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Ferroelectric compute-in-memory annealer
for combinatorial optimization problems

Xunzhao Yin 1,2,6, Yu Qian 1,6, Alptekin Vardar3, Marcel Günther3,
Franz Müller 3, Nellie Laleni3, Zijian Zhao4, Zhouhang Jiang4, Zhiguo Shi1,2,
Yiyu Shi 4, Xiao Gong 5, Cheng Zhuo 1,2,7 , Thomas Kämpfe 3,7 &
Kai Ni 4,7

Computationally hard combinatorial optimization problems (COPs) are ubi-
quitous in many applications. Various digital annealers, dynamical Ising
machines, and quantum/photonic systems have been developed for solving
COPs, but they still suffer from thememory access issue, scalability, restricted
applicability to certain types of COPs, and VLSI-incompatibility, respectively.
Herewe report a ferroelectric field effect transistor (FeFET) based compute-in-
memory (CiM) annealer for solving larger-scale COPs efficiently. Our CiM
annealer converts COPs into quadratic unconstrained binary optimization
(QUBO) formulations, and uniquely accelerates in-situ the core vector-matrix-
vector (VMV)multiplication operations of QUBO formulations in a single step.
Specifically, the three-terminal FeFET structure allows for lossless compres-
sion of the stored QUBO matrix, achieving a remarkably 75% chip size saving
when solving Max-Cut problems. A multi-epoch simulated annealing (MESA)
algorithm is proposed for efficient annealing, achieving up to 27% better
solution and ~ 2X speedup than conventional simulated annealing. Experi-
mental validation is performed using the first integrated FeFET chip on 28nm
HKMG CMOS technology, indicating great promise of FeFET CiM array in
solving general COPs.

Combinatorial optimization problems (COPs), as shown in Fig. 1a, are
prevalent in diverse fields, including logistics, resource allocation,
communication network design, finance, drug discovery, and trans-
portation systems, etc.1–4. Often, these problems belong to the class of
non-deterministic polynomial-time-hard (NP-hard) problems, repre-
senting some of the most challenging computational tasks in the NP
domain. Solving COPs using digital computers based on the von
Neumann architecture poses difficulties, given the exponential growth
in required resources regarding the computational power and latency
as the problems scale up5–7. Therefore, there is a pressing need to
explore novel hardware design with alternative architectures and
algorithms that canefficiently tackleCOPs. This research frontier holds

crucial implications for real-world applications, with the potential to
address complex and resource-intensive problems with greater
effectiveness.

Many COPs, including graph coloring, Max-Cut, and traveling
salesmanproblem, etc., can bemapped to the Ising spin glassmodel or
often go by the name QUBO (i.e., quadratic unconstrained binary
optimization)8, which have emerged as a powerful framework for
effectively modeling and solving a wide range of COPs9. In this fra-
mework, the problem variables are elegantly represented as spins, and
the interactions or constraints between variables are represented as
spin-to-spin couplings. The objective function of the problem can then
bemapped to the Hamiltonian energy function of the Isingmodel. The
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Fig. 1 | Accelerationof solving COPswithCiM array. aCOPs (e.g., Max-Cut, graph
coloring, prime factorization etc.) can be converted to b xTQx QUBO formulation.
Many hardware systems, including c digital annealing system, d dynamical system,
and e CiM system are promising for solving COPs. f Due to the unique

characteristics of FeFET-based CiM crossbar, it can implement typical xTQx QUBO
formulation with symmetrical input vectors. g The array can also accelerate amore
general and compact xTQ0y QUBO formulation with asymmetrical vectors, thus
achieving high efficiency and low cost.

Article https://doi.org/10.1038/s41467-024-46640-x

Nature Communications |         (2024) 15:2419 2



solution of a problem then corresponds to the combination of spins
that minimizes the Ising Hamiltonian HP, which can be formulated as
follows:

minHP =
XN

i,j = 1

Jijσiσj +
XN

i= 1

hiσi ð1Þ

where N denotes the number of spins, and σi∈ {1, − 1} represents the
state of spin i. Jij and hi stand for the coupling between spin i and j and
the self-coupling of spin i, respectively. Through a simple variable
change σi = 1 − 2xi, xi∈ {0, 1}, the Ising Hamiltonian (Eq. (1)) can be
readily transformed into a QUBO matrix form10,11 as

HQUBO =xTQx ð2Þ

where x = (x1, x2,…, xn), and Q is a symmetric or an equivalent upper
triangular n × nmatrix12,13, as shown in Fig. 1b. For instance, consider a
Max-Cut problem defined on an undirected graph G(V, E), where V
represents the set of vertices, and E represents the set of edges12. The
Max-Cut problem is mapped into the QUBO form by introducing a
binary variable xi∈ {0, 1} for eachvertex i∈V, where xi takes the value 1
if vertex i is assigned to one set and 0 if it belongs to the other set. The
objective function of the Max-Cut problem can then be formulated as
follows:

min
X

ði,jÞ2E
ð2xixj � xi � xjÞ ð3Þ

Considering the binary xi, such a form can be easily represented as the
xTQx QUBO form12,13. The conversion of other COPs, such as graph
coloring problems and prime factorization problems, into the QUBO
form is further elaborated in Sec. 1 of Supplementary Information.

