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Trade-offs in land-based carbon removal
measures under 1.5 °C and 2 °C futures

Xin Zhao 1 , Bryan K. Mignone 2, Marshall A.Wise 1 & HaewonC.McJeon1,3

Land-based carbon removals, specifically afforestation/reforestation and
bioenergy with carbon capture and storage (BECCS), vary widely in 1.5 °C and
2 °C scenarios generated by integrated assessment models. Because under-
lying drivers are difficult to assess, we use a well-known integrated assessment
model, GCAM, to demonstrate that land-based carbon removals are sensitive
to the strength and scope of land-basedmitigation policies. We find that while
cumulative afforestation/reforestation and BECCS deployment are inversely
related, they are both typically part of cost-effectivemitigation pathways, with
forestry options deployed earlier. While the CO2 removal intensity (removal
per unit land) of BECCS is typically higher than afforestation/reforestation
over long time horizons, the BECCS removal intensity is sensitive to feedstock
and technology choices whereas the afforestation/reforestation removal
intensity is sensitive to land policy choices. Finally, we find a generally positive
relationship between agricultural prices and removal effectiveness of land-
based mitigation, suggesting that some trade-offs may be difficult to avoid.

The Intergovernmental Panel on Climate Change (IPCC) Sixth Assess-
ment Report (AR6) estimates that the remaining carbon budgets for
limiting global warming to well below 2 °C and 1.5 °C are 1150 and 500
Gigatons CO2 (GtCO2), respectively1. Land-based carbon dioxide
removal (CDR) measures, especially afforestation/reforestation (A/R)
and bioenergy with carbon capture and storage (BECCS), may be cri-
tical to achieving the long-term mitigation goals of the Paris
Agreement2–4. In the IPCC AR6 scenario database5, which compiles
over 600 mitigation pathways generated by integrated assessment
models (IAMs), the mean (interquartile range) cumulative land-based
CDR between 2020 and 2100 is 460 (350–560) GtCO2, including 100
(10–190) GtCO2 from land use, land-use change and forestry (LULUCF)
and 360 (245–455) GtCO2 from BECCS (Fig. 1). While BECCS was
deployed in almost all these pathways, about three-quarters of
them also relied on net future LULUCF carbon removals, mainly
through A/R, while other CDR methods were not extensively utilized
(see Section S1 in Supplementary Information (SI)).

Both BECCS and land-system mitigation policies that incentivize
carbon storage (e.g., A/R) could be land-intensive. BECCS relies on
advanced technologies to convert lignocellulosic biomass, potentially

sourced from purpose-grown energy crops, into modern energy car-
riers while capturing biogenic carbon and storing it underground in a
geologic formation. In contrast, A/R entails expanding forests to
enhance the carbon sequestered in vegetation and soil. Land-based
policies, where they exist, have also focused on related activities, such
as preventing deforestation and conserving natural ecosystems.

Land-basedmitigation encourages regional resource competition
and reallocation as land is physically limited and spatially
heterogeneous6. In addition, the nonlinear trajectory of CO2 uptake
from land-based CDR measures can interact with other time-varying
factors, such as agricultural productivity, technological progress, and
socioeconomic drivers, introducing additional complexities7,8. Recent
studies have explored the biophysical and economic mitigation
potential of A/R9–12 and BECCS13–15. However, when investigated inde-
pendently, studies examining different CDR measures may overlook
the trade-offs that arise from land competition under mitigation
targets16,17. Capturing key differences among land-based CDR mea-
sures, including economic, environmental, and institutional differ-
ences, is crucial for evaluating their effectiveness and sustainability
implications in long-term mitigation pathways.
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Pooled data from AR6 suggests a weak yet statistically significant
negative relationship between the cumulative removals from BECCS
and LULUCF when the carbon budget is controlled (see fitted lines in
the left panel of Fig. 1). At the median level, 16% of the emissions
removal from a marginal increase in BECCS deployment could be
leaked through an increase in LULUCF emissions. This leakage sug-
gests a potential trade-off between BECCS and LULUCF removals as
large-scale bioenergy deployments may induce land use change
emissions18,19. Nevertheless, the implied emission leakage may be dif-
ficult to quantify precisely, given differences inmodeling assumptions
and policy implementation20.

Recent IAM intercomparison efforts have highlighted the critical
role of land-based CDR in long-term global decarbonization21 and
explored further implications for food security and climate
overshoot22,23. Despite harmonized protocols, there is limited agree-
ment among the models regarding the contribution of different land-
based mitigation options24. Prior studies have broadly investigated
BECCS-related assumptions25,26. However, we find a fundamental

disparity among the models regarding whether and to what extent a
land-system mitigation policy is considered23. For instance, some
models protect forest land or incentivize A/R27,28, while others apply a
universal carbon tax (UCT) regime to value carbon stock in all land at
the same price as carbon emissions from Fossil Fuels and Industry
(FFI)29,30. Recent studies havenot explored the sensitivity of land-based
CDR deployment to the strength and scope of land-system mitigation
policies, and the limited intra-model LULUCF variation in AR6 path-
ways (Fig. S4 in SI) makes it difficult to fully understand potential
drivers and trade-offs in existing scenarios.

By comparing a UCT regime with a regime that includes mitiga-
tion efforts only in FFI sectors, studies have shown potentially sub-
stantial climate benefits30,31, such as a lower cost of mitigation, arising
from the inclusion of land-system mitigation policies. However, when
land-based CDR is deployed on a large scale, sustainability concerns,
including excessive resource use, biodiversity loss, and food insecur-
ity,mayarise32–37. Inpractice, due to sustainability concerns22, potential
biophysical impacts (e.g., albedo and evapotranspiration)38, and
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Fig. 1 | Contributions of land-based carbon dioxide removal measures. The left
panel shows the relationshipbetweenglobal cumulativeCO2 removals/emissions in
2020–2100 for LULUCF and BECCS, while the right panel shows the relationship
between LULUCF and Energy and Industrial Process (EIP) emissions, projected by
climate changemitigationpathways. Eachdot represents a projection froman IPCC
AR6pathway (square) or amitigation pathwaygenerated in the present studyusing
GCAM (round). The square dots (n = 604) in both panels are projections from IPCC
AR6 1.5 °C and 2 °C pathways and with Carbon Budgets (CBs) in [175, 1475] GtCO2,
distinguished by CB subranges (filled color). The boxplots on the sides show the
median values (line), the 1st and 3rd quartiles (boxes), and the 5–95 percentile
ranges (whiskers) of the AR6 pathways; the blue line on the boxplots shows the

median value of the full range. The blue dotted lines in the main panels are fitted
using quantile regression at the 5th, 50th, and 95th percentiles. The round dots
(n = 15) represent GCAM projections, with scenarios distinguished by filled colors
and described in the legend. Note that Main and A/R-Focused scenarios are iden-
tical under no land mitigation policy (No-LCP). Points on a diagonal line in a panel
have the same total removals/emissions, i.e., land-based carbon removals (left) or
CBs (right). The beta coefficient between LULUCF and BECCS, with CB controlled,
stands at −0.17 for AR6 pathways. In contrast, the corresponding value for GCAM
scenarios studied is −0.86 (−2 for the 2 °C Main scenarios). For more details about
AR6 pathways, see Section S1. Data source: AR6 Scenario Database and GCAM
simulation results.
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institutional challenges (e.g., measurement, reporting, verification,
and permanence protocols)39–42, the strength, scope, and effectiveness
of land-systemmitigation policies could be highly uncertain and, thus,
deserves careful consideration by decision-makers. Compared to the
UCT regime, forest protection or A/R policies, e.g., the expanded
Reducing Emissions from Deforestation and Forest Degradation
(REDD+ ) framework or zero-deforestation supply chain policies, may
represent land-system mitigation policies with only partial strength
and/or partial land coverage, potentially limiting the amount of miti-
gation that can be delivered43,44.

