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Integrative genomic analyses identify
candidate causal genes for calcific aortic
valve stenosis involving tissue-specific
regulation

Sébastien Thériault 1,2 , Zhonglin Li 1, Erik Abner 3, Jian’an Luan 4,
Hasanga D. Manikpurage 1, Ursula Houessou 1, Pardis Zamani1,
Mewen Briend 1, Estonian Biobank Research Team*, Dominique K. Boudreau 1,
Nathalie Gaudreault 1, Lily Frenette1, Déborah Argaud1, Manel Dahmene1,
François Dagenais1,5, Marie-Annick Clavel 1,6, Philippe Pibarot1,6,
Benoit J. Arsenault 1,6, S. Matthijs Boekholdt7, Nicholas J. Wareham 4,
Tõnu Esko3, Patrick Mathieu 1,5 & Yohan Bossé 1,8

There is currently no medical therapy to prevent calcific aortic valve stenosis
(CAVS). Multi-omics approaches could lead to the identification of novel
molecular targets. Here, we perform a genome-wide association study (GWAS)
meta-analysis including 14,819 cases among 941,863 participants of European
ancestry. We report 32 genomic loci, among which 20 are novel. RNA
sequencing of 500 human aortic valves highlights an enrichment in expression
regulation at these loci and prioritizes candidate causal genes. Homozygous
genotype for a risk variant near TWIST1, a gene involved in endothelial-
mesenchymal transition, has a profound impact on aortic valve transcriptomics.
We identify five genes outside of GWAS loci by combining a transcriptome-wide
association study, colocalization, andMendelian randomization analyses. Using
cross-phenotype and phenome-wide approaches, we highlight the role of cir-
culating lipoproteins, blood pressure and inflammation in the disease process.
Our findings pave the way for the development of novel therapies for CAVS.

Calcific aortic valve stenosis (CAVS) is the most frequent valvular
heart disease, affecting up to 2% of the population aged 65 years and
older1,2. Progressive fibro-calcific remodeling of aortic valve leaflets
leads to the obstruction of blood flow from the left ventricle to the
aorta, causing left ventricular remodeling, heart failure, and death3,4.
Aortic valve replacement is currently the only effective treatment

and there is no pharmacological therapy to prevent CAVS or slow its
progression.

In the last decade, several genetic variants associated with CAVS
have been identified through genome-wide association studies
(GWAS), improving our understanding of the disease pathophysiol-
ogy. Variants in LPA, associated with lipoprotein (a) levels, and PALMD,
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a regulator of actin polymerization5,6, remain the most strongly asso-
ciated with CAVS7–9. Large-scale transcriptomic analyses in human
aortic valves have confirmed the specific roleof PALMD inCAVS8,10, and
led to the identification of NAV1 as another contributing gene9. Var-
iants located in TEX41, IL6, ALPL and FADS1/2 have also shown sig-
nificant association with CAVS in previous GWAS9,11,12. More recently,
two large GWAS including 14,451 and 13,765 cases, respectively, led to
the identification of 20 additional loci, some of which are associated
with blood lipids (CELSR2-SORT1) or obesity (FTO)13,14.

In this work, we perform a GWASmeta-analysis for CAVS in 14,819
cases among 941,863 participants and generate extensive tran-
scriptomic data from 500 human aortic valves to identify novel key
molecular drivers. Our objectives were to (1) identify novel genetic loci
and candidate causal genes that impact gene expression in the aortic
valve and (2) characterize the relationship between the genetic archi-
tecture of CAVS and cardiovascular traits.

Results
Identification of CAVS genomic loci
A GWAS meta-analysis for CAVS was performed in 14,819 cases (61%
men) and 927,044 controls of European ancestry from six cohorts
(Supplementary Fig. 1, Supplementary Fig. 2, and Supplementary
Data 1). In total, 17,130,226 variants were included in themeta-analysis,
7,159,971 of which were available in all six cohorts. The genomic
inflation factor was 1.099 and the LD score regression intercept was
1.020. Thirty-two loci reached genome-wide significance (P < 5 × 10−8),
including 20 novel loci (Table 1, Fig. 1 and Supplementary Data 2).
Among the novel associations, variants located in LPL and LDLR, two
major regulators of circulating blood lipids, were identified. The 32
lead variants at the genome-wide associated loci had a concordant
direction of effect in the recent meta-analysis by Chen et al.14. Thirty
showed nominal association with CAVS (P < 0.05), of which 29
remained significant when using a threshold of false discovery rate
<5%. In the deCODE cohort (n = 2457 CAVS cases and 349,342
controls)11, 28 out of the 32 lead variants had the same direction of
effect (Supplementary Data 3). Variants at seven other loci previously
reported in European populations were nominally associated
(P < 0.05) with a concordant direction of effect, including six that
remained significantwhenusing a threshold of falsediscovery rate <5%
(Supplementary Data 4).

Variant annotation and prioritization
Among variants in linkage disequilibriumwith independent significant
SNPs, there was a significant enrichment for intronic and exonic
functional annotations (Supplementary Data 5). Among the lead SNPs,
twoweremissense variants located in STARD9 (rs28744617) andASCC2
(rs61736786). Missense variants in ALDH1A2 (rs4646626), MUC4
(rs2246901), and CDAN1 (rs4265781) were in high LD (r2 ≥0.8) with a
lead SNP. The missense variants in ASCC2, ALDH1A2 and MUC4 had
Combined Annotation Dependent Depletion (CADD) scores of 14.52,
17.37, and 21.50, respectively, ranking them in the 5%most deleterious
variants in the genome. A nonsense variant in LPL previously asso-
ciatedwith circulating triglyceride levels, rs328 (S447X), was inhigh LD
(r2 = 0.958) with the lead variant at this locus (Supplementary Data 6).
The 95% credible set, determined using a Bayesian approach imple-
mented in CAVIAR, included five or less variants for five loci (nearest
genes: PALMD, PRRX1, TMEM44, LPA, PDE3A and HMGA2). The com-
plete sets for each locus are reported in Supplementary Data 7. Con-
ditional analyses led to the identificationof independent genome-wide
significant signals at the LPA (n = 3) and IL6 (n = 2) loci (Supplemen-
tary Data 8).

Gene mapping
Wemapped the protein-coding genes located within 10 kilobases (kb)
of a genome-wide significant SNP and the genes located on either side

for lead intergenic SNPs, identifying a list of 79 nearby genes (Sup-
plementaryData 2). A gene-based analysis usingMAGMA identified 158
genes (117 additional genes) at a false discovery rate threshold <5%, for
a total of 196 prioritized genes (Supplementary Data 9).

Expression in human aortic valves
To identify the genesmost likely to be involved in CAVS, we completed
extensive transcriptomic profiling of the most relevant tissue, the
aortic valve. We performed RNA-sequencing on 500 human aortic
valve samples of various disease stages (81.6% with CAVS) and valve
morphology (44% bicuspid) from patients recruited in our institution
to create the QUEBEC-CAVS-RNA dataset (Supplementary Data 10).
First, the expression level of the 196 genes prioritized by positional
mapping or MAGMA was evaluated. Among the 187 genes with avail-
able gene expression quantification in aortic valves, 22 had a median
expression level above the 90th percentile of all the protein-coding
genes, including seven genes located nearby the meta-analysis lead
SNPs: RPLP2, CCND1, ACTR2, TALDO1, PDGFRA, PRRX1, and UQCR10
(Supplementary Data 11).

To identify genes for which there is specific expression in the
aortic valve, we compared gene expression with 43 GTEx tissues by
calculating expression specificity scores (ESS). Among the genes of
interest, nine had an ESS >0.1 for the aortic valve, which corresponded
approximatively to the top 5% of the empirical distribution for all the
protein-coding genes in the aortic valve (Supplementary Data 12). Five
of them were located nearby the meta-analysis lead SNPs: CHST6,
CCND1, ALDH1A2, ADAMTS7 and PRRX1. The maximum ESS was
observed in the aortic valve for all five genes except PRRX1, for which
there was a slightly higher ESS in fibroblasts in GTEx. Other genes with
a high ESS in a relevant tissue included HMGA2 (ESS = 0.80 in fibro-
blasts), NKX2-5 (ESS =0.42 in atrial appendage), PDE3A (ESS = 0.14 in
tibial artery) and PDGFRA (ESS =0.13 in fibroblasts) (Supplementary
Data 12 and Supplementary Fig. 3).

Expression quantitative trait loci
Genome-wide expression quantitative trait loci (eQTL) analyses in 484
human aortic valves identified 4,671,347 significant SNP-gene pairs.
Among the 32 meta-analysis lead SNPs, 48 significant SNP-gene pairs
were identified in the aortic valve, located in 20 loci (Supplementary
Data 13). For these 32 lead SNPs, there was a significantly higher pro-
portion of significant SNP-gene pairs (48/915, 5.25%) compared to all
the SNP-gene pairs tested (4,671,347/182,925,823, 2.55%,
P = 4.25 × 10−7). A Wilcoxon rank sum test also confirmed an enrich-
ment towards stronger associations for these 915 SNP-gene pairs
(P = 1.71 × 10−7) (Supplementary Fig. 4).

