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An exposome atlas of serum reveals the risk
of chronic diseases in theChinese population

Lei You1,2,3,8, Jing Kou4,8, Mengdie Wang1,3,5,8, Guoqin Ji1,3,6,8, Xiang Li4,
Chang Su7, Fujian Zheng1,2,3, Mingye Zhang4, Yuting Wang1,2,3, Tiantian Chen1,2,3,
Ting Li1,2,3, Lina Zhou1,2,3, Xianzhe Shi 1,2,3, Chunxia Zhao1,2,3, Xinyu Liu 1,2,3 ,
Surong Mei4 & Guowang Xu 1,2,3

Although adverse environmental exposures are considered a major cause of
chronic diseases, current studies provide limited information on real-world
chemical exposures and related risks. For this study, we collected serum
samples from 5696 healthy people and patients, including those with 12
chronic diseases, in China and completed serum biomonitoring including 267
chemicals via gas and liquid chromatography-tandem mass spectrometry.
Seventy-four highly frequently detected exposures were used for exposure
characterization and risk analysis. The results show that region is the most
critical factor influencing human exposure levels, followed by age. Organo-
chlorine pesticides and perfluoroalkyl substances are associated withmultiple
chronic diseases, and some of them exceed safe ranges. Multi-exposure
models reveal significant risk effects of exposure onhyperlipidemia,metabolic
syndrome and hyperuricemia. Overall, this study provides a comprehensive
human serum exposome atlas and disease risk information, which can guide
subsequent in-depth cause-and-effect studies between environmental expo-
sures and human health.

The “exposome”1, complementing the genome, offers a promising
solution for characterizing environmental chemical factors and their
nonnegligible influences on chronic diseases2. The episome encom-
passes life-course environmental factors, which are generally difficult
to be measured3. Thus, a “top-down” strategy, the “blood exposome”,
was proposed to directly reflect an individual’s internal chemical
environment by allowingmeasurement of all the chemicals in blood3,4.
Known as “human biomonitoring”, this method is currently being
applied to monitor various chemicals in human blood, including
organochlorine pesticides (OCPs)5–7, organophosphorus pesticides

(OPPs)8, herbicides9, veterinary drugs10, perfluoroalkyl substances
(PFASs)11, polycyclic aromatichydrocarbons (PAHs)7,12, polychlorinated
biphenyls (PCBs)5,7, and phthalates13. Although these targetedmethods
accurately monitor contaminants in human blood, each method can
measure only a small number of chemicals with similar properties or
structures. Indeed, the complexity of co-exposure to multiple cate-
gories in the real world highlights the limitations of current methods,
especially for exploring the environmental causes of disease.

In addition, the distribution characteristics of environmental
chemical levels and risks in different populations have been studied to
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provide guidance on prevention and control policies as well as pro-
tection for susceptible individuals. Previous studies have shown that
epidemiological factors, such as age6,7,14–16, sex6,17,18, and education and
income levels6,15,19, may influence the level of chemical residues in
humans, and different distributions of serum chemical levels are
associated with epidemiological factors. Furthermore, the same
exposure may present a significantly greater risk effect in specific
populations20, and sex-specific exposure-risk relationships are of par-
ticular interest21–23. Nevertheless, existing research has not yet eluci-
dated the relationship between chemical exposure and population
diversity, especially in large-scale general population cohorts.

Chronic diseases are indisputably the predominant challenge to
health globally24. Both genetic andenvironmental factors contribute to
multiple chronic diseases, with the latter being more important25.
Currently, a high-profile issue is the associations between chemical
exposures and disease outcomes. Environmental scientists and epi-
demiologists have widely studied these associations in multiple

chronic diseases, such as hypertension23,26, diabetes27,28,
hyperlipidemia29–31, and hyperuricemia32,33, among others. However,
existing association studies are not sufficiently robust and are some-
times even contradictory, which is probably due to limited sample
sizes and large individual differences in exposures. Moreover, the
health effects of a single chemical have been the focus of most cohort
studies, whereas the “cocktail effects” caused by exposure mixtures
have largely been neglected, especially at real-world environmental
concentrations.

In this work, we aimed to comprehensively characterize the
human serum exposome, provide an exposure characteristic atlas
resource, and define the exposure-disease risk relationship. To this
end, we first enrolled a large-scale general population of 5696 people
and collected serum samples, basic epidemiological information and
chronic disease-related clinical parameters. Then, two targeted meth-
ods covering 267 environmental chemicals typically reported were
established to quantify a portion of the serum exposome: one based
on the gas chromatography‒tandem mass spectrometry (GC‒MS/MS)
platform for quantification of 97 chemicals and another based on the
liquid chromatography (LC)‒MS/MS platform for quantification of 170
chemicals. Next, we assessed levels and the risk of serum exposures in
different people stratified by epidemiological information. Finally,
single-exposure and multi-exposure models were used to define cor-
relations between chronic diseases and the serum exposome and to
reveal key risk factors.

Results
To assess the risk of chronic disease from the serum exposome, (i) we
designed a cohort of 5696 healthy and chronic disease patients from
15 provinces in China; the 12 chronic diseases included diabetes,
hyperuricemia, obesity, hypercholesterolemia, hypertriglyceridemia,
metabolic syndrome, high diastolic blood pressure, high systolic
blood pressure, abdominal obesity, hypertension, high low-density
lipoprotein cholesterol andhyperlipidemia.Additionally,we collected
data on 9 basic epidemiological factors and 9 clinical parameters of
chronic diseases and serum samples (Table 1). A portion of the human
serum exposome, which included 267 chemicals, was comprehen-
sively characterized viaGC‒MS/MS and LC‒MS/MS; 74 chemicalswere
found at high frequencies and further studied as key targets of
interest (Fig. 1a, Table 2). (ii) The participants were grouped using
basic epidemiological information, after which residual levels of
chemicals in serum were determined in the stratified population
(Fig. 1b). (iii) Robust associations between exposures and risk of
chronic disease were established using single-exposure and multi-
exposure models together to specify chemical residues at risk for
chronic diseases (Fig. 1c).

Determination of serum chemicals and batches
Human biomonitoring is prioritized for chemicals that possibly accu-
mulate in the body and cause health effects based on the literature and
public databases. A total of 97 and 170 chemicals, including OCPs,
OPPs, herbicides, insecticides, fungicides, veterinary drugs, food
additives, PAHs, PCBs, PFASs, and phthalates (Supplementary Fig. 1a),
were selected as priority lists and monitored by GC‒MS/MS and LC‒
MS/MS; specific information is given in Supplementary Data 1. For 74
exposures, 50% higher detection frequency in serum samples was
found (Table 2, Supplementary Fig. 1b). The detection frequencies and
concentration levels of all the exposures are given in Supplemen-
tary Data 2.

In general, routine maintenance of instrumentation is necessary
and performed regularly to ensure the quality of the instrument and
the repeatability and stability of the data during long-term large-scale
sample analysis, and batches were generated accordingly. The com-
position of each batch is shown in Supplementary Fig. 2, which shows
the running sequences of the calibration curves, quality control (QC)

Table 1 | Epidemiological information and chronic disease
parameters of the samples involved in this study

Characteristics Total Control Diseases

gender (M/F) 2607/3089 906/1235 1701/1854

age (years) 51 ± 17 44 ± 19 56 ± 13

cigarette smoking
history (yes/no)

1396/4300 436/1705 960/2595

alcohol drinking
history (yes/no)

1564/4132 487/1654 1077/2478

education level

primary school,
N (%)

2108 (100) 774 (37) 1334 (63)

junior high
school, N (%)

1828 (100) 688 (38) 1140 (62)

high school, N (%) 1236 (100) 432 (35) 804 (65)

university and
above, N (%)

524 (100) 247 (47) 277 (53)

marital status

married, N (%) 4853 (100) 1689 (38) 3164 (65)

unmarried, N (%) 468 (100) 367 (78) 101 (22)

others, N (%) 375 (100) 85 (23) 290 (77)

income (RMB) 22,211 ± 37,160 21,536 ± 35,618 22,617 ± 38,058

region (north/south) 2116/3580 604/1537 1411/2144

sampling No. in
Aug./Sep./Oct/Nov.