Here we explore how various mitigation policy choices affect the
contribution of land-based CDR measures, their trade-offs, and the
corresponding global market-meditated responses such as land use
change, bioenergy supply, and agricultural price impacts.We employ a
widely used global IAM, the Global Change Analysis Model (GCAM), to
compare systematically designed scenarios with different strengths
and sector coverages of land-based mitigation efforts (see Fig. 1 and
“Methods”). The main scenarios (2 °C) limit the end-of-century carbon
budget to 1150 GtCO2 by applying a global energy system carbon price
with different strengths of land carbon pricing (LCP) applied to all
land. The No-LCP scenario assumes no landmitigation policy, whereas
the 100%-LCP scenario applies the same price to land carbon storage
and FFI carbon. These two scenarios correspond to the FFI carbon tax
and UCT scenarios studied byWise et al.30 but reflect numerousmodel
improvements since that time. Toaddress theuncertainty surrounding
land-system policies and to examine the linearity of the response, we
add two partial land carbon pricing cases with different strengths, i.e.,
10%-LCP and 50%-LCP. Given the scope of the LCP policies, land-
system mitigation can be broadly defined as removals through
LULUCF, and it also encompasses actions aimed at alleviating or pre-
venting deforestation and natural land depletion.

Relative to themain scenarios, we also study twosets of caseswith
carbon pricing applied asymmetrically within a sector: (1) pricing only
forest carbon (asymmetric carbon pricing within the land sector) with
no mitigation policy on non-forest land (A/R-Focused), and (2) lower
carbon credit to BECCS (asymmetric carbon pricing within the energy
sector) by limiting primary lignocellulosic bioenergy to 100 EJ per year
by 2100 (Low-Bioenergy). The policy scope of land-basedmitigation is
among the most overlooked areas in the IAM literature. Therefore, a
comparison between the Main scenarios and the A/R-Focused sce-
narios offers valuable insights into differences in policy effectiveness
and implications for agricultural commodity prices. In GCAM, the Low-
Bioenergy scenario effectively lowers the shadow price of carbon used
to provide incentives for BECCS. In addition, another set of scenarios
(1.5 °C) that limit the end-of-century carbon budget to 500 GtCO2 are
also added as the climate target is the most widely investigated
dimension in the literature. More detailed information regarding the
modeling and scenarios is available in “Methods” and Section S2.

Results
Trade-offs between land-based mitigation measures
Outcomes from our mitigation scenarios with regard to LULUCF and
BECCS removals encompass a large share of the variability observed in
AR6 pathways (Fig. 1 left panel). The 2 °C Main scenario with all land
system carbon fully priced (100%-LCP) projects a total of 510 GtCO2

land-based CDR, including 360 GtCO2 from BECCS and 150 GtCO2

from LULUCF. If the land mitigation policy is weaker, the net LULUCF
removal weakens and could become an emission source (230GtCO2 in
No-LCP), while the contribution of BECCS increases (540 GtCO2 in No-
LCP). For a given carbon budget, this suggests a clear trade-off
between LULUCF and BECCS when the strength of land mitigation
policy is varied, driven by resource competition. The 2 °C A/R-Focused
scenarios, which specifically support forest carbon storage, result in
higher total land-based CDR compared to the Main scenarios (e.g., by
70 GtCO2 in 100%-LCP). Limiting bioenergy in Low-Bioenergy

scenarios reduces the deployment of BECCS by more than 50% to
190–230 GtCO2 compared to the Main scenarios (360–540 GtCO2).
Only about half or less of the reduction in BECCS is compensated by
higher net LULUCF removals, resulting in lower total land-based CDR.
In addition, with a more stringent climate target (i.e., lower carbon
budget by 650 GtCO2 in 1.5 °C relative to 2 °C scenarios), removals
from land-based CDR increase by 200–230 GtCO2 compared to the
Main scenarios. Most (over 90%) of the additional removal is from
BECCS, echoing previous findings that BECCS is more responsive to
climate targets23.

With a stronger landmitigation policy, the increase in LULUCF net
removal outweighs the decreased removal from BECCS, leading to a
higher total land-based CDR. However, the marginal effectiveness of
the policy (in terms of CO2 removal) decreases as the strength of the
land carbon price increases. For instance, in 2 °C Main, the total land-
based CDR is 60 GtCO2 higher in 10%-LCP compared to No-LCP,
whereas it is only 45 GtCO2 higher in 100%-LCP compared to 50%-LCP.
The nonlinear responses to variation in LCP strength are similar in
different sets of policy scenarios, and they indicate that imposing a
weak land mitigation policy might have a more pronounced impact
than strengthening an existing policy and that avoiding deforestation
could be more effective than A/R. Collectively, our scenarios reveal a
more pronounced trade-off between LULUCF and BECCS compared to
what is suggested by AR6 pathways, with a beta coefficient of −0.86 (in
contrast to −0.17 in AR6). This supports our hypothesis that variations
in LULUCF across AR6 pathways are predominantly driven by uncon-
trolled model and scenario differences rather than land-system miti-
gation policy choices.

The FFI carbon prices in our scenarios, ranging from $33 to $83 in
2025, align generally with the range of $10–$122 (10th–90th percen-
tile) estimated in AR6 pathways for 2025 (Fig. 2). However, as sug-
gested by our results, different policy choices may result in varying
shadow prices of carbon on land-based CDR options as well as differ-
ent FFI carbonprices.Our results demonstrate that FFI carbonprices in
100%-LCP scenarios are about 16% (2 °CMain) to 30% (Low-Bioenergy)
lower than those in No-LCP scenarios. Compared to the Main scenar-
ios, depending on the strength of landpolicies, FFI carbonprices could
be up to 10% lower in A/R-Focused scenarios, 25–50% higher in Low-
Bioenergy scenarios, and 80–90% higher in 1.5 °C scenarios.

Connecting land use and carbon removal
As land is a key input for producing carbon mitigation or storage
services, it is imperative to understand how land is used and the cor-
responding productivity in terms of carbon removal (i.e., removal
intensity). Here, we illustrate the connection between carbon removal
and the corresponding land use, focusing on a Main scenario (2 °C
Main & 100%-LCP) to set the foundation for subsequent scenario
comparisons. In 2 °C Main & 100%-LCP, the mean annual land-based
CDR is 6.3 GtCO2 yr

−1, with 4.4 GtCO2 yr
−1 from BECCS and 1.9 GtCO2

yr−1 from LULUCF (Fig. 3A). Of the BECCS, 60% (2.6 GtCO2 yr
−1 or 213

GtCO2) relies on purpose-grown energy crops, and the remaining 40%
(1.8 GtCO2 yr−1 or 145 GtCO2) uses crop and forestry residues and
municipal solidwastes (MSWs) as feedstock,with negligible direct land
implications.Global net-zero carbon emissions are achieved in 2085, at
which point FFI emissions of 10.3 GtCO2 yr

−1 are offset by land-based
CDR (Fig. 3B). On average over the study period, about 120 exajoules
per year (EJ yr−1) of primary modern bioenergy is produced, corre-
sponding to 10 GtCO2 yr

−1 in biogenic carbon (Fig. 3C). However, only
about 44%of thebiogenic carbon is capturedusingBECCS since67%of
the primary bioenergy is used in technologies combined with CCS in
which, on average, 66% of the primary biomass carbon is sequestered
and stored (Figs. S19–S21).

