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The bone ecosystem facilitates multiple
myeloma relapse and the evolution of
heterogeneous drug resistant disease

Ryan T. Bishop 1,6, Anna K. Miller 2,6, Matthew Froid2,3,
Niveditha Nerlakanti 1,3, Tao Li1, Jeremy S. Frieling 1, Mostafa M. Nasr1,3,
Karl J. Nyman1,3, Praneeth R. Sudalagunta 4, Rafael R. Canevarolo 4,
Ariosto Siqueira Silva4, Kenneth H. Shain1,5, Conor C. Lynch 1,6 &
David Basanta 2,6

Multiplemyeloma (MM) is anosteolyticmalignancy that is incurable due to the
emergence of treatment resistant disease. Defining how, when and where
myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms
cause relapse is challenging with current biological approaches. Here, we
report a biology-driven spatiotemporal hybrid agent-based model of the MM-
bone microenvironment. Results indicate MM intrinsic mechanisms drive the
evolution of treatment resistant disease but that the protective effects of bone
microenvironment mediated drug resistance (EMDR) significantly enhances
the probability and heterogeneity of resistant clones arising under treatment.
Further, themodel predicts that targeting of EMDR deepens therapy response
by eliminating sensitive clones proximal to stroma and bone, a finding sup-
ported by in vivo studies. Altogether, our model allows for the study of MM
clonal evolutionover time in thebonemicroenvironment andwill be beneficial
for optimizing treatment efficacy so as to significantly delay disease relapse.

Multiple myeloma (MM) is the second most common hematological
malignancy in the US1, characterized by the clonal expansion of
plasma cells localized primarily in the bone marrow microenviron-
ment of the skeleton2,3. In the bone microenvironment, MM cells
disrupt the finely tuned balance of trabecular and cortical bone
remodeling to generate osteolytic lesions. This is primarily via MM-
induced inhibition of osteoblastic bone formation and increased
osteoclastic bone resorption. There are currently several approved
therapies to treat MM including, but not limited to, proteasome
inhibitors (e.g., bortezomib and carfilzomib), chemotherapy (e.g.,
melphalan), immunomodulatory drugs (e.g., lenalidomide), and cel-
lular and non-cellular immunotherapies (e.g., B cell maturation

antigen (BCMA) chimeric antigen receptor- (CAR) T cells and dar-
atumumab) that significantly contribute to the long-term survival of
MM patients4. However, MM remains fatal as nearly all patients ulti-
mately become refractory to various lines of therapy. A greater
understanding of how resistant MM emerges in the clinical setting
can yield new treatment strategies to slow relapse times and extend
the efficacy of standard of care therapies.

In MM and other cancers, the tumor microenvironment is a well-
knowncontributor to thedevelopmentof treatment resistance5–10.MM
is an archetype of cancer cell-stroma interactions whereby MM cells
reside and metastasize systemically within the bone marrow
microenvironment11. In the bone ecosystem,MM interacts closely with
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mesenchymal stem cells (MSCs) and other progenitor cells6,12–15 that
secrete MM pro-survival and proliferative factors. Additional studies
have shown that the bonemarrowmicroenvironment can also protect
MM cells from applied therapy, a phenomenon known as environment
mediated drug resistance (EMDR)7,8,16. Reciprocally, it is well estab-
lished that MM-derived factors stimulate osteoblast lineage cells to
recruit and activate osteoclasts through receptor activator of nuclear
factor kappa-Β ligand (RANKL) production. Osteoclasts degrade the
bone matrix to release stored cytokines and growth factors (e.g.,
transforming growth factor-beta, TGF-β) that, in turn, support MM
survival and growth2,3,5–10. MM cells also suppress osteoblast matura-
tion, thus tipping the balance towards excessive bone destruction2,3.
This vicious cycle leads to complications for MM patients such as
hypercalcemia and pathological fracture that greatly contribute to
morbidity and mortality17.

While EMDR can contribute to drug resistance, MM intrinsic
mechanisms, such as genetic and epigenetic alterations, also play a
significant role in the process. For example, increased expression of
the anti-apoptotic BCL2 protein family is important in mediating MM
resistance to proteasome inhibition18–21. In fact, depending on selective
pressures by different lines of therapies and clonal mutation capacity,
MM may evolve to develop multiple mechanisms of resistance5,22,23.
While EMDR and intrinsic drug resistance mechanisms contribute to
the emergence of refractory disease, several questions remain: (i) How
does the interplay between each mechanism contribute to the evolu-
tion of resistant MM? (ii) How does eachmechanism contribute to the
heterogeneity of the disease under either control or treatment con-
ditions? (iii) Could targeting EMDR alter the course of the disease or its
responsiveness to applied therapy thereby yielding significantly
greater depths of treatment response? In the context of the bone
marrow microenvironment and the direct/indirect communications
occurring in a temporal and spatial fashion between MM and stromal
cells, these questions remain difficult to address using current in vivo
and ex vivo approaches.

Mathematical models of the tumor microenvironment have
become a valuable approach that allows us to interrogate the inter-
actions betweenmultiple cellular populations over time under normal
or disease conditions. In particular, hybrid cellular automata (HCA)
models which couple discrete cell-based models with partial differ-
ential equations include spatial aspects enabling users to locate where
phenomena are occurring. Further, mathematical models have the
potential for clinical translatability and with several already having
been used to study the impact of treatment on the tumor micro-
environment and inform clinical decision making to delay resistant
disease in patients24–31. We therefore leveraged these modeling
approaches to examine MM progression and spatial evolution in
response to therapy.

In this work, we generated an HCAmodel powered by biological
parameters from a mouse model of MM and demonstrate how it
captures both normal bone turnover, and spatiotemporal cellular
dynamics during MM progression in bone, such as loss of osteo-
blasts, increased stromal cell infiltration, osteoclast formation, and
osteolysis. Additionally, we incorporate the proliferative and pro-
tective bone marrow microenvironment effects on MM mediated by
osteoclastic bone resorption and bone marrow stromal cells. In the
treatment setting, the HCA demonstrates that EMDR contributes to
minimal residual disease, protecting tumors from complete eradi-
cation. Moreover, this reservoir of MM cells increases the likelihood
of unique resistance mechanisms arising over time and greatly con-
tributes to the evolution of MM heterogeneity compared to non-
EMDR scenarios. These results highlight the importance of the bone
marrow microenvironment in contributing to MM resistance and
patient relapse and provide a strong rationale for targeting both MM
and bone marrow microenvironment mechanisms for optimal
treatment response.

Results
The HCA model recapitulates the key steps of trabecular bone
remodeling
Trabecular bone remodeling is a continuously occurring process that
is essential for regulating calcium homeostasis and bone injury repair
(Fig. 1a)32,33. This process occurs throughout the skeleton at individual
sites known as basic multicellular units (BMUs). The BMU in our HCA
consists of five different cell types, including precursor osteoclasts,
active osteoclasts, mesenchymal stem cells (MSCs), preosteoblasts,
and osteoblasts. Additionally, we include central signaling molecules
such as RANKL, a driver of preosteoclast motility and OC formation34

and osteoclastic release of bone derived factors (BDFs) such as TGF-β
of which bone is a major reservoir35. In the HCA, we use TGF-β as a
representative BDF given its known biphasic effects on cell behavior
and its concentration dependent ability to modulate preosteoblast
proliferation and maturation to bone forming osteoblasts35–39. We
defined the roles and interactions of these key cellular populations and
the factors that govern their behavior during the remodeling process
using parameters derived experimentally or from the literature
(Fig. 1b, c, Supp Fig. 1a and Supplementary Tables 1–6). It is important
to note that each cell in the HCA behaves as an autonomous agent that
can respond to surrounding environmental cues independently. In our
HCA model, new bone remodeling events are initiated over time at
randomly selected locations such that multiple BMUs may be present
at a given time as opposed to our previous HCA model27,40–42. We
demonstrated that each BMU undergoes five key phases of bone
remodeling: initiation, resorption, reversal, formation, and
quiescence43 ultimately returning to homeostasis (Fig. 2 and Supple-
mentary Movie 1). We also observed that each simulation (n = 25)
generated multiple BMUs over time, resulting in the replacement of
themajority of the bone over a four-yearperiod (Fig. 2, Supplementary
Movie 1, Supplementary Fig. 1). We also noted that while the bone area
to total area (BA/TA) remains relatively constant the shape of the tra-
becularbone changes, underscoring thedynamic natureofHCAmodel
and how it reflects the in vivo scenario.