To solve COPs efficiently, various alternative computing hardware
are under active research. Figure 1c, d briefly summarizes different
electronic implementations. One class of hardware are digital ASIC
annealers, where various annealing algorithms are implemented in
digital circuits14–17. Usually the spin coupling matrix is stored in mem-
ory and data need to be frequently transferred between memory and
computing units for energy computation and annealing, which can be
energy- and time-consuming as the problem scales up. An attractive
alternative is dynamical system Ising machines, where the intrinsic
system dynamics and tendency to settle at lowest energy state is
exploited to solve theCOPs, as shown inFig. 1d.Once the spin coupling
matrix are programmed within the hardware, these solvers naturally
explore the solution space and ultimately find the spin combination
that minimizes the Ising energy without explicitly executing annealing
algorithms. Examples include the oscillator-based Ising machine
(OIM)18–20, latch-based Ising machine21–23, and optical-based coherent
ising machine (CoIM)24–28.

While the concept of such a systemholds immense promise, there
are several challenges that remain to be addressed. First, the dynamics
and robustness of dynamical Ising solvers is highly sensitive to the
coupling implementations between spins, as a slight deviation in
coupling strength can lead to convergence disruption of the
solution19,22. Therefore, it poses a significant challenge in precisely
mapping the spin coupling matrix into hardware. Second, exploiting
dynamical Ising solvers to their full potential requires mapping the
entire problem onto a single solver. For large scale problems that are
beyond the capacity of the solver, how to efficientlymap the problems
tomultiple separate chips and implement chip-to-chip communication
while maintaining system dynamics requires substantial work. There-
fore, scaling of dynamical Ising solver is a critical challenge. Lastly,
integration of self-interaction into these dynamical Ising solvers is not
straightforward, thus allowing easymapping of only a subclassof COPs
without self-interaction terms, such as Max-Cut, Sherrington-

Kirkpatrick models, etc18,29. Many COPs requiring self-interaction
terms after mapping to the Ising model, including graph coloring,
prime factorization, bin packing, etc., remain yet to be solved by
dynamical Ising solvers. Other unconventional approaches, including
quantum and photonic implementations, generally utilize their unique
physical behavior to directly represent the Ising models. However,
many of them are challenging to integrate into silicon VLSI technolo-
gies. For example, the D-Wave quantum annealers proposed in refs.
30–32 require expensive cryogenic cooling and exhibit limited con-
nectivity between spins. Optical Ising machine consumes extremely
long optic fiber to implement the solver, making its integration highly
challenging25.

In this article, we perform a hardware-algorithm co-design of a
compute-in-memory (CiM) based annealer to efficiently solve QUBO
formulations, thus the COPs, as shown in Fig. 1e. Themost well-known
CiMhardware system is probably the crossbar array for acceleration of
the vector-matrix multiplication (VMM), a core operation in neural
networks33. In this scheme, the matrix is stored in memory, including
volatile and nonvolatile memory (NVM), and the VMM computations
are performed in CiM arrays without energy-consuming and slow data
movement between memory and computing units, thus exhibiting
superior energy efficiency. Drawing inspiration from this, and recog-
nizing that the QUBO formulation is composed of a vector-matrix-
vector (VMV) multiplication as shown in Eq. (2), this article aims at
expediting the in-situ VMVmultiplication through CiM approach, thus
accelerating solving COPs. Our CiM annealer could potentially address
the aforementioned challenges faced by digital annealers and dyna-
mical Ising solvers, offering several advantages: (i) our CiM approach
stores the QUBO matrix in memory and directly performs VMV mul-
tiplication inmemory, avoiding the datamovement bottleneck seen in
digital annealers; (ii) by programming multiple FeFET devices with
binary states to represent a single matrix coefficient and performing
the VMVmultiplication in analog domain, CiM annealer is intrinsically
robust against the noise and inaccuracy of the coupling matrix map-
ping. In contrast, Ising solvers can be vulnerable to these issues; (iii)
Unlike dynamic Ising solvers, which rely on the overall system
dynamics to solve COPs, our CiM-based approach easily handles
larger-scale problems beyond the capacity of our chip by decompos-
ing the corresponding QUBO formulation into smaller forms, then
independently mapping and computing these forms across multiple
CiM chips; (iv) Lastly, our CiM array can readily implement self-
interaction terms within the QUBO formulation by programming the
diagonalmatrix coefficient valueonto the crossbar cells. In conclusion,
CiM approach when seamlessly integrated with efficient annealing
algorithms, could offer a powerful hardware platform for COPs.