About 65 EJ yr−1 of the primary bioenergy, or 5.5 GtCO2 yr−1

in biogenic carbon, is supplied by purpose-grown energy crops,
requiring, on average, about 300 Mha of dedicated energy cropland
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(Fig. 3D). In addition to energy cropland expansion, as land carbon is
fully priced, about 180Mha is demandedglobally for A/R, alongwith 16
Mha other natural land restoration. Over 72% of the global land
required for BECCS andA/R comes from converting pasture (360Mha;
mostly unmanaged), whereas the remainder comes from converting
non-energy cropland (28% or 140 Mha), which leads to higher agri-
cultural prices.Notably, themajority (95%) of BECCS removals occur in
the second half of the century, while for LULUCF, this share is about
48%. The temporal pattern of land-based CDR is a co-evolution of
several key factors, such as primary biomass supply, CCS technology
deployment, and other techno-economic assumptions. Specifically,
the temporal pattern, when land carbon is fully priced, reflects the
relative ease with which land can be converted to forest on the one
hand and the slower deployment of amore capital-intensive, emerging
technology in the energy system (e.g., BECCS) on the other.

The aggregate land removal intensity, attributing all land-based
CDR to the use of energy cropland and forest land, is 13.1 tCO2ha

−1yr−1

(Fig. 3E). Our decomposition shows that the removal intensity is higher
for BECCS than LULUCF (14.6 vs.10.4 tCO2ha

−1yr−1). However, the
removal intensity for BECCS would be 40% lower (8.7 tCO2ha

−1yr−1) if
not accounting for waste & residue-based BECCS, and then 36% higher
(11.8 tCO2ha

−1yr−1) if further disassociating land that is used for bioe-
nergy without CCS (Fig. 3F). On the other hand, the net land carbon
stock in afforested areas stands at 193 GtCO2, implying a marginal
forest carbondensity of 13.1 tCO2ha

−1yr−1, and 23GtCO2 in other natural
land (Table S5). However, only the additional carbon storage matters,
which explains the relatively lower LULUCF removal intensity. The full
set of mitigation pathway results that connect land-based CDR to
implications for land use competition is provided in Figs. S13–S27 and
Table S5 and discussed in Section S3.2.

Impact of land carbon pricing strength
The strength of land carbon pricing has a considerable impact on the
breakdown of carbon budgets and their corresponding land use impli-
cations (Fig. 3). A stronger land mitigation policy places greater weight
on carbon storage in determining land uses, resulting in increased
demand for forest and other natural land and reduced land use for food

and energy. Conversely, a weaker landmitigation policy would result in
the opposite effect. Compared to 100%-LCP, forest and other natural
land use is, on average, 115 Mha lower in 50%-LCP and 445Mha lower in
No-LCP, while cropland use is higher by about 100Mha in 50%-LCP and
355Mha in No-LCP, split almost evenly between energy and non-energy
crops. The increased energy cropland leads to a higher primary bioe-
nergy supply from energy crops, e.g., 10 EJ yr−1 higher in 50%-LCP and
32 EJ yr−1 higher in No-LCP compared to 100%-LCP. In contrast, waste &
residue-based primary bioenergy is not substantially affected.

Global non-energy cropland expands over time in the reference
scenario (Section S3.1), but this trend is weakened when Energy and
Industrial Processes (EIP) carbon is priced in the 2 °CNo-LCP scenario as
the demand for energy crops is higher and reversed with stronger land
carbon policies as land competition further intensifies due to the higher
demand forA/R andnatural land (Fig. 3D).Global deforestation switches
to afforestation with a land policy in-between 10%-LCP and 50%-LCP.
The impact of varying LCP on land use patterns and primary bioenergy
supply is also consistent at the regional scale (Figs. S18 and S24).

The aggerate land removal intensity is smaller with weaker LCPs,
e.g., 11.2 tCO2ha

−1yr−1 in No-LCP. For BECCS, when the land carbon
policy is weaker, BECCS demand is higher, the transition of biomass
to sectors in which it can be used with CCS is faster, and the overall
capture rate is higher, while the share of biomass sourced from
energy crops is also higher and crop yields are lower as land com-
petition is weaker (Fig. 3F). Our decomposition highlights that (1)
BECCS produced using wastes and residues plays a key role in
improving the aggregate removal intensity and is less sensitive to
land carbon pricing strength, (2) the trade-off in land-based mitiga-
tion measures is primarily between energy crop-based BECCS and
LULUCF, driven by land competition, (3) while uncertain, the rela-
tively larger (more negative) LULUCF removal intensity in net
deforestation scenarios (No-LCP & 10%-LCP) reveals that the rate of
LULUCF emissions from deforestation surpasses the rate of seques-
tration in A/R, and (4) stronger land mitigation policies encourage
land allocation decisions that reflect potential changes in land car-
bon sequestration, resulting in a more balanced land use between
energy crops and forest and higher aggregate removal intensity.
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Fig. 2 | Carbonprices inmitigationpathways.Panel (A) displays the shadowprice
of carbon by sector across pathways investigated in this study, with each dot
representing theprojected carbonprice in a studyyear and sector, distinguishedby
policy scenario (point shape) and land-system carbon pricing (LCP) scenario
(color). The corresponding point-range per LCP scenario group is addedwith a line
indicating the range of the dots and a solid dot indicating themean value. Note that
the difference in the shadow price of carbon across sectors reflects various miti-
gation policy choices. Panel (B) shows the carbon price distributions across AR6

pathways (n = 565) by year and Carbon Budget (CB) subranges. The boxplots show
the median values (horizontal line within the boxes), interquartile range (boxes),
and the 10th–90thpercentile ranges (whiskers) of theAR6pathways (truncated at a
maximumof $1500per tCO2); the blue line on the boxplots shows themedian value
of the full CB range. Additional information is provided in Fig. S13 and
Tables S3 and S4. Data source: GCAM simulation results and AR6 Scenario
Database.
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Furthermore, different temporal patterns in BECCS and A/R are
not entirely apparent from the aggregate trade-off between them,with
more LULUCF removals occurring early in the century and more
BECCS removals occurring later in the century. Consequently, stronger
LCPs also reduce the magnitude of carbon budget overshooting, e.g.,
123 (No-LCP) vs. 54 (100%-LCP) GtCO2, and encourage higher total
land-based CDR. The findings regarding the impact of land carbon
pricing strength in the 2 °CMain scenarios are also consistent with the
results observed in our other sets of scenarios.