The HCA model captures dose-dependent effects of BDF
and RANKL
To challenge the robustness of our bone remodeling HCA, we altered
the levels of key factors controlling bone homeostasis. Our in vitro
experimental data show that neutralizing TGF-β or addition of exo-
genous TGF-β in osteoblastic cell cultures increases and decreases
mineralization respectively, a finding that is consistent with the
literature35,39,44 (Supplementary Fig. 2a). Similarly, lowering TGF-β
levels in silico led to a dramatic increase in bone volume (Supple-
mentary Fig. 2b–e). Interestingly, the HCA results showed that when
TGF-β levels dropped below 90%, there was significant bone loss
(Supplementary Fig. 2b–e) due to abrogation of MSC proliferation
leading to reduced numbers of preosteoblasts that contribute to bone
formation (Supplementary Fig. 2e). These data are reflective of the
known biphasic roles of TGF-β on cell behaviors and processes at high
and low concentrations35,39,44. In addition, we demonstrated the sen-
sitivity of OC formation in the HCA model in response to changes in
RANKL levels (Supplementary Fig. 2f–h). These data demonstrate that
the complex HCAmodel can integrate the behaviors and responses of
multiple highly coupled cell types and stimuli to achieve responses
reflective of known biology.

The HCA model integrates the impact of standard of care
therapies on bone remodeling
Next, we assessed the response of the HCA model to standard of care
therapies used for the treatment ofMM such as zoledronate (ZOL) and
bortezomib (BTZ). These compounds can block osteoclast function
and formation respectively but, as we and others have shown,
they can also stimulate osteoblast mediated bone formation45–48
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(Supplementary Fig. 3a, b and Supplementary Fig. 4a, b). Our results
show that, as expected, both ZOL and BTZ therapy increased bone
volume over the treatment period by enhancing osteoblastic bone
formation and blocking osteoclast activity/formation (Supplementary
Fig. 3c–h, Supplementary Fig. 4c–h).While osteoclasts are impactedby
both treatments, the HCA recapitulates their distinct mechanisms of
action showing that ZOL targets actively resorbing osteoclasts as
demonstrated by a reduction in bone resorption per OC (Supple-
mentary Fig. 4h) while BTZ limits the fusion of osteoclast precursors as
shown by a reduction in cumulative osteoclast numbers with treat-
ment (Supplementary Fig. 3g). Collectively, these data demonstrate
the ability of our HCAmodel to capture normal bone remodeling over
extended periods and the appropriate response of the model to
applied therapeutics used for the treatment of MM.

The HCA model incorporates the MM-bone ecosystem
vicious cycle
A key component of MM growth involves the initiation of a feed-
forward vicious cycle leading to reduced bone formation and
enhanced osteoclastic bone destruction (Fig. 1a). MM is also known to
interact with several cellular components of the bone ecosystem such

as MSCs2,16. To incorporate these effects and MM growth character-
istics into the HCA, mice were inoculated with U266-GFPMMcells and
at end point, bones were processed and stained for proliferation
(Histone H3 phosphorylation (pHH3)) and apoptosis markers (Term-
inal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)).
Our data show that the highest proportion of proliferating MM cells
are located within 50μmof bone (Fig. 3a, b). We noted that fewer cells
(TUNEL+) underwent apoptosis in this area (Fig. 3c, d) highlighting the
protective effect of BDFs being generated from bone degradation. To
consider the effect of bone marrow stromal cells on MM cells distal
from bone, we performed in vitro experiments and found a significant
increase in the proliferation of MM cells grown in the presence of
conditioned medium from MSCs and preosteoblasts, but not osteo-
blasts (Fig. 3e, f). To integrate these observations into the HCA, we
assume that the intrinsic rate of MM cell division increases with BDF
and when a preosteoblast or MSC is near the MM cells (Fig. 3g, h and
Supplementary Equation 11).

Next, to study the interactions of the MM-bone marrow micro-
environment in the HCA model, we initialized each simulation with a
single MM cell near a newly initiated bone remodeling event and the
formation of an osteoclast. This assumption is a simplification of the

Fig. 1 | Development of a hybrid HCA of the naïve and myeloma bone micro-
environment. aBone-lining osteoblast lineage cells release RANKL inducing fusion
and maturation of osteoclasts (1). Osteoclasts resorb the bone, releasing stored
bone-derived factors (BDFs) such as TGF-β (2). TGF-β recruits local MSCs and sti-
mulates asymmetric division in to preosteoblasts (2). When TGF-β levels remain
high, preosteoblasts rapidly proliferate. Following osteoclast apoptosis, release of
TGF-β falls and preosteoblasts differentiate to mature bone producing osteoblasts
(3). While TGF-β levels remain low, osteoblasts produce new bone (4). As bone
returns to normal, a fraction of the osteoblasts is buried within the matrix

becoming terminally differentiated osteoblasts (5), the remaining osteoblasts
undergo apoptosis, or become quiescent bone-lining cells (6). Myeloma cells
enhance the formation of osteoclasts (7), enhanced bone resorption produces
higher levels of BDFs which fuel myeloma growth (8) and inhibit osteoblast dif-
ferentiation (8) and activity (9). Created with biorender.com. b Interaction diagram
between cell types in the HCA and factors such as BDFs and RANKL (created with
biorender.com). Amore detailed interaction diagramwith references can be found
in supplementary fig. 1. c Flowcharts describing the sequence of steps followed by
preosteoclasts, osteoclasts, MSCs, preosteoblasts, osteoblasts, and myeloma cells.
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colonization process, in which rare colonizing myeloma cells migrate
to the endosteal niche49,50. The HCAmodel revealed exciting temporal
dynamics where MM promotes successive phases of bone destruction
mediated by osteoclasts that in turn drives MM growth, thereby suc-
cessfully recapitulating the vicious cycle (Supplementary Fig. 4a and
Supplementary Movie 2). As expected, the mathematical model
demonstrated increasing tumor burden over time (Fig. 4a, b) with
rapid loss of bone, correlating inverselywith tumor burden (Fig. 4c, d).
These findings are consistent with in vivo data obtained from the
U266-GFPmousemodel of MMwhich showed increasing levels of GFP
positive cells in the bone marrow following ex vivo flow cytometric
analysis (Fig. 4e) combined with a rapid onset of trabecular bone loss
(BV/TV; Fig. 4f, g) and associated trabecular bone parameters as
assessed by high resolution μCT (Supplementary Fig. 5). The simila-
rities in trends between the in vivo model and the HCA outputs, indi-
cated that the HCA model was accurately recapitulating the MM-bone
vicious cycle.