1473/1790/
2114/319

403/765/853/120 1070/1025/
1261/199

uric acid (μmol/L)

male 323 ± 85 284 ± 65 343 ± 87

female 265 ± 74 238 ± 57 282 ± 80

glycated hemoglo-
bin (%)

5.7 ± 0.9 5.4 ± 0.4 5.9 ± 1.0

LDL-Ca (mmol/L) 3.1 ± 0.9 2.5 ± 0.5 3.5 ± 0.9

triglycerides
(mmol/L)

1.4 ± 1.0 1.0 ± 0.4 1.7 ± 1.2

total cholesterol
(mmol/L)

4.9 ± 1.1 4.3 ± 0.6 5.3 ± 1.1

systolic blood pres-
sure (mmHg)

127 ± 20 115 ± 13 134 ± 19

diastolic blood
pressure (mmHg)

81 ± 12 74 ± 9 85 ± 11

waistline (cm)

male 85 ± 12 79 ± 11 88 ± 11

female 82 ± 11 77 ± 10 86 ± 10

BMI (kg/m2) 23.9 ± 3.8 21.9 ± 3.2 25.1 ± 3.7
aLDL-C, low density lipoprotein cholesterol.
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samples, and actual samples. A calibration curve was constructed at
the beginning of each batch. The accuracy of each calibration curve
was evaluated at low,medium, and high concentrations. Specifically, 2,
5, and 20ng/mL spiked concentrations were used for accurate eva-
luation of 29 calibration curves using the GC‒MS/MS platform. Spiked
concentrations of 1, 10, and 100 ng/mL were used for evaluating the
accuracy of 20 calibration curves using the LC‒MS/MS platform. In
total, 49 independent calibration curves were constructed during the
whole sample analysis process for batch-specific quantification, and
the results revealed good accuracy at low, medium, and high con-
centrations (Supplementary Fig. 3, Supplementary Data 3, 4). QC
samples were used to evaluate batch effects and the stability and
accuracy of the data. Batch effects were observed in the raw signal
(Supplementary Fig. 4a, b) but were greatly reduced after batch-
specific calibration curve quantification and correction for multiple
internal standards (Supplementary Fig. 4c–f). Ninety-two percent of
the 267 detected exposures and 84% of the 74 high-frequency expo-
sures met the requirement of relative standard deviations (RSDs) less

than 30% in the QC samples, indicating good stability of the data
(Supplementary Fig. 5a, b; Supplementary Data 5, 6). In addition, 98%
and79%of the exposuresmonitoredby theGC‒MS/MSandLC‒MS/MS
platforms, respectively,met the requirement of accuracy between80%
and 120% in the QC samples, indicating good data accuracy (Supple-
mentary Fig. 5c, d). Finally, the samples were randomly analyzed using
both platforms according to a given disease to achieve sample ran-
domization (Supplementary Data 7).

Correlation between basic epidemiological factors and serum
exposures
Considering that contact and accumulation of chemicals vary widely
across populations, specific relationships between serum exposure
and epidemiological factors, such as region, sex, age, other social
factors and lifestyle, were examined in this study. First, the influence of
each epidemiological factor on serum exposure was determined,
samples were stratified according to each epidemiological factor
(Supplementary Fig. 6), and serum exposures associated with
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Fig. 1 | Overviewof the study. a Study design: Serum samples of 5696 participants
were included in the study, 9 basic epidemiological information and 9 chronic
disease-related clinical parameterswere collected. Twoplatformsof LC-MS/MS and
GC-MS/MS were used to detect 267 exposures, and 74 high-frequency exposures
were determined. b Exposures characteristics: Exposures and basic epidemiologi-
cal factors were associated, according to these factors, participants were stratified
to analyze the distribution characteristics of exposures. c Risk discovery. First,
single-exposure analysis showed the risk, stratified risk and health risk assessment

of each exposure to chronic disease, and then exposure mixtures analysis showed
risk effects of exposure mixtures on related chronic diseases based on 3 multi-
exposure models. HbA1c glycated hemoglobin, BMI body mass index, LDL-C low
density lipoprotein cholesterol, SBP systolic blood pressure, DBP diastolic blood
pressure, OCP organochlorine pesticide, OPP organophosphorus pesticide, PAH
polycyclic aromatic hydrocarbon, PCB polychlorinated biphenyl, PFAS per-
fluoroalkyl substance,WQSweightedquantile sum regression, q g-compquantile g-
computation, BKMR Bayesian kernel machine regression.
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Table 2 | Concentration levels of 74 high-frequency exposures in human serum

Compound Detection frequency (%) Concentration (ng/mL)

Total Highest in 15 provinces Geometric mean (95% CI) Median

alpha-hexachlorocyclohexane (HCH) 19 57 0.0201 (0.0195, 0.0206) <LOQ

beta-HCH 89 100 0.313 (0.297, 0.330) 0.306

p,p’-dichlorodiphenyldichloroethane (DDD) 37 88 0.0074 (0.0072, 0.0077) <LOQ

p,p’-dichlorodiphenyldichloroethylene (DDE) 98 100 1.91 (1.82, 2.00) 2.210

p,p’-dichlorodiphenyltrichloroethane (DDT) 62 83 0.0451 (0.0436, 0.0467) 0.037

methoxychlor 42 60 0.0273 (0.0266, 0.0281) <LOQ

pentachlorobenzene 26 53 0.0025 (0.0023, 0.0027) <LOQ

hexachlorobenzene (HCB) 87 100 0.308 (0.289, 0.328) 0.515

pentachlorophenol 68 94 0.497 (0.471, 0.525) 0.410

mirex 45 82 0.0176 (0.017, 0.0183) <LOQ

dichlorvos 39 84 0.0272 (0.0258, 0.0287) <LOQ

dimethoate 18 64 0.0545 (0.0529, 0.0563) <LOQ

diazinon 23 51 0.0343 (0.0333, 0.0354) <LOQ

chlorpyrifos 74 99 0.054 (0.0522, 0.0558) 0.035

triazophos 19 59 0.0907 (0.0892, 0.0923) <LOQ

mecarbam 10 69 0.428 (0.420, 0.436) <LOQ

2,4-dichlorophenoxyacetic acid (2,4-D) 37 59 0.0537 (0.0528, 0.0547) <LOQ

iprodione 53 79 0.0353 (0.0341, 0.0365) 0.023

triclocarban 56 83 0.0185 (0.018, 0.019) 0.014

chlorothalonil 41 86 0.115 (0.110, 0.120) <LOQ

triclosan 55 92 0.0515 (0.0498, 0.0532) 0.033

lufenuron 26 84 0.0919 (0.0907, 0.0932) <LOQ

fipronil sulfone 100 100 0.278 (0.269, 0.288) 0.271

etofenprox 73 93 0.167 (0.158, 0.176) 0.174

isoprocarb 43 84 0.141 (0.137, 0.145) <LOQ

Indole-3-butyric acid (IBA) 95 99 2.14 (2.10, 2.19) 2.190

cortisone 99 100 14.56 (14.34, 14.78) 15.880

cortisol 98 100 83.01 (81.40, 84.64) 93.000

cyclamic acid 90 96 0.762 (0.714, 0.814) 0.679

acesulfame 65 88 0.346 (0.325, 0.369) 0.170

acenaphthylene 37 59 0.0086 (0.0078, 0.0095) <LOQ

fluorene 48 75 0.0357 (0.0316, 0.0402) <LOQ

anthracene 44 63 0.0336 (0.0311, 0.0364) <LOQ

acenaphthene 39 100 0.022 (0.0203, 0.0238) <LOQ

phenanthrene 36 100 0.111 (0.103, 0.119) <LOQ

benzo (a) anthracene 100 93 0.0185 (0.0178, 0.0191) 0.022

chrysene 82 98 0.0134 (0.0128, 0.014) 0.101

fluoranthene 32 91 0.0146 (0.0138, 0.0153) <LOQ

pyrene 97 100 0.037 (0.0334, 0.0409) 1.010

benzo[b]fluoranthene 69 93 0.0202 (0.0186, 0.0219) 0.0089

benzo[k]fluoranthene 47 70 0.0123 (0.0116, 0.013) <LOQ

benzo[a]pyrene 55 88 0.147 (0.135, 0.160) 0.0077

PCB-77 8 54 0.0078 (0.0077, 0.0079) <LOQ

PCB-105 13 56 0.0042 (0.0041, 0.0043) <LOQ

PCB-114 13 56 0.0081 (0.008, 0.0082) <LOQ

PCB-118 24 51 0.0096 (0.0094, 0.0098) <LOQ

PCB-126 24 64 0.0052 (0.0051, 0.0054) <LOQ

PCB-138 50 74 0.0095 (0.0092, 0.0099) 0.0052

PCB-153 48 79 0.0092 (0.0089, 0.0095) <LOQ

PCB-156 37 58 0.0111 (0.0109, 0.0113) <LOQ

PCB-167 11 56 0.0081 (0.008, 0.0082) <LOQ

PCB-169 19 55 0.005 (0.0049, 0.0052) <LOQ

PCB-180 32 59 0.0113 (0.011, 0.0116) <LOQ

PCB-183 17 52 0.0086 (0.0084, 0.0087) <LOQ
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epidemiological factors were identified. Region was the major factor
influencing the level of exposure in human serum, which explained
15.6% of the variance in exposure (Fig. 2a). The chemicals most influ-
enced by regional factors were PFASs, especially perfluorocarboxylic
acids, which included perfluorooctanoic acid (PFOA), per-
fluorononanoic acid (PFNA), perfluorotridecanoic acid, and per-
fluorodecanoic acid (PFDA) (Fig. 2b). Sampling time was found to be
the secondmost important factor. However, sampling time and region
exhibited similar associations with serum exposure (Fig. 2b), which
was probably because the sampling was conducted region by region
over a certain period (Supplementary Fig. 6e). Furthermore, as the
sampling time was mainly concentrated across only 3 months, the
effect of sampling time on the serum exposome was considered
attributable to regional factors without additional discussion. The next
important factor causing variation in human serum exposure was age,
which accounted for 1.4% of the variation in exposure. Factors other
than region and age had relatively limited effects on exposure levels
(Fig. 2a, b). Principal component analysis revealed significant separa-
tion trends among samples from people of different regions and ages
based on human chemical residues, but no such trends were observed
for other factors (Fig. 2c, d; Supplementary Fig. 7). Although human
serum exposures were significantly associated with epidemiological
factors, they correlated much less than chemicals in the same cate-
gory. The strongest association was demonstrated among PFASs, fol-
lowed by OCPs, PCBs and PAHs (Fig. 2e; Supplementary Fig. 8). This
suggests that chemicals in the same category are likely from similar
sources of contamination.