Sensitivity of CDR deployment to the scope of land and energy
system policies
We further examine the sensitivity of CDR deployment to other policy
choices, including the extent of policy coverageon land, constraints on
primary bioenergy, and the choice of climate target, providing results
for the 100%-LCP scenarios in Fig. 4. Specifically, when land mitigation
policy only subsidizes carbon storage in forest (A/R-focused), com-
pared to theMain scenario, other natural land becomes amajor source
of land (−315 Mha) along with more pasture conversion (−245 Mha) as
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Fig. 3 | Impact of land carbon pricing strength on key outcomes under 2 °C
scenarios. Projections from the Main (2 °C) scenarios with varying land carbon
pricing strengths, from no land carbon pricing (No-LCP) to 100% land carbon pri-
cing (100%-LCP), are presented for global cumulative (A) and annual (B) carbon
emissions, primary bioenergy demand and supply (C), land use change (D), land
removal intensity (E), and the decomposition of land removal intensity (F). All
scenarios have a net total cumulative emissions of 1150 GtCO2. Carbon dioxide
emissions/removals in (A) and (B) show contributions by Fossil Fuels and Industry
(FFI), BECCS (by feedstock sources: residue & MSW or purpose-grown energy
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emissions are highlighted (red vertical lines) in (B). Stacked bars in (C) show the
2020–2100mean primary second-generation bioenergy supply by source (positive

values) and demand by sector (negative values). Stacked bars in panel (D) present
land use change decomposition by 2050 and 2100 and the mean value in
2020–2100. Points in (E) present the relationship between the 2020–2100 mean
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(slopes annotated in green). Data source: GCAM simulation results.
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they are not credited for carbon storage anymore. As a result, con-
siderably higher demand for forest land (650 Mha, on average) is seen
(Fig. 4D), more than three times higher than the value in the Main
scenario (180 Mha), along with moderately more expansion of energy
cropland (+40 Mha) and less reduction in non-energy cropland (+50
Mha). The altered land use pattern by A/Rhas a relativelyminor impact
on primary bioenergy supply and BECCS removal but considerably
increases the LULUCF removal by over 40% (+0.8 GtCO2 yr

−1; Fig. 4A,
C). LULUCF removal is relatively stable in A/R-Focused scenarios
throughout the century as forest land continues to expand over time
(Fig. 4B). The marginal forest carbon density increases by 15% com-
pared to the Main scenario, but the leakage is larger since more non-
forest land with relatively high carbon density is displaced, which also
leads to higher initial LULUCF emissions compared to other scenarios.
As a result, the overall forest removal intensity becomes considerably
smaller (−60% to 4.2 tCO2ha

−1yr−1 compared to Main; Fig. 4F).
Under the Low-Bioenergy constraint, the supply of primary

bioenergy decreases by about 45% to 66 EJ yr−1, compared to theMain

scenario. The linear constraint has a stronger impact on purpose-
grown biomass compared to MSW & residue, as the former is mainly
utilized later in the century. The mean purpose-grown biomass
supply decreases by 66% to 22 EJ yr−1, accompanied by a 64%
reduction in energy cropland use. The corresponding BECCS CDR
experiences an even larger decrease of 69% (−1.8 GtCO2 yr

−1) due to
the slower transition of biomass to sectors in which it can be used
with CCS technologies (e.g., 8 percentage points lower in the share of
biomass used in conjunction with CCS). The constraint, effectively
resulting in weaker incentives for BECCS, dampens the price trans-
mission from the carbon market to the primary biomass market.
Although the carbon capture rate in BECCS is slightly higher, driven
by the higher carbon prices, the relatively lower prices of primary
biomass discourage crop yield intensification (−7%) as well as the
transition of biomass use for BECCS. As a result, BECCS deployment
is smaller, and energy cropland removal becomes less efficient, with
the removal intensity (not including waste & residue) decreasing to
7.4 from 8.7 tCO2ha

−1yr−1 (Main), and to 11.1 from 11.8 (Main) when
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Fig. 4 | Impact of alternative energy and land systempolicies on key outcomes
under 100% land carbon pricing. Projections from scenarios with alternative
energy and land system policies, including 2 °C (main), A/R-Focused, Low-Bioe-
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energy cropland that is attributed to biomass used without CCS is
removed from the intensity calculation. The reduced land pressure
from BECCS also yields efficiency benefits for A/R on the extensive
margin, i.e., marginal forest carbon density increases (+ 9% com-
pared to Main). Thus, higher land use for A/R (+75 Mha) is also seen,
accompanied by more pronounced LULUCF removal (+ 1 GtCO2 yr

−1)
and, consequently, higher LULUCF removal intensity (+8% to 11.2
tCO2ha

−1yr−1), compared to the Main scenario.
Under a more stringent climate target (1.5 °C), an additional

reduction of 2.4 GtCO2 yr−1 comes from land-based CDR, with the
majority coming from BECCS (1.3 GtCO2 yr

−1 from energy crops and 1
GtCO2 yr

−1 from wastes and residues) and a smaller contribution from
LULUCF (0.1GtCO2 yr

−1). This entails considerably higher carbonprices
(i.e., +83%), driving a more carbon-efficient use of land, mainly for
energy crop-based BECCS (i.e., +31% in removal intensity to 11.4
tCO2ha

−1yr−1). Higher carbon prices promote a faster transition of
biomass use from sectors or technologies with no CCS (e.g., final
energy sectors) or low carbon capture rates (e.g., ~50% in fuel refining)
to thosewith higher capture rates (e.g., ~90% in electricity). As a result,
59% of the biogenic carbon inprimary biomass is sequestered, which is
considerably higher than the share in the 2 °C scenario (44%). The
earlier deployment of BECCS also drastically increases the cumulative
sequestration, echoing Obersteiner et al.45. The primary bioenergy
increase is higher in early periods, e.g., +21% before 2050 vs. +12% after
2050. The earlier deployment of BECCS and greater share of bioenergy
used for BECCS overall explain how the 13% (+ 15 EJ yr−1) average
increase in primary bioenergy supply drives upBECCS removal by 52%.

With a moderate yield intensification, the increase in energy
cropland use is +42 Mha, higher than the forest land use increase (+26
Mha), in the 1.5 °C scenario compared to the 2 °C scenario. In stark
contrast to the substantially higher BECCS removal intensities,
LULUCF removal intensity decreases by 6% to 9.8 tCO2ha

−1yr−1. This
decline is mainly driven by extensive margin responses46,47, meaning
that productivity (for carbon removal) diminishes when land expands,
especially under increased land competition. In the 2 °C scenario, the
effective carbon stock in the expanded forest stands at 290 tonnes of
carbon per hectare (tC/ha) for the full study period, about 30% higher

than themedian forest carbon density of 224 tC/ha (Fig. S7). However,
amidst stronger land competition under a more stringent climate
target (1.5 °C), the effective carbon stock in the expanded forest
decreased by 7% to 270 tC/ha when the forest further expanded (+26
Mha), resulting in a lower marginal forest carbon density (−7% to 12.2
tCO2ha

−1yr−1). This response is not obvious for energy cropland, as it is
offset by price-induced yield intensification.