Furthermore, the spatial and temporal nature of the HCA allowed
us to make several observations: 1) In the model, the recruitment of
MSCs in silico increases over time (Fig. 5a) as we and others have
previously reported51,52, 2) the model accurately shows a suppression
of adult osteoblast formation (Fig. 5b) due to inhibition of differ-
entiation by MM2,53, and 3) the model predicts an early increase in
preosteoblasts followedby a reduction in numbers (Fig. 5c), consistent

with previous reports54, while there is a concomitant increase in
osteoclasts (Fig. 5d)2,53. We also compared these population dynamics
with our in vivo model. In tissue sections derived the U266-GFPmodel
from various time points (days 10, 40 and 100), we measured MSC,
preosteoblast, osteoblast, and osteoclast content and observed strong
agreement with cell population trends generated by the MM HCA
(Fig. 5e–h and Supplementary Fig. 6). Taken together, these data
demonstrate the ability of the MMHCA to capture the vicious cycle of
MM progression in the bone microenvironment over time.

Environment-mediated drug resistance increases minimal
residual disease and leads to higher relapse rates
We and others have shown that BTZ demonstrates a dose dependent
cytotoxic effect on MM (Supplementary Fig. 3a)55,56. The compound is
also effective in vivo but MM still grows albeit at a significantly slower
rate55. Patients also typically become refractory to BTZ. This indicates
thatMMcells are 1) protected by the surrounding bone ecosystem, or 2)
due to selective pressure and mutation or other mechanisms such as
epigenetic changes, drug resistant clones emerge, or 3) that both eco-
logical and evolutionary contributions can occur in parallel. Here we
sought to use the spatial nature of the HCA model to gain a deeper
understanding of how MM resistance evolves focusing initially on the
contribution of the bone ecosystem, i.e., EMDR. We confirmed the
EMDR protective effect conferred by bone stromal cells on MM in the

Fig. 2 | The HCAmodel captures all stages of bone homeostasis. a Images from
simulations at initial conditions (left) and after 4 years (right). Legend depicts
colors of cell types in themodel.b BMU is initiated in response to release of RANKL
from bone lining cells (1). Preosteoclasts migrate to RANKL and fuse to form an
osteoclast under highest concentrations (2). Osteoclasts resorb bone and stored

BDFs are released which recruits MSCs. MSCs divide asymmetrically producing
preosteoblasts which proliferate rapidly under high TGF-β conditions. Upon
completion of resorption, BDF levels fall allowing for preosteoblast differentiation
to osteoblasts, osteoblasts formnew bone (4) and ultimately undergo apoptosis or
become quiescent bone lining cells (5).
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presence of BTZ in vitro (Fig. 6a) and integrated this effect into the HCA
model (Fig. 6b). BDF was also included since it can provide a survival
advantage to MM cells in the presence or absence of treatment57,58.
Next, we initialized HCA simulations with a homogeneous sensitive MM

population. BTZ was applied once the tumor burden reached a volume
of 10% to mimic the scenario of diagnosis in the clinical setting. Our
results show that without EMDR, BTZ completely eradicated the disease
at high doses (Fig. 6d, Supplementary Fig. 3j), consistent with our

Fig. 3 | Multiple myeloma cells receive proliferative and survival advantages
from the bone marrow microenvironment. a Quantification of the distance of
phosphorylated histone H3 positive (pHH3+; red) myeloma cells (green) to the
nearest trabecular or cortical bone in U266GFP-bearing mice 100 days post inocu-
lation. N = 5 tibia. b Representative images from experiment in a, DAPI (blue) was
used as a nuclear counterstain. White dotted line indicates tumor bone interface.
White scale bar, 50 microns. c Quantification of the distance of TUNEL+ (red)
myeloma cells (green) to the nearest trabecular or cortical bone in U266GFP-bearing
mice 100 days post inoculation. N = 5 tibia. d Representative image from experi-
ment described in c, DAPI (blue) was used as a nuclear counterstain. White dotted
line indicates tumor bone interface. White scale bar, 50 microns. e Images of

huMSCs differentiated to different stages of the osteoblast lineage. Cells were
stained with Alizarin Red to identify mineralization. f Mean proliferation index of
CM-DiL stained U266 cells 7 days after growth in 50% conditioned medium from
control wells or cells of the osteoblast lineage. Results are displayed as means of 3
independent biological replicates. Values are mean ± SD. g Plot of functional form
used to represent the division rate ofmyeloma cells in the presence and absence of
preosteoblasts/MSCs. h Plot of functional form used to represent the death of
myelomacellswhenBDF is above andbelowa threshold. Statistical significancewas
derived byordinary one-wayANOVAwith aDunnett’s test formultiple comparisons
(f). Source data are provided as a Source Data file for a, c and f. Source data for
g and h can be accessed at DOI 10.17605/OSF.IO/TNAX9.
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Fig. 4 | Computational and biological model outputs of myeloma growth and
bone dynamics. a HCA model images showing single myeloma cell (Day 5), colo-
nization of themarrow byMM cells (Day 75), increased osteoclastogenesis (Day 75,
RANKL), bone resorption (Day 75; BDF) and eventual takeover of the marrow by
MM cells (Day 350). Light greenmyeloma cells indicate MM cells with proliferative
or survival advantage.bMyeloma growth dynamics inHCAmodel in the absence of
treatment. Values are mean ± SD. c Myeloma induced loss of trabecular bone in
HCAmodel compared to normal bone homeostasis. Values are mean ± SD. d Bone

loss decreases rapidly with myeloma expansion in silico. Values are mean ± SD.
e Mean Myeloma growth in bone marrow of mice inoculated with U266-GFP cells
over time. N = 3–5 tibia per time point. f Trabecular bone volume fraction (BV/TV)
was assessed ex vivo with high-resolution microCT. N = 3–5 tibia per time point.
gBiologicalmodel shows rapidmyeloma-induced bone loss. Statistical significance
was derived by two-way ANOVA with a Šídák’s test for multiple comparisons (f).
Source data are provided as a Source Data file for e–g. Source data for b–d can be
accessed at DOI 10.17605/OSF.IO/TNAX9.
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in vitro findings. However, when EMDR effects are included in the
model, BTZ reduced MM burden significantly, but the disease per-
sisted at a stable albeit lower level and did not grow over time
compared to existing in vivo data (Fig. 6c-d). These data suggest that
EMDR does not directly contribute to MM relapse but does protect a
small volume of MM cells from BTZ. Therefore, to address the
relapse and the emergence of BTZ resistance in MM cells, we inte-
grated a drug resistance probability (pΩ = 10-4 or pΩ= 10−3) during
cell division. These rates are estimated based on the current litera-
ture, in which mammalian cancer cells have a probability of devel-
oping resistance to numerous treatments of between 10−3 to 10−6 59,60.
Based on our in vitro observations, we also incorporated a cost of
resistance61 in themodel such that BTZ-resistant cells proliferate at a

slower rate and are out-competed by PI-sensitive cells in the absence
of treatment (Supplementary Fig. 7).

