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Local prediction-learning in high-
dimensional spaces enables neural
networks to plan

Christoph Stöckl 1, Yukun Yang 1 & Wolfgang Maass 1

Planning and problem solving are cornerstones of higher brain function. But
we do not know how the brain does that. We show that learning of a suitable
cognitivemapof the problem space suffices. Furthermore, this can be reduced
to learning to predict the next observation through local synaptic plasticity.
Importantly, the resulting cognitive map encodes relations between actions
and observations, and its emergent high-dimensional geometry provides a
sense of direction for reaching distant goals. This quasi-Euclidean sense of
direction provides a simple heuristic for online planning that works almost as
well as the best offline planning algorithms from AI. If the problem space is a
physical space, this method automatically extracts structural regularities from
the sequence of observations that it receives so that it can generalize to unseen
parts. This speeds up learning of navigation in 2D mazes and the locomotion
with complex actuator systems, such as legged bodies. The cognitive map
learner that we propose does not require a teacher, similar to self-attention
networks (Transformers). But in contrast to Transformers, it does not require
backpropagation of errors or very large datasets for learning. Hence it pro-
vides a blue-print for future energy-efficient neuromorphic hardware that
acquires advanced cognitive capabilities through autonomous on-chip
learning.

Planning and problem solving are fundamental higher cognitive
functions of the brain1. But according to the recent review2 it remains
largely unknownhowthebrain achieves that. Planning is defined in this
review as the process of selecting an action or sequence of actions in
terms of the desirability of their outcomes. Importantly, this desirability
may depend on distant outcomes in the future; hence some form of
look-ahead is required for efficient planning. From the mathematical
perspective many planning tasks and problem-solving tasks can be
formulated as the task to find in some graph a shortest path from a
given start to a given goal node, see the first chapters on planning and
problem solving in the standard AI textbook3. This graph is in general
not planar, and its nodes do not have to represent locations in some
physical environment. Rather, its nodes represent in general a com-
bination of external and/or internal states of a planning process.

Similarly, its edges do, in general, not represent movements in a
physical environment. They can represent diverse actions such as
acquiring information by reading the fine print of a document, getting
a screw driver for the screw in front of the agent, or buying the offered
product. In contrast to navigation tasks, the edges from a node may
represent in the general case of planning and problem-solving actions
that are specific to the current node, and may make no sense at
other nodes.

According to ref. 2 we are lacking an understanding of how the
brain plans and solves problems not only on the biological imple-
mentation level, but also on the two top levels of the Marr hierarchy4:
the conceptual level and the level of algorithms. Since these higher
levels need to be clarified first, we will focus on them. There are several
ways of implementing these higher levels in neural circuits; one
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example implementation is provided in the Supplementary Informa-
tion. On the conceptual level we show that it suffices to learn a suitable
cognitive map of the problem space. The concept of a cognitive map
originated from experimental data on knowledge structures in the
rodent brain. Earlier work focused on the representation of landmarks
and pathways of a 2D maze in cognitive maps5. More recent experi-
mental data suggest that these cognitive maps encode in addition
information about relations between actions and locations6,7. Experi-
mental data on the human brain show that it uses cognitive maps also
for mental navigation in abstract concept spaces8, see8,9 for recent
reviews. That cognitive maps in the brain encode relations between
actions and the changes in sensory inputs which they cause had
already been postulated before that1,10,11. But in spite of the rich
inspiration from experimental data about cognitivemaps, onewas still
lacking insight into neural network architectures and learning meth-
ods that are able to create cognitive maps that enable planning and
problem solving.

With regard to this second level of the Marr hierarchy, the algo-
rithmic level, we show that a simple neural network architecture and
learning method suffices, to which we will refer as a Cognitive Map
Learner (CML). The CML creates through local synaptic plasticity an
internal model of the problem space whose high-dimensional geo-
metry reduces planning to a simple heuristic search: Choose as next
action one that points into the direction of the given goal. This is an
online planningmethod according to the definitions in2 and3, since it is
able toproduce thenext actionwith low latency,withoutfirst having to
compute a complete path to the goal. Surprisingly, functionally pow-
erful online planning algorithms have been missing even on the
abstract level of AI, see3. It should be noted that the CML approach is
not related to existing approaches to predict or replay sequences. The
CML stores learnt knowledge in the form of a cognitivemap, not in the
form of sequences. The CML learns this cognitive map through self-
supervised learning: by learning to predict the next sensory input
(observation) after carrying out an action. Furthermore, it is able to
recombine learnt experiences from different exploration paths, and
can merge these experiences for physical environments with inferred
knowledge or generalization based on inherent symmetries of physical
environments. Altogether, the CML provides a new approach toward
planning andproblem solving on the conceptual and algorithmic level,
not only for neuromorphic implementations.

CMLs sharewith Transformers12 that they do not require a teacher
for learning, and that the outcome of learning is an embedding of
external tokens into a high-dimensional internalmodel. But in contrast
to Transformers, the CML neither requires deep learning nor large
amounts of data for learning: Its learning can be implemented through
local synaptic plasticity, and it only needs a moderate amount of
exploration. CMLs share their use of high-dimensional internal repre-
sentation spaces not only with Transformers, but also with vector
symbolic architectures (VSAs)13–15. VSAs have attracted interest both
from the perspective of modeling brain computations, but also in
neuromorphic engineering. However, CMLs are learning these high-
dimensional representations, whereas previous work on VSAs relied
largely on clever constructions of them.

Since powerful online planning methods are rare in AI, we com-
pare the planning performance of the CML with the next more pow-
erful class of planningmethods inAI: Offline planningmethods such as
the Dijkstra’s algorithm (see supplements Alg. 1) and the A* algorithm,
see3 for an overview. Surprisingly, we found that CMLs achieved for
planning in abstract graphs almost the same performance as these
offline planning methods. This is quite interesting from the functional
perspective, since online planning with a CML is able to decide with
much lower latency on the next step. In addition, CMLs can instantly
adjust to changes of the goal, or to contingencies that make some
actions currently unavailable. In other words, they capture someof the
amazing flexibility of our brains to adjust plans on the fly. In contrast,

the Dijkstra algorithm and A* need to restart the computation from
scratch when the start or the goal changes. Also common reinforce-
ment learning (RL)methods are based on a given rewardpolicy, i.e., on
a goal that has been defined a-priori. Consequently, they need to carry
out complex computations, such as value- or policy iteration, when the
reward policy or the model changes.

We also consider cases where the problem space is not a general
graph, but a 2D maze or a simulated legged robot. We show that the
CML automatically exploits these structural regularities in order to
generalize to unseen parts of the problem space. Since efficient
approaches for learning to plan have not only been missing in theo-
retical neuroscience but also in neuromorphic engineering, we will
briefly discuss at the end options for efficient implementations of
CMLs in neuromorphic hardware.

Results
Fundamental principles of the cognitive map learner (CML) and
its use for planning
We encode observations as vectors o in the no-dimensional space, and
actions a as vectors in the na-dimensional space. By default, both are
binary vectors with exactly one bit of value 1 (one-hot encoding); no
and na represent the total number of possible observations and
actions, respectively.

Observations from the environment and codes for actions are
embedded by linear functionsQ and V into a high-D continuous space
S, see Fig. 1a. We will simply refer to S as the state space, though it also
embeds actions. This is essential, because the CML builds through self-
supervised learning in S a cognitive map that encodes relations
between observations and actions. Note that the power of these linear
embeddings can be substantially enhanced by combining them with a
fixed nonlinear preprocessor that assumes the role of a kernel, a
liquid16, or a reservoir17.

The goal of self-supervised learning by the CML is:

Principle 1. (Predictive coding goal)

Qot + 1 ≈Qot +Vat ð1Þ

if action at is carried out at time step t, and ot is the observation at time
step t.