Land carbon removal intensity over time
Across our scenarios, the average removal intensity of land-based CDR
ranges from 7.3 to 18.1 tCO2ha

−1yr−1 and from 4.7 to 10.8 tCO2ha
−1yr−1

when not accounting for waste & residue-based BECCS, over the full
study period. The removal intensity of energy crop-based BECCS
improves over time in our scenarios, with the scenario average for the
full study period more than double the early period (2020–2050)
value, i.e., 9.3 vs. 3.8 tCO2ha

−1yr−1. This improvement is driven by fac-
tors such as yield growth, sectoral transition, and technological pro-
gress. Particularly noteworthy is the rapid growth in the share of
bioenergy used for BECCS over the first several decades (Fig. S19).
Disregarding the sectoral transition effect by removing bioenergy not
usedwithCCS, the increaseover time in the intensitywould be smaller,
i.e., 11.9 (full period) vs. 11 (early period) tCO2ha

−1yr−1. On the other
hand, the removal intensity of A/R is generally anticipated to decline in
the long term, since A/R occurs in early periods and the marginal
removal intensity declines as the forest matures. This decline in the
average removal intensity of LULUCF is observed in our runs, with the
value over the full study period 42% lower than the value over the early
period (2020–2050) in the scenarios with A/R.

The land carbon removal intensity of BECCS and LULUCF in our
scenarios largely span theAR6 ranges, despite the substantial variation
in both sources (Fig. 5 and Section S3.3). In the full study period, inAR6
pathways, themedian removal intensity of energy crop-basedBECCS is
9.5 tCO2ha

−1yr−1, which is considerably higher than the LULUCF
removal intensity of 5.7 tCO2ha

−1yr−1. This finding is consistent with our
results, although the difference between the two types of land-based
CDR is relatively smaller in our scenarios, 9.6 vs. 7.6 tCO2ha

−1yr−1.
However, the median LULUCF removal intensity in the AR6 scenarios
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Fig. 5 | Land carbon removal intensity. Panels (A) and (B) show land carbon
removal intensity for energy crop-based BECCS versus purpose-grown energy
cropland and LULUCF versus forest land, respectively. The dots in each panel
represent mean projections from the present study (GCAM) by study period
(2020–2050or 2020–2100), policy scenario (point shape), and land-system carbon
pricing (LCP) scenario (color). The boxplots exhibit the distribution of results
across AR6 pathways, including the median (horizontal line within the boxes),
interquartile range (boxes), and 5–95 percentile range (whiskers) by study period
and Carbon Budget (CB) subrange. The blue dotted line represents the median

value in the full CB range for the available AR6 pathways. Note that only a subset of
AR6 pathways reported quality land projections. We cannot further decompose
BECCS removal intensity for AR6 pathways to associate purpose-grown cropland
with CCS sectors due to inadequate and/or low-quality reporting of the relevant
data needed. In Panel (B), pathways or study periods with net global deforestation
were removed for meaningful comparisons of the removal intensity, and negative
values represent net removal in the study period. The number of AR6 pathways by
CB subrange is annotated in blue. Data sources: GCAM simulation results and AR6
Scenario Database.
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increases between the earlier period (2020–2050) and the full study
period, which could reflect differences in the timing of A/R deploy-
ment as well as differences in policy scope and the overall LULUCF
composition. The substantial uncertainty in land removal intensity
underscores the importance of conducting thorough model inter-
comparison studies to not only explore the variations in results but
also investigate the underlying differences in data and parameter
assumptions. In addition, one should be cautious when comparing
results between IAM and sectoral analyses4,9,11,48 due to potential dis-
crepancies in metrics and categorization. For instance, if BECCS based
on waste and residue is not distinguished, the estimated BECCS land
removal intensity could be considerably different.

Agricultural price implications of land-based mitigation
measures
World average staple crop prices vary considerably across the miti-
gation scenarios studied, ranging from +2% (Low-Bioenergy &No-LCP)
to +28% (1.5 C & 100%-LCP) by 2050 and from a + 5% increase (Low-
Bioenergy & No-LCP) to a + 60% increase (Low-Bioenergy & 100%-LCP)
by 2100 (Fig. 6A). In contrast, reference prices are relatively stableover

the century (+1%). The impacts on agricultural prices at regional and
sectoral levels are heterogeneous and may be more substantial (Fig.
S33). Scenarios with stronger land carbon policies, such as 50%-LCP
and 100%-LCP, align more closely with AR6 pathways, although agri-
cultural prices are among the least reported variables in those path-
ways (Fig. 6B). The large uncertainty in price transmission from the
carbon market to agricultural markets has been highlighted in recent
studies36,49.

Due to the variation in the strength and scope of land-system
mitigation policies in our scenarios, we are able to conduct a deeper
investigation into crop price responses (“Methods”). Our findings
demonstrate that a $100 per tCO2 increase in carbon prices when
implemented across all sectors, results in a 7.4% rise in staple crop
prices. Of this increase, 2.9% is attributed to carbon pricing in the EIP
sector, while 4.5% is driven by carbon pricing in the land system
(Fig. 6C). The effect attributed to EIP is further partitioned into a
−0.7% decrease from FFI and a + 3.6% increase from BECCS. Stronger
mitigation of fossil fuel emissions, all else equal, reduces the burden
on land, resulting in a negative agricultural price impact. Although it
puts pressure on land, BECCS has a relatively smaller impact on crop
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Fig. 6 | Implications of land-based mitigation on crop prices. Panel (A) displays
the staple crop price index (2020 = 1) in pathways explored in this study, with each
dot representing the crop price in a projection year (i.e., 2025, 2050, 2100), dis-
tinguished by policy scenarios (subpanels), and scenarios (lines & colors). Staple
crop in GCAM is an aggregation of wheat, corn, rice, other grains, and root & tuber
(Table S2). Panel (B) shows the crop price index (2020 = 1) distributions across AR6
pathways (n = 28) and crops (n <= 4) by year and Carbon Budget (CB) subranges.
AR6 crops include wheat, corn, rice, and soybean. The boxplots show the median
(horizontal line within the boxes), interquartile range (boxes), and 5–95 percentile
range (whiskers) by study period and CB subrange. The blue line represents the

median value in the full CB range. Panel (C) shows themarginal effect on staple crop
prices (dots) from a $100 (2010 USD) increase in the shadow price of carbon
dioxide by sector. The coefficients correspond to Model 4 in Table S7. Error bars
represent the 95% confidence intervals (CI) of each coefficient. Panel (D) shows the
relationship (point) between staple crop price impact (reference = 1) and cropland
impact (reference = 0 Mha) in 2100 across LCP scenarios (point colors) and policy
scenarios (point shapes) by AR6 R10 regions (subpanels; see Table S1 for map-
pings). Linear trend lines (blue lines) and 95% CI (gray ribbons) are added for each
region (subpanel). Data source: GCAM simulation results and AR6 Scenario
Database.
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prices than direct land carbon pricing due to its higher long-term
removal intensity and ability to use nonland-based feedstocks, such
as wastes and residues. However, when land pricing is restricted to
forest land, the effect of land carbon pricing on crop prices is
reduced to +1.4% as the greater conversion of unmanaged pasture
and other natural lands alleviates the pressure on cropland. While the
magnitude of the price transmission can be sensitive to several
model parameters, our findings suggest that differentiating carbon
prices by sector substantially enhances the explanation of their price
transmission to agricultural markets (e.g., Models 1–4 vs. Model 8 in
Table S7). This distinction is crucial as relying solely on FFI or EIP
carbon prices to explain land use implications could lead to mis-
interpretation of the results.