We then repeated our in-silico experiments and observed that
with the lower resistance probability (pΩ = 10-4), EMDR increased the
likelihood of tumor progression with more simulations likely to
relapse (54.4%, n = 125) compared to tumors without EMDR (6.4%,
n = 125; Fig. 6e and g; SupplementaryMovie 3). Similarly, with a higher
resistance probability (pΩ = 10-3) tumors were more likely to relapse
when EMDR is present (100%, n = 25) compared to tumors without
EMDR (56%, n = 25, Fig. 6f and h; Supplementary Movie 4). However,
the higher resistanceprobability also increased the likelihoodof tumor
progression regardless of EMDR, implying a potentially greater role for
MM intrinsic resistance mechanisms during tumor relapse. To

Fig. 5 | Computational and biological model outputs of cell types in the mye-
loma bone microenvironment. Computational model outputs of increasing MSC
percentage of the marrow area (%MA) (a), loss of osteoblasts (b) rise and fall of
preosteoblast percentage (c) and increasing osteoclast percentage due to growth
of MM (d) Values are mean ± SD. Ex vivo analysis of histological sections from the
U266-GFP myeloma model (N = 3-5 tibia per time point) demonstrates increasing
presence of αSMA+ MSCs (e), loss of ALP+ cuboidal osteoblasts (f), early increase

and subsequent reduction of OSX+ preosteoblasts (g) and increasing numbers of
TRAcP+ multinucleated osteoclasts (h) compared to tumor naïve mice. Scale bars
are 50 microns (e, g) 100 microns (f, h). Statistical significance was determined by
two-way ANOVAwith a Šídák’s test formultiple comparisons (e–h). Source data are
provided as a Source Data file for e–h. Source data for a–d can be accessed at DOI
10.17605/OSF.IO/TNAX9.
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strengthen these findings, we tested a more clinically relevant treat-
ment strategy, in which BTZ therapy was pulsed (2 weeks on, 1 week
off) and observed similar results (Supplementary Fig. 8). To validate
our in silico results,weutilized both in vitro and in vivo approaches. To
this end, U266 MM cells were cultured alone (monocultures) or with
protective humanMSCs (huMSCs) andexposed to vehicle or BTZ. BTZ-
treatedU266 groups, responded to BTZ as evidenced by a reduction in

MM confluency (Fig. 6j). However, we observed that BTZ was less
efficient when U266 were co-cultured with huMSC and could recover
over a 30-day period, whereas monocultures did not. Further, co-
cultured U266 cells treated with a second dose of BTZ, continued to
proliferate, even beyond initial confluency, and thus were considered
“relapsed”, whereas this was not the case in monocultures (Fig. 6k).
Since the propensity of MM cells to develop resistance cannot be
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readily manipulated, we repeated the in vitro experiments with a
mixed population of MM cells that were either sensitive (U266; YFP
positive) or resistant (U266-PSR; RFP positive). In cultures composed
of 90% PI-sensitive U266, 10% PI-resistant U266-PSR, we observed that
MSCs protect against BTZ, leading to enhanced relapse compared to
MM cells cultured alone thus confirming our in silico observations
(Fig. 6l, m). Next, we investigated the role of EMDR in vivo. Currently,
there are no approved stromal targeting therapies available for the
treatmentofMM,however, Zol is frequently given topatients to inhibit
osteoclast-mediated bone destruction that in turn also reduces the
release of BDF that promote MM survival. Thus, NSG mice were
inoculated with 90% PI-sensitive U266-GFP-Luc and 10% PI-resistant-
RFP MM cells. Upon detection of the tumors in the hindlimbs, mice
were divided in to two groups and pretreatedwith either vehicle or Zol
for one week to limit osteoclast-mediated release of BDFs. Following
pretreatment, micewere further subdivided and treatedwith BTZonly
or BTZ and Zol for another week. As predicted by our in-silico results,
limiting EMDR with Zol led to a deeper response to BTZ in PI-sensitive
MM, as evidence by bioluminescence imaging and endpoint flow
cytometry (Fig. 6n, o, supplementary fig. 9a–f). Whilst high con-
centrations (>10μM) of Zol have been shown to limit MM viability62,63

in vitro, our results indicate that the combination of Zol (at clinically
relevant concentrations64) and BTZ had no additional benefit to single
agent BTZ in vitro (Supplementary Fig. 9g). However, in vivo we
observed significant reduction in sensitive MM cell numbers in the
combination group, suggesting that the anti-myeloma effect is not
mediated through direct effects of Zol butmore likely through altering
of the local tumor microenvironment, which is in line with previous
findings65.

Our HCA model revealed during BTZ application, EMDR pro-
tected a reservoir of sensitive cells that ultimately develops intrinsic
resistance leading to the increased relapse rates observed (Fig. 7a-b;
Supplementary Fig. 10a). The role of this sensitive reservoir in relapse
is particularly evident at the lower resistance probability, where
tumors with EMDR exhibited more variable (generally longer) relapse
times compared to tumors without EMDR. When EMDR is absent,
many tumors go extinct and relapse only occurs if intrinsic resistance
arises early following treatment, whereas with EMDR, sensitive cells
persist, and resistance can arise later in the course of the disease. We
validated this finding in vitro, where we demonstrate that MSCs pro-
tect a small portion of PI-sensitive U266MMcells from BTZ treatment,
whereas in cultures containing only MM cells, PSR-RFP MM cells ulti-
mately became the sole clone upon relapse following BTZ treatment
(Fig. 7c, d). Further, in vivo, treatment of mice with BTZ, led to the
outgrowth of PI-resistant PSR-RFP. However, in Zol-pretreated (EMDR-
inhibited) mice we see a deeper reduction in PI-sensitive MM cells
compared to BTZ-only treated mice, where EMDR is intact (Fig. 7e, f).
We next determined the clinical relevance of whether PI sensitive MM

cells existed in patients that were considered to have relapsed
refractory MM (RRMM). We isolated CD138+ cells from MM and
exposed the cells to BTZ ex vivo.We observed that approximately 20%
of relapsed refractory MM patients who had failed a PI-containing
regimen (n = 86) contained MM cells that are still sensitive to PI
treatment thus supporting our in silico, in vitro and in vivo findings.
Taken together, these results demonstrate the ability of the HCA to
predict the effect of resistance and EMDR on tumor relapse and indi-
cate a vital role of EMDR in contributing to minimal residual disease
and the development of relapse refractory MM.

Environment-mediated drug resistance and resistance
probability impact MM heterogeneity in relapsed disease
Even though relapsed tumors with a high resistance probability had
similar growth dynamics with and without EMDR, we noted that the
composition of the tumors differed greatly. Myeloma is a clonal dis-
ease with the prevalence of clones changing throughout
treatment23,49,66,67. Given the spatial resolution of the HCA model, we
next asked whether EMDR impacted the heterogeneity of resistant
tumors. To this end, we tracked the number and spatial localization of
new clones forming from unique resistance events under BTZ treat-
ment conditions in the presence or absence of EMDR. We observed
that at a high resistance probability (pΩ = 10-3) EMDR drove the evo-
lution of significantly more resistant subclones (mean = 5.2 subclones
with >10 cells, n = 24 simulations) compared to non-EMDR conditions
where the arising population was composed largely of a single resis-
tant clone (mean = 1.2 subclones with >10 cells, n = 10 simulations;
Fig. 8a),with similar results at lower resistanceprobabilities andpulsed
BTZ treatment (Supplementary Fig. 10b, c). In vivo, we observed a
greater reduction in the ratio of GFP+ sensitive to RFP+ resistant MM
when mice were treated with Zol+BTZ compared to BTZ only
(Fig. 8b, c). Moreover, the HCA revealed a significant proportion of
resistant subclones originated in close proximity to MSCs/pre-
osteoblasts (Fig. 8d) or following release of BDF from osteoclastic
bone resorption (Supplementary Fig. 10c). Taken together, these data
would indicate that EMDR not only leads to enhanced relapse, but
increased MM heterogeneity due to the emergence of independent
resistant MM clones. Further, it is also plausible that EMDR may give
rise to MM clones with potentially unique intrinsic BTZ resistance
mechanisms making the treatment of relapsed tumors more challen-
ging. Together, these data support that early targeting of bonemarrow
microenvironment, and thus EMDR, would lead to reduced MM het-
erogeneity and potentially deeper responses with subsequent lines of
treatments.