Herewe propose to develop an ferroelectric field effect transistor
(FeFET) based CiM crossbar array to accelerate VMVmultiplications of
QUBO, as shown in Fig. 1f. FeFETs based on ferroelectric HfO2 are a
prime candidate technology platform to implement CiM system for in-
situ VMV multiplication. First, it is naturally a three-terminal non-
volatile device, ideal for VMV multiplication, where the coupling
matrix element can be stored in the polarization state of the FeFET and
the two inputs (not necessarily identical) can be applied on the gate
and drain, respectively. On the contrary, other two-terminal NVM
based CiM system would require an VMM operation to calculate the
intermediate result, and then apply another dot multiplication in
digital domain to complete the VMV multiplication. Second, HfO2

based FeFET exhibits superior energy efficiency with its electric field
driven polarization switching mechanism and high ON/OFF ratio34,35,
while current-driven memristor devices require additional access
transistors and complex sensing circuitry, leading to much more
energy consumption than FeFETs. Third, FeFETs stand out due to its
CMOS compatibility and scalability34,35, while embedded flash strug-
gles to scale beyond the 28nm node36. When performing VMV multi-
plication, a FeFET-based CiM array necessitates lower write/read
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voltages (Vwrite/Vread = 4/1V) and less write time ( ~ 10ns) compared to
flash (Vwrite/Vread = 15/4.5V, twrite = 1ms)37. This results in reduced energy
consumption and execution time. Therefore, a compact single FeFET
CiM array is developed in this work for the QUBO computations.
Compared to memristor-based Max-Cut problem solver38,39, our work
represents a significant advancement in CiM based annealers. The
innovation of this work lies in: i) first proposal of a compact and
effective 1FeFET1R CiM implementation for in-situ VMVmultiplication
by exploiting the three-terminal structure and nonvolatile storage of
FeFETs. These voltage-driven devices feature with superior write
energy and unique single-step 3-input multiplication capability; ii)
proposing a lossless compression method for the QUBO formulation
by capitalizing on the FeFET CiMarray’s capability to accommodate in-
situ VMV multiplication with asymmetrical (non-identical) input vec-
tors as shown in Fig. 1g, thus significantly reducing the array size of the
crossbar and expanding the problem-solving capacity to larger scales;
iii) introducing amulti-epoch simulated annealing (MESA) algorithm to
enhance the annealing process and improve the solution quality,
which can quickly find the optimal solution of COPs via iterative QUBO
computations; iv) first experimental demonstration of a FeFET CiM
array to showcase its efficacy in accelerating QUBO computations and
highly competitive performance against other hardware alternatives in
solving complex COPs. The overall working flow of our CiM based
annealer is depicted in Sec. 2 of Supplementary Information and as
follows: (i) A COP is initially converted into a QUBO formulation xTQx
as shown in Fig. 1f. (ii) This QUBO formulation is then losslessly com-
pressed into a more general and compact form with asymmetric
variable vectors xTQy, as shown in Fig. 1g. (iii) The QUBO matrix Q0 of
the compressed formulation is mapped onto a FeFET-based crossbar
array, which inherently performs single-step VMV multiplication. The
summed current of the crossbar represents the value of the com-
pressed QUBO objective function. (iv) The solving process utilizes a
MESA algorithm. In each iteration of the annealing process, the FeFET-
based array computes the QUBO formulation value, and the objective
function value is determined. (v) After the MESA process, the variable
vector configurations that correspond to the optimal objective func-
tion value are obtained and translated into the solution for the
given COP.

Results
1FeFET1R based CiM architecture
Considering the great promise of FeFET crossbar array in accelerating
VMV multiplication with both symmetric and asymmetric input vec-
tors for COPs in QUBO formulation, FeFET CiM array is designed and
experimentally demonstrated. Figure 2 shows the cell and array design
and experimental data illustrating the CiM hardware. The FeFET CiM
chip is integrated onto an industrial 28nm high-κ metal gate FeFET
technology platform40. The device features an approximately 8nm
dopedHfO2 as the ferroelectric layer, as shown in the schematic cross-
section and transmission electron microscopy (TEM) cross-section in
Fig. 2a. The structural similarity of FeFET to standard logic transistor,
coupled with its CMOS compatibility and ultra-scalable nature of fer-
roelectric HfO2, enables the integration of FeFETswith Si CMOS, which
is leveraged in thiswork. For the demonstration, an 32 × 32 FeFET array
is designed, where the chip layout is composed of array core, the word
line (WL) driver, source line (SL)/data line (DL) driver, and the analog-
to-digital converter (ADC) is shown in Fig. 2b. The fabricated chip
micrograph is shown in Fig. 2c.

