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Tradeoffs in alignment and assembly-based
methods for structural variant detection
with long-read sequencing data

Yichen Henry Liu1,4, Can Luo2,4, Staunton G. Golding2, Jacob B. Ioffe1 &
Xin Maizie Zhou 1,2,3

Long-read sequencing offers long contiguous DNA fragments, facilitating
diploid genome assembly and structural variant (SV) detection. Efficient and
robust algorithms for SV identification are crucial with increasing data avail-
ability. Alignment-based methods, favored for their computational efficiency
and lower coverage requirements, are prominent. Alternative approaches,
relying solely on available reads for de novo genome assembly and employing
assembly-based tools for SV detection via comparison to a reference genome,
demand significantly more computational resources. However, the lack of
comprehensive benchmarking constrains our comprehension and hampers
further algorithm development. Here we systematically compare 14 read
alignment-based SV calling methods (including 4 deep learning-based meth-
ods and 1 hybrid method), and 4 assembly-based SV calling methods, along-
side 4 upstream aligners and 7 assemblers. Assembly-based tools excel in
detecting large SVs, especially insertions, and exhibit robustness to evaluation
parameter changes and coverage fluctuations. Conversely, alignment-based
tools demonstrate superior genotyping accuracy at low sequencing coverage
(5-10×) and excel in detecting complex SVs, like translocations, inversions, and
duplications. Our evaluation provides performance insights, highlighting the
absence of a universally superior tool. We furnish guidelines across 31 criteria
combinations, aiding users in selecting the most suitable tools for diverse
scenarios and offering directions for further method development.

Human genome variations include single nucleotide variations (SNVs),
small insertions and deletions (indels), and structural variants (SVs).
SNVs and small indels are defined as alterations of the genome smaller
than 50 base pairs, and dominate genomic variations in terms of
absolute number. SVs are larger alterations that span >50 base pairs,
including deletions (DELs), duplications (DUPs), inversions (INVs),
insertions (INSs), and translocations (TRAs)1, which contribute far
more to sequence divergence given their larger size2. Thus, SVs can
make up the majority of an organism’s variation3. SVs have been

implicated in many diseases and pathogenic conditions, including
increasing risk for brain disorders such as Parkinson’s and Alzheimer’s
diseases, immune system complications, and organ malformations4–7.

To fully explore the role of SVs in disease conditions and in indi-
vidual genomic variability, short-read and long-read whole genome
sequencing have been used along with associated analytical methods
to characterize SVs. Short-read sequencing, also known as next-
generation sequencing technology, has been developed during the
past decades8. Their high throughput and high sequencing accuracy
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paved the way for high performance in SNV and small indel detection.
However, due to their short length and lack of context within the
genome, it is much more challenging for short reads to accurately
detect and cover the full length of SVs, particularly within repetitive
regions, and more so for larger SVs9.

The advent of long-read sequencing technologies, mainly repre-
sented by Pacific Biosciences (PacBio)10 and Oxford Nanopore Tech-
nologies (ONT)11, addressed many of the limitations of short reads.
Long-read sequencing technologies typically generate reads with over
10 kilobases average length, and thus lead to higher confidence
arrangement and accuracy12. Pacbio single-molecule, real-time (SMRT)
sequencing, produces either Continuous Long Reads (CLRs) or High-
Fidelity (HiFi) reads. Pacbio CLR can be generated from RS II, Sequel,
and Sequel II sequencing platforms with ~85% read accuracy, and can
reach amaximum200kb read length on the Sequel II platform. Pacbio
Hifi reads generated via circular consensus sequencing (CCS) can
reach 99.9% accuracyon the Sequel II platform.The latest PacbioRevio
platform achieves exceptional performance, with median read accu-
racy reaching 99.9% and with a 15-time increase in HiFi read through-
put compared to Sequel II13. Pacbio also recently introduced the Onso
platform that generates highly accurate short reads with PacBio
sequencing by binding (SBB) technology14. ONT sequencing, on the
other hand, is able to generate readswith over 1000 kbmaximum read
length and 87–98% accuracy15. While early long-read sequencing was
hampered by lower throughput, higher error rates, and higher cost per
base16, the latest techniques can now generate long reads with high
accuracy (such as PacBio HiFi), throughput (such as ONT Pro-
methION), and cost per base (also ONT PromethION) comparable to
Illumina short-reads15.

The discovery and accurate characterization of SVs are of primary
interest when analyzing long reads, and this process requires specific
long-read SV calling methods. Whole genome data from an individual
are typically aligned to a reference genome (read alignment-based) to
identify variants. Read alignment-based approaches are less compu-
tationallydemanding and require less sequencing coverage. Aplethora
of read alignment-based SV callers has emerged in recent years, such
as PBHoney17, NanoSV18, Smartie-sv19, Sniffles20, SVIM21, cuteSV22,
NanoVar23, pbsv24, SKSV25, Sniffles226, MAMnet27 and DeBreak28. An
alternative approach is to assemble the whole genomeof an individual
based on their reads alone (de novo assembly) and compare the
assembly with a reference genome, which ismuchmore demanding in
computational resources. To date, only a few assembly-based SV call-
ers have been introduced, such as Dipcall29, Smartie-sv19, SVIM-asm30,
and PAV31. The dichotomization of alignment and assembly-based
methods is not absolute. Smartie-sv19, has both read alignment-based
and assembly-basedmodes. DeBreak, can also be classified as a hybrid
method that employs a read alignment-based strategy in combination
with a local assembly approach to detect SVs. NanoVar and MAMnet
can be classified as deep learning-based approaches relying on read
alignment information. For simplicity, we classified the hybrid or deep
learning-based methods as read alignment-based since they rely on
read alignment first in their framework to extract features.

In this work, we first systematically analyze and evaluate the
performance of 16 state-of-the-art long-read SV methods, introduced
between the years 2014 and 2022 on a multitude of PacBio and ONT
datasets. We specifically investigate the relative strengths and differ-
ences of read alignment-based versus assembly-based SVmethods.We
additionally examine the effect of upstream tools such as aligners or
assemblers, on their SV calling performance. Finally, we use our
comprehensive evaluation framework to benchmark two more deep
learning-based SV calling methods published most recently in late
2022 and 2023. Assembly-based tools exhibit a higher sensitivity in
detecting large structural variants (SVs), especially insertions, and
demonstrate greater robustness to changes in evaluation parameters
and sequencing coverage. Conversely, alignment-based tools excel in

genotyping accuracy at low sequencing coverage (5–10×) and are
adept at detecting complex SVs such as translocations, inversions, and
duplications. However, assembly-based calling pipelines typically
demand more computational time. Despite these trade-offs, no single
tool achieves consistently high and robust performance across all
conditions. To aid users in tool selection, we provide guidelines and
recommendations encompassing 31 combinations of criteria. Our
work provides guidance to stimulate future method and tool devel-
opment that increases accuracy, robustness, efficiency, and reprodu-
cibility in SV discovery and evaluation.

Results
We first investigated SV detection in 12 alignment-based methods
(including deep learning-based methods NanoVar and MAMnet, and
hybridmethodDeBreak) and 4 assembly-basedmethods, in 11 PacBio
Hifi, CLR, and ONT datasets, 9 simulated long reads datasets, and 2
paired tumor-normal CLR and ONT datasets. We then evaluated their
performance in terms of downstream analyses (Fig. 1). One tool,
Smartie-sv19, has both read alignment-based and assembly-based
modes, and we therefore treated it as two methods: “Smartie-sv_aln"
and “Smartie-sv_asm" in the paper. In the last section, we additionally
benchmarked two most recent deep learning-based SV calling
methods (SVision32 and INSnet33) using our comprehensive evalua-
tion framework and discussed their strengths and weaknesses com-
pared to traditional alignment-based methods. Among the 11 long-
read sequencing datasets (Table 1), five PacBio HiFi datasets were
referred to as Hifi_L1, Hifi_L2, Hifi_L3, Hifi_L4, and Hifi_L5. They had
~56.3×, 30×, 34×, 28×, and 41× coverage, respectively. Three PacBio
CLR datasets were referred to as CLR_L1, CLR_L2, and CLR_L3, and
their coverage was 65.1×, 88.6×, and 28.6×, respectively. We also used
three ONT datasets referred to as Nano_L1, Nano_L2, and Nano_L3.
Their coverage was ~45.6×, 57×, and 48×.We usedHifi_L1 and Nano_L1
as representative libraries to demonstrate some general statistics of
SV calling performance. More information for each SV caller and
dataset is provided in Tables 1, 2. We also designed a user recom-
mendation table (Table 3 and Supplementary Table 1) along with
the following results to highlight the best performance or
robust tools.

SV length distribution and calling performance under a set of
moderate-tolerance parameters
We first examined the SV length distribution performance of all
methods. Figure 2a–p shows the general trend of the length distribu-
tion of SVs from 12 read alignment-based and 4 assembly-based
methods on Hifi_L1 and Nano_L1. Some tools were not applicable to
ONT datasets. The number of SVs decreased sharply as a function of
size, with most SVs clustering in the 50–400bp range. We found that
alignment-based calling tools had similar length distributions for
deletions, while they varied considerably for insertions. Assembly-
based tools showed a similar trend in deletion length distribution as
read alignment-based tools, while detectingmore large insertions than
most alignment-based tools, especially for insertions over 1 kb in
Hifi_L1. Compared to Hifi_L1, Nano_L1 had less coverage, which could
affect the contiguity of assembled sequences and further impair the SV
detection. To further explore the effect of different sequencing cov-
erages on all SV callers, we performed multiple SV calling and eva-
luation experiments on subsampled datasets (see Subsampling effects
on SV calling section, below). Additional details for the SV length dis-
tribution can be found in supplementary notes section 2.1.

SVs of different sizes could be detected with different accuracy
rates by the tools we examined. Therefore, we plotted F1 score as a
function of SV size range. We started the performance evaluation with
a set of fixed parameters in Truvari34 that were neither too stringent
nor too relaxed (p =0, P =0.5, r = 500, O =0); we refer to these as
modest tolerance parameters (Fig. 2q–r). The parameter p was set to
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zero to disable SV sequence comparison since tools such as PBHoney,
Smartie-sv, NanoVar, MAMnet, and DeBreak do not provide alternate
allele sequences for insertions. The parameter O was set to zero to
allow breakpoint shift for deletions, which was favorable for most
alignment-based tools. The parameter P and r used the mean value of
the range of each parameter, respectively. A more detailed investiga-
tion of these parameters for SV validation is discussed in the following
section. The results on Hifi_L1 indicated that all four assembly-based
tools (Dipcall, Smartie-sv_asm, PAV, and SVIM-asm) and three of the
alignment-based tools (SKSV, cuteSV, and MAMnet) were robust to
changes of SV size. The performance of the rest alignment-based tools
dropped markedly when the SV size was in different ranges. PBHoney
and Smartie-sv_aln did not performwell for both deletions larger than
4kb and insertions larger than 1 kb. Sniffles, Sniffles2, SVIM, and
NanoVar did not perform well for insertions larger than 1 kb. DeBreak,
pbsv, NanoVar, and PBHoney had a performance drop for small
insertions in the range of 50–200bp. NanoSV had stable, but low
F1 scores across different size ranges. In short, assembly-based tools
weremost robust to SV size changes. In Nano_L1 (Fig. 2r), performance
was similar towhatweobserved inHifi_L1 for the same tools, except for
DeBreak, SVIM, and Sniffle2. They had a relatively more robust per-
formanceon small (50–200 bp) and large (>1 kb) insertions inNano_L1,
compared to Hifi_L1. The total number of SV calls for each tool on both
Hifi_L1 and Nano_L1 is shown in Supplementary Table 2. We also show
true positives, false positives, false negatives, total benchmark SV calls,
recall, precision, F1, and genotyping accuracy for three different size
ranges of all tools in Supplementary Tables 3–5 on both Hifi_L1 and
Nano_L1. The repeat annotation analysis for SVs was further investi-
gated in Supplementary Fig. 1. The results indicated that the SV accu-
racy of long-read SV callers was not affected by different types of
repeats. More detailed results of repeat analysis were also shown in
supplementary notes section 2.3.