In 43 tissues from GTEx, significant eQTLs were found for 25 loci
(Supplementary Data 14). The number of significant SNP-gene pairs
ranged from one (brain anterior cingulate cortex) to 37 (tibial nerve).
Taken together, themost significant eQTLwas in the aortic valve for 12
loci, including four genes for which there was no reported eQTL in the
GTEx tissues: rs6702619-PALMD (P = 7.1 × 10−119), rs7804522-TWIST1
(P = 5.7 × 10−22), rs1965668-NKX2-5 (P = 7.9 × 10−12) and rs72854462-
TEX41 (P = 7.8 × 10−6). For 16 other loci, the most significant eQTL was
found in a GTEx tissue. However, these were distributed among ten
different tissues, which each had between one and three of the most
significant SNP-gene pairs for a given locus (Supplementary Fig. 5).
Among these, associations include rs1706003-ATP13A3 in the left
ventricle (P = 1.7 × 10−26), rs771264-RNF144A in fibroblasts
(P = 1.9 × 10−12) and rs11330858-MECOM in the aorta (P = 7.5 × 10−5).

Transcriptome-wide association study, colocalization and Men-
delian randomization
A transcriptome-wide association study (TWAS) was performed to
identify genes for which genetically predicted expression in the aortic
valve is associated with CAVS. Thirty-five genes reached statistical
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significance at a false discovery rate <5%, including PALMD and NAV1,
identified in a previous TWAS9 (Supplementary Data 15). To obtain
further evidence on the potential causal role of these genes in CAVS,
colocalization and Mendelian randomization (MR) analyses were per-
formed. After removing genes with a low probability for colocalization
of the GWAS and eQTL signals (PP4 <0.75, n = 20), with no MR
instrument (n = 3) or with high heterogeneity of the instrument (n = 2),
ten genes remained (PALMD, NAV1, PRRX1, ATP13A3, BCL10, TWIST1,
RAD9A, NRBP1, FES and AFAP1). All genes showed a significant asso-
ciation inMRwith the inverse-varianceweighted andweightedmedian
approaches (PIVW and PWM adjusted for false discovery rate <5%),
suggesting a causal association between gene expression in the aortic
valve and CAVS. There was no evidence of pleiotropy with the Egger
intercept test (Pintercept > 0.05 for all genes). Among the novel genes
identified, three were located at a genome-wide significant locus:
PRRX1, ATP13A3 and TWIST1, for which gene expression in the aortic
valve was positively associated with CAVS (PIVW = 4.5 × 10−17, 9.4 × 10−9,
and 5.7 × 10−4, respectively) (Fig. 2). The lead SNPs in the meta-analysis
at these three loci were strong eQTLs in the aortic valve (all

PeQTL < 1 × 10−15). Five other genes were identified; the association
between genetically predicted expression and CAVS was positive for
three: BCL10, RAD9A and NRBP1 (PIVW = 0.0066, 5.6 × 10−5, and
9.4 × 10−4, respectively) and negative for two: FES and AFAP1
(PIVW = 7.9 × 10−4 and 5.5 × 10−4, respectively) (Supplementary
Figs. 6 and 7).

To evaluate a potential impact of valve morphology on gene
expression regulation for these genes, we calculated eQTL separately
for tricuspid and bicuspid aortic valves. For all 10 genes identified by
the transcriptomic analyses, the effect of the lead variant on gene
expression was similar in tricuspid and bicuspid valves (all P < 0.05 for
heterogeneity) (Supplementary Data 16).

Differential expression according to genotype at the
TWIST1 locus
Considering the potential causal relationship between genetically
determined expression of TWIST1 in the aortic valve and CAVS risk, as
well as the fact that the lead GWAS SNP, rs7804522, is only associated
with gene expression in the aortic valve (valve-specific eQTL), we

Table 1 | Genome-wide significant loci for calcific aortic valve stenosis from the meta-analysis

Locus rsID Chr Pos RA/NRA RAF OR (95% CI) P I2 (%) PHet Gene Novel

1 rs2077522 1 87917746 C/T 0.592 1.08 (1.06–1.11) 3.1E−10 0.0 0.60 LMO4 Yes

2 rs6702619 1 100046246 G/T 0.496 1.18 (1.15–1.21) 3.9E−40 0.0 0.51 PALMD No

3 rs1016819 1 170645774 G/C 0.341 1.11 (1.08–1.14) 1.2E−14 0.0 0.81 PRRX1 No

4 rs682112 1 201746768 A/G 0.398 1.11 (1.08–1.14) 3.2E−14 49.9 0.09 NAV1 No

5 rs771264 2 7129124 C/T 0.496 1.07 (1.04–1.10) 5.0E−08 69.1 0.0064 RNF144A Yes

6 rs62139061 2 65498805 C/T 0.300 1.09 (1.06–1.12) 4.0E−10 24.6 0.25 ACTR2 No

7 rs72854462 2 145720139 A/G 0.735 1.15 (1.12–1.19) 1.7E−22 16.4 0.31 ZEB2a No

8 rs111825950 3 153748291 T/TTTCA 0.197 1.11 (1.08–1.15) 1.1E−10 0.0 0.49 ARHGEF26 No

9 rs11330858 3 169202578 A/AT 0.489 1.08 (1.05–1.11) 1.3E−09 0.0 0.43 MECOM No

10 rs1706003 3 194299967 G/T 0.542 1.09 (1.06–1.12) 3.1E−11 0.0 0.69 TMEM44 Yes

11 rs3103933 3 195485440 A/G 0.305 1.12 (1.08–1.16) 6.1E−09 33.6 0.20 MUC4 Yes

12 rs147558377 4 55113623 G/C 0.149 1.10 (1.07–1.14) 2.4E−08 0.0 0.79 PDGFRA Yes

13 rs182432302 5 45560981 T/C 0.970 1.33 (1.20–1.47) 2.3E−08 0.0 0.98 HCN1 Yes

14 rs1965668 5 172653401 G/C 0.687 1.08 (1.05–1.11) 1.6E−08 0.0 0.65 NKX2-5 Yes

15 rs10455872 6 161010118 G/A 0.063 1.53 (1.45–1.61) 3.0E−61 52.3 0.063 LPA No

16 rs7804522 7 19458058 C/G 0.421 1.07 (1.05–1.10) 1.9E−08 28.4 0.22 FERD3L Yes

17 rs1800797 7 22766221 A/G 0.480 1.12 (1.09–1.15) 1.3E−19 0.0 0.96 IL6 No

18 rs2286427 7 76024520 T/C 0.162 1.10 (1.06–1.14) 4.6E−08 0.0 0.91 SSC4D Yes

19 rs11570891 8 19822810 C/T 0.894 1.20 (1.13–1.28) 7.2E−09 0.0 0.62 LPL Yes

20 rs17810852 9 136365075 G/A 0.458 1.08 (1.05–1.10) 1.1E−08 0.0 0.43 MYMK Yes

21 rs187229435 11 805953 C/G 0.021 1.29 (1.19–1.40) 1.6E−09 56.3 0.043 PIDD1 Yes

22 rs174551 11 61573684 T/C 0.620 1.09 (1.06–1.12) 3.1E−10 0.6 0.40 FADS1 No

23 rs12270146 11 69163441 G/A 0.322 1.09 (1.06–1.12) 8.3E−10 0.0 0.89 MYEOV Yes

24 rs10770612 12 20230639 A/G 0.779 1.12 (1.08–1.15) 6.6E−13 40.9 0.13 PDE3A Yes

25 rs17766960 12 66407417 G/T 0.816 1.10 (1.07–1.14) 1.6E−09 0.0 0.61 HMGA2 Yes

26 rs12429277 13 37445944 A/C 0.247 1.08 (1.05–1.12) 2.3E−08 0.0 0.50 SMAD9 Yes

27 rs28744617 15 42981022 A/G 0.763 1.09 (1.06–1.12) 2.2E−08 0.0 0.90 STARD9 No

28 rs4646642 15 58246916 A/G 0.446 1.08 (1.05–1.10) 4.2E−09 0.0 0.72 ALDH1A2 Yes

29 rs2869553 15 79012613 G/T 0.240 1.09 (1.05–1.12) 2.9E−08 76.0 0.00086 ADAMTS7 Yes

30 rs150429885 16 75498252 CT/C 0.613 1.08 (1.06–1.11) 1.9E−09 0.0 0.97 TMEM170A No

31 rs6511720 19 11202306 G/T 0.892 1.12 (1.08–1.17) 2.5E−08 0.0 0.89 LDLR Yes

32 rs61736786 22 30189642 T/C 0.043 1.19 (1.12–1.26) 3.5E−08 35.5 0.17 ASCC2 Yes

The association of each variant with calcific aortic valve stenosis was obtained from an inverse-variance weighted fixed-effect meta-analysis combining the effect per allele in the cohorts with
available data.
Genes in bold are significant in MAGMA gene-based analysis (P <0.00039 corresponding to false discovery rate <5%).
Pos position according to GRCh37, RA risk allele,NRA non-risk allele, RAF risk allele frequency, I2 heterogeneity statistic, PHet heterogeneity p-value (Cochran’s Q-test),GeneNearest protein-coding
gene.
aLocated in lncRNA TEX41
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explored further the impact of this variant on the transcriptomic profile
in the aortic valve. After selecting individualswith severe aortic stenosis,
we compared gene expression between the 66 individuals homozygous
for the risk allele (rs7804522-C) and the 138 individuals homozygous for
the other allele. We found 509 differentially expressed genes at a false
discovery rate <5%, indicating a profound effect of this genotype on
transcriptome-wide gene expression (Fig. 3 and Supplementary
Data 17). For comparison, a differential expression analysis performed
using the same method for the four other genome-wide significant loci
corroborated by transcriptomic analyses in the aortic valve (PALMD,
NAV1, PRRX1 and ATP13A3) showed only five or less differentially
expressedgenesbetween individuals homozygous for the risk allele and
those homozygous for the other allele (Supplementary Data 18). At the
TWIST1 locus, a total of 148 genes were up-regulated while 361 genes
were down-regulated in the group homozygous for the risk allele
(Fig. 3). The dysregulated genes were enriched for several metabolic
pathways including neutrophil degranulation, cell cycle, cell division
and apoptosis (Fig. 3 and Supplementary Data 19).

