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A universal system for boosting gene
expression in eukaryotic cell-lines

Inbal Vaknin1, Or Willinger1, Jonathan Mandl2, Hadar Heuberger3, Dan Ben-Ami3,
Yi Zeng1, Sarah Goldberg1, Yaron Orenstein2,4 & Roee Amit 1,5

We demonstrate a transcriptional regulatory design algorithm that can boost
expression in yeast and mammalian cell lines. The system consists of a sim-
plified transcriptional architecture composed of aminimal core promoter and
a synthetic upstream regulatory region (sURS) composed of up to threemotifs
selected from a list of 41 motifs conserved in the eukaryotic lineage. The sURS
system was first characterized using an oligo-library containing 189,990 var-
iants.Wevalidate the resultant expressionmodel using a set of 43 unseen sURS
designs. The validation sURS experiments indicate that a generic set of
grammar rules for boosting and attenuationmay exist in yeast cells. Finally, we
demonstrate that this generic set of grammar rules functions similarly in
mammalian CHO-K1 andHeLa cells. Consequently, our work provides a design
algorithm for boosting the expression of promoters used for expressing
industrially relevant proteins in yeast and mammalian cell lines.

Production of proteins at scale and affordable cost has been a major
need of the biotech sector for the last several decades. This need was
one of the primary drivers that led to the development in the 1970’s of
recombinant DNA technology, which in turn revolutionized the phar-
maceutical sector by facilitating the creation of biologics or protein-
based therapeutics, the first being human insulin expressed in E. coli
and industrially produced by Genentech. In recent years, a new sector
has emergedwithmajor needs inmanufacturing of affordable proteins
at scale primarily for the food industry. This sector, referred to collo-
quially as “alternative proteins” or “precision fermentation”, aims to
replace most traditional protein sources for food products with more
efficient and climate-resistant sources of food-based proteins. While
some of these alternative proteins are expected to be sourced from
widely available plants, others are expected to be manufactured via
fermentation of engineered microbial species, such as the traditional
biotechnology work-horse E. coli bacteria, and various yeast species
including the baker’s yeast S. cerevisiae or the more industrially rele-
vant Pichia pastoris.

Historically, over-expression of proteins leading to larger titers of
relevant protein mass at the fermentation scale had only been
achieved in bacteria via the T7-promoter system1. This expression

system is based on a monomeric phage-sourced RNA polymerase,
whose promoter is capable of initiating transcription of mRNA at a
much higher rate as compared with the endogenous bacterial RNA
polymerase. This, in turn, leads to a huge boost in steady state mRNA
levels and results in high protein titers per cell. The T7-promoter
expression system was further developed over the years to yield even
higher expression levels2, potentially optimizing the system’s output.
Unfortunately, many industrially relevant proteins cannot be expres-
sed in bacterial cells. This is because eukaryotic proteins frequently
need to undergo a myriad of post-translational modifications that can
only occur in eukaryotic cells (e.g., glycosylation), which play a critical
role in determining the protein’s function. To date, neither T7 nor a
similar high-level protein expression systemhas been shown towork in
eukaryotic cell lines. While design of such systems in yeasts3,4 and
fungi5 were attempted, they didnot yieldmeasurableprotein titers and
as a result generated limited progress on this complex problem. In
addition, precision fermentation in most non-bacterial organisms is
limited by a lack of advanced gene expression tools that can facilitate
over-expression or a wide range of expression levels of genes in
the relevant host cells. Therefore, a major challenge for the field is
to discover and/or develop genomic tools that will enable
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over-expression of proteins in various eukaryotic cell lines, thus
yielding larger protein-titers at the fermentation scale.

In eukaryotic cell-lines, gene expression levels are regulated by
transcription factors (TFs) that bind to DNA regulatory motifs, toge-
ther with chemical, structural, and spatial changes in the chromatin
state, and binding of the transcriptional machinery to the core pro-
moter. DNA regulatory motifs serve as cis-acting TF binding sites
(TFBSs) for activators and/or repressors. The combination of different
repressing and activating DNA regulatory motifs enables tuning pro-
moter activity and, as a result, gene expression level. The sequence
space of combined DNA regulatory motifs is often referred to in the
literature as the regulatory code or grammar6–8.

Over the past two decades, many systems and synthetic-biology
studies attempted to decipher the regulatory code with varying
degrees of success using two approaches. In the first approach, large
regulatory regions were dissected using a traditional knock-down and
rescue approach until the regulatory effect of every active TFBS was
characterized9–11. In the second approach, a multitude of synthetic cis-
regulatory regions (e.g., synthetic enhancers) composed of a small
number of TFBSs arranged in various configurations were encoded in
an oligo library (OL) and characterized using massively parallel
reporter assays (MPRA) such as SORT-seq8,12,13. These studies found
that it was possible to increase the expression of a particular target
genebypositioning a cassette of repeat TFBS immediately upstreamof
minimal core promoters. This increase or “boost” in expression was
reported in multiple studies12,14–16, and is used in artificial gene-
expression systems such as the ubiquitous induciblemammalian rTet-
On system17. However, the current expression “boosting” systems are
far from optimal. They are often utilized with a limited number of core
promoters (e.g., rTet-VP16 together with the minimal CMV promoter),
require the creation of a stable cell line expressing the synthetic TF,
and frequently poorly translate to other cell lines. Other constitutive
strong promoters, such as the industrially relevant EF1a and PGK
promoters, become fully activated based on the epigenetic state or
carbon state of the cells, respectively. However, growth conditions
that are needed to trigger full activation may not be compatible with
industrial requirements during fermentation18,19.

Given the advances in the understanding of the regulatory
grammar over the past two decades, we hypothesized that it was
possible to develop a widely applicable or universal gene-expression
boosting system. To be designated “universal”, the system must
function similarly in diverse eukaryotic cell lines, at several growth
conditions, and with multiple core promoters. The goal of such a
universal boosting system will be to substantially increase expression
of proteins over the baseline core promoter’s expression level and
independent of the cell line used for the industrially relevant applica-
tion, thus allowing the user to increase the protein titers in the final
fermentation-scale process.

To develop a generic boosting design algorithm, we designed a
simple regulatory-code architecture composed of a non-descript syn-
thetic minimal yeast promoter and a synthetic upstream regulatory
region (sURS). We populated the sURS with up to three TFBS motifs
(from a list of 41) that are, for the most part, conserved across the
eukaryotic lineage, thus allowing us to encode a large OL for the pur-
pose of characterizing the boost potential of eachmotif either by itself
or in combinationwith othermotifs. Using bioinformatic andmachine-
learning (ML) analyses, we were able to classify active motif function
into either “boosting”, “attenuating”, or “undetermined” for eachof the
41 motifs. The characterized motifs allowed us to construct a com-
putationalmodel, which enables prediction of expression level boosts.
We tested and validated the model on several tens of previously
unseen sURSs in yeast and mammalian cells. Consequently, our motif-
encoded sURS library yielded a regulatory architecture and associated
design algorithm for non-inducible boosting of gene expression in
yeast, mammalian cells, and potentially many more cell lines.

Results
Motif-based design of a synthetic URS oligo library
We constructed a motif-based sURS OL for yeast cells by encoding 41
DNA regulatory motifs mined from the following organisms: S. cerevi-
siae, S. pombe,D.melanogasterS2cells, andmouse (ES cells anddifferent
tissues) (Fig. 1a, Supplementary Data 1, Supplementary Fig. 1). We rea-
soned that conservedmotifs aremore likely to function similarly inmost
organisms, and can thus form the regulatory backbone for a universal
boosting system. To increase the likelihood for successfully identifying
universal “boosting”motifs, we encoded the sURS library using amixed-
baseOLsynthesis approach20, inwhich specificmixturesof 2nucleotides
are added in the same synthesis step at selected positions. The mixed-
basemotifs are composedof two to sixteen sub-motifs (1 to4 composite
bases), which constitute a first low-complexity attempt at studying
position-weighted matrices (PWMs) in a synthetic regulatory context.
Specifically, 17 of the motifs were previously classified as repressing or
activating motifs in their relevant source cells, and 10 motifs were pre-
viously found to have dual-regulatory functionality (i.e., they can act as
either repressors or activators, depending on the promoter and the
other TFs with which they interact). Finally, 14 motifs were recently
discovered in a largebinding screen21, and their regulatory effect in yeast
is unknown (see “Methods” for details about rationale of motif choice).

To encode a first approximation to the PWMs of our selected
motifs21, we incorporated K (G/T) andM (A/C)mixed bases in 20 of the
motifs, at positions where the two nucleotides represented by either K
orMwere likely to appear (>73%, see “Methods”), while using themost
probable base for the remaining positions (Fig. 1b). Overall, 189,990
barcoded oligos were designed according to the following character-
istics: multiple barcodes for each variant, number of motifs in the
variants (0, 1, 2, or 3motifs),motif’s K/Msubstitutions, and theorderof
motifs in each variant. For 2435 of the oligos, picked randomly, we
generated 22 barcodes, while for the rest of the oligos we generated 2
barcodes. To ensure the same background expression level for all
variants, we designed a “desert” chassis in silico to exclude any known
yeast S. cerevisiae TFBS motifs. To generate this desert sequence, we
computationally excluded all known consensus yeast motifs as speci-
fied in the YeTFaSCo database22. In all the variants, the motifs were
embedded within the desert sequence, at fixed positions, with 17 bp
spacing between motifs. Each variant in the OL consists of a variable
sURS, which regulates the mCore1 minimal promoter23 activity driving
yeCitrine expression (Fig. 1c). The OL (Twist Bioscience) was amplified
using PCR, then cloned into a plasmid and amplified in E. cloni 10G
electrocompetent cells (see “Methods” for more details). Mid-cloning
deep sequencing was performed to evaluate the OL coverage (Sup-
plementary Fig. 2). Purified plasmids were linearized and integrated
into the yeast URA3 genomic locus (Fig. 1d). After integrations, the
cells were grown in selectivemedia for 3 days and sorted into 4 bins by
fluorescence-activated cell sorting (FACS), according to yeCitrine
fluorescence (see “Methods” for details). Finally, genomic DNA was
extracted from each bin, the OL region was amplified and bin-
barcoded by PCR, and sent to next-generation sequencing (NGS)
(Illumina Nova-seq) (Supplementary Fig. 2). Overall, we identified
~400M valid reads, which allowed us to retrieve 147,731 variants (of
189,990 designed) from the OL (Supplementary Data 2).