Computation cost
To investigate the runtime of 16 SV calling methods, 4 aligners, and 7
assemblers, we plotted and compared CPU hours. We classified tools
into three tiers depending on CPU time, though these were somewhat
dependent on the library. For Hifi_L1 (black bars in Fig. 2s–t and Sup-
plementary Table 6), cuteSV, MAMnet, SVIM, PBHoney, Sniffles, Snif-
fles2, Dipcall, and Smartie-sv_aln finished within 3-17 CPU hours; SVIM-
asm, pbsv, SKSV, and NanoVar finished within 36–64 CPU hours; PAV,
Smartie-sv_asm, DeBreak, and NanoSV finished within 116-863 CPU
hours. For Nano_L1 (gray bars in Fig. 2s–t and Supplementary Table 6),
cuteSV, Sniffile, SVIM, SVIM-asm, and Dipcall finished within 5-24 CPU
hours; NanoVar finished within 95 CPU hours; NanoSV, Smartie-sv_aln,
and PAV finished within 204-2760 CPU hours. With respect tomemory
usage, SV callers often consumed <100Gb memory, except for PAV
and Smartie-sv_aln when processing Nano_L1 (Supplementary Table 6
and Supplementary Table 7).

We also evaluated compute time of different aligners and
assemblers (Fig. 2u–v and Supplementary Table 7). Aligner compute
times were generally modest, and order of performance depended on
the library. CPU hours varied between 97 for NGMLR20 to 593 for
minimap235. Longer compute times and greater variance in CPU time
were observed for different assemblers. These varied between 440 for
Hifiasm to 5386 for Peregrine. More details are provided in supple-
mentary notes section 2.2.

Evaluation of SV calls across parameters
Structural variants often span a large region, and benchmarking them
is challenging compared to SNVs.When benchmarking SV calls of each
tool against the GIAB gold standard SV callset, comparisons do not
usually require an exact match that needs two SVs to be identical in
terms of breakpoints and SV sequence. Instead, SVs are considered the
same as long as their differences and similarities are under a set of pre-

Table 1 | Benchmark datasets

Dataset Abbreviation in the paper Coverage Source

HG002 Pacbio CCS
15kb+20 kb

Hifi_L1 56.3× https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20 kb_
chemistry2/reads/

HG002 PacBio CCS 10kb Hifi_L2 30× https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_10 kb/

HG002 PacBio CCS 11kb Hifi_L3 34× https://www.ncbi.nlm.nih.gov/sra/SRR8833180

HG002 PacBio CCS 15kb Hifi_L4 28× https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/

HG002 PacBio CCS 16kb Hifi_L5 41× https://www.ncbi.nlm.nih.gov/bioproject/PRJNA832505

HG002 MtSinai CLR_L1 65.1× https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/

HG002 Pacbio CLR CLR_L2 88.6× https://www.ncbi.nlm.nih.gov/sra/SRX7668835

HG002 Pacbio CLR CLR_L3 28.6× https://www.ncbi.nlm.nih.gov/sra/SRX6719924

HG002 Nanopore
Promethion

Nano_L1 45.6× https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_OxfordNanopore_
Promethion/

HG002 Nanopore UL
guppy3.2.4

Nano_L2 57× ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/Ultralong_OxfordNanopore/
guppy-V3.2.4_2020-01-22/

HG002 Nanopore
PRJNA678534

Nano_L3 48× https://www.ncbi.nlm.nih.gov/Traces/study/?acc = SRP292617&o = acc_s
%3Aa

9 Simulated long reads
datasets

Hifi_TRA Hifi_DUP Hifi_INV CLR_TRA CLR_DUP
CLR_INV ONT_TRA ONT_DUP ONT_INV

40× CLR&ONT: VISOR+PBSIM3; Hifi: VISOR+PBSIM3+CCS

HCC1395 Tumor Pacbio HCC1395_PB 39× https://www.ncbi.nlm.nih.gov/sra/?term =SRR8955953

HCC1395 Normal Pacbio HCC1395BL_PB 44× https://www.ncbi.nlm.nih.gov/sra/?term =SRR8955954

HCC1395 Tumor ONT HCC1395_ONT 12× https://www.ncbi.nlm.nih.gov/sra/?term =SRR16005301

HCC1395 Normal ONT HCC1395BL_ONT 19× https://www.ncbi.nlm.nih.gov/sra/?term =SRR17096031

For simulated datasets, the corresponding simulators are listed in the source field.
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defined thresholds. In the previous section for the evaluation of SV
callswe selected a set offixedparameters fromTruvari to demonstrate
the performance of all SV callers. However, the choice of these error
tolerances is usually subjective, and just a single set of thresholds
could limit our understanding of the performance of different SV
callers. A relaxed threshold could underestimate the differences
among SV callers, whereas a stringent threshold could overstate the
advantage of a specific SV caller. Thus, to thoroughly and compre-
hensively reveal the characteristics and performance of these align-
ment- and assembly-based SV calling methods, we explored a set of
grid searches on Truvari parameters including pctstim (p), pctsize (P),
pctovl (O), and refdist (r) to investigate the robustness of each SV
caller. Among these parameters, p controls the minimum allele
sequence similarity used to identify two SV calls as the same; P cor-
responds to the minimum allele size similarity between the compared
SVs; O determines the minimum threshold of reciprocal overlap ratio
between the base and comparison call and it is only applicable on
deletions that can be used to evaluate their breakpoint shift; r limits
the threshold for maximum reference location difference of the
compared SVs, which can be used to evaluate the breakpoint shift of
insertions. Specifically, in our grid search SV evaluation experiments,
we varied p, P,O from0 to 1 in increments of 0.1, and r from0 to 1 kb in
increments of 100bp.

Wefirst evaluateddeletion calls onHifi_L1. Parametersp andOhad
the greatest effects. As depicted in Fig. 3a and b, when p and O
increased, amore stringent correspondencewas required between the
call and the gold standard to be accepted as a true positive, and con-
sequently, the F1 scores of all SV callers decreased. Moreover, the F1
heatmap and its gradient changes revealed different patterns of per-
formance change in SV callers when more stringent thresholds were
applied. The performance of most read alignment-based SV callers,
except for pbsv, dropped drastically for values of p andO greater than
0.7, with smaller than 5% F1 scores when p or O was set to 1.0. To the
contrary, pbsv and the three assembly-based SV callers, Dipcall, SVIM-
asm, and PAV, demonstrated stable performance across the grid
search, and evenmaintained a greater than69%F1 scorewhen an exact
match in terms of breakpoints and SV sequence was required (p andO
equal to 1). DeBreak’s performance deviated from the rest ofmethods.
Its performance was very sensitive to the changes of p but remained
robust to changes ofO. We also investigated the effect of other pairs of
parameters on deletion evaluation: P-r, O-r, p-P, p-r, and P-O (Supple-
mentary Figs. 2–6). Parameters P and r had little effect on deletion
evaluation for all SV callers, unless they were set to 1.0 or 0 bp,
respectively. The result indicates that called deletions often have a
similar size compared with benchmark deletions, even though their
breakpoints may be shifted in most read alignment-based SV callers.

In terms of insertion evaluation on Hifi_L1, p, and rwere chosen as
a representative pair to demonstrate the performance change of 12 SV
callers. Six read alignment-based SV callers, PBHoney, NanoSV, Smar-
tie-sv_aln, NanoVar, MAMnet, and DeBreak, do not provide alternate
allele sequences by default, we thus set p to 0 to disable the sequence
comparison (Fig. 3e). Compared with deletions, all SV callers exhibited
higher sensitivity to a variety of parameters for insertions. As shown in
Fig. 3e, f, F1 scores of most tools dropped substantially when p was
over 0.5, which means the required percentage of allele sequence
similarity between the called SV and benchmark was over 0.5.
Regarding the parameter r, F1 scores decreased as the value of r
dropped. Once r decreased to 200bp or lower, which means the
acceptable reference distance between the SV call and the benchmark
was 200 bp or less, F1 scores of all tools decayedmarkedly. Similarly to
what we observed for deletions, assembly-based SV callers and pbsv
were more robust to stringent parameters than the rest read
alignment-based SV callers. However, even for these robust SV callers,
the performance of insertion detection deteriorated to less than 60%
F1 scorewhen rwas set to 0, and less than 40% F1 score when pwas setTa
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Table 3 | The user recommendation table

DEL and INS (p =0 P =0.5 r = 500 O=0)
(Pacbio)

size range SV type top1 top2 top3 top4 top5

50bp–1 kb DEL cuteSV Sniffles2 MAMnet Sniffles SVIM

INS SKSV INSnet MAMnet PAV cuteSV

1 kb–10 kb DEL cuteSV PAV DeBreak SKSV Smartie-sv_asm

INS PAV SKSV Smartie-sv_asm SVIM-asm pbsv

≥10 kb DEL SKSV cuteSV SVIM SVIM-asm PAV

INS Dipcall PAV DeBreak SVIM-asm Smartie-sv_asm

≥50bp DEL cuteSV DeBreak Sniffles SKSV MAMnet

INS SKSV INSnet PAV MAMnet cuteSV

coverage SV type top1 top2 top3 top4 top5

5× DEL MAMnet pbsv PBHoney Sniffles2 Smartie-sv_aln

INS MAMnet Sniffles2 pbsv Smartie-sv_aln NanoSV

10× DEL MAMnet pbsv PBHoney Sniffles2 Smartie-sv_aln

INS MAMnet Sniffles2 Smartie-sv_aln Smartie-sv_asm PAV

20× DEL DeBreak Sniffles2 MAMnet PAV pbsv

INS DeBreak MAMnet PAV Sniffles2 SVIM-asm

≥30× DEL DeBreak MAMnet Sniffles2 PAV cuteSV

INS DeBreak MAMnet Sniffles2 INSnet PAV

Complex SV (TRA, INV and DUP) (Pacbio) data type SV type top1 top2 top3 top4 top5

Simulation data
(Hifi/CLR)

TRA NanoSV/cuteSV cuteSV/pbsv pbsv/NanoSV SVIM/SVIM SKSV/NanoVar

INV NanoVar/
Sniffles2

SVIM/cuteSV cuteSV/SVIM Sniffles/
NanoVar

Sniffles2/
Sniffles

DUP pbsv/pbsv DeBreak/
NanoVar

NanoVar/
Sniffles2

Sniffles2/
DeBreak

SVision/NanoSV

data type SV type top1 top2 top3 top4 top5

Real cancer
data (CLR)

TRA pbsv cuteSV Sniffles Sniffles2 SVIM

INV pbsv SVIM Sniffles2 SVIM-asm DeBreak

DUP DeBreak Sniffles2 Sniffles cuteSV pbsv

DEL and INS (p =0 P =0.5 r = 500O =0) (ONT) size range SV type top1 top2 top3 top4 top5

5bp–1 kb DEL PAV cuteSV SVIM SVIM-asm SVision

INS MAMnet DeBreak cuteSV Sniffles2 PAV

1 kb–10 kb DEL DeBreak PAV Sniffles Sniffles2 cuteSV

INS DeBreak cuteSV PAV MAMnet Sniffles2

≥10 kb DEL SVision Sniffles cuteSV DeBreak Sniffles2

INS DeBreak cuteSV PAV MAMnet SVision

≥50bp DEL PAV cuteSV SVIM SVIM-asm SVision

INS cuteSV MAMnet DeBreak Sniffles2 PAV

coverage SV type top1 top2 top3 top4 top5

5× DEL Sniffles2 NanoVar PAV Smartie-sv_aln DeBreak

INS Sniffles2 PAV NanoVar NanoSV DeBreak

10× DEL Sniffles2 DeBreak NanoVar SVIM-asm SVision

INS Sniffles2 DeBreak SVIM-asm SVision NanoSV

20× DEL PAV Sniffles2 SVision MAMnet SVIM-asm

INS MAMnet DeBreak Sniffles2 PAV SVIM-asm

≥30× DEL PAV SVIM-asm Sniffles2 cuteSV SVIM

INS MAMnet DeBreak Sniffles2 PAV cuteSV

Complex SV (TRA, INV, and DUP) (ONT) data type SV type top1 top2 top3 top4 top5

Simulation
data (ONT)

TRA cuteSV NanoSV SVIM NanoVar SVIM-asm

INV NanoVar SVIM cuteSV Sniffles2 Sniffles

DUP NanoVar SVision Sniffles2 DeBreak cuteSV

data type SV type top1 top2 top3 top4 top5

Real cancer
data (ONT)

TRA NanoSV Sniffles2 NanoVar SVIM-asm cuteSV

INV NanoSV Sniffles2 Debreak SVIM-asm NanoVar

DUP Debreak NanoVar Sniffles2 SVision NanoSV
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to 1.0. We also investigated the effect of other pairs of parameters on
insertion evaluation: p-P and P-r (Supplementary Figs. 7, 8). The para-
meter Owas not used since it is not applicable to insertion evaluation.
The F1 heatmap results by grid search experiments show parameter P
only had a significant effect on insertion evaluation for all SV callers
when it was set to 1.0. This result was consistent with its effect on
deletion evaluation.