As shown in Fig. 2d, our approach encodes the coupling matrix
element q into the polarization states of the FeFET. By applying inputs
x and y to the FeFET’s gate and drain, respectively, the resulting
channel current iDL corresponds to the scalar product of these three,
i.e., iDL= x × q × y. Consequently, the core computation within VMV
multiplication can be implemented with minimal overhead. This sets
our approach apart from other two-terminal NVM devices like

memristors, which are limited to singular multiplications between the
input and the stored values41,42. Figure 2e further shows the relation-
ship between cell current and gate voltage (i.e., VWL) for two memory
states across 60 distinct devices. The coupling matrix element is
encoded as the polarization states, programmed via +4V/-4V, 1μs gate
pulses, which induce the polarization to orient towards the channel/
gate-metal, and hence set the threshold voltage (VTH) of FeFET into the
low-VTH (i.e., q = 1)/high-VTH state (i.e., q = 0), respectively. By choosing
an appropriate read gate bias (i.e., input x), the resultant cell current
realizes the scalar product.

While the design is compact and elegant, a potential challenge
arises from the need to manage FeFET variation, which can lead to
compromised accuracy in VMV multiplications. Despite ongoing
improvements in materials and processes43, FeFET variation remains a
significant factor in CiM applications, as indicated in Fig. 2f. In this
work, we employ an 1FeFET1R cell structure as depicted in Fig. 2g to
effectively mitigate the device variations and enhance the accuracy of
the VMVmultiplication. By incorporating a series resistor, the cell’s ON
current, regulated by the current limiter, becomes independent of the
FeFET’s ON current44,45. Such structure ensures that the presence of
variation in VTH does not manifest as variation in the cell’s ON current.
As a proof of concept, each FeFET is connected with a series resistor
for the samegroupof 60devices. Figure 2h shows the 1FeFET1R cell I-V
characteristics, which exhibits the same VTH distribution as that in
Fig. 2e, while its ON current variation can be significantly suppressed,
as illustrated inFig. 2i.While there is a trade-off involving the reduction
in the cell’s ON current, the ON/OFF ratio still exceeds 1000, ensuring
that there should be no constraints on the practical array size. As a
result, the 1FeFET1RCiMarray is designed as illustrated in Fig. 2j,where
the resistor is implemented with a fully integrated MOSFET. A more
detailed description of our chip measurement can be referred to
Fig. S3 in Sec. 3 of Supplementary Information. Additionally, to suc-
cessfully program the array while suppressing the program disturb, a
standard VW/3 is adopted46, as illustrated in Fig. S5a. Also the memory
array error rate shown in Fig. S5b as a function of the write conditions
clearly demonstrates that it is possible to reduce the write voltage if a
longwrite latency can be tolerated47. Furthermore, the currentwithin a
column exhibits a linear relationship with the number of activated
cells, corroborated across 20 different arrays as shown in Fig. 2k.
Therefore, it validates the linearity and functionality of the crossbar
array, and also demonstrates the tightly controlled distribution of the
output current. Moreover, the CiM results are stable up to 105 seconds
without noticeable degradation, as shown in Fig. S5c. These results lay
a robust foundation for the acceleration of VMV multiplication in
this work.

Lastly, we present the mapping of the generalized QUBO form,
xTQy, onto the 1FeFET1R CiM array, as illustrated in Fig. 2l and m. The
details of the general QUBO form are depicted in Fig. 2l. The input
vectors, x and y, are mapped to the WL and SL inputs, respectively, as
shown in Fig. 2m. This figure further shows the circuit implementation
of the FeFET-based crossbar array along with its associated peripheral
circuits. The QUBO matrix is mapped onto the FeFET crossbar by
storing M-bit precision matrix elements within M 1FeFET1R cells. Each
cell stores a single bit of the matrix element, therefore an n × n QUBO
matrix corresponds to the implementation of n ×N cells, where N is
n ×M. To perform the VMV multiplication, the WL driver activates all
rows of the FeFET crossbar, and the SLs of the columns are activated
per the input y (i.e., ‘1’ indicates ON, and ‘0’ indicates OFF). The con-
secutive column outputs are directed to the column-shared analog-
digital converters (ADCs), converted to digits, and further processed
through Shift and Add units, generating the dot product between the
stored multi-bit coupling vector and input vector x. The final value of
QUBO xTQy function is then accumulated as the output of the current
iteration in the annealing process and stored in the output buffer. In
this way, our proposed CiM crossbar realizes the VMV multiplication
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Fig. 2 | FeFET-based CiM array for QUBO acceleration. a FeFET schematic and
TEM cross section, featuring an 8nm doped HfO2 s the ferroelectric. b Layout of an
32 × 32 FeFET array composed of core and peripherals. c Micro-graph of the fab-
ricated chip, where bond pads are visible. d The current of a FeFET iDL corresponds
to the scalar product of stored value q (i.e., threshold voltage VTH), and inputs x and
y, applied at the gate and drain, respectively. e The IDL-VWL characteristics of 60
FeFETs for the two memory states. f Significant ON current variation of FeFETs will
result in compromised accuracy in VMV multiplications. g An 1FeFET1R cell