Upon initial analysis of the NGS data, we discovered three sepa-
rate groups of retrieved variants, distributed across a wide range of
mean fluorescent expression level (Expression (A.U.) - (~500–7500)).
This indicates that the OL encodes a broad range of regulatory activity
of yeCitrine expression (Fig. 1e). The groups were defined as follows:
Group 1 contains 107,868 variants with a wide range of mean fluor-
escent expression level (as shown in Fig. 1e) with at least 40 total reads
(i.e., variants with total number of reads greater than the minimum
observed in Fig. 1f). Group 2 corresponds to the 28,431 variants whose
reads are above 40 and appear predominantly (i.e., >90%) in the upper
bin, and thus correspond to “saturated” or under-sampled mean
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fluorescent expression level range. Group 3 corresponds to all variants
with <40 reads, and contains 13,108 variants in total. Group 1 demon-
strates a Gaussian-like readdistribution consistent with awell-sampled
library, while Group 3 has an inverse exponential behavior resulting
from a group of under-sampled variants. Group 1 also contains single-
bin variants (bins 1–3), apparent as protrusions at mean fluorescent
expression level values of 600, 1300, and 2600, likely indicating
fluorescence from a small number of cells (despite having >40 reads).
We proceeded with only Group 1 variants in subsequent analysis.

Variants manifest a broad range of regulatory behavior
We analyzed the unsaturated variants with high read count (Group 1,
107,868 variants in total). First, for each motif (41 TFBS motifs and the
desert motif) we grouped all variants containing that motif at least
once and calculated themean fluorescent expression level distribution
for each group. The results are shown as individual boxplots in Fig. 2a,
arranged by decreasing order of the median computed for each dis-
tribution (red lines), where the green line delineates the median
computed for the desert motif’s mean fluorescent expression level
distribution. Figure 2a shows a dependence of the median values on

themotifs, which vary from <2000 for the lowest median to ~3000 for
the highest median. When comparing the group of variants containing
each motif to the group of variants containing motifs that are ranked
by the median at least 5 motifs away, we observed significant differ-
ences for all motif-containing groups except for motifs 16-21 (out of
42) in decreasing order (p-value < 0.05, two-sided Wilcoxon rank-sum
test, Benjamini-Hochberg-corrected with FDR=0.1). Interestingly, the
median of the desertmotif distribution scored at the higher end of the
median scores, indicating that the majority of motif distributions
generate a reducedmedianexpression scorewith respect to the desert
motif reference. The desert variant itself displays lower expression
level, as expected (black line in Fig. 2a). Therefore, motif mean fluor-
escent expression level distributions positioned at the top and bottom
of the list are more likely to be enriched with up-regulating and down-
regulating binding sites, respectively.

We next calculated the Pearson correlation between themedians of
the mean fluorescent expression level distributions and the number of
variants in each distribution (Fig. 2b). We found a positive correlation of
~0.3 between the median values and the number of variants within a
certain motif distribution. This correlation suggests that motif
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distributions that are characterized by lowmedian values and low num-
berof variants are likely indicativeof a repressiveor inhibitorymotif. The
reduced number of variants in these low median expression level dis-
tributions is, therefore, likely due to strongly repressed variants that do
not pass the SORT-seq assay’s minimum fluorescence threshold (Sup-
plementary Fig. 2). Conversely, highly expressing variantswere collected
by all bins, thus naturally leading to motif mean expression level dis-
tributions that are characterized by both a higher median and a larger
number of variants that are, in turn, likely indicative of an up-
regulating motif.

We next grouped all identical variant pairs (i.e., identical oligos
with two different barcodes) and computed the correlation between
the read-count 4-vector (corresponding to the number of reads in each
of the four bins) obtained for each variant. We plot the correlation
values obtained as a heatmapon anX–Y scatter plot, where theX andY
axes correspond to the mean fluorescent expression level of barcodes
1 and 2, respectively (Fig. 2c). The scatter plot shows variants exhibit-
ing no correlation, complete anti-correlation, and fully correlated
mean fluorescent expression levels (see color bar for Pearson corre-
lations from −1 to +1). A closer examination of the plot reveals four
identifiable correlation regimes: predominantly correlated pairs at low

expression (Expression (A.U.) < 2000) and high expression (Expres-
sion (A.U.) > 5000), predominantly uncorrelated pairs in the inter-
mediate expression range (2000< Expression (A.U.) < 5000), and an
anticorrelated set of pairs. The anticorrelated pairs are likely due to
various sources of noise, which include low read count, low number of
viable yeast cells that were sorted, and variation in expression. The
high correlation regions are consistentwith up-regulating sURSs (high-
fluorescence regime—Fig. 2c-top right) and down-regulating sURSs
(low-fluorescence regime—Fig. 2c-bottom left), where the regulatory
effect of the motifs strongly affects the expression. Finally, in the
intermediate fluorescence regime, where the predominantly uncorre-
lated pairs are found (Fig. 2d-middle, between Expression (A.U.) of
1850 to 4150), the absence of strong regulatory effect may be a major
cause for lack of correlation. For these weakly-regulating variants,
small variation in sURS sequence due to the barcodes (for example)
may have a dominant role in the expression output.

Deep learning reveals that only variants with multiple barcodes
generate statistically reliable data
To provide a more quantitative analysis of the data, we trained a con-
volutional neural network (CNN) to predict the gene expression level
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Fig. 2 | Empirical analysis suggests that there are functional up- and down-
regulatingmotifs. a Box-plot distributions ofmeanfluorescent expression level of
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a statistically significant difference between the motifs positioned at the left and
the right of the plot, supporting a regulatory function. Black dashed line represents
the mean fluorescent expression level of the 2 desert variants in the OL, while the
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motif.Desert-motif variants contain2outof the 41motifswith adesert region in the
middle of the variant as a third “motif”. On each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The value for ‘Whisker’ corresponds to ±1.5 IQR (inter-
quartile rate) and extends to the adjacent value, which is the most extreme data

value that is not an outlier. The outliers are plotted individually as plus signs.
b Median of mean fluorescent expression level as a function of the number of
variants, for all variants containing each of the 41 motifs. Positive correlation
indicates that up-regulating motifs are more likely to be detected in our experi-
ment. The median value was calculated as the median of mean fluorescent
expression level for each group of variants, containing one of the 41 motifs.
c Pearson correlations of pairs of barcodes used to encode the same sURS. Cor-
relations were computed by using the four normalized read bin values that were
obtained for each barcode. d Averaging the Pearson correlation over a range of
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expression variants supporting a likely regulatory function. Source data are pro-
vided as a Source data file.
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given the DNA sequence (Fig. 3a). First, we aimed to isolate the subset
of variants in the OL for which robust and statistically reliable mean
fluorescent expression levels weremeasured. Specifically, our goal was
to identify the training set which yields the best regulatory predictive
performance on a withheld test set of sURS variants from the OL. We
tested 8 models, which differed by combinations of three character-
istics: with/without a 15nt leader barcode sequence, variants char-
acterized by a singlemean fluorescent expression level or by a 4-vector
corresponding to variant distribution over the 4 expression bins, and
with/without considering their total read count in the training process
(i.e., sampleweight). Sampleweights corresponded to theproportional
contribution of the variant’s total read count to the total read count of
the library, or per bin, depending on themodel. Eachmodel was tested
withmultiple read cutoffs, varying from 8957 down to 4 total reads per
variant. This in turn yielded an increasing number of variants by which
the model was trained, ranging from 10,000 to 140,000, respectively.
We tested the model on 2000 randomly held-out variants, selected
from the 10,000 highest read-count variants. Altogether, 112 models
were tested (for full details see “Methods”).

The results of the Pearson correlation between predicted and
measured mean fluorescence expression level of the held-out set are
shown in Fig. 3b. In general, all models behave similarly: Pearson cor-
relations are at their highest values when themodels are trained on up
to 20,000 sequences with a total read cut-off of 6009, and they
decrease as the training set size increases (Fig. 3b). Interestingly, the
prediction performance of the different models does not seem to be
affected by including or excluding the barcodes, or by whether the
variants are scored by mean fluorescence expression level or by the
4-bin distribution. Overall, the highest Pearson correlation achieved
was a modest ~0.45 at the plateau range, indicating that various
sources of noise become increasingly dominant with a reduced read-
count threshold. Consequently, we chose the 20,000 variants with
total read count >6009 to be the training set for our initial “all-data”
model (ADM).