Distribution characteristics of human serum exposures based
on region, age and other factors
Considering that region was the most important factor influencing
human exposure levels, the population was stratified according to
region to explore thedistributioncharacteristicsof exposures. Overall,
the highest concentrations of total human serum chemicals were
found in Shanghai, followed by Zhejiang, Jiangsu and Shandong, which
are located in eastern coastal areas and have dense populations and

well-developed industries. The lowest concentrations of chemicals
were found in Shaanxi and Guizhou, which are inland areas with lower
populations and fewer industries (Fig. 3a). Among the various types of
human serum exposure, the concentration levels of drugs were high-
est, followedby PFASs, which varied greatly amongprovinces (Fig. 3b).
People in theYangtzeRiverDelta hadhigher serumPFASs, especially in
Shanghai and Jiangsu (Supplementary Fig. 9a). Exposure levels of
PAHs, PCBs and OCPs also differed greatly among the populations in
different regions. For example, serum PAH concentrations in people
from Henan, Zhejiang, and Shandong were significantly greater than
those in people from other provinces (Supplementary Fig. 9b). Serum
levels of PCBs and OCPs were significantly greater in Chongqing,
Shanghai, and Jiangsu (SupplementaryFig. 9c, d). ForOPPs, the highest
exposure levels were found in the population of Chongqing (Supple-
mentary Fig. 9e). Veterinary drugs and food additives had little dif-
ference in populations across provinces (Supplementary Fig. 9f).

To better understand exposure levels in human serum on a larger
regional scale, the exposure information of some high-frequency che-
micals was compared with that of seven other countries based on the
literature. In comparison with other regions of the world, serum from
people who live in China has the highest residue levels of p,p’-dichlor-
odiphenyldichloroethylene (DDE), beta-hexachlorocyclohexane (HCH),
p,p’-dichlorodiphenyltrichloroethane (DDT), PFOA,perfluoroundecanoic
acid and perfluoro-n-pentanoic acid (PFHpS). The highest residue levels
of hexachlorobenzene (HCB), perfluorooctanesulfonate (PFOS) and
PFDA were found in the serum of people in Korea. The highest residue
levels of PFNA and perfluorohexanesulfonate (PFHxS) were found in the
serum of people in the United States and Canada, respectively (Supple-
mentary Fig. 10, Supplementary Data 8).

Age is an important factor that explains differences in human
exposomeandmaybe related to differences in the exposure times and
metabolic levels of people of different age ranges. Therefore, exposure
levels were analyzed for each age group (Fig. 3c–e). Accumulation of
the majority of chemicals, such as OCPs and PFASs, in human serum
increased with age (Fig. 3c, d). Among them, beta-HCH, p,p’-DDE,
pyrene, and indole-3-butyric acid (IBA) increased with age, and the

Table 2 (continued) | Concentration levels of 74 high-frequency exposures in human serum

Compound Detection frequency (%) Concentration (ng/mL)

Total Highest in 15 provinces Geometric mean (95% CI) Median

perfluoro-n-pentanoic acid (PFPeA) 98 99 1.10 (1.07, 1.12) 1.210

perfluorooctanoic acid (PFOA) 100 100 3.99 (3.87, 4.12) 3.260

perfluorononanoic acid (PFNA) 98 100 0.813 (0.786, 0.84) 0.873

perfluorodecanoic acid (PFDA) 98 100 0.723 (0.698, 0.75) 0.737

perfluoroundecanoic acid (PFUnDA) 97 100 0.514 (0.496, 0.532) 0.561

perfluorododecanoic acid (PFDoDA) 83 98 0.0512 (0.049, 0.0534) 0.068

perfluorotridecanoic acid (PFTrDA) 83 98 0.0789 (0.0759, 0.0821) 0.095

perfluorohexanesulfonate (PFHxS) 90 100 0.387 (0.373, 0.401) 0.406

perfluoroheptanesulfonic acid (PFHpS) 99 100 0.102 (0.0996, 0.105) 0.102

perfluorooctanesulfonate (PFOS) 100 100 4.65 (4.51, 4.80) 4.890

6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFAES) 83 100 2.57 (2.47, 2.67) 2.360

bis[2-(perfluorohexyl)ethyl] phosphate (6:2 diPAP) 22 50 2.22 (2.19, 2.25) <LOQ

bisphenol F 16 53 0.409 (0.405, 0.413) <LOQ

bisphenol A 41 66 1.10 (1.08, 1.12) <LOQ

bisphenol S 12 63 0.195 (0.193, 0.197) <LOQ

bisphenol AF 17 59 0.397 (0.394, 0.40) <LOQ

triphenyl phosphate (TPHP) 43 71 0.518 (0.511, 0.526) <LOQ

monocyclohexyl phthalate (MCHP) 52 60 0.147 (0.144, 0.15) 0.113

monoethyl phthalate (MEP) 93 99 2.56 (2.50, 2.62) 2.880

dibutyl phosphate (DBP) 28 55 0.481 (0.474, 0.488) <LOQ

LOQ limit of quantification.

Article https://doi.org/10.1038/s41467-024-46595-z

Nature Communications |         (2024) 15:2268 5



highest concentrations were found in people older than 70 years. The
PFAS concentration increased with age until the age of 50 years
(Fig. 3d). In contrast, the concentrations of some chemical agents
decreased with age, with the serum of children aged less than 10 years
having the highest residual levels of cyclamic acid and acesulfame
(Fig. 3e), which prompted us to investigate the intake of sugar sub-
stitutes in these children.

Other factors also have an impact on serum exposure. Stratifica-
tion of the population according to education and income levels
revealed that most chemicals tended to increase as education and

income levels increased. Specifically, these included PAHs, OCPs, and
PCBs (Fig. 3f–h, Supplementary Fig. 11a). Only IBA residues showed a
decreasing trend (Supplementary Fig. 11b, c). In addition to education
and income, sex is an important factor influencing accumulation and
excretion of chemicals in the human body. Significantly higher levels
of OCPs were found in females than in males, whereas significantly
lower levels of PFASs and phthalates were found in females (Fig. 3i).
The chemicals most influenced by sex were beta-HCH, mono-
cyclohexyl phthalate (MCHP) and PFHxS (Supplementary Fig. 11d–f).
Finally, with regard to smoking and alcohol consumption, only male
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Fig. 2 | Correlation analysis of the basic epidemiological factors and exposures.
a Explanation of exposure variations using epidemiological information based on
variation partitioning analysis. b Correlations between each exposure and 9 basic
epidemiological factors. The correlation coefficients obtained from the partial
spearman correlation analysis were used to plot the heatmap. Principal component
analysis score plot for 15 provinces (c) and different age ranges (d). e Correlation
network of exposures and epidemiological factors. Red line represents positive
correlation, blue line represents negative correlation obtained by Spearman cor-
relation analysis. HCH hexachlorocyclohexane, DDD
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individuals were considered because women in this study rarely
smoked or drank alcohol (Supplementary Fig. 6d, f). For many che-
micals, significantly greater concentrations were detected in drinkers
than in nondrinkers (Fig. 3j); the chemicals most influenced by drink-
ing were cyclamic acid and six PFASs, with higher levels of the latter in
drinkers (Supplementary Fig. 11g–m). Thus, the risk of exposure
associated with alcohol consumption should be considered. Unlike
drinking, exposure to various chemicals did not significantly differ
between smokers and nonsmokers (Supplementary Fig. 11n).