To reveal why alignment-based SV callers (except pbsv and DeB-
reak) were more sensitive to changes of parameters compared to
assembly-based SV callers, we further analyzed the distribution of SV
breakpoint shift and alternate allele sequence similarity for several
representative tools (Fig. 3c, d and g, h). The breakpoint shift was
calculated from themaximum reference location difference of the two
compared SV calls i.e., the maximum start/end location difference
between true positive SVs and their corresponding benchmark SVs.
The SV sequence similarity was calculated from the edit distanceof the
two compared SV calls and it was directly extracted from Truvari. The
results showed that tools with higher robustness such as PAV and pbsv
had a near zero breakpoint shift and near 100% SV sequence similarity
with the benchmark callset, compared with tools such as cuteSV and
Sniffles, which were very sensitive to the change of parameters and
displayed a wide range distribution of breakpoint shift and SV
sequence similarity. The result reflects the fact that capturing precise
SVbreakpoints and alternate allele sequences could establish the tool’s
robustness under stringent SV evaluation circumstances. DeBreak had
a near zero breakpoint shift but a wide range sequence similarity,
possibly due to a local assembly strategy employed to better detect
breakpoints of SVs combinedwith a read alignment-based signature to
detect the alternative sequence.

We finally performed grid search SV evaluation experiments on
Nano_L1. All 9 readalignment-basedSVcallers,NanoSV, Smartie-sv_aln,
Sniffles, SVIM, NanoVar, cuteSV, Sniffles2, MAMnet, and DeBreak
showed similar trends with the change of parameters as they showed
on Hifi_L1 (Supplementary Fig. 9–17).

In addition to the SVbenchmarking toolTruvari, wealsousedhap-
eval36 to investigate the robustness of all tools across evaluation
parameters using grid search. Instead of evaluating each SV indepen-
dently with Truvari, hap-eval evaluates multiple SVs together (Sup-
plementary Fig. 18). We observed similar patterns and robustness for
most of the tools in grid search experiments using hap-eval as in pre-
vious grid search experiments using Truvari. Three assembly-based
tools (Dipcall, SVIM-asm, and PAV) and one alignment-based tool
(pbsv) exhibited significantly higher F1 scores than other SV callers
under the most stringent criteria (Supplementary Fig. 19 and Supple-
mentary Fig. 20). In general, insertion SVs were more sensitive to

changes of parameters. More details for these grid search results can
be found in supplementary notes section 2.4.

Orthogonal SV validation with a new complete human genome
reference (T2T-CHM13) and trio-based Verkko HG002 assembly
Although benchmarking against the GIAB SV gold standard is an effi-
cient and precise procedure to evaluate and compare the SV calling
performance of different tools, theGIAB gold standard SV callset is not
a complete set and could also contain false positives. Relying on the
conjecture that SVs supported bymore tools aremore likely to be true
positives than SVs supported by fewer tools, we analyzed overlapping
SV calls among 11 read alignment-based or 4 assembly-based SV calling
methods, and separated them into three categories by comparing
them with the benchmark callset: true positives (TPs), false positives
(FPs), and false negatives (FNs). NanoSV is not applicable to this ana-
lysis. The detailed method is described in the Methods section. To use
benchmark SVs, high-confidence SVs (N = 9397) determined in high-
confidence regions by GIAB are often utilized by the community.
Without these constraints, we can also consider all SVs from the
benchmark (N = 28745). The SV overlapping analysis with constraints
on Hifi_L1 showed most of TP SV calls are supported by most of the
tools (Fig. 4a, b, top panels). Assembly-based tools are better at
detecting TP insertions than read alignment-based tools. More details
can be found in supplementary notes section 2.5. Althoughmost of TP
SVs were supported by most SV callers, many tools generated a sub-
stantial number of exclusive TP SV calls, especially for insertions. An
appropriate SV merging and filtering strategy by using SV calls from
several robust tools could potentially yield dramatically improved
results. More details can be found in supplementary notes section 2.6.

In contrast to true positives, we observedmost of FP SV calls were
supported by only one or a few tools (Fig. 4c, top panels).We observed
that read alignment-based SV callers, PBHoney, Smartie-sv_aln, and
NanoVar, generated the most unique deletions and insertions that
were not detected by any other tool. Assembly-based SV callers gen-
erated much fewer unique SVs, except Smartie-sv_asm (Fig. 4d, top
panels). We also performed this SV overlapping analysis without high-
confidence constraints (Fig. 4a–f, bottom panels), and found over-
lapping percentage results for all tools were similar to those with
constraints, except higher absolute numbers were shown in both TPs
and FPs when all benchmark SVs were used. However, for FN SV calls
(Fig. 4e–f, bottom panels), the pattern was different with constraints
versus without constraints. Without constraints, most FN calls could
not be detected bymost tools. This result reveals the reason why GIAB
does not considermost of themas high-confidence SVs, as it is difficult
to determine whether they are real true positives or not.

Table 3 (continued) | The user recommendation table

Overall performance across datasets for DEL
and INS (p =0 P =0.5 r = 500 O =0)

Data type SV type top1 top2 top3 top4 top5

Hifi DEL DeBreak Sniffles2 PAV SVIM-asm pbsv

INS DeBreak PAV INSnet MAMnet SVIM-asm

CLR DEL cuteSV DeBreak Sniffles2 pbsv Sniffles

INS DeBreak MAMnet cuteSV SVIM-asm INSnet

Nano DEL cuteSV SVIM Sniffles2 MAMnet SVIM-asm

INS cuteSV MAMnet DeBreak Sniffles2 INSnet

Data type SV type top1 top2 top3 top4 top5

Hifi gt DEL PAV Sniffles2 SVIM-asm pbsv cuteSV

INS PAV SVIM-asm cuteSV Sniffles2 DeBreak

CLR gt DEL cuteSV Sniffles2 pbsv DeBreak SVIM

INS cuteSV DeBreak SVIM-asm PAV Sniffles2

Nano gt DEL cuteSV Sniffles2 SVIM SVIM-asm DeBreak

INS cuteSV Sniffles2 DeBreak SVIM-asm PAV

For each evaluation scenario, the table lists several fine-grained conditions and the top 1–5 methods.
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We, therefore, wished to apply another orthogonal SV validation
approach to evaluate those FP and FN SV calls (without constraints).
We used the new complete sequence of human genome T2T-CHM1337

and the trio-based Verkko HG002 assembly to investigate whether
those calls can be supported or not. Verkko uses the full-coverage
HG002 dataset (105 ×HiFi and 85 ×ONT UL) to produce the most

continuous assembly of this genome to date38. The detailed method is
described in the Methods section. We ordered tools by the number of
FP calls and observed that all 15 methods had FPs supported by T2T-
CHM13 or Verkko assembly and these calls could be true positives but
missedbyGIAB. The four assembly-basedmethods and two alignment-
basedmethods (NanoVar and Smartie-sv_aln) achieved the best results
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Fig. 2 | Sizedistribution, accuracy, andCPU time consumption for SVdiscovery
in Hifi_L1 and Nano_L1. a–dDeletion and insertion SV size distribution (50 bp–1 kb
and ≥1kb) discovered by read alignment-based tools on Hifi_L1. e–h Deletion and
insertion SV size distribution (50 bp–1 kb and ≥1kb) discovered by assembly-based
tools on Hifi_L1. i–l Deletion and insertion SV size distribution (50 bp–1 kb and ≥ 1
kb) discovered by read alignment-based tools on Nano_L1. m–p Deletion and
insertion SV size distribution (50 bp–1 kb and ≥1 kb) discovered by assembly-based
tools on Nano_L1. q, r F1 accuracy of SV detection at different size ranges by tuning
four different combinations of evaluation parameters. Negative size range

represents deletion SVs, and positive size range represents insertion SVs. Bar plot
showsbenchmarkSVdistribution atdifferent size ranges. The line plot shows the F1
score of 16 different SV calling methods. O is the minimum reciprocal overlap
between SV call and gold standard SV. p is the minimum percentage of allele
sequence similarity. r is the maximum reference location distance between SV call
and gold standard SV.O and p vary from 0–1 with a 0.1 interval, while r varies from
0–1000bp with a 100bp interval. s–v CPU time consumption for read alignment-
based and assembly-based SV callers, different aligners, and assemblers. Source
data are provided as a Source Data file.
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Fig. 3 | F1 accuracy by tuning different evaluation parameters and distribution
of breakpoint shift and alternate allele sequence similarity for SVs on Hifi_L1.
a Grid search heatmap of F1 values for deletion SVs by different read alignment-
based tools. O is the minimum reciprocal overlap between SV call and gold stan-
dard SV. p is the minimum percentage of allele sequence similarity between SV call
and gold standard SV. O and p vary from 0–1 with a 0.1 interval. b Grid search F1
heatmap for deletion SVs by different assembly-based tools. c Distribution of
breakpoint shift for deletion SVs. dDistribution of alternate sequence similarity for

deletion SVs. e Grid search F1 heatmap for insertion SVs by different read
alignment-based tools. r is the maximum reference location distance between SV
call and gold standardSV.p is theminimumpercentage of allele sequence similarity
between SV call and gold standard SV. p vary from 0–1 with a 0.1 interval. r varies
from 0–1000bp with a 100bp interval. f Grid search F1 heatmap for insertion SVs
by different assembly-based tools. g Distribution of breakpoint shift for insertion
SVs. h Distribution of alternate sequence similarity for insertion SVs. Source data
are provided as a Source Data file.
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when considering both the absolute number of supported FPdeletions
and the percentage of supported FPdeletions (Fig. 4g).With respect to
FP insertions, three assembly-based tools (SVIM-asm, PAV, andDipcall)
achieved twice as many supported FP insertions compared to
alignment-based tools, and they also had the largest percentage of
supported insertions among their FPs (Fig. 4g). For FPs supported by
Verkko assembly, we observed highly concordant patterns for all
methods as T2T (Fig. 4i), except thatVerkko assembly supported fewer
FP deletions than T2T. We also found that 93.7–99.3% FPs of each tool
supported by Verkko assembly were also supported by T2T. We
highlighted two potential explanations for this observation: (1) T2T-
CHM13provides amorecomprehensive assembly compared toVerkko
assembly (N50 is 151Mb in T2T-CHM13 compared to 136Mb in the
Verkko assembly); (2) The CHM13 genome may be more similar to
HG002 in certain regions or contain fewer unique variations,making it
easier to detect true positive SVs in HG002 using CHM13-T2T. We also
analyzed the SV size distribution of all FPs and FPs supported by T2T-
CHM13, and did not observe any significant difference (Fig. 4h).Wedid
observe a significant number of FN SVs supported by T2T-CHM13 or
Verkko assembly, even though most of them were non-high-
confidence SVs and not supported by most tools, especially for
insertions (Supplementary Fig. 21a–d). These non-high-confidence SVs
could really be true positives by this orthogonal validation. We
demonstrated one 5.4kb FP deletion and one 780bp FP insertion
supported by T2T-CHM13 in IGV (Supplementary Fig. 21e). We next
analyzed overlapping SV calls on Nano_L1 among 8 read alignment-
based and 3 assembly-based SV callers and observed a similar pattern
for overlapping calls among alignment- and assembly-based tools,
respectively (Supplementary Fig. 22).

Subsampling effects on SV calling
In order to assess SV callers’ robustness to different sequencing cov-
erages, we subsampled the raw reads of Hifi_L1 and Nano_L1 to lower
coverages such as 50×, 40×, 30×, 20×, 10×, and 5× fold using rasusa39,
and evaluated the performanceof the tools after performing SV calling
on these subsampled datasets (Fig. 5, Supplementary Fig. 23, and
Supplementary Table 8–10). To perform this analysis, the same set of
fixed and moderate-tolerance parameters was used (p = 0, P =0.5,
r = 500, O =0).

We first analyzed the subsampling effects of 12 read alignment-
based SV calling methods on deletions in Hifi_L1 to identify tools with
most sustained performance (Fig. 5a–c). As the sequencing coverage
decreased from 50× to 20×, the deletion recall of tools that rely on a
similar “signature detection-clustering-genotyping” pipeline, including
Sniffles, SVIM, cuteSV, and SKSV, dropped drastically (Fig. 5a–b and
Supplementary Table 8, the solid line segments with star markers
denote 20×). The deletion recall of these four tools further dropped to
approximately 1% at 5× fold coverage, while still maintaining high pre-
cision (the solid line segments with circle markers denote 5x). The
performance ofNanoSVwas already low even at 50×.On the other hand,
PBHoney, NanoVar, Smartie-sv_aln, pbsv, Sniffle2, MAMnet, and DeB-
reak demonstrated relatively high and stable performance across dif-
ferent sequencing coverages (Fig. 5a–c). Among these robust tools, pbsv
and MAMnet achieved the highest F1 (93.4% and 94.0%), and DeBreak
had the lowest F1 (60.7%) at 5x. With respect to the effects of low
sequencing coverage on insertions (Fig. 5d–f and Supplementary
Table 8), we observed similar subsampling effects, except that recall and
precision scores were generally lower in insertions than in deletions.