Stronger land competition with non-energy cropland, driven by
land-based mitigation measures, leads to higher agricultural prices, as
impliedby thenegative correlation between the two, particularly at the
regional level (Fig. 6D). Notably, price-induced yield intensifications
and demand-side adaptations can substantially mitigate consumer
impacts. For instance, in a scenario with high price impacts, i.e., +50%
by 2100 inMain& 100%-LCP, the global staple cropland areadecreased
by 24% (or 170 Mha) compared to the reference scenario. However,
staple crop production only decreased by 5% (or 300 Mt) as yield
increased by 25%, mainly leading to lower feed consumption. The
market-mediated responses are alsomore robustwhen landmitigation
policies are stronger (Figs. S34–S36).

Discussion
Recent studies have highlighted the substantial uncertainty in pro-
jecting land-based CDR measures and their economic and environ-
mental implications4,22–24,49,50. To further clarify and assess the role of
land-based CDR, we examined the response to key assumptions
underlying the representation of BECCS and land-system mitigation
options in GCAM and explored mitigation pathways with different
land-based mitigation policies. By exploring and comparing these
scenarios within an internally consistent framework, we demonstrated
that the amount and type of CDR, as well as other implications of CDR
deployment, are sensitive to the strength and scope of land-based
mitigation policies.

Across our scenarios, the end-of-century cumulative land-based
CDR ranged from 100 to 700GtCO2. In the absence of any land-system
mitigation policy, the deployment of BECCS was the highest (230–540
GtCO2), which also encouraged higher emissions from LULUCF, ran-
ging from 130 to 230 GtCO2 compared to 110 GtCO2 in the reference
scenario. Valuing land carbon storage, even partially, reduced emis-
sions leakage from energy crop-based BECCS and lowered the cost of
mitigation in the energy system.With full land pricing, the land system
provided a net carbon sink between 150 and 230 GtCO2, reducing the
deployment of BECCS compared to the case without land pricing but
increasing total land-based CDR. Our results suggested an inverse
relationship (stronger than implied by AR6 pathways) between
cumulative BECCS and LULUCF removals in mitigation scenarios,
reflecting land competition.

Upon a thorough comparison of the scenarios, we highlight sev-
eral key insights relevant to decision-makers. First, BECCS and A/R
both contribute substantially tomitigation in 1.5 °C and 2 °C scenarios.
Our scenarios suggest that BECCS and land-system mitigation mea-
sures are both typically part of cost-effective mitigation pathways.
Although the cumulative deployment of BECCS and A/R are found to
be inversely related, reflecting land competition, we also find that their
deployment is separated in time, with A/R deployment occurring
earlier, as a less expensive option, and BECCS occurring later as
technologies and supply chains develop and mature.

Second, the removal intensity of BECCS is typically higher than
A/R over long time horizons. In general, we find that the amount of
carbon removal per land utilized (the removal intensity) is higher for

BECCS than for A/R in aggregate. A given amount of land set aside for
bioenergy can enable biomass production indefinitely, which, when
coupled with CCS, provides a steady stream of removals. In contrast,
a given amount of land used for A/Rwill lead to larger carbon storage
initially but will diminish over time as the forest matures. This implies
that the removal intensities are sensitive to the time periods over
which they are evaluated. In addition, A/R removal intensity may
diminish when forest expands, especially under increased land
competition. This extensive margin response stems from Ricardo’s
Law of Rent, which states that the most productive land is used first,
so that, all else being equal, marginal expansion into lower-
productivity land drives down the mean productivity46. While
purpose-grown energy crops may also have extensive margin
responses when production expands, the yield for purpose-grown
energy crops is presumed to increase over time, with price-induced
yield intensification also contributing51.

Third, BECCS removal intensity is sensitive to feedstock and
technology choices. There is significant potential for BECCS to be
produced from feedstocks with minimal direct land use impacts.
Across our mitigation scenarios, MSW & residue could supply 53
(37–61) EJ yr−1 of primary energy, with 2.1 (1.5–3.3) GtCO2yr

−1 of the
biogenic carbon captured and stored via BECCS. However, our sce-
narios show that, over the full study period, 27% (12–39%) of the bio-
mass was consumed in sectors in which biomass could not be coupled
with CCS. Strategies that encourage increased MSW & residue con-
sumption and facilitate a transition to bioenergy used in conjunction
with CCS technologies could potentially increase net carbon removal
with smaller environmental implications. Generally, a higher land
removal intensity for BECCS could be achieved by increasing the uti-
lizationofwaste and residue-based BECCS, adoptingCCS technologies
earlier, accelerating the transition to primary biomass use in sectors
with higher carbon capture potential, and increasing the carbon cap-
ture rate of BECCS technologies.

Fourth, A/R removal intensity is sensitive to landmanagement and
policy choices. A/R requires expanding forest land cover to augment
carbon storage. The efficacy of A/R for carbon removal depends, in
part, on the carbon density of the land converted to forest, since only
the increase in carbon storage (not the total) is additional. If land-
systemmitigation policies exclusively prioritize forest expansion (A/R-
focused scenarios), excessive depletion of non-forest natural areas
could occur, as land use changes are not primarily reflecting differ-
ences in carbon storage potential between land cover types. This could
potentially result in less efficient land use for carbon removal com-
pared to a more comprehensive policy (Main scenarios) that values
carbon in all types of land. In addition, our scenarios assume no risk of
unplanned reversal of carbon storage on land, but in the realworld, the
viability and efficiency of A/R depend on how effectively carbon is
stored over time, which in turn depends on the quality of monitoring,
reporting, and verification (MRV) protocols. Effective land-system
mitigation depends on concerted and coordinated efforts among dif-
ferent stakeholders to minimize unintended consequences and
enhance A/R initiatives in areas with greater potential for land carbon
improvement.

Lastly, there could be tradeoffs between removal effectiveness
and agricultural price responses. Our scenario analysis shows that
land-based CDR measures could lead to higher agricultural prices,
consistent with recent studies22,52. We found that the magnitude of the
agricultural price impact varied with the strength and scope of the
policy, primarily the extent to which carbon pricing extended to land,
and to a lesser extent how it was differentiated across land types, both
of which determined its impact on agricultural land. In general, land
pricing transmitted more impact to agricultural markets than energy
system pricing alone. Designing land policies to mitigate impacts on
agricultural markets, for example, by only subsidizing forest carbon,
maybe possible but could result in considerably reduced land removal
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intensity, as other natural land with relatively higher carbon density
may be converted, resulting in carbon leakage and possibly other
unintended consequences such as biodiversity loss53. Indeed, we find a
generally positive relationshipbetween agricultural prices and the land
removal intensity of LULUCF (Section S3.4), given that both are sen-
sitive to cropland conversion, suggesting that such trade-offs may be
difficult to avoid completely in land system mitigation. Therefore,
land-based mitigation policies should be carefully designed, con-
sidering not only the trade-offs in carbon removals but also the
broader implications for food security, the environment, and overall
sustainability.

Our study also provides insights relevant to those developing IAM
models and generating new scenarios, and it could help to inform
future model intercomparison efforts. Specifically, the implementa-
tion of land-system mitigation policies differs significantly across
models. Projections from our scenarios exhibited a reasonable range
of variation compared to the results from AR6 pathways regarding
land-based removals, energy system carbon prices, land removal
intensity, and agricultural prices. It is plausible that harmonizing land-
based mitigation policies and related assumptions among IAMs could
enhance the level of agreement in their projections (see Section S3.4
for discussion of future research). Toward this end, this study estab-
lishes a foundation for further assessing the impacts of carbon miti-
gation measures and for exploring the implications of trade-offs,
including environmental consequences53,54, in the context of broader
climate change mitigation.