Prioritization of causal genes
To prioritize potential causal genes, we combined the evidence from
ten different features, including lead variants location and annotation,
association at the gene level, expression in the aortic valve, colocali-
zation, TWAS and MR. Taken together, 17 genes located at genome-
wide significant loci and eight genes identified by TWAS had four or
more features that suggested their implication in CAVS (Fig. 4). Among
the genes located at genome-wide significant loci, PRRX1, NAV1,
ALDH1A2 andMUC4 had seven or more features while ACTR2, SMAD9,
PALMD, ATP13A3, FADS2 and TWIST1 had four or more features
including significant associations in the TWAS andMR analyses. Out of
the 25 prioritized genes, seven encoded druggable human proteins
(MUC4, ALDH1A2, NRBP1, FES, PDGFRA, LPL and NPC1). Existing drugs
interacting with these genes according to the drug-gene interaction
database are reported in Supplementary Data 20.

Pathway enrichment
A pathway analysis was performed with the Metascape tool by
including the genes identified using MAGMA as well as the 35 genes
significant in the TWAS analysis. Among the top significantly enriched
terms,we identified regulation of interleukin-6 production, embryonic

development, regulation of osteoblast differentiation, response to
growth factor and plasma lipoprotein assembly, remodeling, and
clearance (Supplementary Fig. 8 and Supplementary Data 21).

Cross-phenotype analyses
We used the interactive cross-phenotype analysis of GWAS (iCPAG)
database to identify other phenotypes that share genetic associations.
After adjustment for multiple testing, there were 35 significantly
associated phenotypes (PBonferroni < 0.05), including plasma lipids
(lipoprotein (a), LDL-cholesterol, triglycerides, apolipoprotein B, total
cholesterol, lipoprotein-associated phospholipase A2), blood pressure
traits (pulse, diastolic and systolic blood pressure), other cardiovas-
cular diseases (coronary artery disease, peripheral arterial disease,
carotid atherosclerosis,metabolic syndrome), but also aortic root size,
coronary artery calcification, bone mineral density, resting heart rate
and leukocyte count (Supplementary Data 22).

The association of the lead GWAS and TWAS variants with 44
other cardiovascular traits was then evaluated in UK Biobank (Fig. 5).
The CAVS risk allele for several variants was positively associated with
circulating lipids such as LDL-cholesterol and apolipoprotein B or
blood pressure traits. Notably, 14 variants had a significant association
with pulse pressure while 11 were associated with coronary artery
disease with a direction of effect concordant with CAVS.

Accordingly, there was a significant positive genetic correlation
between CAVS and lipids, blood pressure traits and coronary artery
disease. A positive genetic correlation was also observed for abdom-
inal aorta calcification, ischemic stroke, peripheral artery disease,
body-mass index, diabetes and C-reactive protein (Fig. 6 and Supple-
mentary Data 23).

Discussion
We performed a GWASmeta-analysis including 14,819 CAVS cases and
identified 32 genome-wide significant loci, 20 of which had not been
reported before, including 18 with supportive evidence from another
study. Leveraging transcriptomic data obtained from RNA sequencing
of 500 human aortic valves, we identified novel candidate causal
genes, some of which could constitute therapeutic targets. We report
several significant eQTL at genomic loci, many of which are specific to
the aortic valve, implicating tissue-specific regulatorymechanisms.We
also show robust evidence of genetic relationship between CAVS and

Fig. 1 | Manhattan plot of the genome-wide association studies meta-analysis
for CAVS. The nearest gene at each genome-wide significant locus is indicated, in
black for known loci and in red for novel loci. The association of each variant with
calcific aortic valve stenosis was obtained from an inverse-variance weighted fixed-
effect meta-analysis combining the effect per allele in the cohorts with available

data. A p-value below 5 × 10−8 was considered significant (genome-wide threshold).
The genomic inflation factor was 1.099 and the LD score regression intercept was
1.020. The quantile-quantile plot (inset) illustrates the distribution of p-values for
each variant tested.
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several traits, including circulating lipids, blood pressure, athero-
sclerotic cardiovascular diseases and inflammation.

Combining the largest GWAS meta-analysis to date with robust
eQTL for the aortic valve generated from the most comprehensive
resource so far led to the identification of target genes residing within
genomic risk loci and revealed novel risk loci. A TWAS followed by
Bayesian colocalization and MR identified eight genes for which
genetically determined expression in the aortic valve is robustly
associated with CAVS. Three of them were located at genome-wide
significant loci: PRRX1, ATP13A3 and TWIST1. PRRX1 and TWIST1 code
for transcription factors involved in epithelial-mesenchymal transition,
acting as potent mesenchymal promoters15. They were both identified
as key members of fibroblast transcriptional regulatory networks and
involved in a positive feedback loop that leads to fibroblast
activation16,17. PRRX1, paired related homeobox 1, codes for a DNA-
associated protein located in the nucleus that acts as a transcription
co-activator. It is involved in embryonic development, where it was

shown to impact heart looping and laterality in animalmodels18. PRRX1
has been shown to orchestrate the transition of stromal fibroblasts to
myofibroblasts via TGF-β signaling19, which is a known mechanism
taking place in valve interstitial cells in CAVS20. Here, we show that
PRRX1 is highly expressed in human aortic valves, that the lead SNP at
this locus is a strong eQTL specific to this tissue, and report a potential
causal role of local PRRX1 expression in CAVS. TWIST1, coding for twist
family bHLH transcription factor 1, plays an important role in
endothelial-mesenchymal transition and embryonic development for
several organs, including the heart21. TWIST1 is highly expressed in
endocardial cushions during early development and is then down-
regulated for heart valve remodeling22. Persistent expression in valves
has been shown to increase cell proliferation, dysregulation of fibril-
lary collagen and lead to enlarged hypercellular valve leaflets in a
mouse model. In the same study, high TWIST1 expression was
observed in human diseased aortic valves23. In accordance with these
previous observations, we identified a significant positive association

Fig. 2 | Transcriptome-wide association study in human aortic valve and
Mendelian randomization identify novel candidate causal genes at genome-
wide significant loci. a, d, g LocusCompare plots at the PRRX1, ATP13A3, and
TWIST1 loci. P for calcific aortic valve stenosis was obtained from the inverse-
variance weighted fixed-effect GWASmeta-analysis. P for valve eQTL was obtained
from the nominal association between genotype and normalized gene expression.
b, e, h Boxplots showing normalized gene expression in human aortic valves
according to the genotype at the lead SNP at the PRRX1, ATP13A3, and TWIST1 loci.
The centermark in the box represents themedian, the bounds of the box represent
the 25th and 75th percentiles and the whiskers are the most extreme data point,
which is nomore than 1.5 times the interquartile range. PGWASwas obtained from

the inverse-variance weighted fixed-effect GWAS meta-analysis. P eQTL was
obtained from the nominal association between genotype and normalized gene
expression. The allele in red is the risk allele. c, f, i Scatterplot representing the
effect of each SNP selected in the instrument for the Mendelian randomization
(MR) analysis on gene expression in human aortic valves (n = 484) and risk of
calcific aortic valve stenosis (n = 14,819 cases and 927,044 controls) at the PRRX1,
ATP13A3, and TWIST1 loci. Data are presented as the effect and 95% confidence
interval (+/−1.96*standard error). Red line: inverse-variant weighted (IVW) MR;
Dotted red lines: 95% confidence interval for IVWMR; Green line:Weightedmedian
MR; Pink line: Egger MR.
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between genetically determined expression of TWIST1 in human aortic
valves and CAVS. Moreover, the lead variant at this locus (rs7804522,
minor allele frequency of 0.42) was a strong eQTL specific to the aortic
valve with no reported association in GTEx, despite high expression
levels in other tissues. Such remarkable eQTL specificity for the aortic
valve was also observed at the PALMD locus, as reported previously8.
We show that the aortic valves of individualswith severeCAVS carrying
two risk alleles associated with increased TWIST1 expression have a
distinct transcriptomic profile compatible with increased cell pro-
liferation, compared to individuals with CAVS of comparable hemo-
dynamic severity carrying no risk allele. ATP13A3 codes for a P-type
ATPase involved in polyamine transport24. It is highly expressed in
heart and vascular tissues. Protein-truncating variants in this gene have
previously been associated with pulmonary artery hypertension.
Functional studies have linked the loss of ATP13A3 to inhibition of
proliferation and stimulation of apoptosis in endothelial cells25. In our
study, the risk allele at the lead SNP was associated with an increase in
ATP13A3 expression in the aortic valve. The same variant was also
significantly associated with lower diastolic blood pressure and higher
QT interval in previous GWAS26,27.