We also investigated the subsampling effects on SV calling on
Nano_L1 (Supplementary Fig. 23a–d and Supplementary Table 9).
Similar to what was observed in Hifi_L1, the deletion and insertion
recall of Sniffles, SVIM, and cuteSV dropped substantially when
sequencing coverage decreased to 10–20×, but lower sequencing
coverage had less impact on precision. Among alignment-based
methods, the performance of Sniffles2 and DeBreak was relatively

high and robust to the changes of sequencing coverage in both dele-
tion and insertion calling. MAMnet also achieved high and robust
performance at 20–40×, but could not output results on low coverage
(5–10×) data. The performance of NanoSV, NanoVar, and Smartie-
sv_aln was relatively low, even at 40×, especially for insertions. How-
ever, their performance was relatively robust andmaintained better F1
values at low (5–10×) coverage than most of the tools.

We further evaluated the effects of subsampling on SV calling,
using assembly-based SV callers with subsampledHifi_L1 data (Fig. 5g–h
and Supplementary Table 10). In this analysis, all four assembly-based
SV callers accepted the assembly result of Hifiasm as input. For both
deletions and insertions, unlike the monotonic decrease of recall as a
function of coverage in most read alignment-based SV callers, there
were surprisingly few changes in the performance of assembly-based
SV callers (with the exception of Dipcall; the solid line segments with
triangle markers denote 10×), until the sequencing coverage dropped
below 10 fold. We also observed similar high and robust performance
for the three assembly-based tools on subsampled Nano_L1 (Supple-
mentary Fig. 23c–d and Supplementary Table 11).

Lastly, we analyzed the subsampling effects on genotyping (gt)
accuracy for all robust tools, except PBHoney and Smartie-sv_aln,
which do not output genotyping results (Fig. 5a–h and Supplementary
Fig. 23a–d, dashed vs. solid lines, and Supplementary Tables 8–11). In
general, the genotyping recall, precision, and F1 scores showed similar
trendswith overall accuracy. However, the genotyping performanceof
the three robust assembly-based tools (Smartie-sv_asm, svim-asm, and
PAV), plus DeBreak and MAMnet declined considerably when the
sequencing coverage decreased to 5–10×. In contrast, the robust
alignment-based tools, pbsv, and Sniffles2 exhibited much better
genotyping performance at low coverage. Low assembly continuity
and high assembly break at low sequencing coverage (5–10×) could be
the reason the genotyping accuracy of assembly-based tools
decreased significantly.

SV calling performance across 11 PacBio and ONT datasets
To further evaluate the robustness of each tool across different
libraries, we performed analysis across 11 long-readdatasets. The same
set of fixed andmoderate-tolerance parameters (p =0, P = 0.5, r = 500,
O = 0 for Truvari) was selected to evaluate the performanceof all tools.
The parameter p was set to zero to disable the SV sequence compar-
ison since five tools do not provide alternate allele sequences for
insertions, as mentioned before. The parameter O was also set to zero
to allow breakpoint shifts for deletions for most alignment-based
tools. Across five Hifi long reads datasets (Fig. 5i), all four assembly-
based tools achieved consistently high F1 scores for both deletion and
insertion SVs regardless of different coverage (28–56.3×) or insert sizes
(10–20 kb) in different libraries (Table 1). Four alignment-based tools
(cuteSV, Sniffles2, MAMnet, and DeBreak) also achieved consistently
high performance across five Hifi datasets for both deletion and
insertion SVs. PAV maintained the highest genotyping accuracy. The
genotyping accuracy of insertions for all robust alignment-based tools
decreasedmarkedly compared to their overall accuracy, particularly in
MAMnet. For the rest of the alignment-based tools, overall accuracy
and genotyping accuracy of insertion SVs varied considerably across
different datasets. For the three CLR and three ONT datasets, all four
alignment-based tools (cuteSV, Sniffles2, MAMnet, and DeBreak)
maintained high and consistent F1 scores. The genotyping accuracy of
MAMnet was much lower than its overall accuracy. Across all CLR and
ONT datasets, only one of the assembly-based tools, SVIM-asm,
achieved performance at par with the robust alignment-based tools
(cuteSV, Sniffles2, and DeBreak).

Effects of different aligners and assemblers
Considering that different aligners could affect the performance of
read alignment-based SV callers, we selected three read alignment-
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based tools, Sniffles, SVIM, and cuteSV, which had relatively higher
performance on both Hifi_L1 and Nano_L1, and evaluated the effect of
four different aligners (NGMLR20, minimap235, Winnowmap40, and
LRA41) on their SV calling performance. We used radar plots to
demonstrate the SV calling performance of three tools across four
metrics (Fig. 6a).

In general, although the effect may bemitigated by optimizing SV
calling algorithms, using different aligners did affect SV calling per-
formance, especially for insertions (Fig. 6). Minimap2, Winnowmap,

and LRA generally performed best for insertion recall. Performance on
deletions was relatively unaffected by different aligners. CuteSV was
least affected by different aligners. More details are provided in sup-
plementary notes section 2.7.

We similarly evaluated the effects of six different assemblers on
Hifi_L1 and three different assemblers on Nano_L1, using three
assembly-based SV callers (Fig. 6b). In general, for Hifi data, assembly
results from Hifiasm achieved the best SV calling, followed by Pere-
grine + HapDup and wtdbg2 + HapDup. Deletion and insertion

N
um

be
r o

f S
Vs

N
um

be
r o

f S
Vs

N
um

be
r o

f S
Vs

N
um

be
r o

f S
Vs

N
um

be
r o

f S
Vs

SV length (kb)

N
um

be
r o

f S
Vs

SV length (kb)

N
um

be
r o

f S
Vs

N
um

be
r o

f S
Vs

INS supported by T2T
INS not supported by T2T

DEL supported by T2T
DEL not supported by T2T

DEL
INS

DEL
INS

a

h

b

g

Alignment based DEL TP

Alignment based DEL FP

Alignment based INS TP

Alignment based INS FP

Assembly based
 INS TP

Assembly based
 INS FP

Assembly based
 DEL TP

Assembly based
 DEL FP

FPs supported by CHM13-T2T

Total FPs

Percentage of FPs supported by T2T-CHM13 per SV caller

11
10
9
8
7
6
5
4
3
2
1

11
10
9
8
7
6
5
4
3
2
1

4
3
2
1

4
3
2
1N

um
be

r o
f S

Vs

N
um

be
r o

f S
Vs

Number of 
supporting tools Number of 

supporting tools

without
constrains

with constrains

w
ith

ou
t c

on
ss

tra
in

s

w
ith

 c
on

st
ra

in
s

Alignment based DEL FN Alignment based INS FN
Assembly based

 INS FN
Assembly based

 DEL FN

N
um

be
r o

f S
Vs

N
um

be
r o

f S
V

INS supported by Verkko
INS not supported by Verkko

DEL supported by Verkko
DEL not supported by Verkko

i Percentage of FPs supported by Verkko HG002 assembly per SV caller

c d

e f

SVIM-asm PAV
Dipcall

SKSV pbsv
SVIM

cuteSV
0

1000

2000

3000

4000

5000
24.1%24.4%

25.4%

19.8%18.0%
23.9%

22.5%

INS

Smartie
-sv_asm

Dipcall
NanoVar

PAV

SVIM-asm

PBHoney

Smartie
-sv_aln

SKSV
Sniffle

s2 pbsv
SVIM

Sniffle
s

DeBreak
cuteSV

MAMnet
0

500

1000

1500

2000

2500

3000

3500 20.8%

33.1% 30.6% 27.2% 30.1% 12.2% 35.2%
19.7%

30.7% 25.6% 34.1%
29.1% 30.9% 28.4% 30.3%

DEL

Smartie
-sv_asm

Dipcall

SVIM-asm
NanoVar

PAV
PBHoney

Smartie
-sv_aln

SKSV
Sniffle

s2
pbsv

SVIM
Sniffle

s

DeBreak
cuteSV

MAMnet
0

500

1000

1500

2000

2500

3000

3500

4000

9.6%

13.6% 12.1% 11.8% 15.3% 4.3% 12.8% 8.4%
13.1% 11.5% 14.0% 13.6% 14.1% 13.1% 11.4%

DEL

SVIM-asm PAV
Dipcall

SKSV
pbsv

SVIM
cuteSV

0

1000

2000

3000

4000

5000
20.5%

21.2% 19.3%

14.3%
17.9%

15.4%
14.6%

INS

0

100

200

300

PBHoney

Smartie
-sv_aln

Sniffle
s

SVIM pbsv

NanoVar
cuteSV

SKSV
Sniffle

s2
MAMnet

DeBreak

0

500

1000

1500

0

200

400

600

0

1000

2000

3000

0

100

200

300

Dipcall
PAV

SVIM-asm

Smartie
-sv_asm

0

1000

2000

3000

0

250

500

750

Dipcall
PAV

SVIM-asm

Smartie
-sv_asm

0

2500

5000

7500

0

2000

4000

0

2500

5000

7500

0

2000

4000

0

5000

10000

0

2000

4000

Dipcall
PAV

SVIM-asm

Smartie
-sv_asm

0

2500

5000

7500

0

2000

4000

Dipcall
PAV

SVIM-asm

Smartie
-sv_asm

0

5000

10000

PBHoney

Smartie
-sv_aln

Sniffle
s

SVIM pbsv

NanoVar
cuteSV

SKSV
Sniffle

s2
MAMnet

DeBreak

PBHoney

Smartie
-sv_aln

Sniffle
s

SVIM pbsv

NanoVar
cuteSV

SKSV
Sniffle

s2
MAMnet

DeBreak

PBHoney

Smartie
-sv_aln

Sniffle
s

SVIM pbsv

NanoVar
cuteSV

SKSV
Sniffle

s2
MAMnet

DeBreak

PBHoney

Smartie
-sv_aln

Sniffle
s

SVIM pbsv

NanoVar
cuteSV

SKSV
Sniffle

s2
MAMnet

DeBreak
Dipcall

PAV

SVIM-asm

Smartie
-sv_asm

Dipcall
PAV

SVIM-asm

Smartie
-sv_asm

PBHoney

Smartie
-sv_aln

Sniffle
s

SVIM pbsv

NanoVar
cuteSV

SKSV
Sniffle

s2
MAMnet

DeBreak

0

100

200

0

2000

4000

6000

0

1000

2000

0

2500

5000

7500

0

50

100

150

0

2000

4000

6000

0

100

200

300

0

2000

4000

<-10 -8 -6 -4 -2 0 2 4 6 8 >10
0

100

200

300

400

500

600

<-10 -8 -6 -4 -2 0 2 4 6 8 >10
0

500

1000

1500

2000

2500

3000

Fig. 4 | Orthogonal SV validation with overlapping calls among different tools
and with the new complete human genome reference T2T-CHM13.
a, bOverlapping TP deletion and insertion SVs supported by read alignment-based
and assembly-based tools. c, d Overlapping FP deletion and insertion SVs sup-
ported by read alignment-based and assembly-based tools. e, f Overlapping FN
deletion and insertion SVs supported by read alignment-based and assembly-based
tools. The top panels show results by using high-confidence benchmark SVs from
GIAB (with constraints), and thebottompanels show results by using all benchmark

SVs (without constraints). The height of each bar represents the total SVs dis-
covered by a tool. Color gradient in the bar specifies a range of supporting tools for
SVs. Dark colors represent a high number of supporting tools, while light colors
represent a low number of supporting tools. g Percentage of FP deletions and
insertions supported by T2T-CHM13 for each SV caller. h Size distribution of total
FPs (without constraints) and FPs supported by T2T-CHM13. i Percentage of FP
deletions and insertions supported by Verkko assembly for each SV caller. Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-46614-z

Nature Communications |         (2024) 15:2447 11



Recall

Pr
ec

is
io

n

PBHoney
NanoSV
Smartie-sv_aln
Sniffles
SVIM
cuteSV
NanoVar
pbsv
SKSV
Sniffles2
MAMnet
DeBreak

