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A dual diffusion model enables 3D molecule
generation and lead optimization based on
target pockets

LeiHuang 1,2, TingyangXu2, YangYu 2, PeilinZhao2,XingjianChen3, JingHan4,
Zhi Xie4, Hailong Li 4 , Wenge Zhong4, Ka-Chun Wong 1 &
Hengtong Zhang 2

Structure-based generative chemistry is essential in computer-aided drug
discovery by exploring a vast chemical space to design ligands with high
binding affinity for targets. However, traditional in silico methods are limited
by computational inefficiency, while machine learning approaches face bot-
tlenecks due to auto-regressive sampling. To address these concerns, we have
developed a conditional deep generative model, PMDM, for 3D molecule
generation fitting specified targets. PMDM consists of a conditional equivar-
iant diffusion model with both local and global molecular dynamics, enabling
PMDM to consider the conditionedprotein information to generatemolecules
efficiently. The comprehensive experiments indicate that PMDM outperforms
baseline models across multiple evaluation metrics. To evaluate the applica-
tions of PMDM under real drug design scenarios, we conduct lead compound
optimization for SARS-CoV-2 main protease (Mpro) and Cyclin-dependent
Kinase 2 (CDK2), respectively. The selected lead optimization molecules are
synthesized and evaluated for their in-vitro activities against CDK2, displaying
improved CDK2 activity.

Structure-based drug discovery (SBDD) plays a crucial role in modern
drug development1,2 and catalysis3. Given a specific target protein, it
aims to identify suitable drug molecules that effectively bind to a
specific target protein. Traditional in silico methods such as virtual
screening discover molecules by iteratively (1) placingmolecules from
existing databases into the protein pocket cavity and (2) filtering the
molecules based on criteria such as energy estimation4 and toxicity by
experimental essays. Despite their widespread applications, these
approaches suffer from two significant limitations5,6. Firstly, naive
exhaustive searches in the massive chemical space (range from 1060 to
100100 depending on the size of desired molecules)7 are prohibitively
costly. Secondly, this workflow is constrained by historical knowledge,
thus infeasible to explore and generatemolecular structures which are
not already recorded in the existing databases.

Fortunately, the emergence of deep learning methods has paved
the way for efficient and accurate drug molecular structure learning
and has greatly facilitated the exploration of chemical spaces in
structured biological data distributions in recent years. A plethora of
studies consider generating molecules via advanced generative
methods, including variational autoencoder (VAE)-based models8,
generative adversarial network (GAN)9, normalizing flows10–13 and
diffusion models14,15. By adopting generative models, current machine
learning methods10,11,16–19 start from learning the underlying distribu-
tion of molecules and yield candidate molecules from perturbed hid-
den information. Nonetheless, these methods typically represent the
molecules as SMILES strings (1D) or graphs (2D), neglecting the crucial
3D-spatial information that is crucial to determine the properties of
molecules. For example, a molecular graph is capable of forming
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various conformations with different properties in 3D space due to
intramolecular interactions or the orientation of structural motifs20.
Some methods12–15,21 have considered considering 3D-spatial informa-
tion to generate 3Dmolecules.However, thesemethods donot involve
the pocket information, limiting their ability to generate molecules
with high binding affinity to specific protein pockets, which is crucial
for wet experiments. This gives rise to the idea of structure-based
generative chemistry, where themoleculeswith high binding affinity in
the protein pocket are distilled. Here, the models perceive the 3D
structure of the target pocket as conditional information and capture
the interaction between molecules and proteins to learn the condi-
tioned density of desired molecular data. Early studies focus on 1D or
2D molecule generation based on the pocket structure. Skalic et al.22

propose a framework which is based on a variant GAN to generate
SMILES strings of ligands after encoding the molecule strings in the
shared space with the pocket protein. Xu et al.23 employ the condi-
tional RNN to train two descriptors which contain the 3D information
of pocket to generate compounds. However, these methods also only
generate molecules in SMILES sequence format (1D) or graph (2D)
which cannot verify the fitness of the target pocket although they
considered the 3D information of the pocket.

Most recently, some generative models have been proposed to
enable 3D sampling of molecules within the pocket cavity24–27. Early
attempts25 employed conditioned VAE to handle the voxelized atomic
density images and obtained molecules from the images by post-
processing algorithm. They use convolutional neural networks to
encode the density girds into separate ligand and protein latent
spaces. Compared with previous work which can only generate small
molecules, this method can generate more drug-like 3D molecules.
However, this method compressed the pocket structure information
and failed to generate accurate molecules with fine-grained positions.
Besides, it does not consider the equivariance of molecular geometry
and is hard to scale to large proteins due to the voxel design. To tackle
this issue, Luo et al.26 model the atom probability by graph neural
networks and equip the mask-fill schema to estimate the landscape of
the pocket. Liu et al.27 further incorporate distance and angle embed-
dings to place the atoms one by one. The existing generative models
typically adopt the auto-regressive strategy to sample the atom
sequentially, which enables the current atom to learn the historically
placed atom information. Nonetheless, these methods have inherent
limitations: (1) the models may suffer from deviation accumulations
especially when invalid structures are generated in the early steps;
(2) the sequential sampling algorithm that relies on MCMC does not
consider the global context information; (3) auto-regressive models
place one atomat a time, thus the number of the sequential sampling is
the same as the length of the ligand, making it time-consuming to
generate large-scale molecules. Consequently, the challenge of
achieving 3D sampling of molecules within pocket cavities persists, as
existing methods face limitations in accurately capturing fine-grained
positions, efficiently exploring the chemical space, and maintaining
global context information.