Methods
GCAM description
The Global Change Analysis Model (GCAM)55 is a widely used open-
source global multisectoral economic equilibrium and integrated
assessment model (see detailed model documentation at http://jgcri.
github.io/gcam-doc/). Themodel has a detailedmarket representation
of the energy, agriculture, land, and water sectors and their inter-
sectoral connections. GCAM is actively maintained and improved over
time. The AR6 scenarios presented in Fig. 1 include n = 29 pathways
from earlier versions of GCAM, i.e., v4.2 (n = 1), v5.2 (n = 1), and v5.3
(n = 27). This study employs GCAM v6 and incorporates key data and
assumption updates to improve the modeling of bioenergy with car-
bon capture and storage (BECCS) and land-system carbon mitigation
policy (Section S2). The model is calibrated to the base year 2015 and
runs in 5-year time steps to 2100, driven by future changes in socio-
economic, technological, or policy conditions. The reference scenario
uses population and income projections in the SSP2 “Middle-of-the-
Road” scenario56,57. GCAM aggregates the world into 32 geopolitical
regions (Table S1) and uses a logit-based Armington approach6 to
connect and differentiate regional energy and agricultural markets.

The model has a comprehensive depiction of energy flows, from
resources (fossil, uranium, or renewables) to energy carriers (elec-
tricity, refined liquids, hydrogen, gas, and district heat) and end-use
sectors (building, transportation, and industry). Agricultural produc-
tion and land allocation are modeled at the intersection of 235 water
basins and 32 geopolitical regions. Themodel includes 21 crop sectors
(not including dedicated energy crops), 6 livestock sectors, and a
managed forestry sector (Table S2), which are aggregated repre-
sentations of all agricultural commodities included in the FAOSTAT
database58. In addition, two generic purpose-grown energy crops,
woody and herbaceous, are introduced in 2025. Future agricultural
productivity is jointly determined by (1) exogenous drivers that imply
total factor productivity growth and (2) endogenous productivity
responses that are realized via production technology transforma-
tions, i.e., intensifications through the use of irrigation, more fertilizer,
and more intensified livestock systems. GCAM includes all land covers
and employs a nested logit approach to model their competition
(Section S2.2). The greenhouse gas (GHG) emissions, including CO2,

CH4, N2O, and F-gases, are traced endogenously as their emission
factors are linked to activities in the energy, agriculture, and land
systems. The GCAM energy system includes BECCS technologies in
refining, electricity generation, hydrogen production, and industry as
technology options for carbon dioxide removal (CDR). Themodel also
includes direct air capture with carbon storage (DACCS), which is not
included in this study. We break down the Energy and Industrial Pro-
cesses (EIP) emissions into Fossil Fuels and Industry (FFI) and BECCS
for carbon emissions accounting and reporting. The total carbon
emissions are then calculated as the sum of FFI, BECCS, and land use,
land-use change, and forestry (LULUCF) emissions.

In GCAM, land-system mitigation policies are implemented as a
carbon rent to credit landowners for holding carbon stocks16,30, con-
sistent with the nested land allocation approach59. With land-system
mitigation policies, landowners receive an annualized land carbon
subsidy in addition to rental profits from existing economic activities
for managed land or a shadow rental price for natural or unmanaged
land. As a result, landowners are incentivized to convert low-carbon-
density land to relatively higher-carbon-density land. Land rental
profits, derived fromproduction technology specifications andmarket
information, connect land competition and the land mitigation policy
to other market-mediated responses. How agricultural and energy
markets respond to the land-system mitigation policy plays a crucial
role in determining the effectiveness of the policy. A detailed doc-
umentation of the land allocation method, land-system mitigation
policy, and the related improvements indata andmodeling is provided
in Section S2.

Differentiating mitigation efforts by sectors or technologies
In the reference scenario (see Section S3.1 for detailed discussions), in
the absence of mitigation measures, the net total cumulative carbon
emissions in 2020–2100 are 4380 GtCO2, including 111 GtCO2 from
LULUCF, and the temperature rise could reach 3.5 °C by the end of the
century60. In mitigation scenarios, a trajectory of global carbon prices
is implemented to induce changes in the behavior of producers and
consumers, collectively aiming to achieve a climate target. Instead of
directly targeting climate variables, our study employs a cumulative
carbon emissions target-finder to circumvent uncertainties associated
with translating emissions and other forcers to climate outcomes38,61,
aligning with recent studies23. Following the IPCC AR6 report, we set
cumulative carbon emissions targets of 1150 GtCO2 and 500GtCO2 for
2020–2100 to represent 2 °C and 1.5 °C pathways, respectively. In
GCAM v6, the global carbon pricing starts in 2025 with a Hotelling rate
of 3% per year, and themodel employs an exponential phase-in during
the first two model periods. The model finds the optimal 2025 carbon
prices and Hotelling paths that reduce reference carbon emissions to
achieve the cumulative emission targets. Note that in our study, non-
CO2 GHGs are not directly priced. However, GCAM addresses these
emissions by utilizingmarginal abatement cost (MAC) curves formajor
non-CO2 GHG species62. Specifically, the emission intensity of a given
non-CO2 GHG declines with higher GHG prices, which are linked to
carbon prices through Global Warming Potential (GWP) values using a
100-year time horizon (GWP-100).

Themain scenarios (2 °CMain) differentiate themitigation efforts
between land and EIP sectors to explore how 2 °C futures are achieved
with different strengths of land-system carbon pricing. Specifically,
land carbon prices,βLand

t , are linked to EIP carbon prices (βEIP
t ) through

a strength parameter (μ) where βLand
t =μβEIP

t . We test values of μ equal
0, 10%, 50%, and 100%. Another set of scenarios (A/R-Focused) builds
upon the 2 °C Main scenarios but further differentiates mitigation
efforts based on land type. Instead of valuing carbon storage on all
land, these scenarios incentivize carbon storage only on forest land,
i.e., βLand:Forest

t =μβEIP
t and βLand:NonForest

t =0. In addition, it is important
to note that primary lignocellulosic bioenergy (or BECCS) is often
constrained in IAM scenarios due to sustainability or macroeconomic
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concerns63. GCAMalsohas a default strategy that limits the percentage
of GDP that can be used to credit BECCS for carbon mitigation (Sec-
tion S2.8). To achieve this, a carbon pricing penalty (βlimitBECCSt ) is
applied, lowering the shadowprices of carbon applied to BECCS in any
sector, i.e., βBECCS

t =βEIP
t � βlimitBECCSt . The third set of scenarios (Low-

Bioenergy), also building upon the 2 °C Main scenarios, imposes a
more stringent constraint on primary lignocellulosic biomass, limiting
it to 100 EJ in 2100 (increasing linearly prior to 2100), thereby further
differentiating the incentives applied to BECCS versus other technol-
ogies. In all scenarios, the model solves for EIP carbon prices (βEIP

t ),
withother carbonprices linkedasdiscussed above. This is also the case
in the last set of scenarios,where themodelfindshigherβEIP

t compared
to theMain 2 °C scenarios to achieve themore stringent climate target
of 1.5 °C. The solved carbon prices are shown in Fig. 2.