5x
10x
20x
30x
40x
50x
5x_gt
10x_gt
20x_gt
30x_gt
40x_gt
50x_gt

Recall

Pr
ec

is
io

n

Recall

Pr
ec

is
io

n

Dipcall
PAV
Smartie-sv_asm
SVIM-asm

Alignment based tools DEL

Assembly based tools DEL Assembly based tools INSDEL Zoom in

INS Zoom in

g

a

Recall Recall

Pr
ec

is
io

n

Alignment based tools INS

Alignment based tools DEL

Alignment based tools INS

Alignment based tools DEL

Alignment based tools INS

Across Datasets Analysis p=0 P=0.5 r=500 O=0i

b c

d e f

h
5x
10x
20x
30x
40x
50x
5x_gt
10x_gt
20x_gt
30x_gt
40x_gt
50x_gt

Recall Recall Recall

0.96 0.77 0.97 0.57 0.97 0.57

0.54 0.65

0.71 0.47 0.73 0.58 0.73 0.58

0.98 0.88 0.96 0.84 0.96 0.84

0.98 0.87 0.9 0.85 0.9 0.85

0.98 0.93 0.98 0.92 0.98 0.92

0.92 0.26 0.91 0.26 0.91 0.26

0.97 0.88 0.97 0.83 0.97 0.83

0.98 0.77 0.97 0.82

0.96 0.94 0.98 0.95 0.93 0.9

0.98 0.93 0.97 0.94

0.93 0.76 0.95 0.75 0.91 0.74 0.95 0.74 0.94 0.73

0.61 0.7 0.52 0.55 0.17 0.16 0.55 0.57

0.94 0.85 0.95 0.86 0.96 0.86 0.95 0.86 0.95 0.87 0.64 0.52 0.73 0.39 0.76 0.42

0.98 0.87 0.93 0.88 0.95 0.9 0.94 0.89 0.97 0.93 0.94 0.89 0.97 0.9 0.96 0.91

0.98 0.84 0.94 0.87 0.96 0.89 0.94 0.88 0.97 0.91 0.96 0.88 0.97 0.89 0.97 0.9

0.98 0.93 0.94 0.9 0.96 0.92 0.95 0.91 0.98 0.94 0.96 0.95 0.98 0.96 0.98 0.96

0.95 0.69 0.94 0.73 0.94 0.73 0.94 0.73 0.94 0.73 0.86 0.55 0.86 0.55 0.91 0.57

0.97 0.84 0.97 0.84 0.97 0.84 0.97 0.84 0.97 0.84

0.98 0.95 0.94 0.8 0.96 0.86 0.94 0.86 0.97 0.84

0.97 0.88 0.97 0.93 0.98 0.94 0.97 0.94 0.98 0.94 0.95 0.94 0.98 0.95 0.97 0.94

0.98 0.93 0.97 0.94 0.96 0.92 0.96 0.91 0.94 0.95 0.98 0.96 0.98 0.96

0.98 0.92 0.98 0.95 0.98 0.95 0.98 0.95 0.98 0.95 0.92 0.95 0.97 0.96 0.96 0.95

0.95 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.89 0.84 0.92 0.87 0.93 0.88

0.96 0.91 0.96 0.91 0.95 0.91 0.96 0.91 0.95 0.91

0.97 0.93 0.97 0.92 0.97 0.92 0.97 0.93 0.97 0.93 0.96 0.91 0.97 0.92 0.97 0.92

0.97 0.94 0.97 0.94 0.97 0.94 0.97 0.94 0.97 0.94 0.97 0.94 0.8 0.81 0.96 0.91

0.51 0.570.58 0.63 0.5 0.49 0.16 0.14 0.53 0.51

0.5 0.39 0.58 0.45 0.58 0.450.62 0.44 0.51 0.4 0.54 0.41 0.55 0.42 0.57 0.47 0.58 0.41 0.6 0.45 0.59 0.44

0.96 0.77 0.89 0.78 0.89 0.780.97 0.79 0.93 0.85 0.95 0.87 0.93 0.87 0.96 0.9 0.95 0.78 0.96 0.81 0.96 0.82

0.97 0.92 0.98 0.92 0.98 0.920.98 0.92 0.93 0.89 0.95 0.91 0.93 0.9 0.97 0.93 0.96 0.94 0.97 0.95 0.97 0.95

0.89 0.21 0.87 0.23 0.87 0.230.93 0.63 0.92 0.69 0.92 0.7 0.91 0.7 0.92 0.7 0.83 0.5 0.83 0.5 0.88 0.53

0.95 0.81 0.96 0.78 0.96 0.780.96 0.78 0.96 0.82 0.96 0.82 0.96 0.82 0.96 0.83

0.97 0.94 0.93 0.79 0.94 0.86 0.93 0.85 0.96 0.83

0.96 0.74 0.96 0.80.96 0.83 0.96 0.91 0.97 0.92 0.97 0.92 0.97 0.92 0.94 0.92 0.97 0.93 0.96 0.93

0.95 0.89 0.85 0.74 0.74 0.650.77 0.61 0.9 0.62 0.95 0.88 0.91 0.62 0.73 0.67 0.91 0.8 0.91 0.85

0.97 0.87 0.93 0.850.96 0.87 0.95 0.89 0.95 0.9 0.94 0.89 0.95 0.9 0.9 0.91 0.96 0.92 0.94 0.910.98 0.94

0.61 0.62 0.91 0.88 0.79 0.8

0.91 0.89 0.95 0.92 0.91 0.89

0.89 0.84 0.94 0.91 0.91 0.88

0.97 0.91

0.98 0.92 0.97 0.9

0.22 0.25 0.49 0.53 0.39 0.40.93 0.88 0.93 0.88 0.93 0.88 0.93 0.88 0.93 0.88 0.84 0.75 0.89 0.81 0.9 0.82

0.94 0.88 0.94 0.88 0.93 0.88 0.94 0.88 0.93 0.89

0.88 0.85 0.94 0.9 0.89 0.840.96 0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.95 0.89 0.96 0.91 0.96 0.91

0.87 0.8 0.93 0.88 0.89 0.830.97 0.93 0.97 0.93 0.96 0.93 0.97 0.93 0.97 0.93 0.96 0.93 0.53 0.62 0.95 0.9

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

Hifi_L1 Hifi_L2 Hifi_L3 Hifi_L4 Hifi_L5

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

Hifi_L1 Hifi_L2 Hifi_L3 Hifi_L4 Hifi_L5

0.0

0.2

0.4

0.6

0.8

1.0

PBHon
ey

Nan
oS

V

Smart
ie-

sv
_a

ln

Snif
fle

s

SVIM

cu
teS

V

Nan
oV

ar

pb
sv

SKSV

Snif
fle

s2

MAMne
t

DeB
rea

k

Dipc
all

Smart
ie-

sv
_a

sm

SVIM
-as

m

PAV

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

CLR_L1 CLR_L2 CLR_L3 Nano_L1 Nano_L2 Nano_L3
(gt F1)

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

D
EL

IN
S

CLR_L1 CLR_L2 CLR_L3 Nano_L1 Nano_L2 Nano_L3

Al
ig

nm
en

t b
as

ed
 to

ol
s

As
se

m
bl

y 
ba

se
d 

to
ol

s

(gt F1)(F1) (F1)(F1)(F1)(F1)(F1)(F1)(F1)(F1)(F1)(F1) (gt F1)(gt F1)(gt F1)(gt F1)(gt F1)(gt F1)(gt F1)(gt F1)(gt F1)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F1=0.1

F1=0.2

F1=0.3

F1=0.4

F1=0.5

F1=0.6

F1=0.7

F1=0.8

F1=0.9

0.80 0.85 0.90 0.95 1.00

0.80

0.85

0.90

0.95

1.00

F1=0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F1=0.1

F1=0.2

F1=0.3

F1=0.4

F1=0.5

F1=0.6

F1=0.7

F1=0.8

F1=0.9

0.80 0.85 0.90 0.95 1.00

0.80

0.85

0.90

0.95

1.00

F1=0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F1=0.1
F1=0.2
F1=0.3

F1=0.4

F1=0.5

F1=0.6

F1=0.7

F1=0.8

F1=0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F1=0.1
F1=0.2
F1=0.3

F1=0.4

F1=0.5

F1=0.6

F1=0.7

F1=0.8

F1=0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F1=0.1
F1=0.2
F1=0.3

F1=0.4

F1=0.5

F1=0.6

F1=0.7

F1=0.8

F1=0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F1=0.1
F1=0.2
F1=0.3

F1=0.4

F1=0.5

F1=0.6

F1=0.7

F1=0.8

F1=0.9

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

F1=0.8

F1=0.9

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1=0.6

F1=0.7

F1=0.8

F1=0.9

Fig. 5 | Subsampling effect and across-datasets analysis of different SV callers.
a–f Recall-precision-F1 curves show the subsampling effect on deletion and inser-
tion SVs by read alignment-based tools on Hifi_L1. g–h Recall-precision-F1 curves
show the subsampling effect on deletion and insertion SVs by assembly-based tools
on Hifi_L1. The coverage depth varies from 5x, 10×, 20×, 30×, 40× to 50×. Solid lines
withmarkers are for different coveragedepths, and corresponding dashed lines are

for genotyping (gt) accuracy. For deletion SVs, we zoom in on the top right part of
the plot to demonstrate the curves more clearly. i Heatmap shows overall and
genotyping (gt) F1 scores on 11 long reads datasets for 16 SVcallingmethods. Empty
cells represent analysis that could not be performed (or finished within 14 days of
runtime) for the tool in the corresponding row. Source data are provided as a
Source Data file.
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precision were poor when using contigs from the IPA assembler. Dip-
call was most affected by the choice of assembler. The choice of
assembler was more subtle on ONT than Hifi data. More details are
provided in supplementary notes section 2.8.

Evaluation of complex SVs with simulated datasets
Large deletions and insertions account for most SVs, but other SVs,
such as translocations, inversions, and duplications, also describe
different combinations of DNA rearrangements. The lack of

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

Dipcall

Hifi_L1

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

SVIM-asm
DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

PAV

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

Dipcall

Nano_L1

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

SVIM-asm
DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

PAV

NGMLR
minimap2
Winnowmap
LRA

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n
Sniffles

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

Sniffles

Hifi_L1

Nano_L1

a
DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

SVIM

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

SVIM

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

cuteSV

DEL-Recall

D
EL-Precision

INS-Recall

IN
S-

Pr
ec

is
io

n

cuteSV

b

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.00

0.6

0.7

0.8

0.9

1.0

Peregrine+HapDup
wtdbg2+HapDup
Flye+HapDup
IPA
Hifiasm
HiCanu+purge_dups

Flye_HapDup
Shasta_HapDup
wtdbg2_HapDup

0.6
0.7

0.8
0.9

1.0

0.6
0.7

0.8
0.9

1.0

0.6
0.7

0.8
0.9

1.0

0.6
0.7

0.8
0.9

1.0

0.6
0.7

0.8
0.9

1.0

0.6
0.7

0.8
0.9

1.0

Fig. 6 | The effects of different aligners and assemblers on SV calling of read
alignment-based and assembly-based tools, respectively. a The effect of dif-
ferent aligners on SV calling of read alignment-based tools for Hifi_L1 and Nano_L1.

bThe effect of different assemblerson SVcalling of assembly-based tools forHifi_L1
and Nano_L1. Source data are provided as a Source Data file.
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benchmarking data for such complex SVsmakes it difficult to evaluate
tools. We thus simulated 9 long reads datasets to benchmark trans-
locations, inversions, and duplications. Simulation and evaluation
details are outlined in the Methods section. In this analysis, we only
included ten SV calling methods that can detect complex SVs (Fig. 7a).

Alignment-based tools performed well with these types of com-
plex SVs. For translocations, cuteSV achieved the best overall perfor-
mance for PacBio Hifi (F1 = 96%), CLR (F1 = 96%), and ONT (F1 = 97%)
datasets, followed by NanoSV and SVIM. pbsv performed equally well
with cuteSV on the PacBio Hifi and CLR datasets, but was not designed
to detect translocations on the ONT dataset. SKSV achieved a 94%
F1 score on the Hifi dataset, but was not designed to detect translo-
cations on the CLR andONTdatasets. Performance across all toolswas
fairly poor for inversions: NanoVar achieved the best overall perfor-
mance for Hifi (F1 = 75%) and ONT (F1 = 67%), followed by SVIM. Snif-
fles2 achieved the best performance for CLR (F1 = 67%), followed by
SVIM. Finally, for duplications, pbsv reached a 92% F1 score for Hifi.
However, all tools performed relatively poorly on CLR and ONT data-
sets. pbsv still achieved the best F1 (66%) for the CLRdataset; it was not
designed to detect duplications in the ONT dataset. NanoVar achieved
the best F1 (62%) for ONT. In summary, inversion or duplication
detection was not as good as other SV types (translocations, deletions,
and insertions). The six best tools, cuteSV, NanoSV, SVIM, pbsv,
NanoVar, and Sniffles2 had their own strengths and weaknesses in
complex SV calling across different long reads datasets.

