this choice is that this design allows the use of fast in-
plane sMTJswhosefluctuations canbe as fast asmicro to nanoseconds.
We alsonote that the table-top componentswe use in thiswork are not
optimized but used for convenience.

For the purpose of benchmarking and characterization, we syn-
thesize circuits for LFSR and Xoshiro PRNGs and these PRNG-based p-
bits using the ASAP 7nm Predictive process design kit (PDK) that uses
SPICE-compatible FinFET device models60. Our synthesis flow,
explained in detail in Supplementary Note XII, starts from hardware
description level (HDL) coding of these PRNGs and leads to transistor-
level circuits using the experimentally benchmarked ASAP 7nm PDK.
As such, the analysis we performhere offers a high degree of precision
in terms of transistor counts and quantitative energy consumption.

Figure 4a shows the transistor count for p-bits using 32-bit PRNGs.
Three pieces make up a digital p-bit: PRNG, LUT (for the activation
function) and a digital comparator (typically small). To understand
how each piece contributes to the transistor count, we separate the
PRNG from the LUT contributions in Fig. 4a.

First, we reproduce earlier results reported in ref. 28, corre-
sponding to the benchmarking of the design reported in ref. 15 and

find that a 32-bit LFSR requires 1122 transistors which is very close to
the custom-designed 32-bit LFSR with 1194 transistors in ref. 28.
However, we find that the addition of an LUT, ignored in ref. 28, adds
significantly more transistors. Even though the inputs to the p-bit are
10-bits (s[6][3]), the saturating behavior of the tanh activation allows
reductions in LUT size. In our design, the LUT stores 28 words of 32-bit
length that are compared to the 32-bit PRNG. Under this precision, the
LUT increases the transistor count to 5150, andmorewould be needed
for finer representations. Note that the compact sMTJ-based p-bit
design proposed in ref. 15 uses 3 transistors plus an sMTJ which we
estimate as having an area of 4 transistors, following ref. 28. In this
case, there is no explicit need for a LUT or a PRNG.

Additionally, the results presented in Figs. 2 and 3 indicate that to
match the performance of the sMTJ-based p-bits, more sophisticated
PRNGs like Xoshiromust be used. In this case,merely the PRNG cost of
a 32-bit Xoshiro is 7516 transistors. The LUT costs are the same as LFSR-
based p-bits which is about ≈4029 transistors.

Collectively, these results indicate that to truly replicate the per-
formance of an sMTJ-based p-bit, the actual transistor cost of a digital
design is ~11,000 transistorswhich is anorder ofmagnitudeworse than
the conservative estimation performed in ref. 28.

In Fig. 4b, we show the energy costs of these differences.We focus
on the energy required to produce one random bit. Once again, our
synthesis flow, followed by ASAP7-based HSPICE simulations, repro-
duces the results presented in ref. 28. We estimate a 23 fJ energy per
random bit from the LFSR-based PRNG where this number was
reported to be 20 fJ in ref. 28.

Similar to the transistor count analysis, we consider the effect of
the LUT on the energy consumption, which was absent in ref. 28. We
first observe that if the LUT is not active, i.e., if the input Ii to the p-bit is
not changing, the LUTdoes not change the energy per randombit very
much. In a real p-circuit computation, however, Ii would be con-
tinuously changing activating the LUT repeatedly. To simulate these
working conditions, we create a variable Ii pulse that wanders around
the stochastic windowof the p-bit by changing the least significant bits
of the input (see Supplementary Note XV). We choose a 1 GHz fre-
quency for this pulse mimicking an sMTJ with a lifetime of 1 ns. We
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Fig. 4 | Transistor counts and energy consumption for p-bit and RNG imple-
mentations. The digital p-bits and PRNGs are synthesized by the ASAP7 PDK and
simulated inHSPICE in transistor-level simulations. aTransistor count forp-bits and
RNGs and (b) Energy Consumption per random bit of p-bits and RNGs. The PRNGs

are 32-bits long and LUTs store 28 words that are 32-bits long to be compared with
32-bit RNGs. The sMTJ-based p-bit result is repeated from ref. 28. To activate the
LUT, a periodic input signal with low inputs to the p-bit has been used. See the text
and Supplementary Note XV for details on the energy calculation.
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observe that in this case, the total energy to create a random bit on
average increases by a factor of 6× for the LFSR, reaching 145 fJ per bit.

For the practically more relevant Xoshiro, the average consump-
tion per random bit reaches around 293 fJ. Once again, we conclude
that the 20 fJ per random bit, reported in ref. 28 underestimates the
costs of RNG generation by about an order of magnitude when the
RNGquality andother peripheries suchasLUTs are carefully taken into
account. In this paper, we do not reproduce the energy estimation of
the sMTJ-based p-bit but report the estimate in ref. 28, which assumes
an sMTJ-based p-bit with ≈ nanosecond fluctuations.