Five other genes were identified as candidate causal genes based
on TWAS, colocalization and MR: BCL10, RAD9A and NRBP1 had a
positive association, while FES and AFAP1 had a negative association
with CAVS. BCL10 is an immune signaling adaptor mostly expressed in
lymphocytes. It has a key role in lymphocyte activation through the
nuclear factor-kappa B pathway28. Homozygous loss-of-function
mutations in this gene cause severe combined immunodeficiency29.
Higher expression of BCL10 in the aortic valve could contribute to the
immune-related inflammation observed in CAVS20. RAD9A encodes a
checkpoint protein required for cell cycle arrest and DNA damage
repair. DNA binding to RAD9A was shown to have a critical role in
maintaining cell viability and checkpoint activation in the presence of
oxidative stress30. To our knowledge, this gene hasnot been associated
with cardiovascular traits before. NRBP1, nuclear receptor binding
protein 1, is involved in endoplasmic reticulum to Golgi vesicle-
mediated transport. The CAVS risk allele at the lead GWAS SNP at this
locus was strongly associated with higher circulating triglycerides,
LDL-cholesterol, apolipoprotein B, C-reactive protein, leucocyte and
platelet counts, suggesting potential roles in lipids, inflammation and

thrombosis. FES encodes a cytoplasmic protein-kinase involved in the
regulation of various cellular functions including cell proliferation and
differentiation as well as inflammation. This locus has been associated
with CAD in several GWAS; the lead CAD SNP, rs17514846, is in high LD
(r2 > 0.8) with our lead CAVS SNP. A recent functional study showed
that the risk genotype reduces FES expression in monocytes and
increases the number of monocytes in human atherosclerotic plaque.
Knockout of FES also promoted migration of monocytes as well as
vascular smooth muscle cells and increased atherosclerotic plaque
size in a murine model31. A decrease in FES expression in the aortic
valve could lead to CAVS through a similar mechanism. Of note, the
risk allele at the lead SNP was also strongly and positively associated
with systolic, diastolic and pulse pressure. AFAP1 encodes actin fila-
ment associated protein 1, a potential modulator of actin filament
organization in response to cellular signals. AFAP1 was shown to
colocalize and bind directly with actin filaments in fibroblast cells. In
the same study, deletion of a leucine zipper motif within AFAP1
impacted cell shape and lamellipodia formation inmultiple cell lines32.
This locus was recently associated with descending thoracic aorta
diameter by GWAS33.

Combiningmultiple lines of evidence toprioritize genes including
transcriptomic characterization of a large number of human aortic
valves, we highlight a potential role in CAVS for three other genes at
novel genome-wide loci:MUC4,ALDH1A2, and SMAD9.MUC4, ormucin
4, encodes an integral membrane glycoprotein found on the cell sur-
face. This locus was associated with bicuspid aortic valve in a recent
GWAS34. In the same study, functional experiments on a zebrafish
model showed that knockout or knockdown of MUC4 leads to a tem-
poral delay in cardiac valve development. In our study, genetically
determined expression in human aortic valvewas positively associated
with CAVS in MR analyses, further implicating this gene in disease
pathophysiology.ALDH1A2, aldehyde dehydrogenase 1 familymember
A2, encodes an enzyme that catalyzes the synthesis of retinoic acid
from retinaldehyde. Loss-of-function mutations in this gene lead to an
autosomal recessive condition presenting with diaphragmatic hernia
and cardiovascular defects, including atrial as well as ventricular septal
defects and aortic root ectasia35,36. In our study, we report a high
expression specificity for the aortic valve and a positive relationship
between genetically determined expression and CAVS supported by
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MR. Of note, a missense variant in high LD with the lead SNP was
inversely associated with CAVS risk. SMAD9 encodes a member of the
SMAD family, which transduces signals from TGF-beta family mem-
bers. It was shown to inhibit bone morphogenetic protein (BMP)
signaling37. Loss-of-function mutations in mice models were reported
to induce thickening and smoothmuscle hyperplasia in the pulmonary
vasculature, with upregulation of TGF-beta signaling and Prx1 (ortho-
logous to human PRRX1) expression38. A rare missense mutation in
humans was associated with unexplained high bone mass39. In our
study, the lead GWAS SNP was a strong eQTL in the aortic valve. We
found a significant inverse relationship between SMAD9 expression in
the aortic valve and CAVS, consistent with the inhibitory effect of this
protein on TGF-beta signaling and bone formation.

Several identified loci were associated with circulating blood
lipids. While a strong association at the LPA locus has previously been
reported7–9,11, the signals in LDLR and LPL are novel, further implicating
atherogenic lipoproteins in the pathophysiology of CAVS. A higher
incidence of CAVS has been observed in patients with familial
hypercholesterolemia, most frequently caused by a loss-of-function
mutation in the LDLR gene40. The protective allele of the lead variant at
the LPL locuswas in high LD (r2 = 0.958)with rs328 (S447X), a nonsense
gain-of-function variant previously shown to increase lipolytic
activity41. It has also consistently been associated with lower trigly-
cerides levels and lower coronary artery disease risk42. Other novel loci
associated with blood lipids included 9q34.2 (nearest genes MYMK-
SLC2A6), for which the lead SNP was associated with circulating LDL-
cholesterol and apolipoprotein B and 15q15.2 (nearest gene STARD9),
for which the lead SNP was associated with plasma triglycerides. Cross
phenotype analysis with other GWAS and genetic correlation also
showed a significant genetic relationship with circulating lipids, con-
sistent with evidence from previous Mendelian randomization
studies43,44. All in all, our findings support a significant contribution of
circulating blood lipids to the development of CAVS, suggesting a
value for lipid-lowering interventions for CAVS prevention.

There were also several loci with a significant association with
blood pressure traits, most notably for pulse pressure. In fact, 11 lead
SNPs had a significant positive association with pulse pressure in UK
Biobank. Among the novel loci, a strong association was observed at
4q12 (nearest gene PDGFRA), 11p15.5 (nearest gene PIDD1), 12p12.2
(nearest gene PDE3A) and 22q12.2 (nearest gene ASCC2), which are all
loci previously associated with pulse pressure in a recent GWAS meta-
analysis26. An increase in pulse pressure reflects a reduction in arterial
compliance related to increased arterial stiffness or calcification45. Of
note, missense mutations in PDE3A have been associated with an
autosomal dominant form of hypertension. Affected individuals
manifest with hyperplastic arterial walls resulting from excessive
proliferation of vascular smooth muscle cells, which increases per-
ipheral vascular resistance46,47. Genetic correlation results showed
consistent positive relationships between CAVS and pulse pressure as
well as aortic calcification, further supporting shared genetic
mechanisms with vascular remodeling.

This study has some limitations. First, the cohorts only included
individuals of European ancestry, due to a lack of sufficient available
data for other ancestries. Further studies are needed in individuals of
other ancestry to determine if the findings are generalizable and to
identify specific associations in non-European populations. Second,
complementary evidence is needed to understand the biological
mechanisms by which the identified genes impact CAVS risk. Third,
except for QUEBEC-CAVS-1, the cohorts all included CAVS patients
with a bicuspid aortic valve, which could partly mediate the risk for
some loci. However, the genes with supportive evidence from the
transcriptomic analyses had similar genetic regulation in tricuspid and
bicuspid aortic valves. Fourth, the directionality and causal nature of
the relationships identified in the cross-phenotype analyses remain to
be determined.

Fig. 4 | Genes with multiple features suggesting their implication in CAVS.
Nearest gene: gene closest to a lead SNP in the GWAS meta-analysis; Intronic:
annotation of the lead SNP in the meta-analysis; Missense or nonsense: lead GWAS
SNP is in linkage disequilibrium (r2 ≥0.8) with a missense or nonsense variant for
the gene; MAGMA: significant inMAGMA analysis at P <0.00039 corresponding to
false discovery rate <5%; High expression in valve: above the 90th percentile of all
protein-coding genes; Valve-specific expression: expression specificity score >0.1;
COLOC: colocalization PP4 >0.75; Valve eQTL: significant eQTL; TWAS: significant
in transcriptome-wide association study at P <0.00017 corresponding to false
discovery rate <5%;MR: significant inMendelian randomization analyses (P <0.05).
Gold squares indicate a significant positive association; Blue squares indicate a
significant negative association.
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In conclusion, the integration of the largest GWAS meta-analysis
to date for CAVS with a large transcriptomic dataset on human aortic
valves allowed the identification of novel genomic loci and several
candidate causal genes. We highlight the potential contribution of
endothelial-mesenchymal transition, circulating lipoproteins, blood
pressure, vascular remodeling and inflammation in the disease pro-
cess. These findings pave the way for the identification of novel ther-
apeutic targets for CAVS.