Risk analysis of chronic diseases associated with a single
exposure
Whether exposure is associated with the risk of chronic disease and
which chemicals are key risk factors are two questions ofwide interest.
In this study, 9 clinical parameters of chronic disease were subdivided
into 12 related chronic disease outcomes, and the health risk of

exposure was analyzed for each outcome (Supplementary Fig. 12a, b).
Among the 12 chronic diseases, three were determined by multiple
clinical parameters: hyperlipidemia, metabolic syndrome, and hyper-
tension (Supplementary Fig. 12c–e). The remaining 9 chronic diseases
were determined by single clinical parameters. Well-matched controls
were selected for each disease outcome (Supplementary Data 9, 10).
The specific analysis scheme is shown in Supplementary Fig. 13a. For 12
disease outcomes, multiple exposure-disease risk associations were
observed. Specifically, OCPs and PCBs were associated with an
increased risk of hypertension, diabetes, metabolic syndrome and
obesity. PFASs were associated with an increased risk of hyperlipide-
mia, metabolic syndrome, diabetes, and hyperuricemia (Fig. 4, Sup-
plementary Fig. 13b). The disease associated with the greatest number
of chemicalswas hyperlipidemia, aswas the relateddisease (Fig. 4a–d),
followed by metabolic syndrome (Fig. 4e), demonstrating that these
diseases are most affected by environmental chemicals. Most
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Fig. 3 | Hierarchical analysis of exposure levels based on key epidemiological
factors. a The location of province included in this study and their total con-
centration of exposures. b Regional distribution of different categories of expo-
sures depicted by stacked bar plot. Exposures that significantly increase (c, d) and
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chemicals have positive effects on the risk of developing chronic dis-
eases, except for hypertension and abdominal obesity. In particular, all
chemicals had significant effects on the risk of hyperuricemia (Fig. 4h).
Among all chronic disease outcomes, hypertension, and related dis-
eases had theweakest risk relationshipwith chemicals (Fig. 4j–l). These
results were still similar after additional adjustment for confounders of
external environmental factors, including air pollution and meteor-
ological conditions (Supplementary Fig. 14). Associations between 193
low-frequency exposures and chronic diseases were also investigated.
Most chemicals were associated with an increased risk of chronic

diseases, particularly metabolic syndrome, obesity, diabetes, and
hyperuricemia (Supplementary Figs. 15, 16).However, compared to the
results of high-frequency exposures, the significance of associations
between low-frequency chemicals and chronic diseases was weaker,
with larger confidence intervals, which highlights the importance of
cautious interpretationof these associations. Therefore, in subsequent
analyses, we focused solely on association analysis of highly frequently
detected chemicals. Similar exposure risk associations were found in
analysis of nine continuous clinical parameters, complementing the
results of the classified outcomes described above. Thirteen chemicals
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Fig. 4 | The odds ratios of exposure to chronic diseases. Exposures with a sig-
nificant risk for hyperlipidemia (a), hyper low density lipoprotein cholesterol (b),
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had risk effects on five or more disease outcomes according to both
regression models (Fig. 5a; Supplementary Fig. 13b). The predominant
adverseeffectsweremainlyOCPs, PFASs, and PCBs,demonstrating the
nonspecific risk of these chemicals for multiple chronic diseases
(Supplementary Fig. 17).

Furthermore, susceptibility to chronic diseaseswas investigated in
populations of different ages and sexes, which can help to identify and
protect susceptible patient subgroups. Hyperlipidemia and metabolic
syndrome were chosen as target diseases because of the sufficient
sample size and the exposure-disease associations described above.
Susceptibility to exposure-induced chronic diseases was explored in
three age ranges, 30-50, 50–60, and 60–80 years, representing young-
aged, middle-aged, and elderly groups, respectively. Compared to

those in the middle-aged group, the elderly group presented a greater
risk of exposure to hyperlipidemia; the risk factors were mainly PFASs
and OCPs, which also had a stronger exposure risk for metabolic syn-
drome in elderly group (Fig. 5b). Given that many disease risk factors
are sex-specific,wealso analyzed the sex associationbetween exposure
and disease risk; no significant sex differences were found in terms of
exposure risk to hyperlipidemia, but almost all men were at increased
risk formetabolic syndrome (Fig. 5c). Specificdifferences in odds ratios
(ORs) between men and women are shown in Supplementary Fig. 18.

Finally, health risk assessments of all monitored individuals were
performed using reported exposure guidance values. Available refer-
ence dose (RfD) values of 11 PFASs were found, and available exposure
guidance values for blood (biomonitoring equivalent (BE), Human
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Biomonitoring II (HBM II) or Biomonitoring Guidance Values (BGV)) of
only 8 chemicals were found (see Supplementary Data 11). The health
risks associated with the population exposure levels in our study were
evaluated based on hazard quotients (HQs) (Supplementary Fig. 19).

Most exposure levels of PFASs werewithin the safe range compared to
those of RfD, except for PFOA, PFOS, PFNA, and PFUnDA, which
approached or exceeded risk concentrations in a few individuals
(Supplementary Fig. 19a). Individuals had excessive exposure
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reference values (BE, HBM II and BGV) for HCB, PFOA, and PFOS,
suggesting potential health risks (Supplementary Fig. 19b). For
hyperlipidemia risk, dose‒risk relationship curves revealed 16 related
chemical exposure guidance values. The PFOA and PFOS reference
concentrations are 3.19 and 5.26 ng/mL, respectively, lower than the
European reference concentrations of 10 ng/mL and 20ng/mL,
respectively, for HBM II. In addition, 5 chemical exposure reference
valueswerenot reported, including beta-HCH, p,p’-DDE, PFHpS, 6:2 Cl-
PFAES, and MEP (Supplementary Fig. 19c).

Risk effects of exposure mixtures on related chronic diseases
Exposure to chemical mixtures is a real-life scenario of human expo-
sure but has received insufficient attention in recent studies. In our
study, associations of exposure mixtures with each disease outcome
were explored by three multi-exposure models, including weighted
quantile sum regression (WQS)34, quantile g calculation (q g-comp)35,
and Bayesian kernel machine regression (BKMR)36,37. The results
showed that high-frequency exposuremixtures had adverse effects on
hyperuricemia, hyperlipidemia and metabolic syndrome (Fig. 6; Sup-
plementary Data 12). The risk chemicals that contributed more to the
model were obtained by weights and posterior inclusion probability
(PIP). For hyperuricemia, 14, 10 and 13 preferred risk chemicals were
obtained by the above three models (Supplementary Fig. 20a–d),
respectively, with 13 chemicals overlapping in at least two models
(Supplementary Fig. 20e). For hyperlipidemia, 15, 7, and 10 important
risk chemicals were obtained by the three models, respectively (Sup-
plementary Fig. 20f–i), with an overlap of 10 chemicals (Supplemen-
tary Fig. 20j). For metabolic syndrome, 11, 7, and 6 significant risk
chemicals were obtained, respectively (Supplementary Fig. 20k–n),
with an overlap of 5 chemicals (Supplementary Fig. 20o). The overall
risks of high-frequency exposure mixtures obtained from the three
models are shown in Fig. 6a–c.

The chemicals overlapping in the above 3 multi-exposure models
were considered as priority risk chemicals and included mainly OCPs
(beta-HCH, p,p’-DDT, p,p’-DDE, HCB, pentachlorophenol), PFASs
(PFPeA, PFOA, PFDA, PFHxS, PFHpS, PFOS), phthalates (MCHP,
monocyclohexyl phthalate (MEP)) and other pesticides (IBA, fipronil
sulfone, chlorpyrifos, triclosan, etofenprox) (Fig. 6d–i; Supplementary
Fig. 21). Mixtures of these priority risk chemicals were reincorporated
into theWQSandqg-compmodels toobtainORs,whichwere found to
be significantly greater formixture exposure than for single chemicals.
This indicated that the mixtures had a nonnegligible risk-enhancing
effect. There are several priority risk chemicals with no significant risk
according to the single-exposure model (Fig. 6d–f; Supplementary
Fig. 21). This suggests that the multi-exposuremodel is more sensitive
in identifying risk chemicals than the other models and can be used as
a complement to single-exposure risk analysis.

To better understand the dose‒risk relationship, overlapping
priority risk chemicals were analyzed, and they presented mono-
tonically increasing nonlinear associations with the risk of chronic
disease (Fig. 6g–i). Specifically, 7 of the 13 overlapping priority risk
chemicals for hyperuricemia had significant risk effects according to
the single model: IBA, MCHP, MEP, PFOA, PFNA, PFHxS and PFHpS. All
exposures showed a rapid increase in risk with increasing concentra-
tion, except for PFHxS, which showed a faster increase in risk only at
low concentrations (Fig. 6g). Nine of the 10 overlapping priority risk
chemicals for hyperlipidemia had significant risk effects according to a
singlemodel: beta-HCH, p,p’-DDT, p,p’-DDE,HCB,fipronil sulfone, PCB
138,MEP, PFOS, and PFHxS. Among them,fipronil sulfone, PCB 138 and
PFHxS showed a faster increase in risk only at low concentrations, and
the others increased more rapidly at higher concentrations (Fig. 6h).
Three of the 5 overlapping priority risk chemicals for metabolic syn-
drome had significant risk effects according to a single model: beta-
HCH, p,p’-DDT, andMCHP. All exhibited a faster increase in risk at high
concentrations (Fig. 6i). The risk relationships of chemicals identified

only by multi-exposure models were almost nonmonotonic (Supple-
mentary Fig. 21), which may be the reason why they cannot be iden-
tified by traditional single-exposure models, such as the linear and
logistic regression models used in this study.