For simplicity, we often write the embedding Qot of the current
observation as st, the internal predictionQot +Vat of the embedding st
+1 =Qot+1 of the next observation as ŝt + 1. The following local synaptic
plasticity rules strive to reduce the prediction error:

ΔVt + 1 = ηv � ðst + 1 � ŝt + 1ÞaTt ð2Þ

ΔQt + 1 = ηq � ðŝt + 1 � st + 1ÞoT
t + 1, ð3Þ

whereηq and ηv are learning rates.We refer to Fig. 1b for an illustration.
These plasticity rules, commonly referred to as Delta-rules in
theoretical neuroscience18, implement gradient descent towards an
adaptation of the observation- and action embeddings Q and V with
the goal of satisfying Principle I. They represent a form of self-
supervised learning since theydonot require any target values froman
external supervisor. The prediction error ½st + 1 � ŝt + 1�= ½Qot + 1 �
ðQot +VatÞ� serves as a gating signal for these synaptic plasticity rules,
see Fig. S1a in the Supplementary Information. Experimental data from
neuroscience that support this type of synaptic plasticity are discussed
in section 2 of the Supplementary Information.

The vectors ot+1 and at represent activations of the input
layer and the matrices Q and V the synaptic weights of the neural
circuit depicted in Fig. S1. The gating signals have opposite signs
in equ. (2) and equ. (3) because the terms Qot+1 and Vat are on
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opposite sides of equ. (1). Recent experimental data show that
there exist so-called error neurons in the neocortex whose firing
represents such prediction errors, with both positive and nega-
tive signs19.

Self-supervised online learning with these plasticity rules during
exploration can be complemented by letting them also run during
replay of episodicmemories in subsequent offline phases, as observed
in the brain20. One can also keep them active during subsequent
planning.Making the learning rate ηv forV larger than the learning rate
ηq for Q supports fast adaptation to new actions.

Numerous benefits of predictive coding, a conjectured key fea-
ture of brain function, have already been elucidated21–23. We show here
that it also facilitates planning.More precisely, the plasticity rules (equ.
(2) and (3)) automatically also strive to satisfy the following geometric
planning heuristic:

Principle 2. (An estimate of the utility of an action)

utðaÞ= ðQo* �QotÞ
T ðVaÞ: ð4Þ

An estimate of the utility ut(a) of an action a for reaching some given
goal Qo* from the current state Qot is provided by the scalar product.

These utility estimates are reminiscent of value estimates in
reinforcement learning24. But in contrast to value estimates, they do
not depend on a policy and are simultaneously available for every
possible goal.

Principle II is directly implied by Principle I if the embeddings of
different actions give rise to approximately orthogonal vectors in S.
This is immediately clear for the special case where the target obser-
vation o* is the observation ot+1 that arises after executing an action at.
Then the term (Qot+1 −Qot) is approximately equal toVat according to
Principle I. Hence, its scalar product with Vat is substantially larger
than with vectors Va that result from embeddings of other actions a,
provided that all action embeddings have about the same length (see
section 3 of the Supplementary Information for a discussion of this
issue). Importantly, Principle II remains valid when a sequence of
several actions is needed to reach a given target observation o* from
the current observation ot. The difference between the embeddings of
o* and ot can then be approximated according to Principle I by the sum
of embeddings of all actions in a sequence that leads fromobservation
ot to observationo*. Hence the embeddings of these actions will have a
large scalar product with the vector Qo* −Qot. Embeddings of actions
that do not occur in this sequence will have an almost vanishing scalar
product with this vector, provided that action embeddings are

Fig. 1 | Organization of learning and planning in the CML. a Both observations
from the environment and actions are linearly embedded into a common high-
dimensional space S.b The learning goal of the CML, see Principle I, is to reduce its
prediction error for the next state st+1, i.e., the difference between the prediction
ŝt + 1 = st +Vat and st+1. Prediction errors are reduced bymodifying the elements of
the embedding matrices Q and V, which are represented by synaptic weights in a
neural network implementation of the CM (see Fig. S1). c The entries of the learned
matrix V can be used to generate for the difference between a given target

observationo* and the current observationot andanypossible action at anestimate
of its utility, provided theweights between action- and state-representations canbe
assumed to be symmetric (see Fig. S1). If this assumption is not met, the CML can
learn the weights W of a linear map from state representations to action repre-
sentations by a separate simple learning process, see Fig. S1c (this approach is used
in all our demonstrations). Among those actions that canbe executed in the current
state (which is determined by an affordance check), the one with the largest utility
is selected as the next action at by a Winner-Take-All (WTA) operation.
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approximately orthogonal. We will often use the abbreviation
Qo* −Qot = s* − st =dt.

Satisfying the orthogonality condition, at least approximately,
requires that the space S is sufficiently high-dimensional. In fact, ran-
domly chosen vectors are with high probability approximately ortho-
gonal in high-dimensional spaces. Therefore we initialize the action
embedding matrix V as a random matrix with entries chosen from a
Gaussian distribution, and encode actions a by one-hot vectors. Then
the embeddings of different actions are defined by the columns of the
matrixV, and these columns start out to be approximately orthogonal
to each other. It will be shown in the next section (see Fig. 2c) that this
orthogonality is largely preserved during learning.

Another benefit of a high-dimensional state space is that, when
synaptic weights are initialized with random numbers from a Gaus-
sian distribution, the column vectors of the matrix V tend to have
approximately the same length. Furthermore, this approximate
normalization will largely be preserved during learning if the state
dimension is sufficiently large (see section 3 of the Supplementary
Information). A functional benefit of this implicit normalization of
the columns of V is that for the standard case where each action is
represented by a one-hot binary vector, each action will be mapped
by the embeddings matrix V onto a vector Va in the state space
that has almost the same length. This entails that the value of the
utility ut, computed according to equ. (4) through a scalar product,
depends almost exclusively on the direction of Va, and not on its
length.

The implicit approximate normalization of weight vectors, in
combination with the approximate orthogonality of action embed-
dings, entails a functionally important property of the geometry of the
learnt cognitivemap: The Euclideandistance between the embeddings
of any two observations indicates the number of actions that are
needed to move from one to the other. More precisely, since embed-
dings of different actions are approximately orthogonal, the length of
the sum of any k action embeddings grows according to the law of
Pythagoras with the square root of the sum of squares along the
shortest path. Hence, Principle I induces through the iterated appli-
cation a functionally useful long-distancemetric on the cognitivemap.

The implicit normalization of weight vectors is best satisfiedwhen
the dimension of the state space S is sufficiently large, e.g., in the range
of a few 1000 for the concrete applications that are discussed below.
Since the dimension of the state space is defined by the number of
neurons in a neural network implementation, using a state space with
such a dimension provides no problem for brains or for neuromorphic
hardware.