Given the omni-present limiting noise in all models, we hypothe-
sized that two dominant sources of noise may be the use of only two
barcodes (the case for most OL variants: 146,802 variants), and a large
subset of motifs that do not encode a regulatory function. This
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Fig. 3 | Convolutional neural network identifies a set of 2435 variants with
robust expression. a Schematic of our convolutional neural network architecture.
b Pearson correlation results for various models as a function of the training-set
size sorted by variant total read counts. c Comparison of Pearson correlation
results on a validation set for OL-trained models with that of the de Boer-Regev
model. d Prediction performance comparison of the dBR, ADM, AMM, and MBO
models on the 11 sURSvariants validation set and the 300variantswith highest read

count among the 2435 variants with 22 barcodes. Error bars were computed by
bootstrapping which was carried out by sub-sampling all possible subsets of 9 of
the 11 points and computing the Pearson correlation for each subset. e Pearson
correlations between the predictions of the dBR model and the MBO and AMM
models on the 11 sURS variants validation set. Source data are provided as a Source
data file.
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prompted us to construct two additional models, based on the fol-
lowing training sets. The first model is based on the observation from
the various ADM models that neglecting barcodes does not seem to
affect the predictive capacity of the model, and is thus trained on the
subset of 2435 variants with 22 total barcodes for each variant. We call
this model the “all-motif”model (AMM), as it contains all variants with
22 designed barcodes. The second model uses a subset of 2098 var-
iants with 22 barcodes for each variant and at least one mixed-base
motif. This model is constructed based on the assumption that mixed-
base motifs are more likely to be regulatorily active due the fact that
they are composed of a larger number of potentially functional sub-
variants. This model is referred to as the “mixed-base only”
(MBO) model.

We then compared the performance of all threemodels on a held-
out test set comprising 20% of the variants for each model. The Pear-
son correlations show a modest increase (Fig. 3c—blue bars) from the
ADM baseline of 0.45 to approximately 0.48 for the AMM and 0.51 for
theMBOmodel, despite the reduction by anorder ofmagnitude in the
size of the training set. Furthermore, we used the de Boer-Regev (dBR)
model24, trained on a different yeast expression library, to score the
variants that make up the training set of each of our models. Here too
(Fig. 2c—red bars), we observed a modest increase in the Pearson
correlation between dBR-predicted and experimentally measured
mean fluorescent expression levels from the ADM (0.05) to the AMM
(0.21) and best-performing MBO (0.23) variant sets (see Supplemen-
tary Data 3 for MBO model score per variant).

To experimentally validate the predictions of the various models,
we constructed 11 sURS variants containing an uncharacterized mix of
three of our 41 motifs (Supplementary Data 6). The variants utilized
consensus motif sequences without mixed bases and were chosen as
follows: the desert variant and 10 additional variants with MBO-based
predicted mean fluorescence expression levels spanning the expres-
sion range of 2700–3400 (A.U.). These variants were cloned indivi-
dually upstream of the weak mCore1 promoter as before, integrated
into the yeast genome, and their expression levels were measured via
flow cytometry (see “Methods”). As an evaluation on a small set of only
11 variants is highly sensitive to small changes in prediction, we used
bootstrapping to report robust correlations.We sampled all subsets of
9 variants out of the 11 and reported the average correlation over these
subsets.Moreover, we held out as an additional test set of 300 variants
that were supported by the most reads from the set of 2435 variants
with 22 barcodes for each variant.

The prediction-performance evaluation on the 11 sURS dataset
shows the dBR model outperforms both the AMM and ADM models
(Fig. 3d). The dBR model achieves an average Pearson correlation of
0.65 ± 0.066, surpassing the AMM model with an average correlation
of 0.45 ± 0.087, and significantly outperforming the ADM model,
which achieved an average Pearson correlation of −0.18 ± 0.144.
However, the prediction-performance evaluation on the test set of 300
high-quality variants reveals that the ADMmodel performs better than
both the AMM and dBR models. The ADM model achieved a Pearson
correlation of 0.67, surpassing the AMM model with a Pearson corre-
lation of 0.64, and significantly exceeding the dBR model, which
achieved a Pearson correlation of 0.11. The MBO model achieved the
best combined prediction performance on both test sets: an average
Pearson correlation of 0.60 ±0.075 on the 11 sURS variants, and a
Pearson correlation of 0.61 on the 300 high-quality variants.

Minimum-hyper-geometric analysis identifies activating and
repressing motifs and sub-motifs from the 2435 variant subset
Wenext proceeded to identify themotifs which likely play a regulatory
role in our system by employing a minimum-hypergeometric (mHG)
analysis25 on the 2435-variant set (i.e., each variant encoded with 22
barcodes, see “Methods”). Based on this analysis, we computed the
mHG p-value for enrichment of each of the 41 motifs and the desert

motif (Fig. 4a and Supplementary Fig. 3). We identified 7 motifs that
were enriched at the top of the list (blue bars—mHG p-values < 10−4), 6
motifs that were enriched at the bottom of the list (red bars—mHG
p-values < 10−4), and the remainder of the motifs were either unen-
riched or weakly enriched. The 10−4 enrichment limit was set based on
the results of the desert motif (black bar) and the apparent empirical
jump inp-values at the top of the list between 10−2 and 10−4. In the inset,
we present mean fluorescent expression level boxplots of all variants
containing selected top-enriched (activating) and bottom-enriched
(repressing) motifs, and compared to the rest of the variants, showing
a clear up-shift or down-shift in the distributions that aligns with the
mHG p-value computation. Of the 13 identified significantly enriched
motifs, 8weremixed-base (5 of 7, and 3 of 6, top andbottomof the list,
respectively) and 5 were of the non-mixed variety, providing further
validation for the success of the MBO model.

Next, we applied mHG analysis to identify enriched sub-motifs
within both the enriched and unenriched mixed-base motifs. To do
so, we evaluated separately the number of reads andmean fluorescent
expression level for each variant containing a particular sub-motif
and reconstructed the mHG distributions in accordance with the new
sub-variants (see “Methods” for details) (Fig. 4b–e). In each panel, the
motif boxplots as compared with the rest of the population are shown
on the left, while on the right we show the split sub-variant distribu-
tion, which can vary from 2 (e.g, panel b) to 16 (see Supplementary
Fig. 4 for all sub-variant distributions). The panels show that in some
cases, only one of the sub-motifs is enriched (Fig. 4b–d), while in
others all sub-motifs are enriched but with different p-values, sug-
gesting a varying degree of enrichment (Fig. 4e). Altogether, we
identified 5 enriched non-mixed-base motifs and 13 enriched sub-
motifs (mHG p-value < 10−4 see Supplementary Data 4 and 5, and
Supplementary Figs. 3 and 4), which can be considered likely candi-
dates for functional TFBSs. Of these functional motifs, 8 motifs are
associated with down-regulation, while 10 are associated with up-
regulation. Interestingly, 5 out of the 18 functionalmotifs do not have a
known associated TF in any organism21.

Boosting expression with statistically significant motifs that are
embedded within sURS
Based on the mHG analysis, we chose 23 motifs and sub-motifs for
validation experiments: 20motifs and sub-motifs with p-value < 0.001,
and 3 sub-motifs with higher p-values for sub-motif comparison (up to
p-value of 0.01) (see Supplementary Data 4 and 5). In addition, we
designed a longer desert regulatory sequence in silico, in a similar
fashion as we did previously for the OL desert (see “Methods”). This
enabled testing of the regulatory effect of up to six DNA motifs,
compared to the OL variants, which incorporated up to three
motifs per variant (see Supplementary Data 1). We designed the vali-
dation oligos (see Supplementary Data 6) to address the following: 1.
Evaluate the regulatory effect of weaker, but potentially significant,
motifs (10−4 <mHG p-value < 10−3), 2. Validate new and strongly acti-
vating/repressing motifs individually (p-value < 10−4), and 3. Examine
the effect of the positions of themotifs within the regulatory sequence
on expression levels. The results (Fig. 5a–c) show that sURSs behave as
predicted: cassettes containing predicted up- and down-regulatory
motifs boost and inhibit expression, respectively. Up- and down-
regulationwere observed for both promoter backgrounds, suggesting
that the total expression level is a multiplicative product of the core-
promoter expression level and the degree of regulation generated by
the sURS. In particular, boost values of x3-x10 and x2-x4wereobserved
for a weak and a strong core promoter, respectively, while approxi-
mately x1.5-x4 inhibition of expression was observed for both pro-
moter backgrounds. Also, in general, no major position-dependent
effect was detected, (see Fig. 5b, c).