Deriving and decomposing land removal intensity
The land removal intensity, also referred to as “mitigation density” in
Roe et al.4, is calculated by dividing the cumulative carbon removal by
the corresponding land requirement of a land-based mitigation mea-
sure. The metric has been widely utilized, particularly in sectoral stu-
dies, to compare land-based natural climate solutions20,64. However,
terminal land use, i.e., land use change in the last period compared to
the initial period, is usually used as the land requirement, which may
overlook the changes in land use trajectory.

In our study, to ensure a consistent comparison between land-
based mitigation measures, e.g., BECCS and afforestation/reforesta-
tion (A/R),wedefine land removal intensity (RIT ) over a specificperiod,
T , as a ratio between the cumulative carbon removal (

PT
t = 1CDRt) and

the cumulative land use change (
PT

t = 1LUCt), i.e.,

RIT =
XT

t = 1

CDRt=
XT

t = 1

LUCt ð1Þ

Here, CDRt represents the carbon removal in year t and LUCt

refers to the land use change relative to the initial study year, 2020.
The cumulative land use change implies the total net land used for
carbon removal in the study period, measured in hectaer � year
(ha � yr). The cumulative removal is measured in metric tons of CO2

(tCO2). Thus, the removal intensity is expressed in tCO2 ha
�1yr�1. The

metric can be interpreted as the ratio of interannual mean values,

where the mean removal (tCO2 yr
�1) is divided by the mean land

requirement (ha), i.e., RIT =
PT

t = 1
CDRt

T

� �

=

PT

t = 1
LUCt

T

� �

. The metric pro-

vides ameasure of the effective carbon removal a hectare of land used

for CDR can deliver per year, on average, during the study period.

Compared to the conventional approach that uses terminal land
use change (LUCT ) in the denominator, the approach adopted here
factors in the temporal patterns in land use. This is particularly
important when comparing BECCS and A/R in integrated assessments,
as they exhibit different temporal patterns in land use and carbon
removal (see Section S3.3 for detailed discussions).

In our study, the aggregate land removal intensity (e.g., Fig. 3E) is
calculated considering both BECCS and LULUCF in CDRt

(CDRt =BECCSt + LULUCFt) and including combined areas of energy
cropland and forest in LUCt (LUCt = LUCenergy cropland

t + LUCforest
t ).

The aggregate land removal intensity can be decomposed by

RIBECCST (i.e.,
PT

t = 1BECCSt=
PT

t = 1LUCenergy cropland
t ) and RILULUCF

T (i.e.,
PT

t = 1 LULUCFt=
PT

t = 1LUCforest
t ). The metric aims to link removals to

their land implications. However, recognizing that not all BECCS

are equally land-intensive, and not all energy crops are used in
combination with CCS, we further decompose the BECCS removal
intensity by feedstock source and land use, distinguishing between

waste & residue-based BECCS (no direct land implications), energy
cropland for bioenergy used in sectors in which it could not be cou-
pled to CCS, and energy crop-based BECCS vs. energy cropland for
bioenergy used in sectors in which it could be coupled to CCS (e.g.,
Figs. 3F and S26). Note GCAM traces primary bioenergy demand by
sector (such as electricity, refining, gas, hydrogen, and end-uses) and
by CCS technology deployment (Fig. S19). However, demand sectors,
which vary in their use of BECCS, arenot able todistinguish biomass by
supply sources (e.g., MSW, residues, or purpose-grown). In order to
attribute the supply sources to demand sectors, biomass supply shares
by source (Fig. S18) are applied consistently to each demand sector/
CCS combination in every region and year (Fig. S20). In addition, when
energy cropland is not distinguished (by whether the biomass pro-
duced is used in conjunction with CCS), changes in removal intensity
take into account the changing share of bioenergy used in conjunction
with CCS (i.e., sectoral transition effects).

Since the same primary biomass feedstock mix is applied across
demand sectors in GCAM, this same approach is also applied to AR6
pathways for separating waste & residue-based BECCS. However, we
cannot further decompose energy cropland into the share used for
BECCS versus bioenergy without CCS for AR6 pathways due to limited
data available. Furthermore, the land removal intensity can be more
uncertain in scenarios involving net deforestation. As our default land
mitigation policy covers all land, e.g., including non-forest natural land
protection and restoration, we also explore an alternative approach
that attributes LULUCF to both forest and other natural lands (Sec-
tion S3.3). However, this alternative approach is not comparedwith the
AR6 projections due to the relatively lower reporting quality of non-
forest natural land and the potential inconsistencies in its definition.

Isolating effects of mitigation policy on crop prices
To analyze the transmission of prices from carbon markets to agri-
cultural sectors, we build regression models to explore the relation-
ship between changes in staple crop prices and the underlying policy
drivers (Eq. 2). The dependent variable is the logarithmicprice changes
of staple crops (Yp,t) relative to the reference scenario (i.e., reference =
1) across mitigation pathways (p) and model periods (t). The expla-
natory variables consist of the policy drivers, specifically the various
shadowprices of carbondiscussed above.Wedidnot include intercept
or pathway fixed effects as the carbon prices are the sole differ-
entiating factor between the mitigation pathways and the reference
scenario. The error terms are denoted as εp,t . Consequently, the
dataset has 240 observations, i.e.,15 unique mitigation pathways by
16 model periods (see Figs. 6A and S13).

log Yp,t

� �
= bFFIβFFI

p,t +bBECCSβBECCS
p,t +bLand:ForestβLand:Forest

p,t

+bLand:NonForestβLand:NonForest
p,t + εp,t

ð2Þ

The results of the regression models, including Eq. 2 (referred
to as Model 1) and alternative model specifications, are presented
in Table S7. In Eq. 3 (corresponding to Model 4 in Table S7), a slope
dummy variable, SA=R�Focused , is introduced. And SA=R�Focused = 1
when A/R-Focused scenarios are implemented and SA=R�Focused =0
when all land carbon is included in land mitigation policies. Note
that Eq. 2 and Eq. 3 are equivalent in terms of explaining variations in
Yp,t . However, results from Eq. 3 are shown in Fig. 6C as bEIP may be
more consistent with a broader literature. Furthermore, as shown in
Models 6–8 in Table S7, models with missing policy drivers were also
tested.

logðYp,tÞ= bEIPβEIP
p,t +blimitBECCSβlimitBECCSp,t

+bLandβLand
p,t +bLand0

SA=R�FocusedβLand
p,t + εp,t

ð3Þ
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Compared to the decomposition approach developed by Stehfest
et al.65 and applied in Fujimori et al.22, our approach to partitioning
price impacts relative to a reference scenario is more internally
consistent.

Data availability
Thedata fromAR6ScenarioDatabaseused in this study are available at
data.ene.iiasa.ac.at/ar6/. The GCAM simulation results and processed
data generated in this study are available at zenodo.org/record/
8244015 (https://doi.org/10.5281/zenodo.8244015).

Code availability
GCAM is an open-source model at github.com/JGCRI/gcam-core, and
the specific version of the model used in this study is archived at
github.com/realxinzhao/paper-nc2024-LandBasedCDR-GCAM (https://
doi.org/10.5281/zenodo.10659353). The R code for generating main
figures is available at github.com/realxinzhao/paper-nc2024-Land-
BasedCDR-DisplayItems (https://doi.org/10.5281/zenodo.10659392)66.
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