If Principle II is satisfied, choosing thenext action inorder to reach
a given goal state Qo* can be reduced to a very simple heuristic prin-
ciple: In first approximation, one just has to choose an action a whose
embeddings points the most into the direction of the goal state. On a
closer look, one also needs to take into account that not every action
can actually be executed in every state. One commonly refers to the
possibility of an action in a given state as its affordance25. Particular
brain structures, such as, for example the prefrontal cortex, contribute
to estimates of these affordances and inhibit inappropriate actions.
Since it would be fatal to try out each action in each state, affordance
values arise in the brain from a combination of nature and nurture. We
assume for simplicity that an outside module provides at any time t a
binary masking vector gt that denotes for each action whether it is
currently available. Multiplication with the vector of utilities yields the
vector et of eligibility values for all actions

et =ut � gt , ð5Þ

where the⊙ operator denotes element-wise multiplication. The CML
then selects the action at that currently has the highest eligibility, i.e., it
applies a WTA (Winner-Take-All) operation to the vector of eligibility

values and selects an action at with maximal eligibility:

at = WTA ðetÞ, ð6Þ

see Fig. 1c for an illustration.
For learning of the CML one just needs to make sure that the

synaptic plasticity rules are applied for a sufficiently large number of
triples < current state, current action, next state > . It does not matter
whether the first two components of these triples are generated ran-
domly, result from randomly generated exploration trajectories, or
during thefirstplanning applications.This freedomin thedesignof the
learning phase results from the fact that the CML does not need to
remember specific trajectories in order to plan. Rather, it encodes the
information that it extracts from each < current state, current action,
next state > into its static cognitive map. In the most general case
where the CML creates a cognitive map for a general graph, each
pair < current state, current action > needs to occur during learning
since no inferences can be drawn between their outcomes. In physical
realizations of a planning scenario, either for navigation in a physical
space of controlling a robot, it turns out that the CMLdoes not need to
encounter all possible pairs < current state, current action > during
learning because it is able to seamlessly combine learnt knowledge
about existing connections with inferences about them based on
inherent symmetries of the physical environment.

Applying the CML to generic planning and problem-
solving tasks
Genericproblemsolving tasks canbe formalized as a task to find apath
from a given start to a given node in an abstract graph3. The directed
edges of the graph represent possible actions, and its nodes represent
possible intermediate states or goals of the problem-solving process.
Each node gives rise to a specific observation in the CML terminology.
We consider in this section the general case where no insight into the
structure of the graph is provided a-priori, so that all of its properties
have to be learnt. We first consider the case of a random graph and
then some other graphs that pose particular challenges for online
planning.

We test the planning capability of the CML by asking it to select
actions that lead from a randomly selected start node to a randomly
selected goal node. We evaluate the planning performance of the CML
by comparing the length of the resulting path with the shortest pos-
sible path, that can be computed by the Dijkstra algorithm. Note that
this comparison is a bit unfair to the CML, since the Dijkstra algorithm
and other search methods that are commonly used in AI, see3, receive
complete knowledge of the graphwithout any effort, whereas theCML
has to build its own model of the graph through incremental learning.
Furthermore, the Dijkstra algorithm and A* are offline planning
methods that compute a complete path to the goal, whereas CMLs are
online planners according to the definition of2,3. In fact, a CML chooses
the next action in real-time, i.e., within a fixed computation time that
does not depend on the size of the graph, the number of paths from
which it has to choose, or how far the target node is away. It also does
not need extra computing time when an action becomes unavailable,
or if the goal suddenly changes. In contrast, Dijkstra’s algorithm andA*
need to compute a complete trajectory from the current node to the
goal before they can produce the next action. In addition, A* has to run
again from scratch if the start or goal node changes. Dijkstra’s algo-
rithm has to do that also if the start node changes.

Generic random graphs. We focus first on the example of a randomly
connected graph with 32 nodes, where every node has a random
number between two and five edges to other nodes. The edges of the
graph are undirected since they can be traversed in any direction. But
each traversal of an edge in a given direction is viewed as a separate
action, hence there are two actions for every edge. The random graph
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is visualized in Fig. 2a through a t-SNE projection to 2D of the initial
representation of its states through random vectors in a 1000-
dimensional space.

We use a very simple exploration strategy during learning: The
CML takes 200 random walks of length 32 from randomly chosen
starting points. These random walks are subsequently replayed while
learning of the embeddings Q and V through the synaptic plasticity

rules (equ. (2) and (3)) continues. Fig. 2b shows a corresponding 2D
projection of the states which the CML has constructed during this
learning process. Most pairs of nodes that are connected by an edge
are now the same distance from each other. This results from the fact
that the CML has learnt to approximate their difference by the
embedding of the action that corresponds to the traversal of this edge.
One clearly sees from the 2D projection of the learnt cognitive map in
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Fig. 2b that it enables a very simple heuristic method for moving from
any start to any goal node: Just pick an action that roughly points into
the direction of the goal node. Hence even path finding in a random
graph that has no geometric structure is reduced by the CML to a
simple geometric problem: One just has to apply Principle II.

Producing a cognitive map with a geometry that approximately
satisfies Principles I and II, requires solving a quite difficult constraint
satisfaction problem. Principle II requires that action embeddings
remain approximately orthogonal. Fig. 2c and d show that this is lar-
gely satisfied for the random graph that we consider. Panel d
demonstrates in particular that the distance between any two nodes
can be approximated by the square root of the number of actions on
the shortest path that connects them, as expected from the law of
Pythagoras if the embeddings of actions on this shortestpathhave unit
length and areorthogonal to eachother. Principle I requires in addition
that the embedding of any sequence of actions that form a cycle in the
randomgraph sumup to the0-vector. Fig. 2f shows that this constraint
is also approximately satisfied by the cognitivemapwhich theCMLhas
generated through its local synaptic plasticity. But it is obviously
impossible to satisfy both constraints in a precise manner: If one just
considers cycles of length 2, whereonemoves through an edge in both
directions, each represented by a different action, one sees that these
two actions cannot be orthogonal if they sum up to the 0-vector.

CML effectively addresses this challenge by intentionally breaking
orthogonality when necessary. Initially, high-dimensional vectors are
naturally orthogonal to one another. However, as the learning pro-
gresses, it necessitates the breaking of orthogonality for actions that
move the agent to similar/opposite node groups to be positively/
negatively correlated. This deviation doesn’t impact planning, as such
changes effectively encode the relationship between actions in a
cognitive map.

Figure 2h gives an example for the continual adjustment of utility
estimates for each action while a plan for reaching the given goal node
is executed. No learning takes place between these steps, but the
estimates of utilities are adjusted when the starting node moves. Note
that typically several alternative choices for the next action have high
utility during the execution of this plan. This reduces the reliance on a
single optimal path, and provides inherent flexibility to the online
planning planner.

The CML produces for this graph a trajectory from an arbitrary
start node to an arbitrarily given target node using an average of 3.480
actions (std. deviation 1.538). This is very close to the average shortest
possible path of 3.401 (std. deviation 1.458), which the Dijkstra algo-
rithm produces.

Finding the least costly or most rewarded solution of a problem.
Different actions incur different costs in many real-world problem-
solving tasks, and one wants to find the least costly path to a goal,
rather than the shortest path. The cost of an action could represent for

example the effort or time that it requires, or how much energy it
consumes. Not only the human brain is able to provide heuristic
solutions to these more challenging problem solving tasks, but also
non-human primates26. Hence the question arises of how neural net-
works of the brain can solve these problems. One can formalize them
by adding weights (=costs) to the edges of a graph and searching the
graph for the least costly path to a given goal, where the cost of a path
is the sum of the costs of the edges that it traverses.

A simple extension of the CML provides heuristic solutions for
this type of problems. One can either let the cost of an action regulate
the length of its embedding via a modification of the normalization of
columns ofV according to equ. 5, or one can integrate its cost into the
affordance values gt that are produced by the affordancemodule. The
impact on action selection seems to be the same in both cases, since
the eligibility of an action is according to equ. 11 the product of its
current affordance and utility. But in the case of the first option, the
cost of an action will affect the geometry of the whole cognitive map,
and thereby support foresight in planning that avoids future costly
actions. Integrating cost values into the affordances has the advantage
that they canbe changed on the flywithout requiring new learning. But
costs affect only the local action selection in a greedy manner. We
demonstrate in an example that this simple method supports already
planning in weighted graphs very well. We assigned random integer
weights (= costs) between 4 and 7 to the edges of the previously
considered random graph. Corresponding affordance values gt are
shown in Fig. 3b for the cognitive map which the CML produces after
learning. The CML produces for random choices of start and goal
nodes in this graph a solution with an average cost of 18.76. This value
is quite close to optimal: The least costly paths that the offline Dijkstra
algorithm produces have an average cost of 18.00.