Discussion
In this work, we studied the concentration, distribution and disease
risk associated with serum exposure in 5696 control individuals and
patients via human biomonitoring. Epidemiological factors such as
region, age, and sex significantly influence human exposure levels. For
exposure risk, hyperlipidemia, metabolic syndrome and hyperur-
icemia were associated with multiple exposures. In addition, exposure
to OCPs, PFASs, PCBs, and phthalates showed nonspecific associations
with risk and nonlinear dose-dependent relationships with chronic
diseases. To our knowledge, this study is the largest study to date to
examine the association between human serum exposure and health
outcomes in terms of both chemical coverage and population sample
size (Supplementary Data 13). This study not only provides the most
representative biomonitoring data for the issue of exposure in the
Chinese population but also provides a broad understanding of the
chemicals present in humans and their risk of chronic diseases.

Region was the most influential factor on exposure levels, espe-
cially for OCPs, PFASs, PCBs, and PAHs, which exhibited significant
differences in population levels across 15 provinces in China (Fig. 3a, b;
Supplementary Fig. 9). Among them, PFASs, PCBs, and PAHs are
mostly produced through industrial use, including anti-staining
materials, electronic waste, and incomplete fuel combustion; OCPs
are typical pesticides. Above all, the residue levels of these exposures
in humans are closely related to industrial and agricultural develop-
ment, and exposure levels are greater in industrially developed coastal
areas than in inland areas. This finding is consistent with previous
findings38. This may be the result of the rapid industrialization and
urbanization in coastal areas39. Notably, the highest accumulation
levels of almost all chemical categories were found in the population in
the Yangtze River Delta. The most likely explanation is that persistent
organic pollutants (POPs) cannot be effectively removed from
wastewater40 and are transferred to downstream areas through water
flows41. In addition, the potential health risk through the food chain is
of concern, as studies have shown that the concentrations of PCBs in
most animal-derived food groups in coastal areas are significantly
greater than those in inland areas39. Therefore, management of pol-
lution sources should be strengthened; otherwise, serious con-
tamination in downstream areas and further health hazardsmay occur
through food chain accumulation in the human body. The results from
the cohort in this study provide the most representative data for
chemical biomonitoring in the Chinese population to date. The cohort
in this study included people from 15 provinces, including southern
and northern regions as well as coastal and inland areas across the
country, representing 56% of the Chinese population. The results
showed that the level ofOCPs in humanblood is significantly greater in
China than in other countries, which is closely related to the national
conditions of agricultural development in China. Most PFASs show the
highest serumconcentrations in China andKorea, with a few species of
PFASs having the highest concentrations in human serum in theUnited
States and Canada. This is closely related to the geographical shift of
industrial sources from North America and Europe to emerging Asian
economies, especially China, since 200242.

Age was the second most important factor affecting serum che-
mical levels. The results showed that age andmultiple serum chemical
concentrations correlated positively, which was consistent with the
findings of others, specifically for OCPs6,7,15,16,43, PCBs7,15,16, and
PFASs14,17,18. The age-dependent association of these POPs may be
caused by their excretion rates and exposure histories in different age
ranges of the population6. Higher levels of exposure to multiple che-
micals were found in populations with higher education levels and
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incomes, which is consistent with the findings of other studies in
specific categories, including PCBs15, OCPs6, PFASs19,44 andphthalates19.
These findings suggest that social factors may have an impact on
exposure to POPs6. Moreover, sex was found to be an important factor
influencing accumulation and excretion of exposures, and residue
levels of more fat-soluble OCPs were greater in women than in men,
which may be attributed to the generally high body fat percentage in
women6,45. On the other hand, concentrations of nonfat-soluble che-
micals such as phthalates and PFASs were significantly greater in men
than in women, which is largely attributed to the unique menstrual
excretions of females46. Finally, higher serum levels of PFASs were
detected in alcohol drinkers, which has not been reported in previous
studies; future studies should continuously focus on the relationship
between drinking and multiple environmental chemicals.

In the exposure and health effects study, associations of hyperli-
pidemia, metabolic syndrome and hyperuricemia with various expo-
sures were found (Figs. 4–6). For hyperlipidemia, the present study
showed associations with OCPs, PCBs, PFASs, and phthalates. Our
findings validate several previous studies; for example, increased
concentrations of PFOA, PFNA31, PFHxS47, OCPs and PCBs are asso-
ciated with elevated total serum lipids, total cholesterol and
triglycerides29,48. Nevertheless, some new risk effects of exposurewere
observed in this study. For example, among PFASs, new risk associa-
tions were found, including PFHpS, PFOS and 6:2 chlorinated poly-
fluoroalkyl ether sulfonate for hyperlipidemia. In particular, 6:2
chlorinated polyfluoroalkyl ether sulfonate is a new type of PFAS with
few related disease risk association studies. Moreover, few existing
studies have focused on the finding that fipronil sulfone significantly
increases the risk of hyperlipidemia, possibly because of insufficient
biomonitoring coverage, and our study extends previous findings.

Metabolic syndrome is another chronic disease strongly asso-
ciated with exposure and is a pathological state involving multiple
metabolic diseases, including abdominal obesity, dyslipidemia,
hypertension, and diabetes49. Previous studies have shown an
increased risk ofmetabolic syndromewith various POPs, such asOCPs,
PCBs50, and PFAs31, which was consistent with our findings. In addition,
MEP was shown to be associated with an increased risk of hyper-
triglyceridemia, a disease subtype of metabolic syndrome, in a pre-
vious study of exposure to endocrine-disrupting chemicals affecting
the risk of metabolic syndrome in adults51. An association between
MCHP and the risk ofmetabolic syndromewas also found in our study.
Finally, differences in disease susceptibility among different popula-
tions were observed in this study but rarely studied in previous
researches. There was a stronger effect of exposure on metabolic
syndrome in the elderly and in men (Fig. 5b, c). This may be due to
differences in excretion andmetabolism among different populations.
Previous studies have reported that pesticides are excreted more
slowly in elderly individuals and in men6,46. Moreover, sex-specific
associations between exposure and disease-associated lipid changes
may explain sex-related differences at the metabolic level22.

Hyperuricemia, another chronic disease strongly associated with
exposure in this study, is a causative agent for a variety of diseases,
including gout, kidney stones, and cardiovascular disease52,53. The
serum uric acid concentration is strongly influenced by environmental
factors, and associations between PFASs and hyperuricemia have been
reported32,33,54. These findings were again verified in the present study,
and a new association of PFHpS with hyperuricemia was found. The
effects of other categories of environmental chemicals on uric acid are
unknown; significant associations between IBA, MEP, and MCHP and
hyperuricemia were found based on both single and mixed exposure
models (Fig. 6d, g), which have not been reported in other studies.

Multi-exposure models were jointly used to collectively identify
combinations of exposures that are associated with significant risk
effects for multiple chronic disease outcomes. Some key risk chemi-
cals screened by multi-exposure models were not identified in the

single-exposure model (Fig. 6d–f), reflecting the complementary role
of the multi-exposure model to the single-exposure model55. In
addition, three chronic diseases that are most affected by overall
exposure and corresponding exposure mixtures, were identified.
Three groups of exposuremixtures showed significant risk-enhancing
effects on hyperuricemia, hyperlipidemia, and metabolic syndrome,
which have not been reported in previous studies. Future studies
should pay attention to these chronic diseases and associated expo-
sure mixtures.

Taken together, our results provide comprehensive insights into
the residue levels and exposure characteristics of environmental che-
micals in human serum, identifying human serum exposures and their
specific combinations that are associated with major chronic disease
outcomes. These findings provide guidance for further pollution
management and protection of susceptible populations.We recognize
that our results do not indicate the causal effect of any chemical on
adverse outcomes, which requires further investigation. Nevertheless,
this study not only demonstrates the potential of the exposome for
disease prediction but also provides a useful resource for more in-
depth toxicological and longitudinal epidemiological studies.

Methods
Study population and epidemiological information
A cross-sectional study comprising 5696 subjects, including 2141
healthy persons and 3555 patients, was conducted in 15 provinces of
China. The study was approved by the National Institute for Nutrition
and Health, Chinese Center for Disease Control and Prevention
(reference No. 201524); the ethics committee was the Chinese Center
for Disease Control and Prevention Institutional Review Board. More-
over, written informed consent was obtained from each participant
before the study began. A total of 12 chronic disease outcomes were
analyzed, ranging from 243 to 1813; these included diabetes, hyper-
uricemia, obesity, hypercholesterolemia, hypertriglyceridemia, meta-
bolic syndrome, high diastolic blood pressure, high systolic blood
pressure, abdominal obesity, hypertension, high low-density lipopro-
tein cholesterol and hyperlipidemia (Supplementary Fig. 12b). The
study population in this work is a subset of the cohort recruited from
the China Nutrition and Health Survey in 2015. The samples covered
different regions, sexes, age groups, and various chronic diseases. The
details of the China Nutrition and Health Survey were described in
previous studies56,57. In brief, the cohort was selected using a multi-
stage random cluster design and included 360 communities from 15
provinces with varying income levels. Then, 20 families were randomly
selected fromeach community to participate in the study.Well-trained
researchers collected epidemiological data and blood samples, and
clinical parameters related to chronic diseases were determined
through biochemical assays of the blood samples.