Our benchmarking results highlight the true expense of high-
quality digital p-bits in silicon implementations. Given that func-
tionally interesting and sophisticated p-circuits require above
10,000 to 50,000 p-bits5, using a 32-bit Xoshiro-based p-bit in a
digital design would consume up to 0.1 to 0.5 Billion transistors, just
for the p-bits. In addition, the limitation of not being able to paral-
lelize or fit more random numbers in hardware would limit the
throughput61 and the probabilistic flips per second, a key metric
measuring the effective sampling speed of a probabilistic computer
(see for example, refs. 62–64). As discussed in detail in Supplemen-
tary Note XVI, near-term projections with N = 104 p-bits using sMTJs
with in-plane magnetic anisotropy (IMA) (τ ≈ 1 ns19) can reach ≈ 104

flips/ns in sampling throughput. These results clearly indicate that a
digital solution beyond 10,000 to 50,000 p-bits, as required by large-
scale optimization, probabilistic machine learning, and optimization
tasks, will remain prohibitive. To solve these traditionally expensive
but practically useful problems, the heterogeneous integration of
sMTJs holds great promise both in terms of scalability and energy
efficiency.

Discussions
This work demonstrates the first hardware demonstration of a het-
erogeneous computer combining versatile FPGAswith stochasticMTJs
for probabilistic inference anddeepBoltzmann learning.We introduce
a new variation-tolerant p-bit circuit that is used to create an asyn-
chronous clock domain, driving digital p-bits in the FPGA. In the pro-
cess, the CMOS + sMTJ computer shows how commonly used and
inexpensive PRNGs can be augmented by magnetic nanodevices to
perform as well as high-quality PRNGs (without the resource over-
head), both in probabilistic inference and learning experiments. Our
CMOS + sMTJ computer also shows the first demonstration of training
a deep Boltzmann network in a 32-node Chimera topology, leveraging
the asynchronous dynamics of sMTJs. Careful comparisons with
existing digital circuits show the true potential of integrated sMTJs,
which can be scaled up to million p-bit densities far beyond the cap-
abilities of present-day CMOS technology (see Supplementary
Note XVI for detailed benchmarking and a p-computing roadmap).

Methods
sMTJ fabrication and circuit parameters
We employ a conventional fixed and free layer sMTJ, both having
perpendicular magnetic anisotropy. The reference layer thickness is
1 nm (CoFeB) while the free layer is 1.8 nm (CoFeB), deliberately made
thicker to reduce its energy barrier28,35. The stack structure of the
sMTJs we use is, starting from the substrate side, Ta(5)/Pt(5)/[Co(0.4)/
Pt(0.4)]6/Co(0.4)/Ru(0.4)/[Co(0.4)/Pt(0.4)]2/Co(0.4)/Ta(0.2)/
CoFeB(1)/MgO(1.1)/CoFeB(1.8)/Ta(5)/Ru(5), where the numbers are in
nanometers (Fig. 1a). Films are deposited at roomtemperature bydc/rf
magnetron sputtering on a thermally oxidized Si substrate. The devi-
ces are fabricated into a circular shape with a 40–80 nm diameter
using electron beam lithography and Ar ion milling and annealed at
300 °C for 1 hour by applying a 0.4 T magnetic field in the perpendi-
culardirection. The average tunnelmagnetoresistance ratio (TMR) and
resistance area product (RA) are 65% and 4.7Ωμm2, respectively. The
discrete sMTJs used in this work are first cut out from the wafer, and

the electrode pads of the sMTJs are bonded with wires to IC sockets.
The following parameters aremeasured by sweepingDC current to the
sMTJ and measuring the voltage. The resistance of the P state RP is
4.4–5.7 kΩ, the resistance of the AP state RAP is 5.9–7.4 kΩ, and the
current at which P/AP fluctuations are 50% is defined as I50/50, in
between 14–20μA. At the output of the new p-bit design, we use an
extra branch with a bipolar junction transistor that acts as a buffer to
the peripheral module pins of the Kintex UltraScale KU040 FPGA
board. Given the electrostatic sensitivity of the sMTJs, this branch also
protects the circuit from any transients that might originate from
the FPGA.

Digital synthesis flow
HDL codes are converted to gate-level models using the Synopsys
Design Compiler. Conversion from these models to Spice netlists is
done using Calibre Verilog-to-LVS. Netlist post-processing is done by a
custom Mathematica script to make it HSPICE compatible. Details of
the synthesis flow (shown in Fig. 4), followed by HSPICE simulation
results for functional verification and power analysis are provided in
Supplementary Notes XIII, XIV, and XV.

Data availability
All processeddata generated in this study areprovided in themain text
and Supplementary Information. The data that support the plots
within this paper and other findings of this study are available from the
corresponding author upon request.

Code availability
The computer code used in this study is available from the corre-
sponding author upon request.
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