Discussion
Understanding the factors that govern the evolution of refractory MM
remains of huge clinical importance. Dissecting how intrinsic and bone

Fig. 6 | EMDR contributes tominimal residual disease and relapse. aGFP+U266
MM were plated alone or with huMSCs in the presence or absence of BTZ; MM
burden was measured after 72 h by area covered by GFP+ cells. n = 3 biological
independent samples. Values aremean± SD.b Interactiondiagramshowing the cell
types and factors in the HCA that are affected by BTZ or contribute to EMDR. c In
vivo growth of MM cells with and without BTZ treatment, data was taken from42.
Model outputs ofMMgrowthwith continuous BTZ treatment, +/− EMDRwhenMM
cells do not develop resistance (d) or with a probability to develop resistance (10−4,
e or 10−3, f) and develop resistance. g–i, Kaplan-Meier plot of relapse-free survival
from simulations described in d–f. Error bands represent 95% confidence intervals.
j Nuclear-eYFP+ U266 were cultured alone or with huMSCs in the presence or
absenceof 10 nMofBTZ.MeanMMgrowth (n = 6biologically independent samples
per group) was tracked by eYFP over 60 days. Values aremean ± SD.Yellow shading
indicates periods when treatment was on. k Kaplan-Meier plot of ‘relapse’ (wells
reaching >20% MM confluency) from experiment described in j. l Mean MM cell
numbers (initial seeding 90% U266- Nuclear-eYFP+ and 10% PSR-RFP+; n = 6

biologically independent samples per group) were cultured alone or with huMSCs
in the presence or absence of 10 nM of BTZ.m Kaplan-Meier plot of ‘relapse’ (wells
reaching >20%MM confluency) from experiment described in l. Values are mean ±
SD. n = 6 biologically independent samples per group. n Median U266 growth by
BLI after MM cells (90% U266-GFP+Luc+, 10% PSR-RFP) were tail vein injected into
NSG mice. Values are median ± 95% confidence intervals. Mice were divided into
two groups and pre-treated with vehicle or Zol (30 μg/kg) for 1 week prior to mice
being randomized and treated with either vehicle (n = 5 mice), Zol (n = 5 mice), Zol
+BTZ (n = 7 mice), or BTZ (0.5mg/kg; n = 4 mice). Pink and green arrows indicate
days of Zol or BTZ treatment respectively. o, Representative BLI IVIS images from
the day 28 of the experiment described inn. Statistical significancewas determined
by two-way ANOVA with Bonferroni correction (a), Šídák’s (j, l and n), Tukey’s test
for multiple comparison (n) and log-rank test (g–i, k, and m). Source data are
provided as a SourceData file for a, j–n and f. Source data ford–i can be accessed at
DOI 10.17605/OSF.IO/TNAX9.
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ecosystem mechanisms contribute to the process in the presence or
absence of treatment or where these clones arise spatially are difficult
questions to address with standard experimental techniques alone.
Here, we address this using an experimentally derived hybrid cellular
automaton (HCA) model of MM evolution in the bone ecosystem that
provides insights into the development of relapsed-refractory disease.
For example, we show that the bone ecosystem contributes to minimal

residual disease, andMMclonal heterogeneity. Thesefindings are inpart
supported by previous studies revealing enrichment of binding proteins
and chemokine receptors on MM cells in minimal residual disease,
indicating a likely role for stromal interactions in facilitating relapse68.
Ourfindings andbiological validation provide rationale for the targeting
of the bone ecosystem during the application of standard of care
treatment to prevent the emergence of multiple resistant MM clones.
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Our own in vitro and in vivo data, as well as data from the litera-
ture, were used where possible to parameterize and calibrate the HCA
model. However, there were some parameters that could not be esti-
mated, and the specific assumptions that have been incorporated into
the HCA may impact the generality of the results. For example, we
assume that MSCs are recruited in proportion to tumor burden based
on experimental data in non-treatment conditions, but the application
of treatment couldalter this recruitment rate and thus bone ecosystem
protective effects. Furthermore, there are limitations to how well
parameters estimated from in vitro data correspond to the in vivo
setting. To address this, we tested the robustness of the model results
by varying a subset of parameter values to determine the impact on
simulation results (Supplementary Methods 1.4; Supplementary
Fig. 11). Overall, our finding that EMDR increases minimal residual
disease and leads to higher relapse rates was consistent across para-
meter values, underscoring the robustness of the model.

There have been several mathematical models that explore
interactions between MM and the bone marrow microenvironment.
For example, ordinary differential equation (ODE), evolutionary game
theory (EGT), and hybrid agent-based models have revealed insights
into MM growth in bone and have even taken into consideration the
impact of MM progression on bone destruction69–75. Additionally,
mathematical models have focused on how ecosystem effects con-
tribute to drug resistance76–79. However, the HCA model presented
herein represents a significant advance in that it is carefully integrated
with biological data to recapitulate the bone-MM ecosystem under
normal and treatment conditions and is able to dissect intrinsic vs.
ecosystem driven resistance in the disease. A major additional advan-
tage of our model is its spatial nature, allowing us to visualize and
measure where the ecosystem, and particularly stromal cells, con-
tribute to the generation of resistant clones.

Our model shows that resistant MM clones can arise indepen-
dently of the bone ecosystem during BTZ treatment if the resistance
probability is sufficiently high. But, when EMDR is present, weobserve
the evolution of higher numbers of resistant clones near MSCs/pre-
osteoblasts/BDF during continuous BTZ treatment. The model also
suggests that targeting of EMDR during treatment would reduce MM
heterogeneity. Various adhesionmolecules and cytokines such as the
CXCL12/CXCR4 and IL-6/JAK/STAT axis have been shown to mediate
ecosystem protective effects and drugs/biologics that specifically
target those pathways have been trialed80,81. Unfortunately, these
drugs have had little success translating to clinical practice due to
limited survival improvements when added to existing therapies82,
thus there remains a need to identify multiple mechanisms of EMDR
in patients with feasible methods of delivering novel therapies that
target them. However, we posit that early intervention with EMDR-
targeting agents, perhaps in combination, would reduce tumor het-
erogeneity, rendering relapsing tumors vulnerable to a targeted
second-line therapy that targets the predominantly homogenous

disease. As such, future studies/trials should take into consideration
the tumor diversity upon relapse and response to second-line
therapies.

Another important aspect of the model is the ability to apply and
withdraw therapy at varying stages of MM progression to quantita-
tively determine the impact on MM over time whichmay be useful for
adaptive therapy design and implementation. Adaptive therapy is an
emerging, evolution-inspired approach for cancer treatment that
exploits competitive interactions between drug-sensitive and drug-
resistant cells to maintain a stable tumor burden61. Several models
have studied the many ways therapies can be applied in an adaptive
manner ensuring that the competition between treatment-resistant
and naïve populations allows for better overall survival for cancer
patients. Importantly, our model captures tumor interactions with the
bone ecosystem and thus includes the potential impact of the bone
ecosystem on adaptive therapy. This allows us to study not only how
treatments impact tumor populations but also their influence on bone
ecosystem cells such as osteoblasts and osteoclasts, and how this can
then influence MM response since the protective bone micro-
environment can serve as a reservoir of sensitive cells under treatment.
Clinical trials thus far using adaptive therapy guided by mathematical
modeling have had encouraging results. For instance, recent studies
have shown that in patients with bone metastatic prostate cancer,
adaptive therapies guided by mathematical models can increase the
time to progression and the overall survival using standard of care
treatments83. These data support the feasibility of integrating mathe-
maticalmodeling for the design of patient-specific treatment. It should
be noted however, the HCA model is parameterized with a variety of
in vitro, in vivo, and human data, making translation directly to the
clinic challenging in its current form. This can be resolved with further
rigorous model calibration and validation using clinical data, and
multiple efforts atmoving agent-basedmodels into the clinical setting
are underway29–31,84,85.