Also,many reinforcement learningproblemscanbe formulated as
path-planning problems in aweighted graph. In this case the inverse of
the weight of an edge encodes the value of the reward that one
receives when this edge is traversed. Hence the same CML heuristic as
before produces a path from a given start to a given goal that accrues
an approximately maximal sum of rewards. In many reinforcement
learning tasks onedoes not have a single goal node, but instead a set of
target nodes in which the path from the start node should end. An
example is the graph shown in Fig. 3c. Note that this graph does not
have to be a tree. It encodes the frequently considered case of a 2-step
decision process2,3. The task is here to find a path from the bottom
node to a node on layer 2 that accrues the largest sum of rewards. This
is equivalent to finding themost rewarded path to a virtual node that is
added above them, with added edges from all desirable end nodes.
Hence also this type of task can be formalized as the task to find the
least costly path from a given start to a given goal node in a weighted
graph. Therefore theCMLprovides approximate solutions also to such
multi-step decision processes that are commonly posed as challenges
for reinforcement learning3. Note also that the type of reinforcement

Fig. 2 | Properties of the cognitive maps that the CML builds through self-
supervised learning. a 2D-projection (via t-SNE) of the initial state embedding of a
generic random graph. b 2D projection of the state embedding for the same graph
after learning. The emergent geometry of the cognitive map supports planning a
path fromany start node to any goal node throughPrinciple II. cCosine similarity of
embeddings of different actions under the learned embedding V. Most action
embeddings are orthogonal to each other, with some exceptions for actions that
start at the same node (these are adjacent in the chosen order). d The average
distance between any pair of nodes in the learned cognitive map can be approxi-
mated by the square root of the length of the shortest path that connects them.
Error bars indicate two standard deviations of the distribution of distances in state
space for a given distance in the abstract graph. e Learning curves of the CML for
the given random graph. As the prediction error decreases (blue curve), the online
planning by the CML rapidly learns to find near-optimal paths to given goals (red
curve). The successful planning does not require perfect errorminimization, which

shows CML’s robustness. The shaded backgrounds indicate two standard devia-
tions of the variables across the 10 training rounds. f When one applies Principle I
iteratively to the edges of any cycle in the graph, the sum of the embeddings of the
corresponding actions shouldbeclose to the0-vector. One sees that this is satisfied
quite well for the given random graph. g The CML’s performance improves as the
state dimension increases and plateaus when the state dimension is sufficiently
large. The explicit normalization on each column ofV (see equ. S2) is beneficial for
CML at smaller dimensions, but it becomes unnecessary for higher-state dimen-
sions. The shaded backgrounds indicate two standard deviations of the variables
across the 10 training rounds.h Example for a given start node (black disc) and goal
node (black star) in the randomgraph. Utilities of possible actions are indicated for
each step during the execution of a plan, provided they have positive values. One
sees that utilities are online adjusted when the current node (black ball) moves.
Furthermore, several alternative options are automatically offered at most steps
during the execution of the plan.
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learning problems that were tackled with the elegant flexible method
of ref. 27 have a fixed set of terminal states. Since there only the
transition to a terminal state yields a reward, the task to find a maxi-
mally rewarded solution is exactly equivalent to finding a least costly
path to an added virtual node which receives weighted edges from all
terminal states. Hence these problems can also be solved by the CML.
An interesting difference is that the CML does not need to have a
default policy, and requires only local synaptic plasticity for learning.

Graphs that pose special challenges for online planning. Small
world graphs can be seen as special challenges, since one needs to
identify the precise node that allows escaping from a local cluster.
Therefore we tested the CML on a graph that had four clusters each
consisting of 6 densely interconnected nodes, but only a single con-
nection from one cluster to the next. The initial state embedding is
shown for this graph in Fig. 2d. The cognitive map which the CML
produced for this graph after learning is depicted in Fig. 2e. The CML

Fig. 3 |Moredemandingproblemsolving challenges for theCML.Theweights in
panel awere sampled uniformly from a set of integers containing 4, 5, 6, and 7. The
affordance values in panel b were obtained by dividing 1 by the weight of the
corresponding edge. Thismakes theCMLprefer low-cost actions. Panel c illustrates
a simple method for reducing a commonly considered class of reinforcement
learning problems, 2-step decision processes, to a task where a path to a given goal
nodehas to be found:One adds a new virtual goal node that receives edges from all
terminal nodes of the decision process. Weights, or rather their inverse, can

encode, in this case, the rewards that are given when an edge is traversed. This
injects a bias to prefer rewarded actions. Panel d Small-world graphs, like the one
whose 2D-projection of its initial state space (via t-SNE) is shown here, could pose
particular challenges to a heuristic planner, especially if a particular node has to be
visited to escape a local cluster. However, one sees in panel e that the learnt cog-
nitive map makes it possible to find the way out of each cluster through a simple
geometric heuristic: go into the direction of the goal.
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solved all planning tasks for given pairs of start and goal nodes very
efficiently. It produced in each of 1000 samples of such tasks the near
optimal solution, with an average path length of 3.651 (std. deviation
1.981), which is very close to the average shortest possible path of
3.644 (std. deviation 1.977).

Another concern is that online planning gets confused when
multiple paths of the same length lead to the goal, since this appears to
require some knowledge about the global structure of the graph. But
this feature did not impede the performance of the CML for the
example graphs that we examined: The CML needed in the graph that
is shown in Fig. S3a on average 3.374 (std. deviation 1.557) actions to
reach the goal (average over 1000 trials with randomly selected start
and goal nodes). This value is optimal according to the Dijkstra algo-
rithm. In other words, the CML found in each trial a the shortest pos-
sible path. A sample trial is shown in Fig. S3a.

A further concern is that a learning-basedonline plannermayhave
problems if there are dead ends in a graph: Paths into these dead ends
and paths for backing out of them are traversed during learning, and
could potentially become engraved into the cognitive map and cause
detours when it is applied to planning. To explore how the CML copes
with this difficulty, we designed a graphwhich contains a large number
of dead ends. The graph as well as the utility values computed by the
CML during the execution of a plan can be seen in Fig. S3b. We found
that despite the difficulty of having to deal with dead ends, the CML
managed to achieve the same performance as Dijkstra on this graph.

Path planning in physical environments
If actions are state-invariant, such as the action move left, symmetries
that exist in the underlying physical environment could enable pre-
dictions of the impact of an action in a state without ever having tried
this action in this state. In fact, it is known that the cognitive map of
rodents enables them to carry out this type of generalization: Rodents
integrate short-cuts into their path planning in 2D mazes which they
had never encountered during exploration28. Hence a key question is
whether the cognitivemapswhich theCML learns can also support this
powerful form of generalization. Therefore we are considering from
nowononlyCMLswith state-independent, i.e., agent-centric, codes for
actions. In general not all actions can be executed in each state, and
information about that is provided to the CML by an external affor-
dance module. We tested this in a task that is inspired by the task
design in29 and30. In the simplest case the environment is a rectilinear
2D grid of nodes, where each node gives rise to a unique observation
which is denoted by an icon in Fig. 4 (we did not label different
observations by numbers or letters because thismight suggest a linear
order of the observations, which does not exist). At each node there
are the same4 actions A, B, C, andD, available, see Fig. 4a, eachof them
encoded by the same one-hot code at each node. The CML has initially
no information about the meaning of these actions. But the observa-
tions thatwereprovided after an action resulted in an interpretation of
each of them as a step in one of the 4 cardinal directions of the grid.
The only information that the CML received during learning were the
observations, see Fig. 4b for examples. We allowed 22 exploration
sequences, all of length 3.Wemade sure that not all edges of the graph
were encountered during learning, as indicated in Fig. 4c. No addi-
tional information about the geometry of the environment was pro-
vided to the CML, and it had to infer the structure of the 2Dmaze from
accidentally encountering the same observation in different contexts,
i.e. in different sequences of observations. We tested the CML after
learning, especially for start and goal nodes that never occurred both
on any exploration sequence, so that the CML had to recombine
knowledge from different exploration sequences. Furthermore, we
tested it on planning challenges where the shortest path contained
edges that were never encountered during learning, see Fig. 4d and e
for an example. Nevertheless, the CML produced solutions for these

planning tasks that had the shortest possible length, and made use of
unexplored edges, see Fig. 4e for an example.