Methods
Ethical approval
The QUEBEC-CAVS study was approved by the ethics committee of
the Institut universitaire de cardiologie et de pneumologie de
Québec-Université Laval. The Norwich Local Research Ethics Com-
mittee granted ethical approval for the analysis in the European
Prospective Investigation into Cancer and Nutrition [EPIC]-Norfolk
study. The analysis in the Estonian Biobank [EstBB] was approved by
the Estonian Committee on Bioethics and Human Research. UK
Biobank received approval from the British National Health Service,
North West - Haydock Research Ethics Committee. The Coordinating
Ethics Committee of the Hospital District of Helsinki and Uusimaa

(HUS) approved the FinnGen study protocol. Informed consent was
obtained for all participants.

Study population
A total of six cohorts were included in the genome-wide association
analyses: two case-control cohorts (QUEBEC-CAVS-1 and QUEBEC-
CAVS-2) and four population-based cohorts (EPIC-Norfolk, EstBB, UK
Biobank and FinnGen) (Supplementary Fig. 1). Only individuals of
European ancestrywere included, since the sample sizewas too low for
other ancestries. A description of the cohorts including the diagnostic
criteria used to define CAVS is available in the Supplementary Infor-
mation. The analyses in UK Biobank were conducted under data
application number 25205.

Genetic association analyses
Genotyping was completed in each cohort using genome-wide arrays
(Supplementary Data 24). Samples with low call rate, sex mismatch
with self-report, outlier heterozygosity or ancestry outliers were
excluded. Related samples were excluded in the cohorts that did not
use a method accounting for sample relatedness. Variants with a low
call rate ormarked deviations fromHardy–Weinberg equilibriumwere
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excluded. Genotypes were imputed using reference panels from
Haplotype Reference Consortium, 1000 Genomes, UK10K or a refer-
ence panel specific to the population (EstBB and FinnGen) (Supple-
mentary Data 24).

The association between the dosage of each genetic variant and
CAVS was evaluated using logistic regression. Covariables included
age, sex and ancestry-based principal components (Supplementary
Data 24). The summary statistics from each cohort were examined
for discrepancies in allele frequencies and inflation factor was cal-
culated. Variants with an imputation quality score <0.3, minor allele
frequency <0.001, or minor allele count in cases corrected for the
imputation quality <5 (when available) were excluded. An inverse-
variance weighted fixed-effect meta-analysis was performed using
METAL48. The statistical significance threshold was set at P < 5 × 10−8.
Heterogeneity was evaluated using Cochran’s Q-test. Independent
significant variants were identified by applying a linkage dis-
equilibrium (LD) threshold of r2 ≥0.6 using 1000 Genomes phase 3
European as reference panel to the variants with P < 5 × 10−8. Lead
variants were selected by applying a LD threshold of r2 ≥0.1. Lead
variants located within 500 kilobases (kb) were merged into a single
genomic locus.

Replication in other cohorts
We retrieved the association results for the lead variants from a
recent meta-analysis by Chen et al.14 (n = 13,765 cases and 640,102
controls). Although this study also included UK Biobank participants,
only up to 1675 cases are common with our analysis (representing
≤11.3% of the cases included in our study). We also retrieved the
results from the deCODE cohort11 (n = 2457 cases and 349,342 con-
trols, no overlap with our data). For variants with no results available,
we used a proxy in LD (r2 > 0.8) using 1000 Genomes phase 3 Eur-
opean as reference panel.

Variant and gene prioritization
Variant annotation was performed using ANNOVAR49. Enrichment for
functional consequences of variants in LDwith independent significant
variants (r2 ≥0.6) was calculated using Fisher’s exact test with 1000
Genomes phase 3 European as reference panel. Exonic variants with
P < 1 × 10−5 were retrieved to identify missense and loss of function
variants in high LD (r2 ≥0.8) with one of the lead SNPs. A 95% credible
set of genetic variants was determined for each genomic locus using
CAVIAR, assuming a single causal variant50. Conditional and joint
association analysis (COJO) was performed using the --cojo-slct
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function in GCTA v1.92.3beta3 to identify variants independently
associated with CAVS at each genomic locus51. Protein-coding genes
located within 10 kilobases (kb) of a genome-wide significant SNP or
located on either side of a lead intergenic SNP were identified. We also
used Multi-marker Analysis of GenoMic Annotation (MAGMA) v1.08
with default settings to perform a gene analysis for 19,982 protein-
coding genes52. Statistical significance was set below a false discovery
rate of 5%.

Human aortic valve samples
Aortic valve tissues were collected from patients undergoing cardiac
surgery at the Institut universitaire de cardiologie et de pneumologie
de Québec – Université Laval between 1998 and 2019 (QUEBEC-
CAVS-RNA). A total of 500 samples from patients undergoing aortic
valve replacement for CAVS (n = 408), for aortic regurgitation in the
absence of CAVS (n = 32) or undergoing heart transplant (n = 60,
without aortic valve anomaly) were included. Samples were selected
to obtain a representation of CAVS with different levels of severity,
valve morphology (tricuspid and bicuspid) and patient sex (women
and men) (Supplementary Data 10). The presence of aortic valve
stenosis and its severity were evaluated using echocardiography,
following recognized valve hemodynamic criteria including aortic
valve area, mean and peak gradients53. Genotypes were obtained
from blood samples for each participant using the Illumina Global
Screening Array, as described in Supplementary Data 24 for the
QUEBEC-CAVS-2 cohort.

Bulk RNA-sequencing
Aortic valve leaflets were preserved in RNAlater solution following
collection and flash frozen in liquid nitrogen. RNA extraction was
performed using a modified TRIzol protocol followed by RNA cleanup
using QIAGEN RNeasy columns (QIAGEN, 74104). RNA quality was
evaluated using a Bioanalyzer. RNA Integrity Number (RIN) was ≥6.0
for all samples selected for sequencing. Libraries were prepared using
poly(A) and NEB Library Prep Kit for Illumina to select strandedmRNA
(New England Biolabs, E7420L). Expression was assessed by 150 bp
length paired-end RNA-sequencing (RNAseq) on a NovaSeq 6000
instrument (Illumina), aiming for >50 million paired reads per sample.
The quality of the data was verified using the FastQC v0.11.5 and
MultiQC v1.10 applications54. STAR v2.5.1b was used to align reads of
each sample to the UCSC hg19 and hg38 reference genomes. Align-
ment quality was verified using QualiMap v2.2.155.

Comparison of expression between aortic valve and other
tissues
Reads were collapsed to a single transcript model using GEN-
CODE Release 26 on build GRCh38 as reference, to allow direct
comparison with the Genotype-Tissue Expression (GTEx) project
v856. Read counts and Transcripts Per Million (TPM) values were
obtained using RNA-SeQC 257. Genes with a median log2(TPM)
value across all samples above the 90th percentile of all protein-
coding genes in the aortic valve were identified among the genes
prioritized based on their proximity with lead GWAS variants or
from the MAGMA analysis. TPM values from 43 non sex-specific
tissues in GTEx (Supplementary Data 25) were retrieved. We then
calculated expression specificity scores (ESS) for each gene58.
Briefly, ESS were obtained by dividing the median log2(TPM)
value in a given tissue by the sum of the medians of all tissues,
resulting in a score ranging from 0 to 1. An ESS above 0.1 in the
aortic valve, indicating that expression represents >10% of the
overall expression in all tissues, was selected as a threshold to
identify genes among the ones prioritized by positional mapping
or MAGMA. This threshold corresponded approximately to the
top 5% of the distribution of ESS in the aortic valve for all protein-
coding genes.

Expression quantitative trait loci (eQTL) in aortic valve
Further quality control was performed to ensure that the genotypes
obtained from blood corresponded to the aortic valve tissue of each
participant. Sex mismatches and potential contamination were iden-
tified based on XIST and PRKY expression in the aortic valve RNAseq.
The mbv function in QTLtools v1.1 was used to match the RNAseq
inferred genotypes with the genotypes from blood59. Samples with a
duplicated sequence, that did not match blood genotype or with
potential contamination (>60% of matching heterozygous genotype
with another sample) were excluded, which resulted in 484 samples
available for further analyses (81.6% with CAVS).

Reads and TPM were generated as mentioned above using GEN-
CODE Release 41 on build GRCh37. Genes with expression >0.1 TPM in
at least 20% of samples and ≥6 reads in at least 20% of samples were
kept56. Expression values were normalized between samples using
trimmedmean ofM-values (TMM) as implemented in edgeR v3.24.360.
For each gene, expression was normalized across samples using an
inverse normal transformation.

We calculated eQTL for genetic variants located 1 megabase
(Mb) up- and downstream of the transcription start site of the genes
located on chromosome 1 to 22 (cis-eQTL). Age, sex, smoking status
(current or not), the first 60 Probabilistic Estimation of Expression
Residuals (PEER)61 factors and the first five ancestry-based principal
components were included as covariates. Only variants with a minor
allele frequency ≥0.01 and imputation quality score ≥0.3 were con-
sidered. Association was evaluated using QTLtools v1.162 with the cis-
QTL nominal pass function. We performed cis-QTL permutations
using tensorQTL v1.0.7 to generate empirical p-values63. Nominal
significance thresholds corresponding to a false discovery rate of
<5% were calculated for each gene with QTLtools and applied to
identify significant eQTLs. A similar analysis was performed sepa-
rately for tricuspid (n = 215) and bicuspid aortic valves (n = 211), but
using the first 30 PEER factors as covariates considering the smaller
sample size.