A key component of our HCA model lies in its ability to recapi-
tulate the homeostatic nature of bone remodeling over prolonged
periods (~4 years). As we demonstrated, the impact of therapies on
tumor-naïve bone volume and the bone stromal cellular components
that control the process can also be quantitatively examined. It also
can examine non-cancerous bone diseases that result from an
imbalance in bone remodeling such as osteoporosis86. The under-
lying causes of osteoporosis can result in differing effects on osteo-
clasts and osteoblasts, which could be incorporated into the model.
For example, estrogen deficiency increases the lifespan of osteo-
clasts while having the opposite effect on osteoblasts, whereas age-
related senescence is characterized by decreased osteoclastogenesis
and osteoblastogenesis86. Osteoporosis treatments include anti-
resorptive therapies (e.g., bisphosphonates) and bone formation
therapies (e.g., intermittent PTH). By modifying certain model para-
meters, we can explore the effect of different therapeutic strategies

Fig. 7 | EMDRcontributes protectionof sensitiveMMandtumorheterogeneity.
aHCA images from simulations with continuous BTZ application, with no resistance
probability (pΩ = 0) or high resistance probability (pΩ = 10−3) in the presence or
absence of EMDR. Gray resistant myeloma cells are near MSCs or BDFs but not
protected by EMDR.bComputational outputs of the proportion of BTZ-sensitive and
BTZ-resistant MM cells 1 year on treatment (left) and at relapse (right) with pΩ = 10−3.
Values are mean ± SD. Related to Figs. 6f and i. c Representative images of U266-
nuclear eYFP+ and PSR-RFP+ cells at relapse when cultured alone or huMSCs, with or
without BTZ in vitro. Related to Fig. 6j, k. d The proportion of BTZ-sensitive (U266-
nuclear eYFP+) and BTZ-resistant (PSR-RFP+MM cells cultured alone or with
huMSCs with and without BTZ on treatment (left) and at relapse (right). Related to
Figs. 6l, m and 7d. Values aremean ± SD. e Representative flow plots of BTZ-sensitive
(U266 GFP+Luc+; green) and BTZ-resistant (PSR-RFP+; black) from the bonemarrow
(gray) of NSGmice treated with vehicle, Zol, Zol+BTZ or BTZ. Vehicle = 10 femur, Zol
= 10 femur, Zol+BTZ= 12 femur, BTZ=8 femur. f Proportion of BTZ-sensitive (U266

GFP+Luc+) and BTZ-resistant (PSR-RFP+) MM cells in the bone marrow of NSG mice
treated with Vehicle = 10 femur, Zol = 10 femur, Zol+BTZ= 12 femur, BTZ=8 femur.
Values are mean ± SD. g Schematic of the EMMA platform. CD138 +MM cells and
stroma are isolated fromMMpatients and co-culturedwith test compounds. Live cell
imaging is used to assess viability. Created with biorender.com. h The AUC of MM
cells from RRMM patients (n=86 patient samples), whose last relapse was to a PI-
containing treatment (last TX) in response to BTZ treatment ex vivo. Data are pre-
sented as a box plot (centre line at themedian, upper bound at 75th percentile, lower
bound at 25th percentile with whiskers at minimum andmaximum values). Each dot
represents one MM sample. Green dots identify sensitive MM samples (quartile 1).
White dots identify samples in quartiles 2−4. Statistical significance was determined
by two-way ANOVA Šídák’s multiple comparison (d, f). Source data are provided as a
Source Data file for d, f, h. Source data for a, b can be accessed at DOI 10.17605/
OSF.IO/TNAX9.
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on disease outcomes to determine if certain treatments are more
effective in particular scenarios87. While we have primarily used Zol
and BTZ for proof of principle, the model can be easily adapted to
integrate the effects of other standard-of-care therapies as single
agents or in combination such as dexamethasone, and IMIDs.
Importantly, the temporal and cellular resolution of the model also
can identify key moments in which to administer treatments to
maintain a healthy bone volume.

OurHCAmodel, like allmodels, has caveats. For example, its two-
dimensional nature does not take into account the potential three-
dimensional role in evolutionary dynamics88,89 or the vascular nature
of the bone marrow-MM microenvironment that can play a role in

drug/nutrient diffusion10,90, nor the adiposity, nor the extracellular
matrix of themicroenvironment, which can have a profound effect on
MM cell growth. However, these can be incorporated into the model,
if necessary, upon availability of relevant experimental data. Another
potential and future extension of the model is to incorporate the
immune ecosystem given its role in controlling bone turnover and
cancer progression10,90, the influence of BDFs on immune
populations91,92 and the growing armamentariumof immunotherapies
in MM. Here, we excluded the immune component to focus solely on
the role of the bone stroma on MM progression combined with the
fact that MM growth in immunocompromised mice was used to
parameterize and compare model outputs. Infiltrating immune cells

Fig. 8 | EMDR contributes to tumor heterogeneity upon relapse. aMuller plots
of sensitive and individual BTZ resistant (Res) sub-clones from simulations
described in a-c. Colors denote different subclones. Red arrow indicates start of
BTZ treatment. b Images of GFP +U266 (green) and RFP+ PSR (red) MM cells and
cell nuclei (DAPI; blue) in tibial sections of mice from in vivo study described in
Fig. 7. Magnification 20X. Scale bar 50 microns. c Relative quantification of GFP +
U266 and PSR MM in tibial sections described in Fig. 8b. Vehicle = 5 tibia, Zol = 5
tibia, Zol+BTZ = 7 tibia, BTZ = 4 tibia. Values are mean ± SD. d Mean number of
resistant sub-clones arising following BTZ treatment tumors that reached 20%with

resistant subclones and the locations within the bone marrow microenvironment
where each subclone originated, with/without EMDR from simulations described in
a. The n number represents the number of simulations that developed resistance
out of the 25 independent simulations. n = 13/25 (No Treatment), n = 10/25 (No
EMDR+BTZ),n = 24/25 (EMDR+BTZ). Values aremean±SD. Statistical significance
was determined by two-way ANOVA with a Šídák’s multiple comparison (c) or
Tukey’s test (d). Source data are provided as a Source Data file for c and d. Source
data for a can be accessed at DOI 10.17605/OSF.IO/TNAX9.
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have noted effects on cancer progression. For example, initially,
natural killer (NK) cells and cytotoxic T lymphocytes can drive an anti-
tumor response93. However, as the tumor progresses, immunosup-
pressive populations expand including myeloid-derived suppressor
cells (MDSCs) and regulatory T-cells (Tregs)93. MM is characterized by
an increase of inactive NK cells, MDSCs, and Tregs and treatments
such as bortezomib can alter the composition and activity of infil-
trating or resident immune cells93,94. Tumor-immune dynamics inMM
have been previously explored with ODE models95,96 and parameters
derived from in vitro or in vivo studies can be integrated into our HCA
model albeit with a limit on complexity. Another caveat is the diffi-
culty in determining the rate of MM resistance and the assumption
that it occurs intrinsically due to treatment pressure. Prior studies
suggest that drug resistance may arise through the selective expan-
sion of pre-existent resistant tumor cells, de novo, or through the
gradual increase in resistance over time97. In our model, we assume
that after treatment initiates (i.e., once the bone marrow consists of
10% of MM cells), there is a probability that a dividing MM cell could
develop a resistance mechanism, and that mechanisms directly cau-
ses resistance to bortezomib resulting in heterogeneity. This resis-
tance probability thatwould lead to treatment resistance is difficult to
assess in patients or in experimental models but the resultant het-
erogeneity arising fromdifferent resistanceprobabilitiesmay allowus
to infer resistance rates in patients. Moreover, the in silico model is
not fixated on specific resistance mechanisms currently but more on
whether a cell is sensitive or not to applied treatment. One such
benefit of the in silico model is the ability to alter parameters, such as
pΩ, response to treatment and doubling time, to mimic the hetero-
geneity observed clinically.