The genotyping accuracy of these six high-performing tools in
inversions and duplicate calling decreased in the range of 0–46.3%.
SVIM had the minimum genotyping accuracy drop in the range of
0–1.9%. The maximum genotyping F1 drop reached 46.3% in cuteSV,
39.3% in Sniffle2, 31.1% inNanoSV, 20.8% in pbsv, and 13.6% inNanoVar.
Notably, Sniffles had extremely low genotyping accuracy in all Hifi,
CLR, and ONT datasets since it assigned most of its complex SVs with
the wrong genotyping and had a bias to call all homozygous SVs to be
heterozygous ones. Its low genotyping accuracy was also reflected in
both deletion and insertion SVs.

SV calling performance on cancer datasets
To further evaluate the performance of the tools in detecting complex
SVs in real data, we performed additional analysis on two publicly
available sets of tumor-normal paired libraries (Pacbio CLR and ONT)
and investigated five classes of somatic SVs. Talsania et al.’s work42

provided a high-confidence HCC1395 somatic SV callset that we used
for benchmarking. Details for somatic SV calling and evaluation are
described in the Methods section. The high-confidence
HCC1395 somatic SV callset has a total of 1777 SVs, including 551
insertions, 717 deletions, 146 translocations, 133 inversions, and 230
duplications. Since this high-confidence callset is incomplete, we
plotted recall and precision separately. We expected the precision
scores ofmost of the tools to be low and thus only focused on recall to
compare the somatic calling results (Fig. 7b).

Performance in this real dataset was generally consistent with
the simulation results, for most tools. For somatic translocations,
pbsv and NanoSV achieved the best performance in the CLR or ONT
datasets, respectively (recall = 55% for CLR in pbsv; recall = 53% for
ONT in NanoSV), having ranked second-best in the simulation
experiments. For somatic inversions, pbsv achieved the best recall
(48%) for CLR, followed by SVIM and Sniffles2, which were the two
best tools to call inversions in simulated CLR data. NanoSV achieved
the best recall (41%) for ONT. However, NanoVar did not perform as
good an inversion calling as it did in the simulation experiments. For
somatic duplication evaluations, DeBreak achieved the best recall:
75% for CLR and 54% for ONT, respectively. Tools such as NanoVar
that performedwell in duplication calling for simulation experiments
also performed relatively well in real datasets (43% for CLR and 53%
for ONT).

Benchmarking most recent deep learning-based SV calling
framework
Recently, more deep learning-based SV calling methods for long reads
have been introduced, including SVision and INSnet. The use of
advanced deep-learning methods promises superior SV detection
compared to traditional alignment-based methods. These tools
appeared in the course of developing this article, and we were able to
benchmark them rapidly, using our established evaluation framework
and to compare themwith previously evaluated tools (Supplementary
Figs. 24, 25, and Supplementary Tables 12, 13). Overall, SVision and
INSnet achieved fairly reasonable and robust performance on deletion
and insertion SV calling, however, neither of them achieved superior
performance for most of the scenarios or conditions we benchmarked
when comparing with previously evaluated tools. More details for
these benchmarking results can be found in the supplementary notes
section 2.9. For some conditions, SVision and INSnet could be optimal
tools. They were also included in our discussion and user recom-
mendations. With our established benchmarking framework, future
tools can be easily added for a comprehensive comparison.

Discussion
In this study, to comprehensively compare alignment-based (including
thehybrid anddeep learning-based) and assembly-based SV callers,we
first analyzed SV calling performance under a set of moderate-
tolerance parameters in the HG002 sample, relative to the GIAB SV
gold standard callset. Our main results were as follows: a) Assembly-
based tools detectedmore large insertions thanmost alignment-based
tools, especially those greater than 1 kb. b) Detection accuracy of
assembly-based tools was more robust to SV size changes than most
alignment-based tools. Among alignment-based tools, SKSV, cuteSV,
MAMnet were more robust to changes in SV size. c) Including the
assembly procedure, assembly-based SV calling pipelines took much
longer CPU time to finish compared to alignment-based SV calling
pipelines, which involved a time-efficient alignment process. Based on
these results we call attention to the trade-off between computing
speed and performance for alignment- and assembly-based tools.
Depending on user needs, we provide guidance for performance in
Table 3 and Supplementary Table 1 across a series of criteria.

Performance across parameters and datasets
Due to the complexity of SVs, a set of fixed or moderate-tolerance
parameters does not capture the whole characteristics of different SV
callers and could cause biases when benchmarking them. We thus
designed a set of grid search SV evaluation experiments by tuning
parameters affecting SV breakpoint shift and alternate sequence
similarity between the called SVs and the benchmark SV set, to assess
the performance and robustness of different SV callers. These results
indicated: a) Read alignment-based SV callers, with the exception of
pbsv andDeBreak,weremore sensitive toparameter changes. DeBreak
showed high accuracy in terms of breakpoint shift, though lower
accuracy in terms of sequence similarity. b) Three assembly-based
tools (Dipcall, SVIM-asm, and PAV) and one alignment-based tool
(pbsv) were robust to parameter changes as they achieved a near zero
breakpoint shift and near 100% SV sequence similarity with the
benchmark callset.

Although the GIAB SV gold standard callset provides us with an
efficient and appropriate way to evaluate SV calls among different
tools, this callset is not complete and is likely to contain false positives.
Analyzing the overlapping calls among different tools provides an
alternative perspective for evaluation. Furthermore, we employed a
new complete sequence of human genome T2T-CHM13 and trio-based
Verkko HG002 assembly to investigate whether those likely false
positive calls of each tool or low-confidence calls from GIAB were
supported or not. We observed the following: a) Most TPs in high-
confidence regions were supported bymost of the tools. b) More than
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Fig. 7 | Complex SV detection in simulated and real cancer datasets. a Heatmap
shows overall and genotyping (gt) F1 scores of translocation (TRA), inversion
(INV), and duplication (DUP) detection for 10 SV calling methods on 9 simulated
PacBio Hifi, CLR, and ONT datasets. b Heatmap shows recall and precision scores
of somatic deletion (DEL), insertion (INS), translocation (TRA), inversion (INV),

and duplication (DUP) detection for 9 SV calling methods on two publicly avail-
able sets of Tumor-Normal paired Pacbio CLR and ONT libraries. Empty cells
represent analysis that could not be performed (or finished within 14 days of
runtime) for the tool in the corresponding row. Source data are provided as a
Source Data file.
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20% of FP insertions identified by assembly-based tools (Dipcall, SVIM-
asm, and PAV) were supported by both T2T-CHM13 and Verkko
assembly, indicating that theymay be true positivesmissed byGIAB. c)
FNs that appeared in regions that GIAB characterized as low-
confidence (without constraints) were rarely supported by the tools
we tested, however, some were supported by T2T-CHM13 and Verkko
assembly.

We further analyzed the subsampling effects on SV calling. Our
conclusions were as follows: (a) Alignment-based tools that integrated
signature detection pipelines (Sniffles, SVIM, cuteSV, and SKSV) were
very sensitive to sequencing coverage changes. Alignment-based tools
(PBHoney, NanoVar, Smartie-sv_aln, pbsv, Sniffle2, MAMnet, and
DeBreak) were more robust to coverage changes while maintaining a
good performance. Subsampling with lower coverage had a significant
effect on recall and F1, but a relatively smaller impact on precision. (b)
For assembly-based tools (except Dipcall), decreasing of sequencing
coverage had little impact on performance, until it dropped to less
than 10×. (c) At low sequencing coverage (5–10×), the genotyping
accuracy of all three robust assembly-based tools decreasedmarkedly,
but two robust alignment-based tools (pbsv and Sniffles2) still main-
tained high genotyping accuracy.

In addition to subsampled datasets, we also analyzed SV calling
performance across 11 different PacBio andONT datasets. We found a)
All four assembly-based tools (PAV, Dipcall, SVIM-asm, Smartie-
SV_asm) and six alignment-based tools (cuteSV, Sniffles2, MAMnet,
DeBreak, and INSnet) demonstrated stable and high performance
across five Hifi datasets regardless of coverage (28×–56.3×) or insert
sizes (10-20 kb). For all three CLR datasets, these alignment-based
tools still maintained high and stable F1 scores, except Sniffles2, and
INSnet. For all three ONT datasets, these alignment-based tools still
maintained high and stable F1 scores. However, only one of the
assembly-based tools, SVIM-asm, achieved performance at par with
the alignment-based tools on CLR and ONT datasets. b) The geno-
typing accuracy of insertions for all robust alignment-based tools
decreasedmarkedly compared to their overall accuracy, particularly in
MAMnet.

Since different aligners and assemblers could influence read
alignment-based tools and assembly-based tools, respectively, we
analyzed the effects of four aligners and six assemblers. a) Different
aligners had a noticeable effect on the insertion recall of alignment-
based tools. In general, minimap2, Winnowmap, and LRA were better
than NGMLR for most alignment-based tools with respect to insertion
recall. b) Insertion precision, deletion recall, and precision were unaf-
fected, or only subtly affected by different aligners. c) Compared to
Sniffles and SVIM, cuteSVwas influenced the least bydifferent aligners.
d) Hifiasm had the best performance on Hifi data, and SV callers
showed theworst precision performanceon contigs assembled by IPA.
e) The performance of Dipcall was greatly influenced by different
assemblers. f) The effect of different assemblers was more subtle on
ONT data than Hifi data.

We finally investigated complex SVs including translocations,
inversions, and duplications in both simulated and paired tumor-
normal datasets. In simulation experiments, we found the following:
a) For translocations, on simulated data, the overall best tools were
cuteSV and pbsv (F1 > 0.95 on all suitable datasets), followed by
NanoSV and SVIM. b) For inversions, no tool achieved high perfor-
mance. The best F1 scores were achieved by NanoVar, Sniffles2, and
NanoVar on Hifi, CLR, and ONT, respectively. c) For duplications,
pbsv was the best tool for Hifi and CLR data followed by DeBreak,
while NanoVarwas the best for ONT data. In real datasets, we reached
the following conclusions: a) For somatic translocations, pbsv had
the best recall on CLR data, and NanoSV on ONT data. This perfor-
mance was consistent with that in simulated datasets. b) For
somatic inversions, pbsv had the highest recall on CLR data, while
NanoSV had the highest recall on ONT data. c) For somatic

duplications, DeBreak had the overall best performance on CLR and
ONT data.

Recommendations
Our study provided systematic performance comparisons for read
alignment-based (including the hybrid and deep learning-based) and
assembly-based SV calling tools. Along with the conclusions we drew
from each designed experiment, we also designed a user recommen-
dation table to highlight optimal tools based on 31 fine-grained con-
ditions for both PacBio and ONT data. Top tools with high ranking or
robust performance in each condition are summarized in Table 3 and
Supplementary Table 1. No tool achieved superior performance across
all conditions. Users can select the tools best suited for their needs
based on different scenarios. Alignment-based approaches are almost
universally used at present because they are less computationally
demanding, and more new tools are developed every year. As we see
from the table, alignment-based tools are ranked high when a set of
moderate-tolerance evaluation parameters are used (p =0 and O = 0
are favorable for alignment-based tools). However, such approaches
have limitations in the accurate representation of a complete genome,
an SV’s initial and ending position in the genome (its “breakpoints”),
and in identifying the full SV sequence. If users need to apply more
rigorous evaluation thresholds, assembly-based tools like PAV could
be the best in most conditions, and the ranking of other good
alignment-based tools will be reordered depending on their robust-
ness. More deep learning-based approaches (built on read alignment)
continue to emerge and generate adequate and robust performance.
MAMnet is representative of this trend, and it is ranked high in most
conditions, although its genotyping accuracy is oftenmuch lower than
the overall accuracy. However, deep learning-based methods still suf-
fer from the same problem as traditional alignment-based methods.
When users choose the optimal tools based on their needs, they,
therefore, need to be aware of the SV evaluation thresholds. Future
algorithms need to resolve this problem, and one of the promising
approaches may be integrating local assembly strategy through a
hybrid method. DeBreak is an example and it achieves good perfor-
mance in most conditions. Much fewer assembly-based tools have
been developed, but assembly-based tools are more efficient and
robust in detecting precise SVs, compared to alignment-based meth-
ods. Assembly-based tools, on the other hand, are more likely to have
low genotyping accuracy at low (5–10×) sequencing coverage due to
assembly breaks, and most of the assembly-based tools were not
designed to detect complex SVs. Future studies should take into
account the importance of diploid genome assembly and assembly-
based tools, even though assembling the whole genome of an indivi-
dual ismuchmoredemanding in computational resources.More large-
scale and efficient genome assembly algorithms and assembly-based
tools are likely to further improve precise SV detection.