We retrieved all significant eQTLs for the lead SNPs identified in
the CAVS GWAS meta-analysis from our aortic valve dataset. Enrich-
ment for eQTLs was evaluated by comparing the proportion of sig-
nificant SNP-gene pairs for the lead SNPs to the one for the genome-
wide SNPs, using a Pearson’s chi-squared test. The distribution of
p-values in each group was compared using a Wilcoxon rank sum test.
Significant eQTLs for the lead CAVS GWAS meta-analysis SNPs were
also retrieved from 43 non sex-specific tissues in GTEx v8. When the
lead SNP was not available, a proxy with r2 > 0.9 was used. Tissue-
specific eQTLs were defined as significant SNP-gene pairs that were
identified in a single tissue.

Transcriptome-wide association study (TWAS)
Effects of genetic variants on gene expression in the aortic valve
were combined with the GWAS meta-analysis results to perform a
TWAS using MetaXcan v0.7.4, with the S-PrediXcan extension64.
First, gene expression models were developed using the Pre-
dictDB pipeline65. Briefly, elastic-net models were trained using
nested cross validation from genotype and adjusted expression
data. A model was considered significant when the average
Pearson correlation between predicted and observed expression
was greater than 0.1 and the estimated p-value was less than 0.05.
Variants located in a window of +/−1 Mb of the gene of interest
were selected. Only protein-coding genes were considered. The
statistical significance threshold was set at a false discovery rate
<5% to retain genes for further analyses.

Bayesian colocalization
COLOC v3.2.1 was used to evaluate colocalization between eQTL and
CAVS risk for the genes identified by TWAS66. Variants located within
1Mb of the gene were considered. A posterior probability of shared
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signal (PP4) > 0.75 was considered as indicative of colocalization. The
LocusCompareR package v1.0.0 was used to illustrate colocalization
events67.

Mendelian randomization (MR)
MR was used to evaluate the causal effect of the changes in gene
expression level (exposure) on CAVS (outcome) for the genes identi-
fied by TWAS. Variants located within 1Mb of the gene of interest and
associated with gene expression with P <0.0001 were selected. Inde-
pendent variants were selected using the clump function implemented
in plink v1.968, with a threshold of r2 < 0.1 in the European subset of
1000 Genomes (n = 503). Only genes with at least 3 variants available
were tested. All the selected variants had an estimated F-statistic >1569.
MR was performed by regressing genetic effect estimates for CAVS as
determined in the GWASmeta-analysis on genetic effect estimates for
expression levels (inverse-variance weighting). Heterogeneity was
evaluated using Cochran’s Q statistic, instruments with P <0.01 were
not further considered. Egger MR was performed to determine the
presence of unmeasured pleiotropy70. Weighted median estimator71

was used to ensure the robustness of the findings. The significance
threshold was set at a false discovery rate <5% considering the number
of genes tested. The analyses were performed using the Mende-
lianRandomization v0.4.3 package.

Differential expression analyses
To further explore the effect of the risk genotype at a locus that
seemed to involve specific regulation in the aortic valve (near TWIST1),
differential expression analyses were performed. Genes with expres-
sion >0.1 TPM in at least 20% of samples and ≥6 reads in at least 20% of
samples were selected, resulting in a total of 25,390 genes. Read
counts were normalized using TMM for differential expression ana-
lyses using edgeR60. Samples that did not pass the quality control
process (i.e., sex mismatch or mismatch of genotypes with mRNA
sequences) were excluded. Among individuals with severe aortic ste-
nosis according to echocardiographic criteria, gene expression in the
aortic valve was compared between individuals homozygous for the
risk allele rs7804522-C (n = 66) and individuals homozygous for the
other allele rs7804522-G (n = 138) using a likelihood ratio test imple-
mented in edgeR60. Themodelwas adjusted for age, sex, smoking, RIN,
3’ bias, alignment rate andmitochondrial gene expression proportion.
The significance threshold was set at false discovery rate <5%. A dif-
ferential expression analysis performed using the same method was
performed for the other genome-wide significant loci corroborated by
transcriptomic analyses in the aortic valve, for comparison purposes.

Identification of candidate genes from selected features
For the genes located nearby the meta-analysis lead SNPs and the
genes identified by TWAS, we counted the number of features that
supported their role in CAVS. The following criteria were used: (1)
nearest gene to a lead GWAS SNP, (2) lead GWAS SNP is located in an
intron of the gene, (3) lead GWAS SNP is in linkage disequilibrium
(r2 ≥0.8) with a missense or nonsense variant for the gene, (4) gene is
significant in the MAGMA analysis, (5) gene has high expression in the
aortic valve (above the 90th percentile of all protein-coding genes), (6)
gene is specifically expressed in the aortic valve (ESS >0.1), (7) the lead
GWASSNP is a significant eQTL for the gene in the aortic valve, (8) gene
is significant in the TWAS analysis, (9) evidence of colocalization
(PP4 > 0.75), (10) evidence of causality between gene expression and
CAVS using MR (PIVW <0.05, PWM<0.05 and PHet > 0.01).

Drug target analysis
Among the genes with four or more supporting features, we identified
those previously reported to encode a druggable human protein72. We
then retrieved drugs interacting with these genes (interaction score
≥0.1) from the drug-gene interaction database73 (DGIdb, www.dgidb.

org). A short description of the clinical indication for each drug was
retrieved from DrugBank (www.drugbank.ca) or PubChem (https://
pubchem.ncbi.nlm.nih.gov/).

Pathway enrichment
Pathway analyses were performed to identify enriched terms in Gene
Ontology biological processes, KEGG pathways, Reactome gene sets,
canonical pathways, and WikiPathways using Metascape74. Terms with
a minimum of five overlapping genes and with a p-value < 0.001
obtained from a hypergeometric test are reported. These terms were
then hierarchically clustered based on similarities among their gene
memberships to identify independent leading terms.

Phenome-wide association studies
For each lead genetic variant identified from the GWAS or tran-
scriptomic analyses in the aortic valve, association with 44 relevant
cardiovascular traits and diseases were evaluated in UK Biobank9,10.
Phenotypes were obtained from diagnosis in medical records,
anthropomorphic measures and laboratory markers (Supplementary
Data 26). For each phenotype, an additive logistic (binary phenotype)
or linear regression (continuous phenotype) regression was per-
formed in 353,378 unrelated individuals of White-British ancestry with
adjustment for age, sex and the first 10 ancestry-based principal
components using SNPTEST v2.5.475. The statistical significance
threshold was set at P < 0.001 consideringmultiple hypothesis testing.

Shared genetic association with other traits
The interactive Cross-Phenotype Analysis of GWAS database
(iCPAGdb, http://cpag.oit.duke.edu/explore/app/) was used to identify
traits with shared genetic association with CAVS76. Traits with P <0.05
following Bonferroni correction were considered significantly
enriched.

Genetic correlation
We performed genetic correlation analyses between CAVS and cardi-
ovascular diseases and risk factors using LD-score regression imple-
mented in ldsc v1.0.077. We used publicly available summary statistics
from GWASmeta-analyses for blood lipids, blood pressure, aortic size
and calcification, height, bodymass index, waist-to-hip ratio, coronary
artery disease, stroke, peripheral artery disease, type 2 diabetes,
chronic kidney disease, C-reactive protein and bone mineral density
(Supplementary Data 23).

Statistical analysis
Analyses were performed using R version 3.5.1 unless otherwise
specified.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics of the meta-analysis generated in this study have
been deposited in the NHGRI-EBI GWAS catalog under accession code
GCST90310293. The RNA sequencing data from the 500 human aortic
valves generated in this study have been deposited in dbGaP under
accession code phs003541.v1.p1. The data are available under restric-
ted access in accordance with the institutional ethics approval. Access
can be obtained for research related to cardiovascular diseases by not-
for-profit organizations providing a local institutional review board
approval and a letter of collaboration with the study investigators.
Requests can be made to the corresponding author who will respond
within two weeks. The GWAS summary statistics from FinnGen are
available here: https://www.finngen.fi/en/access_results. The summary
statistics of the GWAS meta-analysis for CAVS by Chen et al.14 used in
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this study are available here: https://zenodo.org/records/7829401. The
GWAS summary statistics for CAVS from the deCODE cohort used in
this study are available here: https://www.decode.com/summarydata/.
The GTEx project v8 data used in this study are available here: https://
gtexportal.org/home/datasets. Individual-level and genotype data
from QUEBEC-CAVS-1 and QUEBEC-CAVS-2 are available under
restricted access for legal and ethical reasons. Requests can bemade to
the corresponding author who will respond within two weeks. Access
to individual data from CARTaGENE (https://cartagene.qc.ca/), EPIC-
Norfolk (https://www.epic-norfolk.org.uk/), Estonian Biobank (https://
genomics.ut.ee/en/content/estonian-biobank), UK Biobank (https://
www.ukbiobank.ac.uk/) and FinnGen (https://www.finngen.fi/) is
available for registered researchers following the respective applica-
tion process. Further information on data access is available from the
study websites. The drug interaction data used in this study are avail-
able from the drug-gene interaction database (www.dgidb.org).