Epidemiological factor information, including sex, age, sampling
location, sampling time, education level, income level, marital status,
cigarette smoking status, alcohol consumption status and medical
history, was collected via questionnaire. Environmental factor infor-
mation, including air pollution and meteorological conditions, was
obtained based on regional and sampling time (month) information
from open-source websites. Moreover, 9 chronic disease-related clin-
ical parameters, namely, uric acid levels, glycated hemoglobin levels,
low-density lipoprotein cholesterol levels, triglyceride levels, total
cholesterol levels, systolic blood pressure, diastolic blood pressure,
waist circumference and BMI, were determined. The detailed infor-
mation is provided in Table 1. Twelve chronic disease outcomes were
subdivided based on these nine related clinical parameters. A total of
ten rounds of survey were conducted on the cohort from 1989 to 2015.
For the 2015 survey, 14,000 samples were collected, and we randomly
selected half of these samples for exposome analysis. After excluding
samples with insufficient volume or incomplete information, a total of
5696 samples were ultimately analyzed in this study.
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The specific criteria for classification of 12 chronic disease out-
comes by 9 clinical parameters

1. Individualswith uric acid levels equal to or greater than 420μmol/
L for males, and equal to or greater than 360μmol/L for females
are determined to have hyperuricemia.

2. Individuals with glycated hemoglobin levels equal to or greater
than 6.5% are determined to have diabetes.

3. Individuals with low-density lipoprotein cholesterol levels equal
to or greater than 3.4mmol/L are determined to have
hyperLDL-C.

4. Individuals with triglyceride concentrations equal to or greater
than 2.3mmol/L are determined to have hypertriglyceridemia.

5. Individuals with total cholesterol levels equal to or greater than
6.2mmol/L are determined to have hypercholesterolemia.

6. Individuals with systolic blood pressure equal to or greater than
140mmHg are determined to have high systolic blood pressure.

7. Individuals with diastolic blood pressure equal to or greater than
90mmHg are determined to have high diastolic blood pressure.

8. Individuals with waist circumference equal to or greater than
90 cm for males, and equal to or greater than 85 cm for females
are determined to have abdominal obesity.

9. Individuals with a BMI (Body Mass Index) greater than 28 kg/m2
are determined to be obese.

10. Hypertension is determined if either the systolic bloodpressure is
equal to or greater than 140mmHg, or the diastolic blood
pressure is equal to or greater than 90mmHg (refer to Supple-
mentary Fig. 12e).

11. Hyperlipidemia isdetermined if any of the three clinical indicators
are met: low-density lipoprotein cholesterol equal to or greater
than 3.4mmol/L, triglyceride concentration equal to or greater
than 2.3mmol/L, or total cholesterol equal to or greater than
6.2mmol/L (refer to Supplementary Fig. 12c).

12. Metabolic syndrome is determined if an individual has three or
more of the following four chronic diseases: abdominal obesity,
hypertriglyceridemia, hypertension, and diabetes (refer to Sup-
plementary Fig. 12d).

Environmental variable estimates
Environmental factors including air pollution and meteorological
conditions were obtained using regional and sampling time (month)
information from open-source websites. Specifically, for air pollution,
data on three variables including Air Quality Index (AQI), PM2.5, and
PM10 were collected from a recent study58 with open data on website
https://quotsoft.net/air/. Daily data for each region (specific to city/
county) were available, and based on these data, monthly values of
AQI, PM2.5, and PM10 were calculated for each individual in their
respective region (specific to city/county) and sampling month.

For meteorological conditions, data on three temperature vari-
ables including daily maximum temperature, daily minimum tem-
perature, and daily mean temperature were collected from a surface
climate dataset of China in the website59 https://www.geodoi.ac.cn/
WebCn/doi.aspx?Id=3187. Daily data for each region (specific to pro-
vince) were accessible, and based on these data, monthly mean values
of Daily_Maximum_Temp, Daily_Mean_Temp, and Minimum_Temp
were calculated for each individual in their respective region (specific
to province) and sampling month.

Finally, the obtained six environmental variables and nine epide-
miological factors were treated as confounding factors and adjusted
by binary logistic regression model.

Chemicals and reagents
Ultrapure water was prepared with a Milli-Q water purification system
(Millipore, 7 Billerica,MA, USA). HPLC grade acetonitrile andmethanol
were obtained fromMerck (Darmstadt, Germany). Ammonium acetate

and fetal bovine serum were purchased from Thermo Fisher Scientific
(Rockford, USA). Formic acid was purchased from National Medicines
Corporation Ltd. (Beijing, China). Dichloromethane was purchased
from J.T. Baker (Rockford, USA). Hexane was purchased from Merck
Sigma‒Aldrich (Darmstadt, Germany). The 267 chemical standards for
each analyte were acquired from Alta Scientific Co., Ltd. (Tianjin,
China) (Supplementary Data 1). Twenty-seven internal standards were
isotope-labeled chemical standards, which were purchased from sev-
eral companies; the detailed information is provided inSupplementary
Data 14.

Selection of 267 target chemicals
The principles of prioritized list selection and identification were
described in our previous study60. Briefly, at least one of the following
three conditions should be included. First, chemicals, including pes-
ticides, veterinary drugs and POPs, are often reported in the literatures
with high concentration levels and high detection frequency in blood
(plasma/serum). Second, according to the Integrated Risk Information
System and the International Agency for Research on Cancer, these
exposures can have health effects or carcinogenicity. Third, con-
sidering their dietary exposure risks, chemicals are often found to
exceed residue limits in daily food in routine assays by the authority
agency. Based on the above principles, the detection scope was
expanded in our study, and two platforms (GC‒MS/MS and LC‒MS/
MS) were used to cover prior exposures comprehensively. After
grouping by region, chemicals with a detection frequency greater than
50% in any one of 15 provinces was defined as having high-frequency
exposure and were the focus of subsequent analysis.

Method development and analysis based on GC‒MS/MS
The method used for the GC‒MS/MS assay reported in a previous
study61 was modified, and the target analytes were expanded from 35
to 97. Before GC‒MS/MS analysis, solid-phase extraction (SPE) was
used for pretreatment of serum samples. The specific pretreatment
steps were as follows: (a) Adding internal standard: 10μL isotope
standard (SupplementaryData 14)mixturewas added to 200μL serum
samples and stored at 4 °C overnight for later use. (b) Deproteiniza-
tion: 200μL of 15% formic acid aqueous solution was added to the
above serum sample, after which the sample was vortexed. (c) Acti-
vation of SPE cartridges: before adding the serum sample, 3mL of
dichloromethane, 3mL ofmethanol, and 3mL of ultrapure water were
added toOasis® PRiMEHLB cartridges in advance. (d) Adding samples:
all the above pre-treated serum samples were transferred to theOasis®
PRiMEHLB cartridges. (e) Rinsing and vacuuming: the sample tubewas
rinsed twice with 1mL of methanol:water (1:6, v/v) at a flow rate of
0.5–1mL/min, and the SPE cartridges were rinsed with 1mL of
methanol:water (1:6, v/v) and evacuated for 20min. (f) Elution: the
samples were eluted with 3mL of dichloromethane and 3mL of n-
hexane, with all the eluent collected. (g) Nitrogen blowing and redis-
solving: the eluent was nitrogen-blown nearly dry, redissolved in
100μL of acetone, and transferred into a sample bottle for later
analysis.

Parameter settings of target method based on GC-MS/MS
The experiments were performed using an 8890 GC system equipped
with a DB-5MS column (30m×0.25mm×0.25μm; Agilent, Santa
Clara, USA) coupled to a Agilent 7000D triple quadrupole mass
spectrometer. For GC system, high purity helium (99.999%) was used
as carrier gas with the flow rate of 1.2mL/min. The injection volume
was 1μL, and was conducted in splitless mode at 270 °C. The analytes
were separated by temperature programming: the initial temperature
increased from 70 °C to 150 °C at the speed of 25 °C/min, then
increased to 200 °C at 3 °C/min and kept for 2min. Finally, the tem-
perature was increased to 300 °C at 8 °C/min and kept for 6min. For
MS/MS condition: the MS was equipped with electron bombardment
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ion sourcewith the ionization voltage of 70 eV. The temperature of ion
source was 300°C, the temperature of transmission line was 300 °C,
and the detector gain was 0.90 kV +0.30 kV. Quantitative analysis was
performed by using multi-reaction monitoring mode with the solvent
delay of 6min. The detailed mass spectrum parameters are presented
in Supplementary Data 15.