Methods
Overview of existing SV callers
Existing long-read-based SV callers can be divided into read alignment-
based (including deep learning-based and hybrid methods) and
assembly-based methods as mentioned above. Within each category,
SV callers also vary in their exact SV detection strategies.

In general, readalignment-basedmethods detect SVs by analyzing
discordance between the sample genome’s reads and the reference
genomebased on read alignments. PBHoney, proposed in 2014, parses
inter-alignment signals with soft-clipped tails and intra-alignment dis-
cordance signals independently. A best re-alignment of each soft-
clipped tail along with the initial read alignment composes a piece-
alignment, which is used to identify SVs. Regarding intra-alignment
discordance, PBHoney first counts three types of errors, mismatch,
deletion, and insertion, to produce three corresponding channels. It
then identifies possible SV regions that contain increases in
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discordance followed by decreases in discordance, corresponding to
the starts and ends of genomic variants, respectively.

NanoSV was introduced in 2017. It first processes each read into a
sequenceof aligned segments and alignment gaps, where each aligned
segment is represented by a tuple containing the segment’s chromo-
some, genome start and end coordinates, and the mapping orienta-
tion. It then defines each candidate breakpoint junction by any two
consecutive aligned segments on a read together with the gap in
between. Finally, NanoSV detects SVs by clustering breakpoint
junctions.

Sniffles, SVIM, cuteSV, SKSV, and pbsv, which were introduced in
2018, 2019, 2020, 2021, and 2021, respectively, leveraged similar
“signature detection-clustering-genotyping” pipelines, and we will
therefore refer to them as signature-based methods. For these meth-
ods, signatures are sets of information extracted from intra-alignment
discordance or inter-alignment discordance of a read, and a signature
usually contains the read name, start and end coordinates, the chro-
mosome name, the strand orientation, SV type, and other tailored
information specific for each SV type. Although signature-based tools
use similar strategies to identify signatures, the clustering strategy
varies from tool to tool. Sniffles stores andmerges SV signatures using
a self-balancing binary tree, where each node collects multiple related
signatures to forman SV. Sniffles2, introduced recently, is a redesignof
the Sniffles pipeline for higher accuracy and time efficiency, and it also
extends to population-scale SV calling. In the clustering step, Sniffles2
implements a three-phase clustering. It first clusters the raw SV signals
by their SV type and genome start location, then corrects alignment
errors in highly repetitive regions, and finally splits the preliminary
clusters to represent different supported SV lengths. SVIM uses a
graph-based method to identify signature clusters to form final SVs,
where each node corresponds to an SV signature. cuteSV clusters the
signatures in two steps, first by their types and genome locations, and
then by signature length to identify sub-clusters for different alleles of
complex heterozygous SVs. SKSV, introduced by the same group of
investigators as cuteSV, directly uses cuteSV to detect SVs from the
signatures. However, instead of collecting signatures from the read
alignments provided by existing aligners, SKSV detects potential SV
signatures by identifying non-co-linear alignment segments using a
greedy extension strategy. pbsv clusters signatures according to their
length difference and overlapping on the reference genome. Addi-
tionally, pbsv generates a consensus flanking region for each cluster,
and aligns the cluster together with the consensus flanks back to the
reference genome.With regard to the final genotyping step, signature-
based tools typically leverage information from supporting reads of
each SV.

Diverging from signature-based tools, NanoVar, a deep learning-
based approach using read alignment information, proposed in 2020,
introduces novel adjacency from split-read or hard-clipped align-
ments. A novel adjacency is defined as two adjacent genomic coordi-
nates in a sample genome that are not found to be adjacent in the
reference genome. NanoVar characterizes SVs by featuring signals
induced by novel adjacencies, and leverages the power of an artificial
neural network to further improve the accuracy of SV detection.

Two tools were made available online in 2022. DeBreak, a hybrid
method by integrating both alignment-based strategy and local
assembly approach, separates SV events into two categories by whe-
ther the SV could be contained within reads. For SVs that could be
spanned within reads, DeBreak extracts raw SV signals from read
alignments and clusters them using a density-based clustering algo-
rithm, and further refines the breakpoints with partial order alignment
algorithm. For SV events that are too long to be contained in reads,
DeBreak reconstructs the SV by performing local de novo assembly
around candidate SV breakpoints which can be identified with abun-
dant clipped alignment. MAMnet, another deep learning-based
approach, first constructs feature vectors for each base pair that

contains the count of substitution, deletion, insertion, soft/hard clip
and read depth, as well as themax and average length of deletions and
insertions that covers the base pair based on the alignment informa-
tion, which in turn forms feature matrices for each subregion of the
genome. These matrices are then processed sequentially with a time-
distributed convolutional neural network (CNN) and a long short-term
memory network (LSTM) to extract candidate deletion and insertion
regions.

To date, only a few assembly-based tools have been proposed.
Assembly-based tools detect SVs by parsing the alignments between
the assembled contiguous sequences (contigs) and the reference
genome. SVIM-asm, introduced in 2020, is adapted fromSVIM and can
accept both diploid and haploid assembly alignments as input. When
runningondiploid contig alignments, SVIM-asmextracts SV signatures
for each haplotype and pairs similar signatures from different haplo-
types for genotyping. PAV, which was proposed in 2021, first resolves
multiply-mapped contig bases and reference bases by trimming
alignment records, and then identifies SVs with precise breakpoints
from inter- and intra-contig alignment. PAV also incorporates a special
pipeline for inversion detection through a k-mer density analysis.
Dipcall and Smartie-sv19, both introduced in 2018, did not explicitly
specify their SV calling pipelines in the respective papers introducing
them, so their methods are not reviewed here, but we still investigate
their performance and compare them with the rest of the SV callers.

Aligners and assemblers for SV calling pipelines
To prepare the input BAM file for read alignment-based SV callers and
further investigate the effect of different aligners on SV calling, three
aligners were used to align each long-read dataset against the refer-
ence genome hg19: minimap2 (version 2.22-r1101), NGMLR (version
0.2.7), Winnowmap (version 2.03) and LRA (version 1.3.2). Minimap2
was run with the flag “-x" set to “map-hifi", “map-pb" and “map-ont" on
PacBio-Hifi, PacBio-CLR, and ONT datasets, respectively. For NGMLR,
the “-x" flag was set to “PacBio" or “ont" for PacBio or ONT datasets.
Winnowmap, which was developed based on minimap2, used “map-
pb", “map-pb-clr" and “map-ont" for the PacBio-Hifi, PacBio-CLR, and
ONT datasets, respectively. LRA generated the alignment file by two
steps: reference index and alignment. Both steps required a flag to
specify the input type ("-CCS", “-CLR" and “-ONT" for PacBio-Hifi, Pac-
Bio-CLR, and ONT datasets, respectively). Additionally, minimap2 and
Winnowmapwere runwith “–MD"flag, andLRAalignment stepwas run
with “–printMD" to add an “MD" tag in alignment results while NGMLR
included an “MD" tag in the output by default. The BAM file constitutes
the input of most read alignment-based tools except SKSV. SKSV uses
its own proposed pipeline to generate the alignment skeleton and
extract SV signatures.

For assembly-based SV callers in this paper, a diploid/dual
assembly is used as input. To prepare the diploid assembly for Hifi_L1,
we adopted six de novo assemblers, Hifiasm (version 0.16)43, HiCanu44,
Peregrine45, Flye46, IPA47, and Wtdbg248. To construct the diploid
assembly for Nano_L1, three assemblers were used: Flye, Shasta49, and
Wtdbg2. For assemblers generating only haploid assembly, Peregrine,
Flye,Wtdbg2, and Shasta, a dual assemblywas subsequently generated
using HapDup50; for assembler HiCanu, purge_dups51 was used to
generate a dual assembly.

Hifiasm is specially designed for PacBio Hifi datasets, and since
version 0.15, Hifiasm uses a built-in dual assembly module to provide
the assembly results of each haplotype. HiCanu generates a merged
diploid contig file (e.g., 5.8Gb for Hifi_L1). Purge_dup is then used to
split it into two haploid contig files which can be used for assembly-
based SV callers such asDipcall, SVIM-asm, and PAV. Peregrine outputs
a primarycontig (e.g. 2.9Gb forHifi_L1) and an alternate contig fastafile
(e.g. 318Mb for Hifi_L1) which can be directly used for SVIM-asm, and
PAV. To prepare the diploid contigs of Peregrine for Dipcall, HapDup is
further used to reconstruct the diploid information from the primary
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contig. Flye and Wtdbg2 first assemble a collapsed haplotype contig
file from the diploid reads data, and HapDup is then used to recon-
struct the diploid information from it. IPA is designed for HiFi reads,
and generates phased assemblies including a primary (e.g. 2.9Gb for
Hifi_L1) and analternate contigfile (e.g., 2.5Gb forHifi_L1), which canbe
directly used for Dipcall, SVIM-asm, and PAV. Shastamainly focuses on
assembling ONT data and offers a set of built-in assembly configura-
tions that correspond to different guppy versions.

Assembly-based SV callers still require an alignment step in their
workflow. It is either built-in (as in the case of PAV, Smartie-sv_asm, and
Dipcall) or needs to be executed explicitly before running the SV caller
(as in the case of SVIM-asm). In this paper, we used minimap2 to align
assembled diploid contigs against the reference genome for all four of
these assembly-based tools. Additional details for how to install and
run each aligner and assembler are included on our GitHub page
(https://github.com/maiziezhoulab/LRSV_combo). Details for how to
install and run each SV caller are also included on our GitHub page.
Several essential guidelines are included in the supplementary
methods.

Benchmarking for SV calls
The GIAB community provides a gold standard SV set for the sample
HG00252, which includes 4117 deletions and 5281 insertions in defined
“high-confidence” regions characterized with multiple sequencing
platforms. SV calls (deletions and insertions) from all tools were eval-
uated against this benchmark using Truvari, which is a commonly used
open-source benchmarking tool.

Truvari provides parameters including pctstim (p), pctsize (P),
pctovl (O), and refdist (r) to setup different criteria for SV evaluation
depending on the needs of the specific analysis. Parameter p controls
theminimum allele sequence similarity used to identify two SV calls as
identical. The similarity is calculated from the edit distance ratio
between the reference and alternate haplotype sequences of the base
and comparison call. Setting p to zero can disable this comparison.
ParameterP corresponds to theminimumallele size similarity between
the compared SVs, which is calculated from dividing the length of the
shorter SV with the longer one. ParameterO determines the minimum
threshold of the reciprocal overlap ratio between the base and com-
parison call, and it is only applied to deletions for evaluating the effect
of breakpoint shift on deletion accuracy. Parameter r represents the
threshold formaximum reference location differenceof the compared
SVs, which can be used to evaluate the effect of breakpoint shift on
insertion accuracy. In general, higher values of p, P, and O, and lower
value of r set more stringent comparison criteria, as they will require
the compared SVs to have higher sequence and size similarity, larger
spatial overlapping ratio, or closer location to the reference sequence
to be considered as the same SV.

SV breakpoint shift and alternate allele sequence similarity
analysis
Breakpoint shift is calculated from the reference genome location
difference between the true positive SVs called by the tools and the
corresponding benchmark SVs. Called SVs and benchmark SVs are
paired up by the MatchId provided by Truvari. For each deletion, the
start and end coordinate differences between the called SV and
benchmark SV are calculated, and the maximum value of these two is
chosen as the value for breakpoint shift. For insertions, the breakpoint
shift is defined as the start coordinate difference. Breakpoint shift
values larger than 200bp are merged to the 200+bp bin in the
distribution plot.

SV overlapping analysis among different tools
To perform this overlapping analysis, a set of fixed and moderate-
tolerance parameters (p =0, P =0.5, r = 500,O =0) in Truvari was used.
As mentioned before, parameter p was set to zero to disable the SV

sequence comparison since five alignment-based tools do not provide
alternate allele sequences for insertions, and the parameter O was set
to zero to allow breakpoint shift for deletions, which was favorable for
most alignment-based tools.