The cognitivemapwhich the CMLhad generated during learning,
see Fig. 5a, explains why it was able to do that: The PCA analysis of this
high-dimensional cognitive map shows that the CML had morphed it
into a perfect 2D map of spatial relations between the observations
that it had encountered during learning. An animation illustrating the
emergenceof its cognitivemapduring the learningphase canbe found
in Supplementary Movie 1.

One sees that the internal representations of observations keep
changing until a perfectly symmetric 2D map has been generated.
This self-organization is reminiscent of earlier work on self-organized
maps31. But there the 2D structure of the resulting map resulted from
the 2D connectivity structure of the population of neurons that
generated this map. In contrast, there is no such bias in the archi-
tecture of the CML. Consequently, the same CML can also create
cognitive maps for physical environments with other symmetries,
e.g. for 3D environments. Since cognitive maps for 3D environments
are hard to visualize, we show instead in Figs. S4 and S5 an applica-
tion to a hexagonal 2D environment, where the same generalization
and abstraction capability can be observed as for the rectilinear
environment.

In Fig. 5b we show the result of applying to the cognitive map
which the CML has generated an abstract measure for the composi-
tional generalization capability of neural representations: the paralle-
lism score32. The very high parallelism score for the two state
differences that are examined there indicates that a linear classifier can
discern for any pair of observations which of them is attained from the
other by applying a particular action, even for pairs thatwerenot in the
training set for the linear classifier.

Goal-orientedquadruped locomotion emerges as generalization
from self-supervised learning
We wondered whether the CML can also solve quite different types of
problems, such as control of simulated robots, through generalization
of experience from self-supervised learning. We tested this on a stan-
dard benchmark task for motor control33,34: Control of simulated
quadruped locomotion (see Fig. 6a) by sending torques to the 8 joints
of its 4 legs (note that one commonly refers to this motor system as an
ant, in spite of the fact that ants have more than 4 legs). Whereas the
goal was originally only to move the ant as fast as possible in the
direction of the x-axis, we consider here a range of more demanding
tasks. Observations were encoded by 29-dimensional vectors ot, which
contained information about the angles of the 8 joints, their respective
speed, the (x,y) coordinates of the center of the torso, and the orien-
tation of the ant, see Table 1 for details.

In the learning phase, the CML explored the environment
through 300 trajectories with random actions i.e., through motor
babbling, see the video at Supplementary Movie 2. The observations
during these trajectories were the only source of information that the
CML received during learning. In particular, the CML was never
trained to move to a goal location. We found that it was nevertheless
able to control flexible goal-directed behavior. In the simplest chal-
lenge, the CML had to navigate the ant to an arbitrary goal location
that was 20 meters away from the starting position (see the video at
Supplementary Movie 3). In this case, the target observation o* was
defined by the desired (x, y) coordinates of the center of the torso,
while leaving all other components of the observation the same as in
the current observation ot. The resulting trajectories of the ant are
depicted in Fig. 6b, where the stars indicate the goal locations and
the line plotted in the corresponding color indicates the path taken
by the center of the ant’s torso. The CML solved this task with a
remaining average distance to the target of less than 0.465m (aver-
age over 1000 trials). Fig. 6c illustrates the correlation between the
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state prediction error and the performance of the CML in terms of
the remaining distance to the target location.

Due to the task agnostic nature of CML learning it can solve also
completely different tasks without any further learning, such as tasks
with continuously changing goals. We considered two such tasks, see
Fig. 6d. In one, fleeing from a predator, the first two coordinates of
the target observation were defined by a position 5m away from the
current ant position in the direction away from the current position
of the predator (marked by the center of the red square in Fig. 6d). In
another task,mimicking the chasing of prey, the first two coordinates
of the target observation o* were defined by the current position of
the center of the red ball while the ball moved around arbitrarily.
Also these new tasks were handled very well by the same CML, see
the online available videos for fleeing from a predator video at
Supplementary Movie 4, or chasing a target video at Supplementary
Movie 5.

Considerations for the implementation of CMLs in
neuromorphic hardware
CMLs are well-suited for implementing planning, problem solving, and
robot control in several types of energy-efficient neuromorphic hard-
ware: Digital neuromorphic hardware such as SpiNNaker 135 from the
University of Manchester, SpiNNaker 236, Loihi 137 and Loihi 238 from
Intel, the hybrid Tianjic chip from Tsinghua University39, as well as
analog neuromorphic hardware that employs memristor arrays for in-
memory computing in discrete time, an approach that is pursued by
IBM and several other companies and universities40–44.

All these neuromorphic chips support the implementation of
neurons that produce non-binary output values; hence the linear
neurons that are employed by the CML (see Fig. S1) can easily be
implemented on them. In-memory computing chips enable an espe-
cially fast evaluation of the main computational operation for plan-
ning, equ. (4), with just 3 invocations of the crossbar.

Four actions:
A B C D

Planning

a

Planning task

Current state:

Target state:

Solution found by the CML:

A D A D

d e

c
All observed trajectories

1.

2.

3.

4.

Observed trajectoriesb

A

A

A

A

B

BB

B

B

C

C

D

Fig. 4 | The CML learns fundamental properties of a 2D environment, and
exploits themfor generalization. a Four different actions, which can be applied in
any state, although the affordance module does not allow their application if they
would lead out of the range of the given 2D environment. The CML has no prior
knowledge about their meaning in the 2D environment. Panel b shows samples of
the 22 trajectories that the CML has observed during learning from the perspective
of the CML: Only relations between actions and observations are provided in short
trajectories with three actions. Panel c provides a birds-eye view of all 22

trajectories during learning, Note that some combinations of actions and states
were never tried out. Panel d provides an example of a planning task. A start
observation and a target observation are given to the CML, and it has to produce a
sequence of actions which let it move on the shortest path from start to goal. e The
solution of the task from panel d, which the CML produced. Note that three of its
four actions had never been tried out from these states (observations) during
exploration (compare with panel c). Hence the CML is able to generalize learnt
knowledge and apply it in new scenarios.
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The WTA operation has commonly been used on numerous
neuromorphic chips, and there exists extensive literature on that. For
example, it employed on SpiNNaker45 for solving constraint optimi-
zation problems, and on Loihi46 when implementing the K-nearest
neighbor algorithm (its readoutmechanism is equivalent toWTAwhen
K=1). WTA can be implemented directly by local processing units or
through lateral inhibition with inhibitory neurons according to the
model of theory from47. Note that the CML does not require high
precision for the WTA computation. If several actions have eligibility
values close to themaximum, it does ingeneral notmatterwhichone is
chosen.

A delay of one time step that is used in the neural network
implementation of Fig. S1 for inverting the sign of a signal can be
implemented through an inhibitory relay neuron, or more directly
through a buffer.

In contrast to backpropagation or backpropagation through time,
the local synaptic plasticity rules that the CML employs are suitable for
on-chip learning. For chips that employs memristors, the embedding
weights Q, V, and W that the CML learns can be implemented as
updates of memristor memory. We found that a weight precision of 8
bits suffices for learning to plan in the abstract random graph from
Fig. 2 without a significant performance loss. Such 8 bits weights can
be implemented directly in the type of memristors that had been
presented in48. But also memristors with less precision can be
employed with the help of the bit-slicing method49,50.