structure can suppress the ION variability. h IDL-VWL of 60 1FeFET1R cells with 1MΩ

resistor. i A significantly narrower ION distribution for the 1FeFET1R cells, thus
substantially enlarging the practical CiM array size. j As a result, the 1FeFET1R CiM
array implementing a general QUBO formulation is proposed. kMeasured column
current shows a good linearity with respect to the number of activated cells in the
column, thus promising for VMV multiplication. l QUBO formulation mapping to
m FeFET-based CiM array architecture.
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directlyby simply applying two input vectorswithin each iteration, and
ultimately solves the QUBO formulation in Eq. (2), synergizing with the
efficient annealing algorithms.

QUBO matrix lossless compression
Mapping the QUBO formulation directly onto the FeFET crossbar CiM
array with two identical or symmetrical input vectors applied on the
WLs andSLs, respectively, has revealed a challenge in termsof lowchip
utilization. This issue stems from the inherent sparsity often observed
inQUBOmatrix converted fromCOPs. Figure 3a, b show the sparsity of
QUBO matrix for graph coloring problems48 and Max-Cut problems49,
respectively, across varying problem instances with different node
counts. Remarkably, the majority of the matrix elements (typically
exceeding 85%) assume zero values. Therefore, when directlymapping

the QUBO matrix onto the FeFET crossbar array, a large portion of
FeFET cells witin the array are programmed to state ‘0’ (i.e., high-VTH

state). Although these ‘OFF’ cells do not actively participate in the VMV
multiplication during QUBO computation, they still incur additional
hardware area overhead and contribute to leakage power consump-
tion. With the expansion problem complexity and scale, the hardware
size essential for accommodating the convertedQUBOmatrix exhibits
quadratic growth with the node count, thus leading to substantial
hardware resources waste. Such low hardware utilization therefore
introduces formidable obstacles to CiM annealers in solving larger-
scale COPs efficiently.

To minimize the hardware inefficiencies stemming from sparse
matrixmapping, a lossless compression technique is proposedhere, as
illustrated in Fig. 3c. This approach entails pruning the sparse and

Fig. 3 | Proposed lossless compression of the QUBO matrix. Conventional
xTQx QUBO formulation for many COPs like a graph coloring and b Max-Cut is
highly sparse.Whendirectlymapped to aCiMarray, significant portionofhardware
could be wasted. c A lossless compression method is proposed to convert a large
scale xTQx formulation to a more compact and dense xh

TQ0xv formulation by

leveraging the three-terminal FeFET-based CiM array, where x = xh∪xv. d The
conceptual flow of xTQx compression leveraging the symmetry of the Q matrix.
Chip size savings after compression for e graph coloring and f. Max-Cut problems,
are presented in (a) and (b), respectively.
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symmetric QUBO matrix, originally of size n × n within the xTQx for-
mulation, into a more compact dense matrix of size p × q within the
xh

TQ0xv formulation, where xh∪ xv = x and p, q ≤ n. This innovative
technique achieves substantial chip size reduction by capitalizing on
the distinctive attributes of the three-terminal FeFET crossbar CiM
array, particularly when implementing the xTQy formulation, where x
and y need not be symmetrical. Figure 3d illustrates the methodology
of QUBOmatrix compression, elucidated through a concrete example,
which consists of 4 steps:

Step 1. The input vectors are organized in order of the corresponding
node degrees. Node degree represents the significance of the asso-
ciated input variable in QUBO formulation computation, gauging the
extent of its involvement in nonzero scalar multiplications. Pruning is
initiated from nodes with fewer connections.

Step 2. Row compression of Q matrix is carried out in the order of
sorted input vector list obtained in STEP 1. For each selected input
variable xi from the list, if the respective row in matrix Q is compres-
sible, every nonzero element within the row is added to the element at
its corresponding diagonal position, capitalizing on the symmetrical
nature of xTQx formulation. Subsequently, the elements in the com-
pressed row are set to zero, with rows containing the updated diagonal
elements marked as incompressible to ensure lossless compression.

Step3. Columncompressionmirrors the operation conducted in STEP
2, with nonzero elements within the compressed column added to the
their respective diagonal elements, then set to zero. Columns con-
taining updated diagonal elements are labeled as incompressible.