To determine whether the effect of the motifs is additive as pre-
dicted by the billboard model26, we inspected the fold-regulation
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measurement as a function of the mean log10(p-value) that was pre-
viously determined by mHG analysis for all the motifs in the 6-motif
cassettes (Fig. 5d). Here, we assume that the mHG p-value is a good
experimental proxy for the degree of fold regulation, as was shown in
Fig. 4a. The plot shows that for 6-motif cassettes, whose fold-
regulation was measured over the weak promoter background (blue
squares), a distinct linear dependence on the mean log10(p-value) is
observed (Pearson correlation >0.85). This finding supports a linear
additive regulatory effect, where the validated motifs have no inter-
action with one another. By contrast, for the down-regulating 6-motif
cassettesmeasured over the strong-promoter (red circles), no additive

effect was observed. Instead, a constant ~x2 fold down-regulation is
observed, independent of mean log10(p-value) computed for each
cassette. Finally, we compared the mean fold boost and attenuation
effects for the 6- and 3-motif cassettes (Fig. 5e). For boost (blue bars), a
clear dependence on the number of motifs is observed, while for
attenuation (red bars), no such dependence is detected. Taken toge-
ther, our mHG analysis and validation experiments support a reg-
ulatorymodel (Fig. 5g), where the expression level can be quantified as
a product of the core expression level (Fig. 5f), the cumulative total
boost contribution of all motifs on the sURS, and a ~x2 inhibition if one
or more attenuating motifs are present. In our experiment and with
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Fig. 4 | mHG analysis on the 2435-variant set reveals functional up- and down-
regulating motifs. a p-Values resulting from mHG analysis for each motif for
variant lists arranged in order of decreasing expression levels (up-regulating) and
increasing expression levels (down-regulating). A cutoff of p-value < 10−4 was cho-
sen for determining up-(blue) and down-(red)regulating motifs. The p-values for
the desert motif are labeled in black, and for undeterminedmotifs in green. (Inset)
Boxplots for a select set of variants (nw) containing a particular motif compared
with the rest of the variant populationnot containing themotif (nwo). (Left)nw = 168
and nwo = 2267 variants (middle-left) nw = 202 and nwo = 2233 variants (middle)
nw = 167 and nwo = 2268 variants (middle-right) nw = 58 and nwo = 2377 variants
(right) nw = 163 and nwo = 2272 variants. b–e Sub-motif analysis for a select set of

motifs. (Right) Box-plot comparison for the inset for the full-mixed-base motif.
(Left) Violin plots for all variants containing the various sub-motifs compared with
all sub-variants that do not contain the sub-motif. Blue-shaded violin plots are sub-
motifs that were determined to be significantly activating according to mHG ana-
lysis. Red-shaded violin plots are sub-motifs that were determined to be sig-
nificantly repressing, based on the analysis. On each box, the centralmark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The value for ‘Whisker’ corresponds to ±1.5 IQR (inter-
quartile rate) and extends to the adjacent value, which is the most extreme data
value that is not anoutlier. Theoutliers areplotted individually asplus signs. Source
data are provided as a Source data file.
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these characterizedmotifs, this “motif additive model” (MAM) yielded
a library of verified sURSs in yeast spanning ~x50 range in expression
level of yeCitrine with the same core promoter.

Boosted expression level translates from yeast and
mammalian cells
The model shown in Fig. 5g indicates that for a given core promoter,
gene expression is a product of independently functioning cis-
regulatory elements and the core promoter strength. Since the
motifs used in our experiments are predominantly conserved across
organisms, the MAM model suggests that the predictions generated

thus far should also be valid for any growth condition in yeast and in
mammalian cells if the biological role of the TFs that bind these DNA
motifs is also conserved in higher eukaryotes across genomes.

To test this assertion, we first tested the 43 sURS variants that
were synthesized to validate the MBOmodel (11 variants—Fig. 3d) and
the mHG analysis (32 variants—Fig. 5) in three additional growth con-
ditions: SD-Ura/mCore promoter/2%-glycerol/30 °C, SD-Ura/mCore-
promoter/2%-glucose/39 °C, and SD-Ura/mCore promoter/2%-glu-
cose/30 °C/1M NaCl. Together with the two conditions tested in Fig. 5
(i.e. SD-Ura/mCore promoter/2%-glucose/30 °C and SD-Ura/FEC-
mCore promoter/2%-glucose/30 °C), we were able to compare the

Fig. 5 | Single-clone experiments in yeast validate mHG predictions for motifs.
a A legend depicting all the different parts in the validation variants: promoters,
desert sequences, and various up- and down-regulating sub-motifs. b, c Fold reg-
ulation (activation and repression, respectively), relative to weak (upper plot) and
strong (lower plot) promoters, shown as bar plots of various single clones as
depicted by the promoter and URS schema next to each plot. In blue—activating
variants, in red—repressing variants. d Fold regulation of activatingmotifs (in blue)
and repressing motifs (in red) as a function of the log of p-value computed by the
mHG analysis. e The average of fold regulation values for different regulatory
architectures depending on the type of regulatorymotifs and the number ofmotifs

in the cassettes. (Left)meanup-regulation forn = 86-motif sURS cassettes. (Middle-
left) mean up-regulation for n = 7 3-motif sURS cassettes. (Middle-right) mean
down-regulation forn = 86-motif sURS cassettes. (Right)meandown-regulation for
n = 7 3-motif sURS cassettes. f The average of the median fluorescent expression
level for the weak (n = 4) and strong promoters (n = 4) devoid of any added URSs.
g A proposed expression model for the synthetic yeast promoters depicting the
total expression level of a gene given its regulatory architecture. This is based on:
the number of activating motifs, the presence/absence of repressing motifs, and
the core promoter. Source data are provided as a Source data file.
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results of four separate growth conditions and two promoter archi-
tectures. For each condition and architecture, measurements were
carried out in biological triplicates (see Supplementary Fig. 5) and
growth curves were assessed (see Supplementary Fig. 6) to ensure that
therewere no adverse effects generated by the sURS sequences on the
growth. The results show (Fig. 6a) a tightly correlated set of expression
levels for all five conditions supporting regulatory roles of the sURS
sequences that are independent of growth conditions and core pro-
moter architecture in yeast.

Next, to test the broader applicability of the sURS sequences, we
created for mammalian cells a regulatory architecture similar to the
one synthesized for yeast that consisted of an sURS sequence posi-
tioned immediately upstream of the minimally active mammalian
promoter pCMVmin and an mCherry reporter. We created 32 mam-
malian sURS variants containing the 3 and 6 motifs that we used pre-
viously to validate the mHG analysis (see Fig. 5 and Supplementary
Data 6). As a positive control for mCherry expression, we used the full
pCMV promoter.

We first transfected the mammalian variants (encoded on a
plasmid) to CHO-K1 MI-HAC cells (hereby referred to as CHO) and
assayed mCherry reporter expression using flow cytometry. We com-
pared the mean fluorescence expression levels in CHO cells directly to
the levels obtained for the same yeast variants grown in 2% glucose
(Fig. 6b). The data shows a relatively correlated group of variants
(blue), and an uncorrelated group of variants (red). The 24 “blue”
variants that correlated well generated a statistically significant Pear-
son correlation of 0.75 (p-value 2.41e-5). The uncorrelated “red” var-
iants were all various permutations of three motifs that were found to
be repressive in yeast (GCTGCGCCAC GAGGCGCAGC AAACCCAC
ACCCC). This means that one or more of these motifs is likely acti-
vating inCHOcells due to the highmean expression observed from the
sURSs. Next, we tested our variants in HeLa cells, and also compared
the results to the 2% glucose yeast sample (Fig. 6c). The results show a
similar relationship to yeast expression as was observed for CHO cells
with a Pearson Correlation of 0.41 (p-value 0.054) for the same blue
and red grouping of variants.
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Fig. 6 | sURS variants function similarly in different cell types and growth
conditions. a Comparison of sURS variants expression levels in yeast. Growth
conditions are as follows: glucose 2% refers to SD-Ura+2% glucose, 30 °C, weak core
promoter (mCore), no additives, 43 variants. Glycerol 2% refers to SD-Ura+2%
glycerol, 30 °C, weak core promoter (mCore), no additives, 43 variants. 1M NaCl
refers to SD-Ura+2% glucose, 30 °C, weak core promoter (mCore), 1M NaCl added,
43 variants. 39 °C refers to SD-Ura+2%glucose, 39 °C, weak corepromoter (mCore),
no additives, 43 variants. Strong refers to SD-Ura+2% glucose, 30 °C, strong core
promoter (FEC-mCore), no additives, 20 variants. Error bars were computed using

standard-error analysis carried out on mean flow cytometry fluorescence mea-
surements obtained from n = 3 biological repeats. b, c Comparison of the reg-
ulatory output for 32 sURS variants in CHO (b) and HeLa (c) cells to the regulatory
output obtained for the 2% glucose growth condition in yeast. Red circles corre-
spond to strongly repressed yeast variants that express strongly in mammalian
cells. d Pearson correlation coefficients obtained for each pair of conditions.
e Pearson correlation p-values obtained for each pair of conditions. Source data are
provided as a Source data file.
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To further test for the cross-species applicability of these valida-
tion variants, we computed the correlation coefficient (Fig. 6d) and
p-value (Fig. 6e) for any pair of datasets of the seven tested. The plots
show that the regulatoryoutput of the sURS variants in yeast are highly
correlated across all five yeast conditions with a high degree of sta-
tistical significance (p-value < 1e-10). For the mammalian variants, the
correlation between the HeLa and CHO datasets was similar to what
was obtained by correlating the 24 blue CHO variants (i.e., blue circles
in Fig. 6b) and the various yeast conditions, yielding moderately sig-
nificant p-values that ranged between 1e-3 to 1e-5 (see Supplementary
Data 7 for precise values). The correlation for blue HeLa variants with
yeast was somewhat lower than what was obtained for CHO but was
nevertheless marginally statistically significant for the 2% glucose
growth condition (p-value ~ 0.05). The similar cross-species correla-
tions of yeast-CHO, yeast-HeLa, and CHO-HeLa with moderate statis-
tical significance provide support to an interpretation that 24 of the 32
sURS sequences generate a regulatory response that is independent of
the eukaryotic cell-type that was used.