In conclusion, we have described a mathematical model of MM
evolution in the context of the bone ecosystem. Our results show that,
under treatment conditions, the interactions between the bone eco-
system and the tumor contributes to the presence of residual disease
and to the enrichment of tumor heterogeneity. These results suggest
that early intervention with drugs that target the bone ecosystem
could lead to MM extinction or at the very least reduce tumor het-
erogeneity by preventing the evolution of multiple drug-resistant
clones. Given the current interest in novel strategies of treatment that
consider the evolutionary dynamics in cancer such as adaptative
therapies, we also predict that our model, armed with future robust
clinical data and validation could be a useful tool in guiding patient-
specific treatment strategies.

Methods
Hybrid Cellular Automaton Model
The model we developed builds on the HCA paradigm originally
described by Anderson et al. and used to study evolutionary dynamics
in cancer and our work in the context of bone metastasis40–42,98,99. By
definition, anHCA consists of discrete cell types that are updated once
per time step according to a set offlow charts (Fig. 1c) aswell as a set of
partial differential equations that describe cytokines in the micro-
environment. Here, we consider six different cell types, including
precursor osteoclasts, active osteoclasts, mesenchymal stem cells
(MSCs), precursor osteoblasts, active osteoblasts, and multiple mye-
loma cells. Additionally, we incorporate two signaling molecules
including RANKL and bone derived factors (BDFs) such as transform-
ing growth factor beta (TGF-β). In the sections below, we describe the
interactions between cell types and cytokines that are key in bone
remodeling and MM progression. Further details can be found in
Supplementary Methods 1.

Parameters and grid
We implemented our model using the Hybrid Automata Library
(HAL)100. When possible, parameters for the HCA model were
derived from empirical and published data (Supplementary

Tables 1–6). Themodel is defined on a 2D rectangular grid (160 × 150
pixels) representing a 1600× 1500μm2 cross section of the bone
marrow. Trabecular bone is defined in the center of the grid and
initially consists of 12.9% of the total area, consistent with our in vivo
data (Supplementary Methods 1 1). Normal bone remodeling events
are uniformly distributed over 4 years, the approximate turnover
time of trabecular bone86. A remodeling event is initiated by the
expression of RANKL by five osteoblast lineage cells on the peri-
meter of the bone.

Preosteoclasts and osteoclasts
Precursor osteoclasts follow the gradient of RANKL to the bone
remodeling site. With a given probability, at least five preosteoclasts
will fuse together to become a multinucleated osteoclast. Active
osteoclasts resorb bone matrix, leading to the release of BDF. We
assume that the amount of bone that osteoclasts resorb is propor-
tional to their lifespan of approximately 14 days86,101.

MSCs, preosteoblasts, and osteoblasts
After an osteoclast fuses, an MSC is placed on the grid within a radius
of 40μmof the osteoclast, provided there is not already anMSCwithin
the neighborhood. This requirement ensures that MSCs are located
adjacent to sites of bone remodeling and can couple bone resorption
with bone formation36. MSCs undergo asymmetrical division to create
preosteoblasts, which proliferate when BDF is above a certain thresh-
old or differentiate into bone matrix-producing osteoblasts when BDF
is below the threshold (Supplementary Fig. 2c). We assume that
osteoblast lifespan is proportional to the amount of bone that was
resorbed at the location of the osteoblast, which is approximately
3 months. In the model, we assume that osteoblast death is propor-
tional to the amount of bone that was resorbed by the osteoclast
subunit that had occupied the space. Whilst this is a simplifying
assumption of the biology, this assumption permits the coupling of
bone resorption with bone formation, since the lifespan of an osteo-
blast controls how much bone the osteoblast forms. Bone resorption
and bone formation are tightly coupled processes102. The definitive
mechanisms through which osteoclasts and osteoblasts sense each
other and their catabolic/anabolic processes have still not been fully
elucidated and can be context dependent. However, several mechan-
isms are known to play a role including the release of bone derived
factors (BDFs; namely TGF-beta and IGF-1), osteoclast derived factors
such as sphingosine 1-phosphate, extracellular vesicles, apoptotic
bodies containing RANK, and demineralized collagen remnants in the
resorption lacunae. To model each of these mechanisms indepen-
dentlywouldmakeourmodel very complex aswell as computationally
expensive. We therefore integrated a straightforward coupling of
osteoblasts and osteoclasts in the model. Further, when an osteoblast
is buried, this has consequences for bone homeostasis. To maintain a
steady state of bone, the lifespan of the nearest osteoblast is increased
to allow it to build more bone to compensate for the amount lost due
to the buried osteoblast. Whilst this is a simplifying assumption,
research suggests osteoblast lineage cells communicate through gap
junctions. This allows osteoblasts to coordinate activities and ensure
new bone tissue is deposited at the correct location and in the
appropriate amount to maintain structural integrity and bone
homeostasis103–107.

Cytokines
RANKL (RL) and BDF (Tβ) are two key cytokines that drive the normal
bone remodeling process. RANKL is produced by osteoblast lineage
cells (αRBi,j) with natural decay of the ligand (δRRL). BDF is released
during bone resorption (αTBi,jCi,j) with natural decay of the ligand
(δTTβ). We also assume that there is a constant production of BDFs
(αB) by other cell types that are not explicitly defined in the model.
These cytokines are incorporated into our model through the
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following system of partial differential equations (PDEs):
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where the subscripts specify the location on the grid, i.e., x = ih, y= jh
where fi, jg are positive integers and h denotes the spatial step,
h=Δx =Δy. The system of PDEs is solved using the forward time cen-
tered space (FTCS) scheme with periodic boundary conditions
imposed on all sides of the domain, which is implemented using the
diffusion function in HAL.

Multiple Myeloma
A single myeloma cell is recruited within a radius of 40 μm of an
osteoclast after the first osteoclast fusion event occurs (Fig. 4a). MM
cells move and proliferate in response to BDF and have a further
proliferative advantage if they arewithin a radius of 20μmof anMSCor
preosteoblast (Fig. 3g), and a survival advantage if BDF is above a
certain threshold (Fig. 3h). As the MM cell population increases,
additionalMSCs are recruited. Furthermore, if three ormoremyeloma
cells are located close to bone, a new bone remodeling event is initi-
ated which increases RANKL and osteoclast formation. MM cells also
prevent the differentiation of preosteoblasts if they are located within
a radius of 80μm of a MM cell which decreases osteoblast activity.