To determine the number of SV callers supporting each SV, we
performed a SV overlapping analysis by employing Truvari to compare
multiple VCFs of different SV callers. Truvari takes two VCFs as input,
one as the SV benchmark set, and the other one as the SV comparison
set. It then generates three VCF outputs to store true positive, false
negative, and false positive results, respectively. The overlapping
analysis requires SV calling results from different SV callers to have a
compatible format. Therefore, VCF outputs from all SV callers were
converted into a uniform format, with the corresponding tool name
recorded in a user-defined field called “SC" (Source Caller) to allow us
to backtrace all SV callers for each SV in the end. After this format
regularization, we used Truvari to process these VCFs iteratively, as
follows. The first SV caller’s VCF file was treated as a merged VCF.
Subsequent VCF files were compared against the merged VCF using
Truvari to generate the true positive (tp-base.vcf), false negative
(fn.vcf) and false positive (fp.vcf) results. As the merged VCF was used
as the SV benchmark set in this comparison by Truvari, tp-base.vcf and
fn.vcf shared the same SC information with the merged VCF, while
fp.vcf shared the same SC field as the current VCF. Since SVs in tp-
base.vcf were shared by the merged VCF and the current VCF, the tool
name of the current VCF was then appended to the SC field of tp-
base.vcf. SVs in fn.vcf and fp.vcf were either only found in the merged
VCF or only in the VCF from the current tool, therefore SC information
in these two VCFs remained unmodified. The modified tp-base.vcf,
together with fn.vcf and fp.vcf were combined and used as the new
merged VCF in the next iteration to compare with a third VCF of a
different SV caller. Once all VCFs were used for comparisons, we
generated afinalmergedVCF inwhichwe kept trackof all tools sharing
eachSV in the “SC"field.We thus used thismergedVCF to calculate the
number of tools supporting each SV.

Orthogonal SV validation with a new complete human genome
reference (T2T-CHM13) and trio-based Verkko HG002 assembly
Toalleviate the bias introducedby theGIABbenchmark,weused a new
complete human genome reference, T2T-CHM13, and designed a new
pipeline to validate FP and FN SV calls inferred by each tool against the
whole benchmark call set (N = 28745, without constraints). The FP and
FN calls were validated by the same procedures and criteria described
below, however, deletion and insertion SV calls were validated in a
slightly different process.

For insertion SVs, in the first step, we inserted FP or FN SV calls
(target SVs) into the reference genome. Each target SV was inserted
into the hg19 reference genome by its estimated breakpoint recorded
in the VCF file. Secondly, we simulated pseudo-reads containing all
target SVs. For each insertion SV target, we simulated pseudo-reads
from the SV-inserted hg19 reference genome in a way that each
pseudo-read included a left and right flanking sequence length of
10 kb, plus the target SV sequence. So, the length of the corresponding
pseudo-read is 20 kb + insertion SV size. For deletion SVs, instead of
inserting each target SV, we deleted FP or FN SV calls from the hg19
reference genome by their breakpoints. We then simulated pseudo-
reads which only contained two detached segments from the hg19
reference. So, the length of the corresponding pseudo-read is 20 kb.
Thirdly, we usedminimap2 to align all pseudo-reads to the T2T-CHM13
reference genome. The command we used was as follows:

minimap2 -t 30 --MD -Y -L -a -x map -

hifi T2T genomic:fa pseudo -reads

:fa j samtools sort -o pseudo -

reads aligned T2T:bam
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Finally, the last step was to filter SVs supported by T2T-CHM13.
From the BAM file generated in the third step, we extracted the
alignment information around SV breakpoints on pseudo-reads. For
each insertion SV, we investigated the alignment information of the
segment ranging from9.9kb to 10.1 kb + SV size on the pseudo-read, as
this segment encompasses the inserted SV and 100bp left and right
flanking regions. For each deletion SV, we investigated the alignment
information of the segment from 9.9kb to 10.1kb, as this segment
includes the novel adjacency caused by the target deletion. For the
segment in question, we calculated the matching percentage M,
deletion percentage D, and base shift B. The matching percentage is
calculated as

M =Nmatching=Nseg × 100% ð1Þ

where Nmatching is the number of matching bases in the segment
aligned against T2T-CHM13, and Nseg is the length of the segment. The
deletion percentage is calculated as

D=
Xk

i= 1

CDLi=j SV size j× 100% ð2Þ

where
Pk

i= 1 CDLi is the length summationof all deletionCIGARs in that
segment region. The base shift is calculated as

B= jPOST2T � POShg19j ð3Þ

B is used as the absolute position difference between the breakpoint
position on T2T-CHM13 and hg19. When the segment was aligned to a
different chromosome on T2T-CHM13 compared to hg19, B was set to
∞. For a target SV, it was counted as supported by T2T-CHM13 when
the below condition holds:

M > 95% and D < 5% and B < 10Mb ð4Þ

We also used the trio-based Verkko HG002 assembly for ortho-
gonal SV validation. The evaluation pipeline is the same as using T2T,
except it does not need to check the chromosome number and base
shift since Verkko assembly is not chromosome-level assembly.

Subsampling
In order to evaluate the consequences of different sequencing cover-
age on the performance of the SV callers, we used a tool called rasusa39

to subsample the raw reads of Hifi_L1 to approximately 50×, 40×, 30×,
20×, 10× and 5x coverage, and of Nano_L1 to approximately 40×, 30×,
20×, 10× and 5x coverage. The original coverage for Hifi_L1 and
Nano_L1 was approximately 56.3x and 45.6x fold, respectively. Rasusa
takes the read length into account while subsampling the dataset to a
certain coverage and thus generates unbiased random subsamples of
long-read data. These subsamples were then aligned or assembled to
serve as the input to corresponding SV calling pipelines.

Simulation of complex SVs in different types of long reads
datasets
To investigate complex SVs such as translocations, inversions, and
duplications, we simulated 9 PacBio Hifi, CLR, and ONT datasets with
known gold standards (Table 1). In our simulations, 380 reciprocal
translocations and 3712 duplications from KWS1 sample callsets
(nstd106 in dbVAR database), along with 44 inversions from
CHM1 sample callsets (nstd137 in dbVAR database) were included. We
first generated diploid genomes. These three types of SVs were
selected based on the same criteria as in Jiang et al.22. They were
inserted separately into the human reference genome (hg19) with
VISOR53, generating three in silico genomes (Hap1_TRA, Hap1_DUP, and

Hap1_INV). To simulate genotypes, we constructed haplotype 2 (Hap2)
for each SV type (Hap2_TRA, Hap2_DUP and Hap2_INV), where chro-
mosomes were randomly selected to be homozygous or heterozygous
to mimic homozygous and heterozygous SVs. For homozygous chro-
mosomes, Hap2 was a copy of Hap1, whereas, in heterozygous chro-
mosomes, Hap2 was identical to the reference genome. These
simulated diploid genomes were then fed into PBSIM354 to generate
simulated Pacbio and ONT long reads.

We simulated 40× coverage reads with PBSIM3 for each diploid
genome, where half of the reads were from Hap1 and half were from
Hap2. ONT and Pacbio CLR reads were simulated with PBSIM3
ERRHMM-ONT model and ERRHMM-SEQUEL model respectively. For
Pacbio HiFi reads, we first simulated multi-pass Pacbio CLR reads with
PBSIM3 ERRHMM-SEQUEL model and then used ccs software55 to
generate HiFi reads. Additional details for how to install and simulate
reads are included in our GitHub page.

Evaluation of translocation, inversions, and duplications in
simulated datasets
In order to compare the performance of different tools in detecting
translocations (TRA), inversions (INV) and duplications (DUP), we ran
each tool on simulated datasets and evaluated the performance
against the benchmark callset relying on the following procedure.

For TRAs, we compared each tool’s callset and benchmark at the
breakend level. As we described in the Methods section, the bench-
mark callset includes 380 reciprocal translocations, equaling 1520
breakends, as every reciprocal translocation includes 4 breakends.
Every breakend can be written as a signature

ðchrom1, pos1, strand1, chrom2, pos2, strand2Þ

where chrom1, pos1, chrom2, pos2 are the breakpoints of two chro-
mosome segments that are attached together during a TRA event, and
the strand is the direction of each chromosome segment, which could
be either + (forward strand) or − (reverse strand). We extracted all
breakends from the VCF file of each tool, transferred them into sig-
natures, and compared them against the benchmark using the below
five criteria. Each breakend in the callset was considered TP if it satis-
fied the following criteria with one record in the benchmark set;
otherwise, it was considered FP:

chrom1call = chrom1bench
chrom2call = chrom2bench
jpos1call � pos1benchj≤ 1kb
jpos2call � pos2benchj≤ 1kb
strand1call = strand1bench
strand2call = strand2bench

8
>>>>>>>><

>>>>>>>>:

For INVs and DUPs, the evaluation criteria are similar to TRA.
Every inversion or duplication can bewritten as a signature in the form
of

ð chrom, start, end, SVsize, GTÞ

which includes chromosome number, SV start position, SV end posi-
tion, SV size, and genotype information, respectively. The evaluation
criteria are as below

chromcall = chrombench

jstartcall � startbenchj≤500bp
jendcall � endbenchj≤500bp
P ≥0:5

8
>>><

>>>:
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where P is the size similarity between the call and benchmark and is
calculated by the formula that follows

P = minðSVsizecall, SVsizebenchÞ=
maxðSVsizecall, SVsizebenchÞ

ð5Þ

If an INV or DUP meets the criteria above with one record in the
benchmark set, it is considered TP, otherwise FP. Furthermore, if an
INV/DUP meets the criteria above, and has a matching GT with one
record in the bench set, it is considered TP_GT.

SV discovery in cancer genomes
To compare the ability of different SV calling methods in identifying
somatic mutations, we used the high-confidence HCC1395 somatic SV
callset and the Pacbio and ONT Tumor-Normal paired libraries of
HCC1395 fromTalsania et al.42 in our analysis (Table 1).We first applied
each SV caller on two sets of Tumor-Normal paired libraries, and then
adopted the SV filtering and merging tool SURVIVOR56 to extract
somatic mutations. Lastly, we compared the somatic SV call set gen-
erated by each SV caller to the high-confidence somatic SV call set.

The pipeline details were described as follows. The first step is to
split VCF file by SV type and SV size window.We first split each VCF file
into a TRA (translocation) VCF file and a non-TRA VCF file, as SURVI-
VOR has a different algorithm tailored to TRA merging than to other
types of SV merging. We further split the non-TRA VCF file into 5 size
windows: 50–100bp, 101–500bp, 501–1000 bp, 1001–30,000 bp,
>30,000bp. The command used was

SURVIVOR filter $finput vcfg NA
$fmin sv sizeg $fmax sv sizeg 0 -1

$fout vcfg

Secondly, we extracted somatic mutations by merging the tumor
and normal SV call set. For a VCF file of a certain size window, we used
the lower bound of its size window as the maximum threshold of
breakpoint distance when merging. For example, for a 50-100bp VCF
file, the breakpoint distance threshold was set to 50bp. The command
used was

SURVIVOR merge $fvcflist:txtg
$fdist threshg 1 1 0 0

$fmin sv sizeg $fmerged:vcfg

where vcflist.txt includes one VCF file for the normal SV set and
another VCF file for the tumor SV set. After merging, we filtered SVs
that were only supported by the tumor call set but not by the normal
call set as somatic SVs. We performed this filtering procedure on non-
TRA VCF files of different size windows and the TRA VCF file and
concatenated six filtered VCF files into one VCF file as the final somatic
mutation call set.

The last step was to evaluate somatic mutation against the high-
confidence call set using different criteria. We evaluated TRAs only on
the breakend level. We calculated the breakend shift B between TRA
from the call set and the benchmark set and if B ≤ 1kb, this TRA was
considered TP, otherwise FP. For non-TRA SVs, we calculated both the
breakpoint shift B and size similarity P. P is calculated as

P = minðSVsize1, SVsize2Þ=maxðSVsize1, SVsize2Þ ð6Þ

if B ≤ 500bp and P ≥0.5, this non-TRA SV was considered TP,
otherwise FP.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
PacBio CLR, HiFi, and ONT HG002 sequencing reads are available at
GIAB and NCBI. The high-confidence HCC1395 somatic SV callset and
the Pacbio and ONT Tumor-Normal paired libraries of HCC1395 are
publicly accessible at NCBI. Specific links for all 15 aforementioned real
datasets are listed in Table 1. The Tier1 benchmark SV callset and high-
confidence HG002 region were obtained from https://ftp-trace.ncbi.
nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/
NIST_SVs_Integration_v0.6/. T2T assembly and sequencing reads of
CHM13 are publicly available at https://github.com/marbl/CHM13. Trio-
based Verkko HG002 assembly was obtained from https://zenodo.org/
record/7400747/files/hg002_verkko_hifi_ont_trio.fasta.gz. SV callsets for
each method evaluated in the paper are deposited at https://zenodo.
org/record/8287836. Source data are provided with this paper.

Code availability
All customized benchmarking scripts and detailed information for
installing and running each investigatedmethod are available at https://
github.com/maiziezhoulab/LRSV_combo under the MIT License57.
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