Modeling expression for all cell-types using a combined
machine-learning and mechanistic model
To provide further support for the cell-type-independent interpreta-
tion of the experimental data, we hypothesized that an ML model
trained on yeast data should also provide adequate predictions for the
mammalian expression data. Thus far, in this work, we have developed
two models: the MBO model that was trained on the 2435-variant set,
and a mechanistic motif additive model (MAM - see Fig. 5g) that was
developed based on the mHG analysis. Both models are deficient for
the above stated task. The MBO model cannot be applied to the
6-motif variants, as it can only provide reliable predictions for 3-motif
sequences that are identical in length to what it was trained on. The
mechanistic MAM model is based on a simplified first-order model of
transcriptional regulation, which assumes that the regulatory output is
proportional to the sum of the individual contributions of each func-
tional motif. Consequently, we needed to construct a hybrid ML-
additive model (MLAM) that on the one hand can be applied to an
sURS containing any number of motifs, while on the other hand,
properlymodels second-order sequence-level events that are captured
by the MBO model and neglected by the MAM model.

To generate the MLAMmodel, we extended our CNN by an addi-
tional input of a 41-long motif count vector. This additional input is
provided by concatenating it to the output of the pooling layer to
enable combination of both sequence-level features and motif-
occurrence counts (see Supplementary Fig. 7 for schema). In addi-
tion, we expanded the input to the maximum length and trained on
shorter sequences by padding them first. We tested the MLAMmodel
by providing a prediction for every single variant of the 43-variant
validation set. First, we compared the prediction performance of the
MAM to the MLAM model for all five yeast conditions tested. The
results show (Fig. 7a) that the MLAM model improved prediction
performance over all five datasets indicating that it captures not only
the first-order mechanistic effects, but also second-order sequence-
level effects to improve its reliability. We then tested both models on
the 24 “blue” mammalian variants that experimentally correlated well
with yeast. The results shows that while the MAM model failed to
generate a reliable prediction for both the CHO and HeLa cells, the
MLAM model was able to generate predictions that were similarly
reliable for both yeast (Fig. 7b) and mammalian (Fig. 7c) cells.

Discussion
We provide a synthetic biology design algorithm called UNILIB for the
generation of a non-inducible boost of gene expression in yeast and
mammalian cells. UNILIB is comprised of two components: a sequence
generator for a synthetic upstream regulatory sequence (sURS) con-
sisting of multiple motifs characterized in this study, and the MLAM

computational model that provides a reliable prediction for the sURS
regulatory output. The UNILIB algorithm was developed through an
OL-ML study, and was validated on 43 unseen sURS sequences in yeast
and mammalian cells. The UNILIB boost can be modeled, to a first-
order approximation, as a cumulative sum of the individual boosts of
the motifs embedded within the sURS that were empirically deter-
mined using the large-scale OL experiment. The UNILIB algorithm,
therefore, can be utilized as a component in a design tool for protein
over-expression in non-bacterial cells. Specifically, we show boosts of
gene expression levels of >1000% and >400% in validation experi-
ments for generic weak and strong promoters, respectively, in yeast
providing a proof-of-concept of the potential utility of UNILIB. In
addition, UNILIB can simplify synthetic gene regulation by reducing
the dependence on external components (e.g., synthetic TFs, inducers,
etc.)5,17. Furthermore,UNILIB canalso allow for amorenuanced control
of gene expression, thus facilitating the implementation of more
complex gene circuits that require amodular control of protein levels.
The nuanced control can be generated by a fine-tuned design which
incorporates both boosting and attenuating motifs characterized in
this study, provided that a suitably functional core promoter is selec-
ted tomatch theUNILIB sURS. Such nuanced control can be critical for
more complex fermentation processes that involve optimized
expression of genetic circuits for the bio-production of some indust-
rially relevant chemicals or raw material. Together, both the compu-
tational and experimental tools developed in this work provide a
constitutive promoter-design resource to the alternative-protein,
synthetic-biology, and broader life-sciences communities. These tools,
either together or separately, will allow users to devise various func-
tional synthetic high, middle, and low expressing promoters, thus
substantially shortening the design-build-test-learn cycle of synthetic
regulatory systems in eukaryotes27,28.

To developUNILIB, we expanded theOL-MLapproachby showing
that PWMs can be encoded and characterized within a synthetic OL
context. We employed a synthesis approach which allowed us to
introduce K (G/Tmix) andM (C/Amix) at selectedmotif positions that
alignwith the frequencyof these nucleotides in the PWM logo. OurOL-
data and follow-up validation experiments show that encodingmixed-
base motifs discovered in other organisms is likely to yield functional
regulatory sequences (Table 1). 11 of the 20 mixed-base motifs were
found to be functional, with 8 being identified in an initial all-motif
analysis, and an additional 3 motifs identified in a refined sub-motif
analysis. This result stands in contrast to the yield of only 5 functional
motifs from the 21 non-mixed-based motifs. Consequently, we con-
clude that encoding PWMs, even in the simplified format employed
here, is likely to yield wide-ranging and important regulatory results.

The specific motifs that we detected are categorized into four
main groups. The first group is composed of previously unknown
motifs. Altogether, we characterized 5 unknownmotifs as either up- or
down-regulating. For instance, GAGGCGCAGC motif was an unknown
motif from S. cerevisiae, and through the mHG analysis and the vali-
dation experiments,wediscovered that thismotif is strongly boosting.
The second group is composed of validated known motifs. For
example, the Zic3 transcriptional activator, which is expressed in
murine ES cells, binds the CCCCCCGCTG motif. This motif was found
tobeboosting also in S. cerevisiae. The third group includesmotifs that
according to the literature are bound by dual-regulatory TFs. For
example, the AMACCCACACMCCmotif (sub-motifs: MM=AC/CC/CA)
from S. cerevisiae is the binding site for Rap1 (Repressor-activator
protein). Rap1 is associated with both up- and down-regulation in
various yeast promoters29,30. Our analysis shows that given the growth
conditions and setup used in our experiments and the architecture of
our synthetic promoters, two of the AMACCCACACMCC sub-motifs
are boosting motifs, with the ‘AC’ sub-motif being particularly strong.
The last group consists of contradictory motifs, namely known
repressing motifs that were found to be boosting, and vice versa. For
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Table 1 | Motif sequences and their respective regulatory functions in the yeast S. cerevisiae

Motif sequence Regulatory function from literature (TF- if known, organism) Characterized regulatory function based on this study

GCTGCGCCAC Activating (Prz1, S. pombe) Activating

CCCCCCGCTG Activating (Zic3, Mouse) Activating

GTCACGTGAC Dual function (bHLH, Mouse and yeast) Repressing

CGGCGCTAGC Activating (STP, S. cerevisiae) Repressing

TCACTCACTACGA Activating (Abf1, S. cerevisiae) Repressing

GGGAACACTTCCC Activating (Nfi, Mouse) Repressing

TCCGGGTAAC Dual function (Reb1, S. cerevisiae) Repressing

ACGCCCCCTA Dual function (CTCF, Mouse) Activating

ACCCAGACACC/ACCCATACACC Dual function (Rap1, S. pombe) Activating

AAACCCACACCCC/ACACCCACACACC Dual function (Rap1, S. cerevisiae) Activating

GCTTACGTCAGC Dual function (Yap, S. cerevisiae) Repressing

GAGGCGCAGC Unknown (S. cerevisiae) Activating

ACAACAACAA Unknown (D. melanogaster) Repressing

GCTAAGCCAC Unknown (S. pombe) Activating

GCTAAGCCAC Unknown (S. cerevisiae) Activating

ATGTCAATCA Unknown (Mouse) Repressing
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example, the ACGCCCCCTA motif is known to bind the CTCF repres-
sor in murine ES cells. In our analysis, we found that it acts as a
boosting motif in S. cerevisiae. Also, another surprising example is the
CGGCGCTAGC motif, which is the binding site of Stp in S. cerevisiae.
Stp is classified as an activator, regulating amino acid permease
genes31, and in our analysis it was found unexpectedly to be an
attenuating motif in S. cerevisiae.

Our results provide further insight into the underlying eukaryotic
regulatory grammar. First, we provide support for a version of the
billboard model for transcriptional regulation, where different cis-
regulatory elements (i.e., core promoter, activating URS, and repres-
sing URS) each contribute to the output expression level in a manner
that is independent of the other elements32. In particular, sURS
sequences can either boost or attenuate expression in amanner that is
directly proportional to the sURSmotif content. Second, we show that
regulatory rules associated with expression boosting and attenuation
differ.While boosting was observed to be additive in our experiments,
attenuation or inhibition of expression was manifested via a global
scale-down of expression independent of the number of attenuating
binding sites on the sURS. Third, the convergenceof both theMBOand
the de Boer model24, which were trained on different experimentally
generated promoter architectures, indicate that there is a large
amount of redundancy in transcriptional regulation. Our work, the de
Boer study24, and others8,33 further suggest that most mutations in the
regulatory region may be non-essential (aside from fine-tuning
expression at the local level), and thus do not radically affect the effi-
cacy of the ML-based prediction models on unseen sequences, in dif-
ferent growth conditions, or in different cell types. This observation is
further supported by a lack of detectible interaction between motifs,
and the independence of the mean expression level from the position
of the motifs within the sURS (see Fig. 5 and Supplementary Fig. 8).
Together, these grammar rules provide an explanation as to why 24 of
32 “unseen” sURSs that were used for validation of the mHG-linear
model in yeast, functioned in a similar fashion in CHO and HeLa cells.
Consequently, these findings support a supposition that at least some
of the eukaryotic regulatory genomic code is not as complex as pre-
viously thought, opening the door to constructing additional design
algorithms that will further boost gene expression levels leading to a
universal over-expression capability in non-bacterial cells.