Step 4. The QUBOmatrix’s compressed rows and columns, along with
their corresponding variables in the input vectors, are eliminated,
yielding the compressed QUBO matrix along with the compressed
input vectors.

A detailed description of the compression methodology is fea-
tured in Fig. S6 in Sec. 4 of Supplementary Information. As a result,
redundant rows and columns of QUBO matrix are removed, reducing
crossbar array size required to implement the xTQxQUBO formulation
without sacrificing accuracy. The compressedQUBOmatrix ismapped
onto the FeFET crossbar for the iterative annealing of QUBO for-
malized COPs. The binary variable vectors xh and xv associated with
the compressed QUBO formulation are applied to the WLs and SLs of
the FeFET CiM array, respectively. In this way, the proposed com-
pression approach enhances the scalability of CiM hardware, thereby
scaling up the capacity for solving larger-scale COPs.

The efficacy of the proposed compression technique has been
evaluated. For the sameproblem instances of graph coloring andMax-
Cut COPs, as analyzed in Fig. 3a, b, respectively, the corresponding
chip size reduction percentages are elucidated in Fig. 3e, f. These
results demonstrate that the compression method yields substantial
savings in chip size compared to the implementations without
compression38,39. Note that the extent of chip size reduction does not
necessarily correlates with the node count in a problem. This is
because that the distribution of nonzero elements within the QUBO
matrix significantly affects the impact of the compressionmethod. For
instance, if all nonzero elements aggregate within a single row, the
QUBOmatrix could be compressed to just one row, yielding high chip
size savings. Conversely, if each row contains only one nonzero ele-
ment, and these nonzero elements are at different columns, com-
pression of the QUBOmatrix might not be feasible, even if it is sparse.

Solving COPs with multi-epoch simulated annealing
Previously developed FeFET CiM array demonstrates its capability to
accelerate the computation of the QUBO formulation, which matches
with annealing algorithms for solving COPs. That is, the configurations

or solutions corresponding to the minimal QUBO energy are sought
via an iterative annealing procedure. Simulated annealing (SA) algo-
rithms were introduced to address the problem of local minimum
trapping during the annealing process. The energy of the objective
function, as computed by the configurations in current iteration, is
compared with the energy state corresponding to current solution. If
the computed energy is lower, the solution configurations are updated
with the corresponding variable configurations. Conversely, if the
energy is higher, the update retains a probability proportional to the
temperature. Such annealing process has been adopted in prior NVM
based annealers38,39. Nonetheless, conventional SA has demonstrated
suboptimal performance in handling large-scale COPs42. To accelerate
the SA process while still ensuring high probability of finding optimal
solutions, a multi-epoch simulated annealing (MESA) algorithm is
herein proposed.

Figure 4a illustrates the detail of the MESA process. For each
epoch, an optimal solution (xhopt, xvopt) and its associated QUBO
energy Eopt are defined and sustained throughout the epoch. This
records the lowest energy state attainable by the system, given the
input configuration and the energy initialized to the optimal solution
from the previous epoch. The QUBO energy, Enew, is calculated using
the CiM hardware, as previously detailed. If Enew is lower than the
energy Eo of the last iteration, indicating a progression toward a lower
energy landscape, this QUBO energy and its associated variable solu-
tion (xh, xv) are accepted. The optimal solution (xhopt, xvopt) along with
its energy value Eopt within this epoch are either updated or main-
tained, depending on the comparison between Enew and the optimal
solution. Should Enew closely approximate Eo, indicating that the sys-
tem is trapped at a local minimum, the energy and its corresponding
variable solution remain unaltered, and the trap count is updated. If
Enew is notably larger than the energy Eo, the system has a probability
closely related to the temperature T to accept the variable solution,
allowing a chance to escape from local minimum. Subsequently, the
system introduces random perturbations by flipping a few bits in the
input vectors, and proceeds to the next iteration. When the system is
trapped at a local minimum, where the energy trajectory remains
stagnant for a predefined period Countmax, the epoch concludes, the
temperature resets, and a fresh epoch commences. As a result, the
length of each epoch is dynamically adjusted according to the system’s
advancement. The input configuration and its corresponding energy at
the beginning of a new SA epoch are initialized based on the optimal
solution and the energy recorded during the last epoch. Such initi-
alization ensures the continuous convergence of MESA toward lower
energy states.