References
1. Lindman, B. R. et al. Calcific aortic stenosis. Nat. Rev. Dis. Prim. 2,

16006 (2016).
2. Nkomo, V. T. et al. Burden of valvular heart diseases: a population-

based study. Lancet 368, 1005–1011 (2006).
3. Otto, C. M. & Prendergast, B. Aortic-valve stenosis–from patients at

risk to severe valve obstruction. N. Engl. J. Med. 371,
744–756 (2014).

4. Moncla, L. H. M., Briend, M., Bossé, Y. & Mathieu, P. Calcific aortic
valve disease: mechanisms, prevention and treatment. Nat. Rev.
Cardiol. 20, 546–559 (2023).

5. Bossé, Y., Mathieu, P. & Thériault, S. PALMD as a novel target for
calcific aortic valve stenosis. Curr. Opin. Cardiol. 34,
105–111 (2019).

6. Chignon, A. et al. Enhancer-associated aortic valve stenosis risk
locus 1p21.2 alters NFATC2 binding site and promotes fibrogenesis.
iScience 24, 102241 (2021).

7. Thanassoulis, G. et al. Genetic associations with valvular calcifica-
tion and aortic stenosis. N. Engl. J. Med. 368, 503–512 (2013).

8. Thériault, S. et al. A transcriptome-wide association study identifies
PALMDas a susceptibility gene for calcificaortic valve stenosis.Nat.
Commun. 9, 988 (2018).

9. Thériault, S. et al. Genetic association analyses highlight IL6, ALPL,
and NAV1 as three new susceptibility genes underlying calcific
aortic valve stenosis. Circ. Genom. Precis. Med. 12, 002617 (2019).

10. Li, Z. et al. Phenome-wide analyses establish a specific association
between aortic valve PALMD expression and calcific aortic valve
stenosis. Commun. Biol. 3, 477 (2020).

11. Helgadottir, A. et al. Genome-wide analysis yields new loci asso-
ciating with aortic valve stenosis. Nat. Commun. 9, 987 (2018).

12. Chen, H. Y. et al. Association of FADS1/2 Locus Variants and Poly-
unsaturated Fatty Acids With Aortic Stenosis. JAMA Cardiol. 5,
694–702 (2020).

13. Small, A. M. et al. Multiancestry Genome-Wide Association Study of
Aortic Stenosis Identifies Multiple Novel Loci in the Million Veteran
Program. Circulation 147, 942–955 (2023).

14. Chen, H. Y. et al. Dyslipidemia, inflammation, calcification, and
adiposity in aortic stenosis: a genome-wide study. Eur. Heart J. 44,
1927–1939 (2023).

15. Nieto, M. A., Huang, R. Y. J., Jackson, R. A. & Thiery, J. P. EMT: 2016.
Cell 166, 21–45 (2016).

16. Tomaru, Y. et al. A transient disruption of fibroblastic transcriptional
regulatory network facilitates trans-differentiation. Nucleic Acids
Res. 42, 8905–8913 (2014).

17. Yeo, S. Y. et al. A positive feedback loop bi-stably activates fibro-
blasts. Nat. Commun. 9, 3016 (2018).

18. Ocaña, O. H. et al. A right-handed signalling pathway drives heart
looping in vertebrates. Nature 549, 86–90 (2017).

19. Lee, K. W. et al. PRRX1 is a master transcription factor of stromal
fibroblasts for myofibroblastic lineage progression. Nat. Commun.
13, 2793 (2022).

20. Driscoll, K., Cruz, A. D. & Butcher, J. T. Inflammatory and Bio-
mechanical Drivers of Endothelial-Interstitial Interactions in Calcific
Aortic Valve Disease. Circ. Res. 128, 1344–1370 (2021).

21. Lim, J. & Thiery, J. P. Epithelial-mesenchymal transitions: insights
from development. Development 139, 3471–3486 (2012).

22. Chakraborty, S., Cheek, J., Sakthivel, B., Aronow, B. J. & Yutzey, K. E.
Shared gene expression profiles in developing heart valves and
osteoblast progenitor cells. Physiol. Genomics 35, 75–85 (2008).

23. Chakraborty, S. et al. Twist1 promotes heart valve cell proliferation
and extracellular matrix gene expression during development
in vivo and is expressed in human diseased aortic valves. Dev. Biol.
347, 167–179 (2010).

24. Hamouda, N. N. et al. ATP13A3 is a major component of the enig-
matic mammalian polyamine transport system. J. Biol. Chem. 296,
100182 (2021).

25. Gräf, S. et al. Identification of rare sequence variation underlying
heritable pulmonary arterial hypertension. Nat. Commun. 9,
1416 (2018).

26. Evangelou, E. et al. Genetic analysis of over 1 million people iden-
tifies 535 new loci associatedwith blood pressure traits.Nat. Genet.
50, 1412–1425 (2018).

27. Young, W. J. et al. Genetic analyses of the electrocardiographic QT
interval and its components identify additional loci and pathways.
Nat. Commun. 13, 5144 (2022).

28. Thome, M. CARMA1, BCL-10 and MALT1 in lymphocyte develop-
ment and activation. Nat. Rev. Immunol. 4, 348–359 (2004).

29. Al-Tamemi, S. et al. BCL10 loss-of-function novel mutation leading
to atypical severe combined immunodeficiency. Clin. Immunol.
241, 109067 (2022).

30. Hwang, B. J. et al. DNA binding by the Rad9A subunit of the Rad9-
Rad1-Hus1 complex. PLoS One 17, e0272645 (2022).

31. Karamanavi, E. et al. The FES Gene at the 15q26 Coronary-Artery-
Disease Locus Inhibits Atherosclerosis. Circ. Res. 131,
1004–1017 (2022).

32. Qian, Y., Baisden, J. M., Zot, H. G., Van Winkle, W. B. & Flynn, D. C.
The carboxy terminus of AFAP-110 modulates direct interactions
with actin filaments and regulates its ability to alter actin filament
integrity and induce lamellipodia formation. Exp. Cell Res. 255,
102–113 (2000).

33. Pirruccello, J. P. et al. Deep learning enables genetic analysis of the
human thoracic aorta. Nat. Genet. 54, 40–51 (2022).

34. Gehlen, J. et al. Elucidation of the genetic causes of bicuspid aortic
valve disease. Cardiovasc. Res. 119, 857–866 (2023).

35. Beecroft, S. J. et al. Biallelic hypomorphic variants in ALDH1A2
cause a novel lethal humanmultiple congenital anomaly syndrome
encompassing diaphragmatic, pulmonary, and cardiovascular
defects. Hum. Mutat. 42, 506–519 (2021).

36. Leon, E., Nde, C., Ray, R. S., Preciado, D. & Zohn, I. E. ALDH1A2-
related disorder: A new genetic syndrome due to alteration of the
retinoic acid pathway. Am. J. Med. Genet. A 191, 90–99 (2023).

37. Tsukamoto, S. et al. Smad9 is a new typeof transcriptional regulator
in bone morphogenetic protein signaling. Sci. Rep. 4, 7596 (2014).

38. Huang, Z., Wang, D., Ihida-Stansbury, K., Jones, P. L. & Martin, J. F.
Defective pulmonary vascular remodeling in Smad8 mutant mice.
Hum. Mol. Genet. 18, 2791–2801 (2009).

39. Gregson,C. L. et al. ARareMutation inSMAD9AssociatedWithHigh
Bone Mass Identifies the SMAD-Dependent BMP Signaling Pathway
as a Potential Anabolic Target for Osteoporosis. J. Bone Min. Res.
35, 92–105 (2020).

40. Mundal, L. J. et al. Association of Low-Density Lipoprotein Choles-
terol With Risk of Aortic Valve Stenosis in Familial Hypercholester-
olemia. JAMA Cardiol. 4, 1156–1159 (2019).

Article https://doi.org/10.1038/s41467-024-46639-4

Nature Communications |         (2024) 15:2407 12

https://zenodo.org/records/7829401
https://www.decode.com/summarydata/
https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
https://cartagene.qc.ca/
https://www.epic-norfolk.org.uk/
https://genomics.ut.ee/en/content/estonian-biobank
https://genomics.ut.ee/en/content/estonian-biobank
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
https://www.finngen.fi/
http://www.dgidb.org


41. Rip, J. et al. Lipoprotein lipase S447X: a naturally occurring gain-of-
function mutation. Arterioscler Thromb. Vasc. Biol. 26,
1236–1245 (2006).

42. Sagoo, G. S. et al. Seven lipoprotein lipase gene polymorphisms,
lipid fractions, andcoronarydisease: aHuGEassociation reviewand
meta-analysis. Am. J. Epidemiol. 168, 1233–1246 (2008).

43. Nazarzadeh,M. et al. Plasma lipids and risk of aortic valve stenosis: a
Mendelian randomization study. Eur. Heart J.41, 3913–3920 (2020).

44. Kaltoft, M., Langsted, A. & Nordestgaard, B. G. Triglycerides and
remnant cholesterol associated with risk of aortic valve stenosis:
Mendelian randomization in the Copenhagen General Population
Study. Eur. Heart J. 41, 2288–2299 (2020).