Methods
Desert upstream regulating sequence design
We designed a 101 bp-long synthetic sequence, which lacks any known
binding sites for yeast TFs in silico (for sequence, see first row in
Supplementary Data 1). The aim was to design a sequence with a
characterized basal level expression that maximizes the probability
that only the designed TFs bind (given that their TFBS motifs are
incorporated into the desert sequence). This so-called “desert” sURS
was used as either the spacer sequence between motifs, or as a no-
motif control. To generate this sequence, we used the IUPAC motifs
deposited in “The Yeast Transcription Factor Specificity Compen-
dium” (YetFaSCo) database (version 1.02)22.

The desert sequence was generated by avoiding YetFaSCo TFBSs
with the following realistic limitations: 1. Short motifs (fewer than 5
nucleotides) were eliminated from the screen due to their high prob-
ability to appear in the designed sequence. 2. All lower-case motifs in
the database were eliminated. According to the IUPAC code, lower-
case nucleotides indicate lower frequency. 3. Motifs containing 5 or
less upper-case characterswere removed from thedatabase regardless
of their length.

Motif selection and encoding into the OL
We selectedmotifs for the OL from a list created by an empirical assay
designed to test protein activity in a broad swath of organisms21. That
study focused on developing a protein activity assay specifically for

TFs in cell and tissue extracts. Based on the study’s data, we selected 41
enrichedmotifs fromvarious organisms and tissue cells (e.g., yeast,fly,
andmouse tissue cells), according to the following criteria: (i) different
motif types: 8 organism-shared motifs, 5 mouse tissue-shared motifs,
14 unshared motifs (unique to an organism), and 14 unknown motifs
(with unknown regulatory function); (ii) known/unknown regulatory
function: 27 of the selectedmotifs have known regulatory function and
thus were anticipated to be the control motifs for the 14 unknown
motifs that we wanted to characterize.

Motifs were encoded via a mixed-based approach using Twist
Bioscience novel DNA synthesis technology. Additional complexity in
the designed library, apart from themotif-shuffled variants, were the K
(G/T) and M (A/C) mixed bases, incorporated in 20 motifs at pre-
determined positions in the motifs according to their PWMs. K and M
substitutions were based on the percentage calculation of the
respective G/T and A/C occurrences in each position of the motif21.
Positions within the motif with dominant percentages were replaced
by either K orM in the final design. 70% thresholdwas set to determine
the K/M substitution, but the actual calculated threshold was higher at
73% (see “Results” section).

Design of motif-based sURS OL
The designedmotif-based sURSOL includes the followingDNAparts: a
unique 15nt barcode sequence for each oligo in the OL and a 101 nt-
long variable region, which is based on the designed desert sURS
chassis. Specifically, barcodes were designed with a minimal 3 nt Edit
distance and restricted to maximum 3 nt of sequentially repeated
bases with GC content between 35% to 65%. Both ends of each oligo
were flanked with restriction sites (SpeI and EagI) for library cloning
purposes and forward/reverse primer sequences for the library’s PCR
amplifications. Motifs from the set of 41 TFBS motifs were placed at
fixedpositions along the desert sequencedepending on the number of
motifs placed in the sequence (single/double/triple-motif oligos). The
motif positions were at the 46th base for single-motif variants, at the
28th and 66th bases for double-motif variants, and at the 18th, 46th
and 74th bases for triple-motif variants. In addition, motif sequences
were “shuffled” in the desert chassis (in accordance with the motif
placement guidelines mentioned above) resulting in 70644 different
variants, including the desert variant lacking the 41 motifs. All variants
were represented by 2 barcodes, except 2435 variants, picked ran-
domly from the pool, that had an additional 20 barcodes (22 barcodes
in total). In total, 189,990 barcoded oligos were designed (for
sequences, see Supplementary Data 1). The library was synthesized by
Twist Bioscience.

Cloning the OL plasmid
We used a p416-based plasmid with a synthetic truncated core pro-
moter, developed by Redden and Alper23, to clone the OL upstream to
the minimal core1 (mCore1) promoter. The mCore1 promoter has a
weak activity and regulates the fluorescent yeast-enhanced Citrine
(yeCitrine) gene. The plasmid hasURA3 as a yeast selectionmarker and
lacks the cen/ars sequence, enabling plasmid integration into the yeast
genome at URA3 locus. To prepare the plasmid for the OL cloning, we
inserted a shortduplexedDNA (madeby standardoligohybridization),
containing SpeI and EagI restriction sites, into the plasmid upstreamof
the mCore1 region (for primer sequences see Supplementary Data 1).
Initially, the plasmid was digested with AscI (NEB #R0558) and treated
with CIP (NEB #M0290) to prevent self-ligation. Then, the mCore1
plasmid and the short-duplexed DNA were ligated at 1:3 ratio by T4
DNA ligase (NEB #M0202). We then transformed ligated plasmid to
E. coli TOP10 chemically competent bacterial cells (Thermo Fisher
Scientific), and a positive clone was verified by Sanger sequencing.
Next, we performed double sequential digestion on the OL plasmid:
first 4 µg of plasmid was digested with SpeI-HF (NEB #R3133) for 1 h
at 37 °C, heat inactivated at 80 °C for 20min. Then, EagI-HF
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(NEB #R3505) was added to the reaction and the mixture was incu-
bated again at 37 °C for 1 h, and heat inactivated at 65 °C for 20min.

We PCR-amplified the library using Q5 High-Fidelity DNA poly-
merase (NEB #M0491), 10 ng OL template in each reaction, 0.5 µl of
each primer (in concentration of 100 µM), 1 µl dNTPs (10mM). Please
see Supplementary Data 1 for sURS OL amplification primer sequen-
ces. In total, we amplified in 40 50 µl reactions, to conserve the pool’s
complexity, which resulted in DNA concentration of 60.8 ng/µl
(overall 60 µl), measured by Qubit. We set the PCR conditions using
themanufacturer’s protocol for 14 cycles, with annealing temperature
of 65 °C, and 30 s for elongation time. Next, we performed two
sequential digestions on the OL: first, 150 ng of OLwere digested with
0.5 µl SpeI-HF for 1 h at 37 °C, heat inactivated at 80 °C for 20min.
Second, 0.5 µl EagI-HF was added to the reaction and the mixture was
incubated again at 37 °C for 1 h, and heat inactivated at 65 °C
for 20min.

To clone the OL into the plasmid, both the plasmid and the OL
amplicon pool werefirst digestedwith SpeI-HF and EagI-HF inmultiple
restriction reactions. The reaction products were then ligated together
with T4 DNA ligase at 22 °C for 2 h, then heat-inactivated at 65 °C for
20min. To conserve the OL complexity, we performed 40 identical
ligation reactions with a plasmid:insert molar ratio of 1:1. Generally,
150 ng plasmid (5442 bp) and 3.528 ng OL (126 bp) were ligated in a
20 µl ligation reaction. We purified all OL amplifications and other
enzymatic reactions using Promega Wizard DNA Clean-Up System
according to manufacturer’s protocol (Promega #A7280).

Bacterial transformation and OL plasmid purification
We used 25 µl E. cloni 10G CLASSIC Electrocompetent Cells (Lucigen
#60117 to transform 2 µl from the ligated OL-plasmid product. In total,
15 transformations were done. We electroporated cells using constant
settings (1600V for 5ms). Immediately after electroporation, cells
were recovered with 975 µl recovery medium (supplemented by Luci-
gen) for 1 h in 37 °C, 250 rpm. After recovery, batches of 250 µl cells
were platedon LB-agar+ampicillin 140 × 20mmpetri dishes andgrown
overnight at 37 °C. For quality control and colony counting, recovered
cells from each electroporation were plated on 2 LB+ampicillin
90 × 15mm petri dishes: first, 20 µl recovered cells were diluted in
180 µl LB. Then, 10 µl and 50 µl diluted cells were plated. We used the
number of colonies on these plates to estimate the overall number of
transformants in a single electroporation. We estimated the total
number of transformant to be 5.6 × 106 cells.

In addition, to preserve the OL as glycerol stocks, we cultured
100 µl recovered cells in 200ml LB+ ampicillin overnight at 37 °C in
250 rpm shaker. The next day, cells were pelleted in 4 °C and re-
suspended in ~6ml liquid LB. Cells were divided into 1ml aliquots and
frozen immediately with 600 µl sterile 80% glycerol:20% water in
−80 °C freezer.

We extracted OL plasmids from the plated bacteria. First, cells
were scraped from the plates with 10ml LB per plate. The resulting
~600ml mixture was centrifuged (10min, 4000 × g at 4 °C) and the
plasmids were purified from the bacterial cells using Qiagen’s Plasmid
Maxi kit (#12162) following the manufacturer’s manual. We cleaned
each volume of 150ml mixture separately using one column from the
kit. For the final elution, 400 µl of TE buffer were used. We combined
all maxi prep eluates into one tube, and concentration (~1800 ng/µl)
and purity were measured by Nanodrop.

Yeast integrations
We linearized purified OL plasmid by ApaI (NEB #R0114) restriction in
the URA3 gene in the plasmid for yeast genomic integration at the
URA3 locus. Overall, 40 digestion reactions were performed, where
each had 8 µg plasmid and 1 µl ApaI in a total of 20 µl reaction. Reac-
tions were incubated for 2 h at 25 °C and heat-inactivated at 65 °C
for 20min.