Figure 4b shows the COP solving capability of MESA over that of
conventional SA in identifying optimal solutions for prevalentMax-Cut
problems. It can be seen that MESA outperforms the conventional SA
across all Max-Cut problems, ranging in size from 800 to 3000 nodes,
encompassing a search space spanning 2800 to 23000. As the node count
increases, i.e., the problem complexity grows, MESA yields superior
solutions to SA, boasting an improvement of up to 27% in cut value
when addressing 3000-node problems.With the dataset tested, Fig. S7
shows that MESA consistently outperforms conventional SA in terms
of success rate and time-to-solution, achieving nearly double the
speedup compared to conventional SA. The improvements of MESA
over conventional SA result from the multi-epoch annealing process,
where each annealing epoch begins with the optimal input config-
uration from the previous one. This greedy initialization enhances the
convergence of the objective function towards the global optimum.
Moreover, MESA includes an adaptive annealing termination scheme
within each epoch to prevent the algorithm from trapping at a local
minimum for an extended number of iterations, thus reducing unne-
cessary time and resource consumption. Leveraging both software
advancements (introduction of MESA) and hardware improvements,
particularly notable enhancements in hardware resource utilization,
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time efficiency, and energy efficiency associated with QUBO compu-
tations within each annealing iteration (Fig. 3e, f), our approach
markedly achieves significant improvements across various aspects,
including problem-solving scale, time efficiency, and solution quality.
Yet, the capability of all the CiM SA solver relies not only on the
algorithm, but also the precision of the hardware especially when

mapping the QUBO matrix. Figure S8 demonstrates the impact of the
QUBO matrix precision in solving the prime factorization problem
(PFP), as an example. A single MESA epoch of solving the PFP is stu-
died. As expected, the higher the precision of QUBOmatrix, the higher
the success rates of MESA in finding the solution. This is because
highermapping precision yields amore accurate representation of the
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energy landscape, as shown in Fig. S9, which however incurs more
hardware costs in terms of analog-digital-converter and array size.

To demonstrate the capability of developed FeFET CiM array in
accelerating COPs, a toy example of graph coloring, as shown in
Fig. 4c, is evaluated. To fit the problem into the developed 32 × 32
FeFET array, the example consists 7 nodes and 3 colors to be assigned.
The initial QUBO formulation prior to compression necessitates an
21 × 21 array (i.e., each node can be any of the three color, thus total 21
input variables, per the QUBO conversion described in Sec. 1 of Sup-
plementary Information), whereas the compressed formulation can be
implementedon an 16 × 15 array, resulting in a notable 1.84 × reduction
in chip size. In this example, thematrixQ is ternary (i.e., has value of 0,
1, 2). For experimental demonstration, 2 FeFETs are used to represent
each matrix element. Three FeFET CiM array dies (see Fig. 2c for the
chip photo) have been employed to evaluate the QUBO formulation.
The capability of the chip in realizing the intended xTQy computation
is demonstrated in Fig. 4d, where the measured array total current
shows a linear dependence on the theoretical xTQy value. Building
upon this capability, MESA is performed on the chip. Figure 4e shows
the ternary Q matrix corresponding to the graph coloring problem in
Fig. 4c. The corresponding 32× 15 FeFET array is then programmed.
Figure 4f, g show the VTH and measured cell current, respectively,
demonstrating successful mapping of the matrix Q.

Figure 4h and i show the theoretical energy and experimentally
measured energy evolution with annealing iterations. The experi-
mental measurements are conducted on 3 separate dies. Figure 4i
shows 9 separate measurements on one of the die, where for each
measurement, the FeFET CiM array is erased and programmed again
with the same QUBO matrix, and MESA is executed. All of the mea-
sured curves consistently align with the theoretical curve, validating
the capability and robustness of the proposed FeFET CiM systems in
performing MESA to solve COPs. More experimental measurement
results can be found in Fig. S10. Figure S11 showcases the graph col-
oring configurations during annealing, highlighted at different itera-
tion steps shown in Fig. 4i, i.e., the beginning (A),midpoint (B), and end
(C) of the evolution process. Initially, errors such as multiple colors
attributed to a single node, identical colors assigned to adjacent
nodes, or uncolored nodes could occur, which correspond to high
QUBO energy states like point A and B. In these cases, the algorithm is

still exploring the solution spacewith the constraints loosely enforced.
As annealing proceeds, the proposed approach can ultimately find the
optimal solution with all the constraints satisfied.

Discussion
We proposed a comprehensive hardware-algorithm co-design frame-
work for solving the complex COPs efficiently. The proposed approach
comprises a FeFET-based CiM array that accelerates the critical in-situ
VMV multiplications within the QUBO formulation. Additionally, the
proposed QUBO matrix compression technique significantly improves
the chiputilization, thereby enhancing theproblemsolving capability of
the hardware when addressing larger COPs. Complementing this, our
multi-epoch based SA algorithm optimizes the proposed solver’s ability
to converge and reach optimal solutions within a shorter time period.
Both the simulation and experimental measurements on fabricated
prototypes validate the problem-solving capability of the proposed
approach. The solver summary in Table 1 demonstrates that the pro-
posed framework can outperform solvers for COPs commonly show-
cased in prior works by leveraging the VMV acceleration and QUBO
compression techniques. Remarkably, the proposed framework show-
cases robust COP-solving capability and exhibits wide applicability to a
broad spectrumofCOPS that can be transformed toQUBO formulation.
Importantly, our framework has the potential for broad adoption across
various NVM based crossbars beyond FeFET devices. Moreover, our
framework can accommodate various types of COPs with even larger
scales than the size of FeFET CiM chip, as illustrated in Sec. 1 and Sec. 8
of Supplementary Information.This adaptability positionsour approach
as a universal and highly efficient method for QUBO computation and
solving COPs using three-terminal voltage-driven structures.