Method development and analysis based on LC‒MS/MS
The serum sample pretreatment method was modified from a pre-
viously reported method60, and the target analytes were expanded
from106 to 170. Inbrief, a high-throughput sampleprocessingmethod
was used to extract samples from serum. Deproteinization and pur-
ification of serumwere conducted using a phospholipid removal plate
(Phenomenex, Torrance, USA) with 96 wells. A total of 280μL of
acetonitrile containing 19 internal standards (Supplementary Data 14)
was added to eachwell andmixedwith 70μL of the serum sample. The
96-well filter plates were covered with aluminum foil and shaken for
10min at room temperature. Proteins and phospholipids were
removed after centrifugation at 1000 × g for 10min at 4 °C. The
supernatant was concentrated with nitrogen flow and reconstituted
with 70μL of methanol/water (1:1, v/v) as the solvent. The final extract
was filtered through 0.22μm centrifugal filters (Biotage, Uppsala,
Sweden). Finally, 5μL of filter liquor was subjected to LC‒MS/MS.

Parameter settings of target method based on LC-MS/MS
Targeted analysis was performed on a Exion LC AD ultrahigh-
performance liquid chromatography (UHPLC) (AB SCIEX, Framing-
ham, U.S.A) coupled with triple-quadrupole 6500 plus mass spectro-
metry (AB SCIEX, Framingham, U.S.A). The separation was conducted
on an ACQUITY UPLC BEH C18 Column (Waters, Milford, MA)
2.1 × 50mm 1.7μm at 60 °C oven temperature. An ACQUITY UPLC®
BEH C18 VanGuardTM Pre-Column (Waters, Milford, MA) 2.1 × 5mm
1.7μmwas added before analytical column. The flow rate was 0.4mL/
min and the injection volume was 5μL. Mobile phase A was 5mM
Ammonium acetate in water while mobile phase B was 5mM Ammo-
nium acetate in methanol. The gradient program for mobile phase B
was started at 5% Cmaintained for 0.5min, linearly increased to 50% in
4.5min, then linearly increased to 70% for 4min, linearly increased to
100% for 3min, held for 2min, then dropped sharply to 5% for 0.1min,
andheld for 2min. The total run timewas 16.0min. Valve switchingwas
set so that the eluate of samples before 0.5min did not enter the mass
spectrometry. In themass spectrometer system, ionization of targeted
analytes was performed by electrospray ionization with positive/
negative switching mode. The electrospray voltage is set at 5500V for
positive ion scanning mode and -4500 V for negative ion scanning
mode. The curtain gas is set at 40.0 psi, and the ion source temperature
is set at 350 °C. The ion source gases 1 (GS1) and 2 (GS2) are both set at
50 psi. Declustering potential and collision energy voltages were
optimized for each chemical based on corresponding standard. The
detailed parameter settings are presented in Supplementary Data 16.

Quality control and assurance
To ensure the stability of the entire analytical process, we applied the
following standard operating procedure: (1) The same internal stan-
dards were added to each real sample and QC sample. (2) The spiked
serum samples were used as QC samples and were inserted after every
21 and 11 real samples for GC‒MS/MS and LC‒MS/MS, respectively. (3)
Routine instrument maintenance, such as blank flushing, linear repla-
cement for the GC‒MS/MS platform, needle replacement for the LC‒
MS/MS platform, cleaning of the ion source, and full maintenance
when necessary, was performed before each batch of sample analysis.
(4)Multiple calibration curveswereused throughout thewhole sample
analysis process, and each independent calibration curve was run for
each batch of samples. For the GC platform, each batch consisted of
158 real samples and 21 QC samples; for the LC platform, each batch

contained 264 samples and 24 QC samples. Hence, there were 29 and
20 independent calibration curves for the GC‒MS/MS and LC‒MS/MS
platforms, respectively, bracketing the entire sample analysis process.

Data quality was evaluated using the following steps. (1) Quanti-
fication of the QC samples of the batch using the calibration curve of
each batch. (2) Definition of the appropriate internal standard. For the
GC platform, each internal standard was used to correct a dozen
chemicals within their neighboring retention time regions; for the LC
platform, internal standards were selected with the smallest RSD in
QCs after internal standard correction62. In other words, the defined
internal standard was used to correct the corresponding chemical in
the calibration curves and QC samples, and the corrected calibration
curve was used to quantify the chemicals in the QC samples of the
corresponding batch. Finally, the optimal internal standard was
selected based on the smallest RSD of the chemicals in the QC samples
after correction and quantification. (3) Evaluation of the batch effect
with QC samples. For all the QC samples, the mean concentrations of
all the chemicals and theprincipal component scoreplotswereused to
evaluate batch effects. The effectiveness of batch effect correction can
be determined by comparing the original signals with the batch-
specific quantification concentrations and the batch-specific quantifi-
cation combined with multiple internal standard corrections. A prin-
cipal component analysis plot was generated using SIMCA-P
14.1 software (Umetrics, Umea, Sweden). (4) Evaluation of the relia-
bility of the quantitative results with respect to the QC samples. Each
chemical in the QC was calibrated with the selected internal standard,
and the QC and samples of the corresponding batches were quantified
by using the calibrated linearity. RSD < 30% for each substance in the
QCs was used as the criterion for stable detection. Recovery within
80–120% for each substance in the QCs and calibration curves at low,
medium, and high spiked concentrationswere used as the criterion for
accurate detection.

Methods examination and evaluation
In order to ensure the stability and feasibility of the established
analytical method, methodological evaluation was carried out
before conducting large-scale sample testing. The methodological
examination and evaluation were reported in previous studies for
GC-MS/MS61 and LC-MS/MS60 platforms, the present study extended
the monitoring list and reanalyzed part of the methodological
examination as follows. To determine the limit of detection and
linearity of calibration, matrix-matched standard solutions at
0, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, and 100 ng/mL were
analyzed for GC-MS/MS. As for LC-MS/MS platform, matrix-matched
standard solutions at 0, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1,
0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100, and 200 ng/mL were analyzed. The
minimum concentration satisfying a signal-to-noise ratio greater
than 10 on the chromatogram was defined as the limit of quantifi-
cation (LOQ). The linearity of calibration was evaluated (the number
of calibrator levels greater than or equal to 5) by the correlation
coefficient (r2) of the calibration curve from LOQ to a suitable
concentration. A weighting regression factor of 1/x (x represent
concentration) was adopted to minimize calculation error at low
concentrations63. The precision of the two platforms was evaluated
using spiked QC samples with the concentrations of 2 ng/mL and
10 ng/mL, respectively. Due to 49 calibration curves bracketing the
entire sample analysis process, accuracy tests were performed for
each one. For GC-MS/MS platform, the accuracy of each exposure in
each calibration curve was calculated at 2, 5, and 20 ng/mL con-
centration levels, and for LC-MS/MS platform, the accuracy of each
exposure in each calibration curve was calculated at 1, 10, and
100 ng/mL concentration levels. The raw method files of GC-MS/MS
and LC-MS/MS were presented in Supplementary Software, which
can be directly opened and used by Agilent “MassHunter Work-
station” and AB SCIEX “Analyst” software, respectively.
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Statistical analysis
For quantitative analysis of chemicals, peak areas of the serum che-
micals and internal standards monitored by both the GC‒MS/MS and
LC‒MS/MS platforms were obtained from the raw data by “mas-
shunter” (Agilent, Santa Clara, USA) and “SCIEX OS” (AB SCIEX, Fra-
mingham, USA) software, respectively. Both software programs
generate quantification curves using a weighted linear regression
model (1/x) to ensure the accuracy of quantification at low
concentrations63. The method of internal standard selection and cali-
bration is described in the “QC and assurance” section. The internal
standard calibration curve method was used for quantification. Con-
centrations less than the LOQ were set as LOQ/√2.

Quantification process of the internal standard calibration curve
method: The internal standard calibration curve method was applied
for quantification, which is commonly used in precise quantitative
research of endogenous metabolites and exogenous chemicals in
biological matrices. The point of this method is a group of consistent
internal standard (isotopic labeled) mixture was added to both the
calibration curve and each sample, and quantification was achieved
through regression equations between peak area ratio and con-
centration. The specific process is as follows:

1. Define the appropriate internal standard. For the GC platform,
internal standard was selected according to similarities in chemical
properties and retention behavior, and used to correct chemicals
within its neighboring retention time regions. For the LC platform, the
internal standards were selected according to the rule of smallest RSD
in QCs after internal standard correction (details see “Quality control
and assurance” section). 2. Construct calibration curves after internal
standard (IS) correction. Concentrations of analytes in calibration
curve (Cc) were set as the independent variable, the ratios between
peak areas and corresponding internal standard are set as the depen-
dent variable (AREA Cc / AREA IS). A weighted linear regression model
(weight = 1/x) was used to construct calibration curves. 3. Obtain
relative responses of the samples after IS calibration. Relative respon-
ses (AREA sample / AREA IS)were the ratiobetween thepeak areaof the
sample (AREA sample) and the peak area of the corresponding internal
standard (AREA IS). 4. Calculate the concentration of the analyte in
samples. Relative responses of samples (step 3) are substituted into the
calibration curve in step 2 to obtain the sample concentration.