We cultured yeast W303-1A strain (W303-1A MATalpha leu2 his3
ade2 trpl ura3 was a gift from the Yoav Arava lab, Department of
Biology, Technion - Israel Institute of Technology, Haifa, Israel) in
liquidYPDmedium (2%Glucose, 2%Bacto Peptone, 1%Yeast extract) at
30 °C and 250 rpm overnight. The next morning, culture’s OD600 was
determined by spectrophotometer, and the yeast cells were diluted to
OD600=0.3 in 350ml YPD media, and cultured in seven batches of
50ml, each in a 500ml flask. Cells grew until OD600 reached ~1, and
then 50ml cultured cells were harvested by centrifugation for 4min at
3200× g and washed with 20ml sterilized deionized water. We added
1ml of 0.1M lithium acetate (LiAc). Cells were centrifuged for 3min at
2400× g, and pellet was re-suspended in 0.1M LiAc. Subsequently, for
each 100μl cells, the cells were centrifuged again and 24μl sterilized
water, 36μl 1M LiAc, 5μl of boiled single-stranded DNA (10mg/ml
salmon sperm ssDNA, Sigma-Aldrich #D7656), and 20μl of ApaI-
digested OL vector and 240μl 50% polyethylene glycol were added.
We incubated cells at 30 °C for 30min and then transferred them to
42 °C for 15min. After the heat shock at 42 °C, cells were spun down for
3min at 2400 × g and resuspended in 200ml SD with 2% glucose,
supplemented with tryptophan, leucine, and histidine amino acids,
divided into four batches of 50ml, each in a 500ml flask. Lastly, we
grewcells at 30 °C for 60 h at 30 °C, 250 rpm. After twodaysof growth,
we took 15ml from each 50ml culture for glycerol stock. Cells were
spun down for 4min, 3200 × g and resuspended in 1.5ml sterile 50%
glycerol:50% water.

SORT-seq and OL genomic amplification
Wegrewyeast cellswith integratedOL in liquidmedia (SD + 2%glucose
with supplement of amino acids, without uracil) for 60 h, at 30 °C and
250 rpm. At the third day, cultures’ OD were measured, and 10–15ml
batches of the grown cells were centrifuged (4min, 3200× g) and
resuspended in 50ml fresh SD+ 2% glucose, supplemented with
tryptophan, leucine, and histidine amino acids. A day later, 10ml cul-
tured cells were spun down and washed with 20ml sterile deionized
water. Cells were resuspended in fresh 50ml PBSF (50ml
PBSX1 supplemented with 50 µl BSA X100, 20mg/ml, NEB #B9200S).
We kept resuspended cells on ice until the FACS run. As controls, WT
W303-1A, weak mCore1 promoter, and strong FEC-mCore1 promoter,
were analyzed as well. Integrated yeast cells were analyzed and sorted
into 4 yeCitrine fluorescence bins using a BD FACSAria-IIIu cell sorter.
Bin numbers represent sequential ranges of fluorescence, with bin1 for
cells with the lowest fluorescence and bin4 for cells with the highest
fluorescence. In each bin, at least 10million cells were collected and
kept on ice until the subsequent step. Next, we harvested binned cells
in 4 °C for 10min at 4000 × g. Supernatant was discarded carefully by
pipet aid, leaving ~1ml of PBSF (to avoid suction of cells). Binned cells
were re-grownovernight at 30 °C, 250 rpm in 25ml richmedia (SD + 2%
glucose) and supplemented with tryptophan, leucine, and histidine
amino acids. The following morning, OD absorbance (expected 4–10
OD) was determined, binned cells were centrifuged for 4min at
4000× g, and the supernatant was discarded carefully. Next, for each
of the four binned cultures, we isolated genomic DNA from the cells in
the “Bust n’ Grab” method34 as follows: for each 1.5ml of centrifuged
medium, 200 µl of lysis buffer (1% SDS, 2% Triton X-100, 100mMNaCl,
10mM Tris-HCl pH = 8, and 1mM EDTA pH = 8) was added to resus-
pend the cells. Cells were frozen in −80 °C for at least 2min, to ensure
complete freeze. Then, the cells were immediately heated in a 95 °C for
1min to quickly thaw, following vigorous vortex for 30 seconds. 200 µl
chloroform was added to each tube, followed by another vigorous
vortex for 2min. Tubes were centrifuged at 17,000 × g for 6min at
room temperature. The aqueous phase (containing the genomic DNA)
was transferred to a tube with 400 µl ice-cold 100% ethanol. DNA was
precipitated for 5min at room temperature and then centrifuged
10min at 17,000 × g at room temperature. Supernatant was removed
andDNApelletwaswashedwith 500 µl 70% ethanol (dilutedwith ultra-
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pure water, UPW). Tubes were centrifuged at 17,000 × g for another
10min at room temperature and supernatant was discarded. Ethanol
was evaporated by heating the tubes for 5min at 60 °C. DNA was
resuspended in 50 µl TE (Biolab, 10mM Tris, 1mM EDTA pH = 8) or
UPW and incubated at 65 °C for 10min. We read samples’ genomic
DNA concentration using Nanodrop and stored at −20 °C. The OL
genomic regions for each bin were amplified using QuantStudio Real-
Time PCR System (Thermo Fisher) for 23 cycles in a 50 µl reactionwith
additions of: 1 µg genomic DNA, 0.5 µl Q5 High-Fidelity DNA poly-
merase, 1.5 µl 100% DMSO, 1 µl 10mM dNTPs, 10 µl 5X Q5 reaction
buffer, 2.5 µl 20X Evagreen dye (Biotium #31000), and 2.5 µl 10mM
from each forward and reverse primers. Overall, we ran nine 50 µl PCR
reactions. PCR reactions were cleaned using the Wizard® SV Gel and
PCR Clean-Up system kit (Promega #A7280) following the manu-
facturer’s manual. DNA concentrations were determined by Qubit
Fluorometer using the dsDNA HS Assay kit (Invitrogen™ #Q32851). In
addition, the pool’s length and samples’ quality control were assessed
by TapeStation (Agilent). Finally, we sent theOL to threeNGS runs: two
Nova-seq and one Next-seq run, which generated a total of 1500M
paired-end reads.

NGS data processing and read normalization
First, overlapped paired-end NGS reads were assembled using PEAR
code version0.9.835. Second, for easeof use and tofit intomemory, the
fastq files were split into 1M-read files using the SeqKit tool36. All split
files were subsequently analyzed in MATLAB. The reads were counted
according to their specific bin barcodes and variant barcodes, as fol-
lows: first, reads with lower base count (<200 bases) were filtered out
from the analysis. Second, the 5’ primer used to amplify the OL was
identified at the 5’ end of the variant’s read. Third, the bin barcode in
each read was verified, and then categorized for its respective bin.
Note, the barcodes were designed with a Hamming distance of three
enabling us to include barcodes that were not fully annotated with up
to two misread or unannotated bases (i.e., N’s). Next, for each identi-
fied bin barcode, we screened the variant barcode in the read and
compared it to the OL design. Finally, we further analyzed reads with
corresponding barcodes for their match with the full sURS variant
sequence in the design. For the variants containing K/Mmixed bases, a
further analysis step ensued. Here, K/M bases were first noted
according to their positions in the variant’s design. Next, for each K/M
position in the design, G or T (K base) and A or C (M base) were
annotated. This allowed us to quantify the number of sub-motifs that
appeared in the reads for each K/M containing-motif in the design. For
every variation of K’s and/or M’s in the variant, the mean fluorescent
expression level was calculated as well.

In order to assess the mean fluorescent expression level
(Expression (A.U.)) for mixed-based motifs, non-mixed-base motifs,
and sub-motifs,we normalized reads in eachbin as follows: (1) For each
bin, we calculated the total number of reads. (2) For each variant in a
specific bin, we divided its read count by the total number of reads of
that bin. (3) We calculated the percentage area of each bin (“%Bin”) in
the histogram derived from the sorting experiment. (4) We multiplied
the outcome in step 2 by the corresponding “%Bin”, resulting in
adjusted reads per variant per bin. (5) For eachvariant, we summed the
adjusted reads over the four bins. (6) Finally, for each variant, we
divided the adjusted reads per bin from step 4 by the sumcalculated in
step 5, resulting in normalized reads for each bin.

After normalizing the reads, we calculated the mean fluorescent
expression level for each variant in the library as follows: Expression
(A.U.) = MeanBin1*x +MeanBin2*y +MeanBin3*z +MeanBin4*w, where:
MeanBin1 = 607, MeanBin2 = 1364, MeanBin3 = 2596, and MeanBin4 =
7541. MeanBini are the mean fluorescent expression level that were
measured for bins i = 1, 2, 3, 4 during the cell sorting, and x, y, z, and w
are the normalized read counts in each bin for the specific variant.

Minimum-hypergeometric analysis
mHG is a statistical analysis methodology with a specific application as
a computational method to discover motifs in ranked lists of DNA
sequences25. The mHG procedure notes whether a motif is present in
each of the sequences and labels these as ‘1’, and sequences without
the motif are labeled as ‘0’. In the case of motif enrichment at the top
(or bottom) of the list, the list is divided into 2 subsets: (1) the target
set: the part of the list inwhich themotif is highly enriched, and (2) the
background set: the remainder of the list, with lower occurrences of
the motif. For each motif, the mHG determines the optimal partition
cutoff in the list to separate between enriched and non-enriched
sequences. It calculates the mHG p-value of the motif enrichment
based on hypergeometric probability of the order within the ranked
list. In addition, several other outputs are available: the motif’s IUPAC
representation, its PWM, and the optimal partition cutoff.