In contrast to previous methods for problem solving on neuro-
morphic chips, one does not have to program the concrete problem
into the chip. Rather, CML explores the problem space autonomously
and encodes it in a data-structure on the chip, the cognitive map, that
enables low-latency solutions for a large array of tasks.

Relation of the CML to self-attention approaches
(Transformers)
CMLs rely like Transformers on self-supervised learning of linear
embeddings of data into high-dimensional spaces. But there also exist
structural similarities between its basic equations and those of self-
attention mechanism described in12, the work horse behind the
Transformer architecture. There one computes:

Attention ðQ,K,VÞ= softmax
QKTffiffiffiffiffiffi

dk

p
 !

V, ð7Þ

whereQ corresponds to a matrix containing the queries,K to a matrix
containing the keys,V amatrix containing the values, anddk is a scaling
constant. During self-attention, thematricesK,Q, andV are computed
directly from a sequence of tokens. The CML on the other hand does
not use a sequence of tokens, it rather only considers a single token,
which is the target direction in state-space dt = s* − st and can be
interpreted as a single query. This feature arises from the implicit
assumption that observations areMarkovian, i.e., only themost recent
observation is relevant for making a prediction. As there is no
sequence of tokens, unlike the Transformer, the CML employs fixed
keys K and values V that do not depend on the current observation or
action.

In the CML, the next state prediction ŝt + 1 can be written as:

ŝt + 1 = st + WTA ðgt �K � dtÞTVT , ð8Þ

where dt = s* − st contains information about both the current state st
and the target state s* acts as the query, gt represents the affordance
gating values, which indicate the availability of an action in the current

a

b

High parallelism score between state differences

>0.999 for the pair of green vectors
>0.999 for the pair of red vectors

PC1

PC2

action A

action B action C

action D

Fig. 5 | Structure of the cognitive map which the CML generated during
explorationof the 2D environment of Fig. 4.The same incomplete exploration of
a 2D environment as in the previous figure was used. a Projection of the learnt
cognitivemap to its first two principal components. Additionally, the columns of V,
i.e., the embeddings of the 4 actions, are shown in the same 2Dprojection.One sees
that the learnt relations between actions and observations perfectly represent the
ground truth, thereby explaining why the CML produces optimal shortest paths
during planning for each given start and goal observation. Panel b provides the

parallelism score of the learnt cognitive map for pairs of states where one results
from the other by applying a specific action (two actions are indicated by red and
green arrows), in twodifferent contexts (= initial states). Theparallelismscore is the
cosine between the state differences that result from applying the same action in
two different contexts. According to32 the parallelism score is a useful measure for
the compositional generalization capability of learnt internal representations. It is
applied there both to the brain and to artificial neural networks.
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position in the environment and the keysK are considered to be equal
to the values V in the CML. Equation (8) displays striking structural
similarities with the attention mechanism used in Transformers (equ.
(7)), especially with respect to the relationships among the variables
involved, if one takes the previously described differences into
account. The latter entails that the attention matrix is not quadratic of
dimension Rðnseq,nseqÞ, where nseq is the sequence length of the input
tokens, as in Transformers. Rather, the attention matrix in the CML
corresponds to the utilities ut and has the shape Rð1,nseqÞ, as there is
only a single query dt. Note that nseq corresponds to the number of
actions na in this analogy. In the CML, the attention matrix measures
the utility for every action, assigning a high utility value to actions that
are more useful and a lower value for less useful actions. Therefore,
one could say that the CML attends to useful actions.

It is also noteworthy, that while the attention mechanism in
Transformers uses a softmax function, the CML uses a WTA function
instead. However, these two functions are also familiar, as the softmax
function is, with increasing input values, in the limit the same as the
WTA function. We also want to point out that the addition of the
current state st in equ. (8) is reminiscent of residual connections, that
are also widely used in Transformer architectures. This is a common
practice in the literature for neural network-based approximations of
Transformers, see51–53.

Discussion
The capability to plan a sequence of actions, and to instantaneously
adjust the plan in the face of unforeseen circumstances are hallmarks
of general intelligence. But it is largely unknown how the brain solves
such tasks2. Online planningmethods that are both flexible, i.e., can be
employed for reaching different goals, and highly performant are also
missing inAI3.Wehave shown that a simple neural networkmodel, that
we call a cognitive map learner (CML), can acquire these capabilities
through self-supervised learning to predict the next sensory input. We
have demonstrated that for a diverse range of benchmark tasks:
General problem-solving tasks, formalized in terms of navigation on
abstract graphs (Figs. 2, 3), navigation in partially explored physical
environments (Figs. 4, 5), and quadruped locomotion (Fig. 6). Sur-
prisingly, the CML approximates for navigation in abstract graphs the
performance of the best offline planning tools from AI, such as the
Dijkstra- and A*-algorithms, although it plans in a much more flexible
and economical onlinemanner that enables it to accommodate ad-hoc
changes of the goal or in the environment.

A fairly large class of problem-solving tasks can be formalized as a
task to find a shortest path to a given goal in an abstract graph, see3.
Hence the CML can be seen as a problem solver for such tasks. But the
CML cannot solve constraint satisfaction problems such as the Tra-
veling Salesman Problem, for which neuromorphic-hardware-friendly

Fig. 6 | Application of the CML to motor control. Panel a depicts the quadruped
(ant) with its 8 joints that can be controlled individually. Panel b provides first
evidence for the generalization capability of the CML controller. Although it only
used random actions (motor babbling) during learning, it was immediately able to
move the ant to a given goal. Resulting paths of the center of the ant torso are shown
for 8 sample goal states. The blue circle in the middle indicates the starting position
of the ant, and the stars depict 8 different goal positions. Trajectories to these goals
which were generated by the CML were low-pass filtered and plotted in the same

color as the goal. The ant was reset to the center location after every episode. Panel
c visualizes the evolution of the next state prediction error during learning (blue
curve), as well the average distance to the target location after the end of the episode
(red curve) when learning was interrupted after every 2000 weight updates the
partially learnt cognitive map was applied to the task of panel b, averaging over 32
evaluation trajectories. Panel d illustrates two further tasks that can be solved by the
same CML without any new learning or instruction: fleeing from a pre-
dator(Supplementary Movie 4) and chasing a prey (Supplementary Movie 5).
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methods had been described in54. On the other hand the CMLdoes not
require that the problem to be solved is hand-coded in the neural
network. Rather, the CML explores autonomously the problem space,
and can also plan action sequences for reaching new goals that did not
occur during learning.

The CML makes essential use of inherent properties of vectors in
high-dimensional spaces, such as the fact that random vectors tend to
be orthogonal. It adds to prior work on vector symbolic
architectures13–15 a method for learning useful high-dimensional
representations.

Learning to predict future observations, which is the heart of the
CML, has already frequently been proposed as a key principle of
learning in the brain21–23. But it had not yet been noticed that is also
enables problem solving and flexible planning.

The CML provides a principled explanation for a set of puzzling
results in neuroscience: High-dimensional neural codes of the brain
have been found to change continuously on longer time scales, while
task performance remains stable55–58. The combination of these see-
mingly contradictory features is an automatic byproduct of learning a
cognitive map: Neural codes for previously experienced observations
need to be continuously adjusted in order to capture their relation to
new observations. But this does not reduce the planning capability of
the neural network as long as some basic geometric relations between
these neural codes are preserved, seemovie at SupplementaryMovie 1
for a demonstration.