45. Dart, A.M. & Kingwell, B. A. Pulse pressure–a reviewofmechanisms
and clinical relevance. J. Am. Coll. Cardiol. 37, 975–984 (2001).

46. Ercu, M. et al. Phosphodiesterase 3A and Arterial Hypertension.
Circulation 142, 133–149 (2020).

47. Maass, P. G. et al. PDE3A mutations cause autosomal dominant
hypertension with brachydactyly. Nat. Genet. 47, 647–653 (2015).

48. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-
analysis of genomewide association scans. Bioinformatics 26,
2190–2191 (2010).

49. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation
of genetic variants from high-throughput sequencing data.Nucleic
Acids Res. 38, e164 (2010).

50. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E.
Identifying causal variants at loci with multiple signals of associa-
tion. Genetics 198, 497–508 (2014).

51. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS
summary statistics identifies additional variants influencing com-
plex traits. Nat. Genet. 44, 369–375 (2012).

52. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA:
generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11,
e1004219 (2015).

53. Otto, C. M. et al. 2020 ACC/AHA guideline for the management of
patients with valvular heart disease: A report of the American Col-
lege of Cardiology/AmericanHeart Association Joint Committee on
Clinical Practice Guidelines. J. Thorac. Cardiovasc. Surg. 162,
e183–e353 (2021).

54. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: sum-
marize analysis results for multiple tools and samples in a single
report. Bioinformatics 32, 3047–3048 (2016).

55. Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2:
advanced multi-sample quality control for high-throughput
sequencing data. Bioinformatics 32, 292–294 (2016).

56. The GTEx Consortium atlas of genetic regulatory effects across
human tissues. Science 369, 1318–1330 (2020).

57. DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control
and process optimization. Bioinformatics 28, 1530–1532 (2012).

58. Torres, J. M. et al. A Multi-omic Integrative Scheme Characterizes
Tissues of Action at Loci Associated with Type 2 Diabetes. Am. J.
Hum. Genet. 107, 1011–1028 (2020).

59. Fort, A. et al.MBV: amethod to solve samplemislabeling anddetect
technical bias in large combined genotype and sequencing assay
datasets. Bioinformatics 33, 1895–1897 (2017).

60. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bio-
conductor package for differential expression analysis of digital
gene expression data. Bioinformatics 26, 139–140 (2010).

61. Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian framework to
account for complex non-genetic factors in gene expression levels
greatly increases power in eQTL studies. PLoS Comput. Biol. 6,
e1000770 (2010).

62. Delaneau, O. et al. A complete tool set for molecularQTL discovery
and analysis. Nat. Commun. 8, 15452 (2017).

63. Taylor-Weiner, A. et al. Scaling computational genomics tomillions
of individuals with GPUs. Genome Biol. 20, 228 (2019).

64. Barbeira, A. N. et al. Exploring the phenotypic consequences of
tissue specific gene expression variation inferred from GWAS
summary statistics. Nat. Commun. 9, 1825 (2018).

65. Gamazon, E. R. et al. A gene-based associationmethod formapping
traits using reference transcriptome data. Nat. Genet. 47,
1091–1098 (2015).

66. Giambartolomei, C. et al. Bayesian test for colocalisation between
pairs of genetic association studies using summary statistics. PLoS
Genet. 10, e1004383 (2014).

67. Liu, B., Gloudemans, M. J., Rao, A. S., Ingelsson, E. & Montgomery,
S. B. Abundant associations with gene expression complicate
GWAS follow-up. Nat. Genet. 51, 768–769 (2019).

68. Chang,C.C. et al. Second-generation PLINK: rising to the challenge
of larger and richer datasets. Gigascience 4, 7 (2015).

69. Bowden, J. et al. Improving the accuracy of two-sample summary-
data Mendelian randomization: moving beyond the NOME
assumption. Int J. Epidemiol. 48, 728–742 (2019).

70. Bowden, J., Davey Smith, G. & Burgess, S.Mendelian randomization
with invalid instruments: effect estimation and bias detection
through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

71. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Con-
sistent Estimation in Mendelian Randomization with Some Invalid
Instruments Using aWeighted Median Estimator.Genet. Epidemiol.
40, 304–314 (2016).

72. Finan, C. et al. The druggable genome and support for target
identification and validation in drug development. Sci. Transl. Med.
9, eaag1166 (2017).

73. Cotto, K. C. et al. DGIdb 3.0: a redesign and expansion of the
drug-gene interaction database. Nucleic Acids Res. 46,
D1068–D1073 (2018).

74. Zhou, Y. et al. Metascape provides a biologist-oriented resource for
the analysis of systems-level datasets. Nat. Commun. 10,
1523 (2019).

75. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new
multipoint method for genome-wide association studies by impu-
tation of genotypes. Nat. Genet. 39, 906–913 (2007).

76. Wang, L. et al. An atlas connecting shared genetic architecture of
human diseases and molecular phenotypes provides insight into
COVID-19 susceptibility. Genome Med. 13, 83 (2021).

77. Bulik-Sullivan, B. et al. An atlas of genetic correlations across
human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

Acknowledgements
QUEBEC-CAVS was supported by the Heart and Stroke Foundation of
Canada (G-19-0026386), theCanadian Institutes of Health Research (PJT
– 153396, PJT – 162344) and the Fonds de recherche du Québec – Santé
(278277). Y.B. holds a Canada Research Chair in Genomics of Heart and
Lung Diseases. The EPIC-Norfolk study has received funding from the
Medical Research Council (MR/N003284/1 MC-UU_12015/1 and
MC_UU_00006/1) andCancer ResearchUK (C864/A14136). The genetics
work in the EPIC-Norfolk study was funded by the Medical Research
Council (MC_PC_13048). The work of Estonian Genome Center, Univ. of
Tartuwas fundedby theEuropeanUnion throughHorizon 2020 research
and innovation programme under grants no. 810645 and 894987,
through the European Regional Development Fund projects GEN-
TRANSMED (2014-2020.4.01.15-0012), MOBERA5 (Norface Network
project no 462.16.107), MOBEC008, MOBERA21 and Estonian Research
Council Grants PUT1660 and PRG1291. We thank the research team at
the cardiac surgical database and biobank of the Institut universitaire de
cardiologie et de pneumologie de Québec-Université Laval for their
valuable assistance and all the participants. We thank the CARTaGENE
study team and participants. We are grateful to all the participants who
have been part of the EPIC-Norfolk study and to the many members of
the study teams at the University of Cambridge who have enabled this
research. We want to acknowledge the participants and investigators of

Article https://doi.org/10.1038/s41467-024-46639-4

Nature Communications |         (2024) 15:2407 13



Estonian biobank for their contribution. This work was carried out in part
in the High Performance Computing Center of the University of Tartu.
We thank all the UK Biobank participants and administration team. We
want to acknowledge the participants and investigators of the Finn-
Gen study.

Author contributions
S.T., S.M.B., N.J.W., T.E. and Y.B. supervised the cohort studies. H.D.M.,
D.K.B., N.G., L.F., D.A., M.D., F.D., M.A.C. and P.P. contributed to data
collection. S.T., Z.L., E.A. and J.L. performed the GWAS. S.T. and Z.L.
performed the meta-analysis, eQTL, TWAS, colocalization, MR, pheWAS
and genetic correlation analyses. S.T., U.H. and P.Z. performed the dif-
ferential expression analyses. M.B. performed the iCPAG analysis. S.T.,
B.J.A., P.M. and Y.B. designed the study. S.T. drafted the manuscript.
P.M. and Y.B. edited the manuscript. All authors revised the manuscript
prior to submission.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46639-4.

Correspondence and requests for materials should be addressed to
Sébastien Thériault.

Peer review information Nature Communications thanks Nirmal Vad-
gama and the other, anonymous, reviewers for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Estonian Biobank Research Team

Tõnu Esko3

A full list of members and their affiliations appears in the Supplementary Information.

Article https://doi.org/10.1038/s41467-024-46639-4

Nature Communications |         (2024) 15:2407 14

https://doi.org/10.1038/s41467-024-46639-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation
	Results
	Identification of CAVS genomic�loci
	Variant annotation and prioritization
	Gene mapping
	Expression in human aortic�valves
	Expression quantitative trait�loci
	Transcriptome-wide association study, colocalization and Mendelian randomization
	Differential expression according to genotype at the TWIST1 locus
	Prioritization of causal�genes
	Pathway enrichment
	Cross-phenotype analyses

	Discussion
	Methods
	Ethical approval
	Study population
	Genetic association analyses
	Replication in other cohorts
	Variant and gene prioritization
	Human aortic valve samples
	Bulk RNA-sequencing
	Comparison of expression between aortic valve and other tissues
	Expression quantitative trait loci (eQTL) in aortic�valve
	Transcriptome-wide association study�(TWAS)
	Bayesian colocalization
	Mendelian randomization�(MR)
	Differential expression analyses
	Identification of candidate genes from selected features
	Drug target analysis
	Pathway enrichment
	Phenome-wide association studies
	Shared genetic association with other�traits
	Genetic correlation
	Statistical analysis
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