Herein, we used a python code implementation of mHG25,37 to
calculate the mHG p-value for each of the 41 motifs and the desert
motif individually both for the activating and repressing effects. For
each motif, we sorted all 2435 variants from highest to lowest mean
fluorescent expression level (to find activating enriched motifs), and
from lowest to highest (for repressing enriched motifs).

For the sub-motif analysis, we first “expanded” the 2098 variants
containing motifs with mixed bases (of the 2435 variants with 22 bar-
codes each) into all possible variant sub-motifs (containing A/T/G/C in
place of mixed bases). This resulted in the original 21 non-mixed-base
motifs and an additional 80 sub-motifs derived from the mixed-base
motifs. Afterwards, we applied the mHG analysis over each sub-motif.
We present mean fluorescence expression levels for each of the sub-
motifs in Fig. 4b–e and Supplementary Fig. 4.

Machine-learning model to predict mean fluorescent
expression levels
We developed a CNN to predict the mean fluorescent expression level
(Fig. 3a). The input to the network is a one-hot encodedDNA sequence.
We tested two inputs: the 101 nt-long variant sequence, or the 116 nt-
long variant and barcode sequence. The input goes through multiple
1D-convolutional kernels, a globalmax-pooling layer, a fully connected
layer, and finally an output layer. The output layer is either a single
neuron with linear activation or four neurons with softmax activation,
depending on whether we aimed to predict the mean fluorescent
expression level or the distribution of normalized read counts across
the four bins. We trained the network withMSE loss function for mean
fluorescent expression level prediction and an average-weighted
cross-entropy loss function to predict the normalized bins distribu-
tion, ADAM optimizer, and with or without sample weights which we
defined as the total read count for each variant. The hyper-parameters
were: 1024 kernels of width 6 with ReLU activation, 16 neurons with
ReLU activation, 5 training epochs, and batch size 32. We did not test
other hyper-parameters as results were already good with our initial
choice.Wedeveloped thenetworkusingKeras andTensorFlowpython
packages.

We finally selected the architecture of the ADM, AMM, and MBO
models with the following attributes: predicting a mean FL value for
each variant, utilizing sample weights during the training process, and
omitting the 15 nt-long barcode region from the input sequence. To
improvepredictionperformance and robustness of theAMMandMBO
models, we used a random ensemble initialization technique38. We
trained 100 models on the datasets differing in the initial weights and
training batches and used the average over their predictions as the
final prediction. To further improve prediction performance and
enable prediction over sequences longer than those in the training set,
we added a 41-long motif count vector as input that is concatenated
following the max-pooling layer, and uniform-padded the training
input to the maximum prediction length.
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Validation experiments
Two sets of variants (see Supplementary Data 6 for sequences) were
designed and synthesized by IDT as gBlocks gene fragments. The first
set of variants includes 11 variants from the sURS OL, differing by their
FL MBO-predicted output (2700–3400), chosen after analysis of the
NGS and ML model development. The second set of variants consists
of 32 variants, based on the significant motifs found via the mHG
analysis. For this set, we designed a longer desert sequence in silico
(186 bp in length) to test longer variants than those in the original
OL (101 bp).

For validation in yeast cells, all variants were cloned individually
upstream to the weak mCore1 promoter in the same manner that the
sURS OL was cloned. Vectors were transformed into bacterial E. coli
TOP10 competent cells, and positive colonies were verified after col-
ony PCR by Sanger sequencing. Verified plasmids were purified from
bacteria and digested with ApaI, for subsequent integration to the
yeast genome inURA3 locus as described previously. After integration,
2–8 colonies were picked and tested as single variants using flow
cytometry. Colonies were grown in liquid SD medium at 30 °C with
either 2% glucose, 2% glycerol, 2% glucose + 1NaCL, or at 39 °C with 2%
glucose. All growth media was supplemented with leucine, histidine,
and tryptophanamino acids. After overnight growth, cellswerediluted
and grown for 12 h, until reaching OD600 of 0.7–2. Then, cells were
washed and resuspended in PBSF. Lastly, cells were analyzed in the
MACSQuant VYB flow cytometer (Miltenyi Biotec).

In addition, part of the second set of variants (see Supplementary
Data 6 for sequences and used motifs) was cloned upstream to the
strong FEC-mCore1 promoter. The variants that were used for this
validation contain either repressing motifs to down-regulate the pro-
moter activity, or strong activating motifs to enhance the high activity
of the promoter even more.

For the validation in a mammalian model CHO/K1 (CHO-K1/M1H
strain was a gift from Oshimura lab, Graduate School of Medical Sci-
ence, Tottori University, Tottori, Japan) andHeLa cells (HeLa strainwas
a gift from EstherMeyron-Holtz lab, Department of Biotechnology and
Food Engineering, Technion – Israel Institute of Technology, Haifa,
Israel), the validation variants were cloned upstream to aminimal CMV
promoter and the mCherry target gene in pTRETightBI-RY-0 vector
after removal of the TetO operator. pTRETightBI-RY-0 was a gift from
Phil Sharp (Addgene #31463). The TetO operator was removed by
plasmid digestion with XhoI and ApaI restriction enzymes, and the
backbonewas cleaned fromgel using theWizardDNAclean-UpSystem
kit (Promega). Two complementary oligos with phosphorylated XhoI
and ApaI ends encoding the minimal CMV promoter were annealed
(see Supplementary Data 1 for sequences). The minimal promoter
sequence was taken from the pTRE-Tight-BI-AcGFP1 vector from Clo-
netech (#631066). The annealed product was ligated using T4 ligase to
the XhoI- and ApaI-restricted backbone. Afterwards, to clone the var-
iants upstream the pCMVmin promoter, the backbone was cut with
XhoI and KpnI-HF, cleaned by Promega Wizard kit and ligated with
XhoI and KpnI-digested validation variants. The ligated plasmids were
transformed to E. coli TOP10 cells, and positive clones were verified by
sequencing. A positive control with a full CMV promoter was created
by amplifying the promoter from the commercially available pTwist-
CMV-BetaGlobin plasmid, also adding XhoI and KpnI sites at the ends
of the promoter. The amplified promoter was digested with XhoI and
KpnI-HF and ligatedwith the backbone, upstream to themCherry gene.
In addition, the CMV enhancer region was cloned upstream to the
pCMVmin promoter, as a control to restore the promoter’s activity in
the CHO cells. All verification plasmids were Sanger sequenced.

Mammalian cell experiments
For both maintenance and experiments, cells were grown in the same
media. CHO/K1 cells were grown in F12medium (Sartorius Cat. 01-095-
1A) and HeLa cells were grown in DMEMHigh Glucosemedium (Sigma

Cat. D5796). Both media were supplemented with 10% FBS (Sartorius
Cat. 04-007-1A) and 1% penicillin/streptomycin (Biowest Cat. L0022)
solutions. Incubation conditions for growth or experiments were 37 °C
and 5% CO2. Cells were seeded into 96-well plates at a seeding density
of 1.2 × 104 CHO cells or 2.4 × 104 HeLa cells in a 100μl of media per
well. 24 h post-seeding, media was changed into 100μl fresh media.
Per reaction, 0.65μl of linear PEI (Mw25kDA, PolySciencesCat. 23966)
in a final volume of 2.5 μl OptiMEM buffer (Thermofisher Cat.
31985070)was added to 100ngof plasmidDNA inafinal volumeof 5μl
OptiMEM buffer, altogether making up 7.5 μl of reaction per well. The
yielded a DNA-PEI mixture was left to incubate for 15min before being
added to each well. 24 h post-transfection, media was changed again
into 100 μl fresh media, removing media containing PEI.72 h post-
transfection. Media was removed, and cells were washed once with 50
μl of 1xPBS (Sartorius Cat. 02-023-1A) per well. PBS was removed and
25 μl of 0.05% trypsin solution (Sartorius Cat. 03-054-1A) per well was
added and the plate was incubated for 3 or 5min (for CHO or HeLa
cells, respectively) at 37 °C and 5% CO2. Afterward, cells were resus-
pended using 100 μl of fresh media and measured using flowcyto-
metry (MacsQuant). Lasers (λ = 405 nm and 560nm) parameters were
224 V, 235 V, 200V, and 208V for FSC, SSC, Y2, and V1 lasers,
respectively, with an FSC trigger of 8.4.

Statistics and reproducibility
Oligo library was sequenced three times. First, directly by amplifying
the purchased Twist DNA variants. Second, after cloning into plasmids
via E.cloni. Third, after integration into yeast cells and sorting via flow
cytometry. Yeast Integrated oligo library experimental sorting and
extraction of promoter library was carried out once. Libraries for NGS
sequencing amplified from extracted yeast integrated promoters were
assembled twice on separate dates and sequenced separately.

Each validation variant characterization experiment was carried
out via flow cytometry, repeated in technical duplicates and carried
out in biological triplicates over three days. This was done for all 43
validation variants in yeast, and the 32 validation variants in CHO and
HeLa cells.

No statistical method was used to predetermine sample size. No
data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing files generated in this study are available on the
SRA website under BioProject accession number PRJNA1061345, Bio-
Sample accessions: SAMN39265674, SAMN39265675, SAMN39265676,
SAMN39265677, SAMN39265678, SAMN39265679, SAMN39265680,
SAMN39265681. Source data are provided with this paper.

Code availability
The code, trained models, and processed datasets are publicly avail-
able via github.com/OrensteinLab/UniLib39.
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