We have also shown that the CML shares some features with
Transformer, in particular self-supervised learning of relations

between observations as the primary learning engine, and the encod-
ing of learnt knowledge in high-dimensional vectors. But the applica-
tion domain of CMLs goes beyond that of Transformers since they
support self-supervised learning of an active agent. Another important
difference is that the CML requires only Hebbian synaptic plasticity,
rather than backpropagation of error gradients. Also, its small sets of
weights enable theCML to learn from small datasets. An attractive goal
for future research is to combine CMLs with Transformers in order to
combine learning of the consequences of own actions with enhanced
learning from passive observations. Also hierarchical models are of
interest that plan and observe on several levels of abstraction, see59 for
biological data and60 for an extension of the CML in this direction.

Models for learning to choose actions that lead to a given goal
have so far been mainly based on the conceptual framework of Rein-
forcement Learning (RL). But the learning processes of the most fre-
quently discussed RL methods aim at maximizing rewards for a
particular rewardpolicy, e.g., for reaching a particular goal. Hence they
provide less insight for understanding how the brain attains the cap-
ability to respond to new challenges in a flexible manner. They also do
not support flexible robot learning. The key concept of most RL
approaches is the value function for states, and most RL approaches
aim at first learning a suitable value function.

In the endotaxis approach of61 the agent learns in fact value
function for several different potential goals. These value functions
can subsequently be employed for planning paths to any of these pre-
selected goals through a neural circuit, provided that each edge of the
underlying graph is viewed as a separate action, like in our CML
applications to abstract graphs, but unlike our other CMLapplications.
Hence the agent cannot employ during planning any edges of the
graph that it has not yet traversed.

It isworth noting that a value function is a fundamentally different
data structure than the cognitive map that a CML learns, because this
cognitive map does not depend on particular goals. Among RL meth-
ods that aim at alleviating this dependence we would like to mention
three. In model-based RL one also learns a goal-independent model of
the environment. But whereas the cognitive map that is learnt by the
CML can be used instantly for producing actions that lead to any given
goal, model-based RL needs to employ a rather time-consuming
computation such as policy- or value iteration for that.

In another important RL approach one first learns a successor
function, that predicts future state occupancy for any number of
steps62,63. The successor function can then be used to compute effi-
ciently the value function for any new reward policy. But the successor
function itself depends on a particular exploration policy, and there-
fore provides suboptimal state predictions when a new goal requires a
policy that significantly differs from the one that was used during
exploration. In contrast, the cognitive map that the CML learns is lar-
gely independent of the policy that is applied during learning, it only
dependson the set of <state, action>pairs that are encounteredduring
learning. Furthermore, the primary advantage of the successor func-
tion approach is that it supports fast estimates of a value function for a
given goal. But like for model-based RL, one still needs to employ a
rather time-consuming computation such as policy- or value iteration
in order to produce actions that are likely to lead to a given goal, and
we are not aware of proposals for neuromorphic implementations
of that.

In linear reinforcement learning27 the computation of an optimal
policy to a new goal is greatly simplified. It is in that sense that RL
approach that is the most similar to the CML approach, although we
are not aware of proposed neural network implementations of it. The
linear reinforcement learning approach is based on the assumption
that one can a-priori specify a default policy for subsequent behavior,
and that it is adequate to penalize deviations from this default policy
that are used to reach a particular goal. In contrast, the CML does not
require an assumption about a default policy. We are not aware of

Table 1 | Components of an observation ot for the case of
the ant

index Description

1 x-coordinate of the torso

2 y-coordinate of the torso

3 z-coordinate of the torso

4 x-orientation of the torso (quaternions)

5 y-orientation of the torso (quaternions)

6 z-orientation of the torso (quaternions)

7 w-orientation of the torso (quaternions)

8 angle between torso and first link on front left

9 angle between the two links on the front left

10 angle between torso and first link on front right

11 angle between the two links on the front right

12 angle between torso and first link on back left

13 angle between the two links on the back left

14 angle between torso and first link on back right

15 angle between the two links on the back right

16 x-coordinate velocity of the torso

17 y-coordinate velocity of the torso

18 z-coordinate velocity of the torso

19 x-coordinate angular velocity of the torso

20 y-coordinate angular velocity of the torso

21 z-coordinate angular velocity of the torso

22 angular velocity of angle between torso and front left link

23 angular velocity of the angle between front left links

24 angular velocity of angle between torso and front right link

25 angular velocity of the angle between front right links

26 angular velocity of angle between torso and back left link

27 angular velocity of the angle between back left links

28 angular velocity of angle between torso and back right link

29 angular velocity of the angle between back right links
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neuromorphic implementations of any of the RL approaches that we
have discussed here.We alsowant to point out that in contrast tomost
RL approaches, CML learning only requires local synaptic plasticity
rules that are easy to implement in digital energy-efficient hardware
and memristor-based analog hardware for in-memory computing.
HenceCMLs are likely to support new designs and implementations of
robot control where control commands for flexible behavior are
computed by a neuromorphic chip with low latency and low energy-
consumption.

Methods
Mathematical description
The observation ot is embedded into the state-space of the CML using
the embedding matrix Q 2 Rns ,no :

st =Q � ot , ð9Þ

where ns is the dimensionality of the state space and no the dimen-
sionality of the observation ot. This also holds for the target
state: s* =Qo*.

In accordance with Principle I, the next state prediction of the
CML can be written as:

ŝt + 1 = st +Vat : ð10Þ

During planning one first computes the current utility values for all
actions:

ut =V
Tdt , ð11Þ

where dt is the vector pointing from the current state to the target
state s* − st. This equation is a paralleled process of Principle II: Each
dimension of the resulting vector ut represents the utility value of one
corresponding action. In case the transpose is not convenient to cal-
culate, one can use the learntW (according to equ. S1) to substituteVT:

ut =Wdt : ð12Þ

To account for scenarios where not all actions are applicable in
each state, or where different actions incur different costs, the vector
of utility values for all actions is element-wise multiplied with the
vector of affordance values gt to yield the vector of eligibilities for all
actions, see equ. (5).

To select an action, the action with the highest eligibility is
selected by applying the WTA function to the vector of eligibility
values of all possible actions, see equ. (6).

Details to planning on abstract graphs
For planning on an abstract graph every node is encoded by a unique
one-hot encoded observation ot. Every action at corresponds to tra-
versing an edge of the graph in a certain direction. Hence, there are
two actions for every edge of the graph, which are all encoded by one-
hot vectors. To explore the graphs, the CMLs were allowed to traverse
the graph, taking 200 random trajectories through the environment
where each trajectory was of length 32 steps. These two numbers
determine the size of the training set. Generally, the size should be
large enough to ensure that every distinct action is explored at
least once.

As a baseline comparison, the Dijkstra graph search algorithm
(see Alg. 1) was employed. It is noteworthy that in this task only graphs
with equally weighted edges are considered, and therefore A* search is
equivalent to Dijkstra, as there are also no heuristics that can be
applied to the type of graph that we consider.

The initial values for Q, V and W were drawn from a Gaussian
distribution: with (μ = 0, σ = 1) for Q, and (μ =0, σ =0.1) for V and W.

The planning performance depends very little on these parameters.
Initializing V with smaller values improves the CML’s performance.
One can also initialize V by all zeros and the performance is about the
same. The dimensionality of the state space of the CML was 1000 for
the abstract graph tasks, which was selected based on Fig. 2g.

The learning rates were ηq =0.1, ηv = ηw =0.01 on all abstract
graph tasks. TheCMLalgorithm is not sensitive to the precise values of
the learning rate. We made the learning rates for V andW by an order
of magnitude smaller than for Q because they were initialized by an
order of magnitude smaller. In general we found that good results an
be achieved with any learning rates in the range of [0.005, 0.5].