In addition, to ensure quantitative accuracy, a calibration curve
was inserted at the beginning of each batch as mentioned before,
therefore, the quantitative methods described above were further
performed in batch-specific way, means that “each calibration curve
was used to quantify the actual samples in its ownbatch.” This practice
helps eliminate errors introduced by pauses in routine instrument
maintenance. For the few analytes not assigned to the internal stan-
dard with smallest RSD in QCs, their quantification was achieved by
external standard method.

Effect of epidemiological factors on the exposome: To assess
which epidemiological factor influenced the overall exposure varia-
tion, variation partitioning analysiswasperformedusing theRpackage
“vegan”, and the exposure levels used were log10 transformed. Prin-
cipal component analysis was carried out with the R package “Facto-
MineR”. To investigate the correlation between epidemiological
factors and each chemical, PASWStatistics 18 software (SPSS, Chicago,
IL) was used to conduct partial Spearman correlation analysis between
one epidemiological factor and each chemical; the other eight epide-
miological factors were used as confounders. The correlation coeffi-
cients were used to construct a correlation heatmap matrix and a
correlation network diagram (Cytoscape software 3.7.1).

Stratified analysis of exposure characteristics: To explore differ-
ences in serum residue levels in different populations, samples were
stratified based on each epidemiological factor. Exposures that dif-
fered significantly among groups are shown in Fig. 3. First, for con-
tinuous and ordinal categorical variables, including age, education,

and income, significantly correlated chemicals were obtained using
partial Spearman correlation and multiple linear regression while
controlling for the false discovery rate for multiple corrections (p &
FDR<0.05). To exclude the interference of age on education level,
data for those older 30 years of age were selected for analysis. Sig-
nificantly different exposures are shown in a line graph using scaled
concentration. Second, for binary epidemiological factors such as sex,
smoking status, and alcohol consumption, the p values of nonpara-
metric tests were adjusted by controlling for the false discovery rate (p
and FDR <0.05). Considering the lack of data on female smoking and
drinking habits, relationships between smoking and drinking and
residue concentration were analyzed only for males. Significantly dif-
ferent exposures are shown in bar plots using the fold change in the
geometric means. All statistical tests were two-sided. Third, geometric
meanswere used to reduce the effect of extremevalueswhen studying
the regional distribution of exposures, and geometric means were
obtained by PASW Statistics 18 software (SPSS, Chicago, IL). A regional
heatmap and stacked bar plot were generated to visualize the regional
distribution of exposures. A regional heatmap was generated with
https://www.bioinformatics.com.cn, an online platform for data ana-
lysis and visualization. Other figures were generated with the package
“ggplot2” in R software (version 4.2.1, R Foundation for Statistical
Computing, Austria).

Risk of disease for each individual chemical: To adjust for con-
founders, the R package “MatchIt”was used tomatch a control sample
for each disease, and patients with more than 2 diseases were not
considered, except for metabolic syndrome; a control group was
matched based on all nine epidemiological factors and five major
chronic diseases (obesity, hypertension, diabetes, hyperuricemia, and
hyperlipidemia). Subsequently, the risk of each chemical for disease
was analyzed using binary logistic regression and multiple linear
regression and again adjusted for the nine epidemiological factors as
confounders. To understand susceptibility to disease risk from expo-
sure in different age and sex populations, samples were grouped by
age and sex. Specifically, the population was divided into three age
groups: 30–50 years, 50–60 years, and 60–80 years. The participants
were also divided into male and female groups. Subsequently, pro-
pensity score matching was used to classify the data sets into disease
and control groups for each subgroup. Finally, binary logistic regres-
sion was used to determine ORs for the exposures in each group. The
exposure concentrations used were log10 transformed for all regres-
sion analyses. Two-sided t tests and Hosmer–Lemeshow tests were
employed for multiple linear regression and binary logistic regression,
respectively.

Health risk assessment: First, available exposure guidance values
were collected including BE, HBM II, BGV, and RfD64. Then health risk
assessments were carried out using the HQ65: HQ =C serum/C guidance.
HQ> 1 suggested exposure levels exceeding published human health
benchmarks. Dose-response curve on the one hand can display the
linear or nonlinear relationship between exposure dose and risk; on
the other hand, a curve can identify the minimum exposure dose
associated with increased disease risk (OR > 1). The R package “RSC”
was used to determine the dose‒risk relationship of key exposures in
this study.

Exposure mixture to disease risk: We used a combination of
WQS34, q g-comp35, and BKMR36,37 to assess the association of exposure
mixtures with multiple chronic diseases. Each model was adjusted for
the covariates region, age, sex, smoking status, and alcohol use. Unlike
theunivariate analysisdescribed above,whichused4756 samples from
theGCplatformand5513 samples from the LCplatform, 4573 common
samples were selected for mixed exposures, and propensity score
matching was applied to identify case controls. In addition, 35 indivi-
duals with a detection frequency > 50% nationwide were selected for
analysis to meet the model quartiles. The exposure levels used were
log10 transformed and then scaled for multi-exposure analysis.
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Brief description of three multi-exposure models
The weighted quantile sum regression (WQS) scores were estimated
using the R package “gWQS“34, which groups different chemicals into
ordinal variables (quartiles), and calculated a weighted linear index
through the WQS regression model, which represents the entire body
burden of all chemicals. the WQS regression estimates sum mixture
effects in either positive or negative directions, respectively, so the
likelihood of an associationwas assessed in both directions in separate
models. 1000 bootstrap runs were performed for each analysis to
optimize the association between WQS scores and outcomes in the
multivariate linear regression model. Ultimately, the model provides
an estimate beta and significance of the total effect and the corre-
sponding weight for each chemical, which shows how much a parti-
cular chemical contributes to the WQS index. Odds ratios (ORs) were
calculated according to formula: OR = exp (beta). 95% confidence
intervals of ORs were calculated according to formula: upper bound of
OR =OR+ standard error (OR) × 1.96, lower bound of OR =OR –

standard error (OR) × 1.96.
Mixture effects was estimated using the R package “qgcomp“35,

which is similar to the WQS in that different chemicals are grouped
into ordinal variables (quartiles) and a weighted linear index repre-
senting the cumulative effect is estimated by the regression model.
Themodel also provides estimates and significance of the total effect
and the corresponding weights for each chemical. The difference is
that theWQS regression estimates are performed in either positive or
negative directions separately whereas quantile g-computation (q g-
comp) allows the joint effects of different directions of individual
exposure to be assessed simultaneously in a single run.Moreover, the
run speed can be greatly improved by G-computation and more
robust associations than the WQS model can be obtained in small
sample sizes.

BKMR, a non-parametric Bayesian variable selection framework,
can investigate flexibly the joint effects of exposure mixtures on
human health36,37. BKMR model can provides overall risk, single vari-
able risk and non-linearity interaction of exposure to responses, and
PIP for each exposure. Among them, PIP describe the relative impor-
tance of each exposure to the outcome of interest. Here, hierarchical
variable selection method was used due to highly correlated expo-
sures, then groupPIP and conditional PIPs (condPIP) were obtained to
commonly evaluate the contributor of exposures. BKMR model was
conducted with R package ‘bkmr’ using the binomial link function for
binary outcomes and 5000 iterations using a Markov chain Monte
Carlo algorithm to ensure convergence.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
paper, in the supplementary information file, and in the source data
file. The air pollution dataset of China canbe found in https://quotsoft.
net/air/, and the surface climate dataset of China can be found in
https://www.geodoi.ac.cn/WebCn/doi.aspx?Id=3187. The concentra-
tion levels of 74 high-frequency exposures in human serum of Chinese
chronic diseases population have been given in Table 2 of the paper,
but the generated individual exposure atlas data are considered sen-
sitive biomonitoring data, therefore, can not be publicly available
according to the contracts with cooperating institutions (the initiator
of the cohort) and the limitations included in the informed consents
signedby the study participants. The request of these individual data is
suggested by sending an email to the corresponding author Dr. Guo-
wangXu (xugw@dicp.ac.cn). Requests should include name, affiliation
and contact details of the person requesting the data, which data are
requested and the purpose of requesting the data. Requests will be

subject to consideration by the management committee of the cor-
responding institutes and the sample collection institutes, including
Dalian Institute of Chemical Physics, Chinese Academy of Sciences,
National Institute for Nutrition and Health, Chinese Center for Disease
Control and Prevention, Huazhong University of Science and Tech-
nology. If approved, the corresponding author will send the request
data by email. Time frame for a response will be within 3months. Data
requests under agreement will be considered for purposes of repro-
ducing the data and subject to appropriate confidentiality obligations
and restrictions. Applicants must promise that these individual data
applied for will only be used for scientific research and cannot be
publicly released. Source data are provided with this paper.

Code availability
No custom code was used in this study. The R codes for statistical
analysis and figure production have been deposited to the GitHub and
Zenodo (https://doi.org/10.5281/zenodo.1039126266).
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