Methods
FeFET chip integration
Testing chip is designed with FeFETs integrated on 28nm high-κmetal
gate (HKMG) platform. The fabricated ferroelectric field effect tran-
sistor (FeFET) features a poly-crystalline Si/TiN (2 nm)/doped HfO2 (8
nm)/SiO2 (1 nm)/p-Si gate stack. The ferroelectric gate stack process
module starts with growth of a thin SiO2 based interfacial layer, fol-
lowed by the deposition of an 8 nm thickdopedHfO2. A TiNmetal gate
electrodewasdeposited using physical vapor deposition (PVD), on top

Table 1 | Summary of QUBO Solvers

Reference 41 50 51 52 42 This work

Problem Max-Cut Max-Cut Spin Glass Graph Partion Traveling
Salesman

Graph Coloring/Max-Cut/
Prime Factorization

QUBO matrix
compression

No No No No No Yes

method SA Chaotic SA SA SA Multi-step SA MESA

Hardware implementation memristor based
crossbar

memristor based
crossbar

RRAM based
crossbar

RRAM based
crossbar

RRAM based
crossbar

FeFET based crossbar†

Hardware acceleration⋆ VM VM VM VM VM VMV

Hardware size 60 × 60 2 × 2 11 × 3 64 × 64 1024 × 1152 32 × 32

Problem size 60 node 5 node 15 node 6 node 100 node 21 node

⋆: VM denotes vector-matrix multiplication, VMV denots vector-matrix-vector multiplication.
†: The first one known to us.

Fig. 4 | Demonstration of a new simulated annealing algorithm and its hard-
ware acceleration using FeFET CiM array. a Proposed multi-epoch simulated
annealing (MESA) algorithm for solving complex COPs. b Results of 30 Max-Cut
problems demonstrate that MESA outperforms conventional SA in the quality of
solution. c A toy example of graph coloring for hardware implementation, which
consists of 7 nodes and 3 colors to paint. After compression, it requires a ternary
CiM array of 16 × 15 to map. d When mapped to a FeFET CiM array, the measured
array current is linearly proportional to the theoretical xTQy value, demonstrating

the feasibility of performing MESA in hardware. e The ternary matrix Q corre-
sponding to the toy graph coloring problem in (c). f Using 2 FeFETs to represent
each ternary Q matrix element, the programmed FeFET VTH map of the corre-
sponding 32 × 15 array. g The corresponding cell current. h The theoretical energy
as a function of annealing iteration. i Experimentallymeasured energy as a function
of annealing iteration, showing successful operation of the hardware in imple-
menting the annealing algorithm.
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of which the poly-Si gate electrode is deposited. The source and drain
n+ regions were obtained by phosphorous ion implantation, which
were then activated by a rapid thermal annealing (RTA) at approxi-
mately 1000∘C. This step also results in the formation of the ferro-
electric orthorhombic phase within the doped HfO2.

FeFET chip electrical characterization
The measurements primarily utilize a PXIe measurement system pro-
vided by National Instruments. A padring comprising 28 individual
analog and digital pads establishes connections between the 1kb
(32 × 32) FeFET macro and a serial peripheral interface (SPI). The
adapter board interfaceswith specific pads on thewafer using a probe-
card within a wafer probe system. The setup includes distinct NI PXIe-
4143 source measure units (SMU) and an NI PXIe-6570 pattern gen-
erator. Notably, the output pins of the latter device can function as a
Pin Parametric Measurement Unit (PPMU). This configuration facil-
itates the generation of necessary supply, bias voltages, and digital
signals. Moreover, the pattern generator plays a crucial role in con-
figuring the scan chain for the proper addressing of wordlines and
sourceline/drainline.

Data availability
The data that support the findings of this study are available in Zenodo
with the https://doi.org/10.5281/zenodo.10697395. [https://doi.org/10.
5281/zenodo.10697394]. Other data related to this study are available
from the corresponding author.

Code availability
The code that support thefindings of this study are available inZenodo
with the https://doi.org/10.5281/zenodo.10697395. [https://doi.org/10.
5281/zenodo.10697394].
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