All variations of planning in abstract graphs that we discuss—
Random, Small World, Dead End, and Multi-path graphs (see Fig. S3)—
employed the same parameters: The same initialization parameters (μ
and σ) for Q, V and W, the same learning rates ηq, ηv, and ηw, and the
same state dimension. In fact, the same parameters can also be used
for all navigation tasks in physical environments thatwe consider. This
shows that the performance of the CML is not very sensitive to these
parameters. For the quadruped control task we used a larger state
dimension and smaller learning rates. These parameters could also be
used for all the other tasks, but the smaller learning rate would
unnecessarily increase their training times.

In all tasks the function fa was chosen to be a Winner-Take-All
(WTA) function, which takes a vector as an argument and returns a
vector indicating the position of the highest valued element of the
input vector with a 1 and setting all other elements to 0, see equ. (13).

WTA ðxÞ=v, where vi =
1 xi = max ðxÞ
0 else:

�
ð13Þ

Note, in equ. (13) if∃ i, j, i ≠ j: 7D1vi = vj =max(x), then the WTA func-
tion would return a one-hot encoded vector indicating index with the
lowest value.

The vector gt 2 Rna of affordance values is defined for the case of
unweighted graphs as a k-hot encoded vector, whose components
with 1 indicate that the corresponding action can be executed in the
current state (observation), i.e., corresponds to anoutgoing edge from
the current node in the graph.

Details to weighted graphs: The affordance values for weighted
graphs were computed by dividing 1 by the weight of the corre-
sponding edge in the graph. This way, selecting actions with large
weights (costs) is discouraged. To avoid that the CML gets stuck in a
loop it turned out to be useful to disallow the selection of the same
action twice within a trial.

Details to 2D navigation
Two different environment geometries were considered in this task:
rectangular and hexagonal (see Fig. S4) environments. Each observa-
tion ot was one-hot encoded. An action was interpreted in the envir-
onment as amove fromone cell in the grid to a neighboring cell.Hence
there were four actions in the rectangular environment while there
were six actions in the hexagonal environment. In the environments of
the 2D navigation tasks all actions were executable (affordable) in
every state, as long as the action would not cause the move outside of
theboundary of the grid. Consequently, the affordance values ingthad
value 1 for all actions unless the action would result in moving outside
of the grid, in which case it had value 0. We assume that these affor-
dance values are provided by some external module. In principle one
could also learn them, but this would make the model substantially
more complex.

One can use here the same parameters as for the abstract graph
tasks.However, a state space dimension of 80 suffices here (it can even
be chosen smaller without affecting the outcome). The planning per-
formance of the CML was robust to changes of parameter values also
for the navigation tasks in physical environments. Successful learning
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can also be achieved with a state space dimension of 2 or higher, and
other learning rates below 1 alsoworked.We set all learning rates to be
0.5 in all 2D navigation tasks.

The parallelism score was obtained by computing the cosine
similarity between the state differences of the observations indicated
in Fig. 5b. The state difference between twoobservations oa and ob can
be computed by simply embedding the observations into state space
and then computing the difference: Qob −Qoa.

Details to controlling a quadruped
Details to relating action commands at to actions in the environ-
ment. An action remapping scheme is used to remap a one-hot
encoded action resulting from theWTA to a dense action consisting of
8 torque values that can be used to control the ant model. For this
mapping, only torques of strength ±0.1 were considered. As there
were 8 controllable joints, this yields a set of 28 = 256 different com-
binations of considered torques. Each of these combinations was
considered as one possible action. These combinations were enum-
erated in a list and the one-hot encoded action atwas used as an index
for selecting a combination of torques in this list. Furthermore, each
action was applied 10 times in the environment to guarantee a larger
change in the environment.

Given its complexity, this task required a larger state space
dimension of 4000 and smaller learning rates ηq =0.0025 and
ηv = 0.0005. One could use these parameter settings also for the other
tasks, but that would slow down learning for them. We used here the
learnt matrix V for generating estimates of the utility. The ant task
receives continuous valued observation, instead of one-hot observa-
tions as the other tasks. Therefore it required a somewhat different
weight initialization: The initial values for the two matrices Q and V
were drawn from a Gaussian distribution, with μ =0 and σ =0.1, where
for V, σ = 1.

Details to the observations of the ant. A detailed table explaining the
29 dimensional vector of the observation ot can be found in Tab. 1.

Details to the use of target observations for the ant. A key feature of
the CML is that every type of task is formulated as a navigation pro-
blem to a target state s* in state space,where s* results fromembedding
a desired target observation o* usingQ. Consequently, it is possible to
design a desired target observation o*, which can be passed to the
CML, which then in turn tries to find a sequence of actions with the
intent of receiving a current observation ot from the environment
which matches the target observation o*. The resulting flexibility is
underlined by the three different types of problems presented in ant
controller: moving to a target location, fleeing from an adversary and
chasing a target. For each of these tasks, different target observations
o* are computed and passed to the CML. All three tasks are based on
navigation and therefore use the first two fields in the observation (see
Tab. 1) to set a desired target location using Cartesian coordinates. In
the moving to target location task, the target location is chosen to be
fixed and has an initial distance of 20 meters away from the ant. In
chasing a target task, the target location is moving and is therefore
updated every time step. In the fleeing from an adversary task, the
target location is updated every time step as well and set to 5 meters
away from the ant, in the direction pointing directly away from the
adversary. Furthermore, the target location ispassed to the ant relative
to itself and not the absolute location as defined by the global coor-
dinate system. To transform the absolute location to a target location
relative to the ant first a vector vat which points from the ant to the
target location is computed. This vector can be written in polar coor-
dinates, where ∣vat∣ is themagnitude andϕat corresponds to the angle.
To correct for the error that would occur if the ant itself is rotated, we
deduct the angle of the ant itself (to the x-axis)ϕa fromϕat. Finally, the
target coordinates can be computed by adding the polar vector with

the angle ϕat −ϕa and magnitude ∣vat∣ to the current position of the
ant. As can be seen in Tab. 1 the observation also consists of 27 other
fields in addition to the coordinates. The remaining fields of o*

t are
chosen to be equal to ot, as this induces the CML to only change the
current position of the center of its torso, and not any other variable
from ot.

Details to the regularization of Q. During the learning process, the
CML might try to focus on predicting some parts of the next obser-
vation ot which are easily predictable in order to minimize the pre-
diction error. An example for components of the observation ot that
are easy topredict are the angles of the joints,while the spatial position
of the ant is harder to predict. A problem can therefore arise when the
CML adapts the embedding Q so that the spatial position has little
impact on the vector in the state space onto which the observation
vector is mapped. To ensure that variables that are important for
planning are well-represented in the state space,QT was regularized to
reconstruct the observation ot in this task using a similar learning rule
as for all other learning processes. This also induces the CML to work
with state representations that are very informative about the obser-
vations to which they correspond.

Details to the computation of gt. Actions can entail one of two pos-
sible local actions per joint, which apply torques in one of the two
directions in which the joint can rotate. Furthermore, every joint has
two limits, which represent the minimum and maximum angles that
the joint can have. The affordance of an action depends on the ant
controller on the current angleof each joint. If a joint is already close to
oneof its limits, the action bringing it even closer to the limit receives a
low affordance value (close to 0), and the action moving it away from
the limit receives a high affordance value (close to 1). As the CML
considers the actions to be one-hot encoded, the affordance values gt
are computed by averaging over the individual affordance values that
result from this heuristics for each joint.

Details to the sampling of actions. To allow the CML to explore the
environment, actions are sampled randomly. The sampling process
takes the bounds of the angles into account, selecting torque values
which are unlikely to move the joint too close to the bound with a
higher probability.

Data availability
Our work does not utilize any specific dataset, making it independent
of proprietary data sources.

Code availability
An example code for the CML algorithm on all abstract graph tasks
(Random, Small World, Dead End, and Multi-path graphs), is available
at https://github.com/IGITUGraz/Cognitive-Map-Learner.
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