Treatment
The HCA incorporates the direct and indirect effects of bortezomib by
including the cytotoxic effect onMMcells as well as its ability to inhibit
preosteoclast fusion and enhance bone formation47,48 (Supplementary
Fig. 3). To mimic the clinical scenario of MM diagnosis, once MM
reaches 10% of the bone marrow area in silico, treatment is applied
either continuously (as for mouse models of multiple myeloma) or
pulsed (2 weeks on, 1 week off; as is performed in the clinic) until MM
burden reaches 20% of the bone marrow. In these simulations, once
treatment is initiated, myeloma cells have a probability of developing
resistance mechanisms during cell division that would cause the MM
cells to become resistant to bortezomib. MM cells that are within a
radius of 20 μmof anMSCor preosteoblast or are located at a position
where BDF is above a certain threshold, have a survival advantage
during treatment referred to as environment mediated.

Cell culture
Human proteasome inhibitor sensitive U266 myeloma cell and their
proteasome inhibitor resistant derivatives (PSR108,109) were a kind gift
from Dr. Steven Grant at the University of Virginia, VA. U266 and PSR
were transduced using QIAGEN lentiviral particles (CLS-PCG-8 or CLS-
PCR-8) according to manufacturer’s instructions to express GFP and
RFP respectively, generating U266-GFP and PSR-RFP. These cells were
cultured in RPMI containing 10% FBS (PEAK), 1% penicillin-
streptomycin. MCSF-generated macrophages were isolated from
tibia and femur harvested from 6-week-old C57Bl/6 RAG2−/− mice110,111.
Bone marrow cells were collected by centrifugation (10,000g, 15 s).
Isolated cells were plated inαMEM (+/+) containing 10% FBS (Peak), 1%
penicillin-streptomycin and MCSF (300-25, Peprotech; 30 ng/ml).
Adherent macrophages were collected and used for downstream
experiments after 72 hours.Murinemesenchymal stromal cells (MSCs)
were isolated tumor naive 4–6-week-old male and female C57/BL6
Rag2−/− mice112. -. Following removal of muscle tissue from the long
bones, epiphyses were removed and bone marrow was depleted by
centrifugation at 10,000 g for 15 seconds. Flushed boneswere then cut

into 1–3mmbone chips. The bone fragments were digested for 1 hour
at 150 rpm, 37 °C in 1mg/mL collagenase II (Invitrogen) in α-MEMwith
15% FBS. The digested bone fragments were moved to 6-well tissue
plates in 15% α-MEM, where the MSCs were allowed to migrate out of
the bone chips and proliferate.

Human MSCs (PT-2501) and the murine preosteoblast cell line,
MC3T3-E1 (CRL-2593) were purchased from Lonza and ATCC, respec-
tively. Mouse MSCs and MC3T3-E1 cells were cultured in αMEM (-/-)
containing 1% penicillin-streptomycin and 15 or 10% FBS (PEAK),
respectively. Human MSCs were cultured as above except with 10%
qualified FBS (Gibco). drug resistance (EMDR).

Multiple myeloma mouse models
All animal experiments were performed with University of South
Florida (Tampa, FL) Institutional Animal Care and Use Committee
approval (CCL; #7356R, #10955R). All mice were kept in a 12 h light/
dark cycle in ambient humidity and temperature. Male and female
14–16-week-old immunodeficient mice NOD-SCIDγ (NSG; Jackson
Laboratories, Strain #:005557, RRID:IMSR_JAX:005557) mice were
divided into tumor naïve or tumor bearing mice GFP-expressing
human U266 (U266-GFP) multiple myeloma cells were injected
(5 × 106cells/100 µL PBS) or PBS (100 µL) via tail vein. Mice were
euthanized at days 3, 10, 20, 40 and 100 (3-5/group/timepoint). Since
MM is systemic, maximum tumor size is not used as an endpoint,
rather hindlimb paralysis and >20% weight loss. Endpoints were only
reached for 1 mouse in the day 100 group. In a separate experiment
male and female 8-week-old NSG mice (Jackson Laboratories, Strain
#:005557, RRID:IMSR_JAX:005557) were inoculated with PI-sensitive
U266-GFP-Luc (90%) and PI-resistant PSR-RFP (10%) MM cells via tail
vein injection (5 × 106cells/100 µL PBS). Upon detection of tumor bur-
den in the hind limbs via bioluminescent imaging (IVIS), mice were
randomized to two groups to receive either twice weekly vehicle (PBS)
or Zol (30 µg/kg). Following one week of Zol pretreatment, mice were
further randomized in to four subgroups and received the following:
Group 1 Vehicle (5 mice), Group 2 Zol (30 µg/kg/twice weekly; 5 mice),
Group 3 Zol+BTZ (7 mice), Group 4 BTZ (0.5mg/kg/twice weekly; 4
mice). After one week of BTZ treatment, all mice were euthanized.
Tibiae were excised and soft tissue removed for histological and FACs
analyses. Since MM affects both sexes, disaggregated data is not
provided.

Micro-computed Tomography, Immunofluorescence and
Histomorphometry
Harvested right tibiae were fixed in 4% paraformaldehyde (PFA) in 1x
phosphate buffered saline (PBS) for 48 hours at room temperature.
Evaluation of trabecular bone microarchitecture was performed in a
region of 1000 µm, beginning 500μm from the growth plate using the
SCANCO μ35CT scanner. Tibiae were decalcified in an excess of 10%
EDTA at pH 7.4 at 4 oC for up to three weeks with changes every 3 days
before being place in cryoprotection buffer (30% sucrose), frozen in
cryomedium (OCT) and subjected to cryosectioning to yield 20 μm
tissue sections. Sections were dried, washed and blocked before
addition of primary antibodies (anti-pHH3; 1:200, 06-570Millipore Lot
# 2972863, anti-Osterix; 1:500, ab22552, abcam lot# GR3263824-6:
anti-αSMA, 1:200, PA5-16697, Invitrogen). Slides were washed and
incubated with goat anti-rabbit Alexa Fluor-647-conjugated secondary
antibody (Invitrogen (#A21244) lot# 2277746 (1:1000)) and counter-
stained with DAPI. Mounted sections were imaged using 10X image
tile-scans of whole tibia. pHH3+, αSMA+, Osterix+ or GFP+ cells were
identified and quantified using Fiji software version 1.0113. Dual ALP and
TRAcP staining were performed on cryosections. Brightfield visuali-
zation was performed using the EVOS auto at 20X magnification. Five
images per sectionwere taken and the number of ALP+ cuboidal bone-
lining osteoblasts and red multinucleated TRAcP+ osteoclasts per
bone surface were calculated.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Biological data for all figures in this paper are provided in the
accompanying Sourcedata file. The raw images generated in this study
are available freely by contacting either corresponding author Conor
Lynch (conor.lynch@moffitt.org) or David Basanta (david@cancer-
evo.org). No publicly available or previously published datasets were
used in this study. The in silico data generated in this study have been
deposited in the Open Science Framework (OSF) database under
identifier DOI 10.17605/OSF.IO/TNAX9114 [https://osf.io/tnax9/?view_
only=7ff837c0a36e4b728791ec70f9935cd4. The bone ecosystem
facilitates multiple myeloma relapse and the evolution of hetero-
geneous drug resistant disease. Open Science Framework. DOI
10.17605/OSF.IO/TNAX9 (2023). Source data are provided with
this paper.

Code availability
The code generated in this manuscript is available at https://github.
com/dbasanta/MM_ABM and has been deposited in the Open Science
Framework (OSF) database under identifier https://doi.org/10.17605/
OSF.IO/TNAX9114 [https://osf.io/tnax9/?view_only=7ff837c0a36e4b72
8791ec70f9935cd4].
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