Recently, diffusion models28 have garnered a huge amount of
attention in computer vision tasks29–31, especially in point cloud
generation32–34 which shares similarities with 3D molecule generation.
These methods excel at inpainting 3D objects by learning the joint
distribution. Although there is a diffusion model35 developed for
structure-basedmolecule generation, however, it requires training the
user-defined parameters, leading to inefficient sampling. Besides, it
only utilizes the fully connected adjacent matrix thus ignoring the
intrinsic topology of the molecular graph. Inspired by the success of
diffusion models in computer vision tasks, we propose a one-shot
generation framework named Pocket based Molecular Diffusion
Model (PMDM) to tackle these issues. Fig. 1 outlines the overview of
PMDM. Specifically, molecular atoms with fixed pocket information
are regarded as 3D point clouds and diffused in the forward process

which is similar to the phenomena in nonequilibrium thermo-
dynamics. The goal of PMDM is to learn how to reverse suchprocess to
model a conditioned data distribution. This allows us to efficiently
generate accuratemoleculeswith highbinding affinity once thepocket
information is fixed. However, regular methods for 3D point clouds
cannot involve edge information like chemical bond information if we
represent 3Dmolecular geometries as 3Dpoint clouds. Thus,wedefine
a dual diffusion strategy to build two kinds of virtual edges. In detail,
pairs of atomswith interatomicdistances below a certain threshold are
bonded via covalent localized edges because chemical bonds can
dominate interatomic forceswhen two atomsare close enough to each
other while global edges are linked to the remaining pairs of atoms to
simulate the van der Waals force. Besides, we design an equivariant
dynamic kernel that obeys the translation, rotation, reflection, and
permutation equivariance of molecular geometry systems. The
experiments on synthetic CrossDocked dataset36 demonstrate that
PMDM can generate drug-like, synthesis-accessible, diverse molecules
with high binding affinity against specific proteins and outperform the
state-of-the-art (SOTA) models on multiple evaluation metrics. By
proposing the sampling algorithm for scaffold hopping and linker
generation, PMDM exhibits the ability to generate a large number of
bioactive molecules with high binding affinity for target proteins
without retraining on the specific datasets. The in-vitro experiments
suggest that the selected molecules display improved CDK2 activity
and comparable or even better CDK1 selectivity than the reference
compound.

Results
Overview of the PMDMmodel
Figure 1 outlines an overview of the conditional generative model
PMDM, elucidating its structural components and the processes
involved in training and sampling. PMDM gradually introduces
Gaussian noise in the forward process while employing a para-
meterized reverse process to iteratively eliminate the noise (Fig. 1a).
The model comprises two invariant graph neural networks Schnet37

to obtain the molecule embeddings zL and pocket embeddings hP
(Fig. 1b). To facilitate conditional generation, we have designed two
context mechanisms to incorporate both the semantic and geometric
information of the protein pocket. Specifically, cross-attention layers
are utilized to calculate the attention scores of the molecule and
protein, protein pocket. Additionally, a dual diffusion strategy is
employed to enable the model to discern atom-wise forces. This
strategy involves constructing two types of virtual edges. Firstly, pairs
of atoms with interatomic distances below the local threshold τl are
bonded via covalent localized edges because chemical bonds tend to
dominate interatomic forces when atoms are in close proximity. Sec-
ondly, we build the global edges which are linked to the remaining
pairs of atoms to simulate the van derWaals force for the atomswhose
distances are greater than the local threshold τl but less than the global
threshold τg (Fig. 1d). Furthermore, we have designed an equivariant
dynamickernel that adheres to the translation, rotation, reflection, and
permutation equivariance of molecular geometry systems. To ensure
the generated molecule is adapted to the structure pocket, we keep
the pocket position fixed during the update of the hidden states in the
dual equivariant encoders.

In the training stage, both molecules and their corresponding
binding protein pockets are regarded as 3D point clouds. In the for-
ward process of PMDM, the molecule input undergoes diffusion,
resembling phenomena observed in nonequilibrium thermodynamics,
with the sampled time step drawn from the union distribution.
Meanwhile, the protein pocket input remains fixed as it serves as the
conditional information (Fig. 1c). The primary objective of PMDM is to
learn how to reverse this process to model a conditioned data dis-
tribution. This enables the efficient generation of accurate molecules
with high binding affinity when the pocket information is fixed. At each
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Fig. 1 | Overview of the PMDM framework. a The diagram of diffusion process in
PMDM. PMDM is based on the diffusion model, which defines two Markov pro-
cesses: diffusion process and reverse process. The diffusion process iteratively
adds Gaussian noises to the ligand data GL

0 according to a variance preserve
schedule while the reverse process generates a realistic ligand from the corruption
state GL

T through eliminating the noise. In the training phase, any immediate state
GL

t can be calculated by qðGL
t jGL

0,G
P Þ, we will elaborate this desired property in

section Methods. Since the diffusion process is fixed, PMDM is trained to learn the
reverse probability transition distribution pθðGL

t jGL
t�1,G

P Þ. b The structure of
PMDM. PMDM is designed to generate the ligand given the target pocket protein.
PMDM could encode the protein semantic context information and spatial context

information. The protein point cloud data is fed into an invariant encoder SchNet38

to obtain the semantic representation hp. Then the semantic information is fused
with the ligand data by the cross-attention layers. We define local and global edges
for ligand point cloud data. Then the ligand data with two kinds of edges and
pocket protein data go through the dual equivariant encoder which handles dif-
ferent edges and keeps the protein spatial information fixed to obtain the score sθ.
This process will repeat T times until we obtain the realistic ligand geometry GL

0,
and we use OpenBabel to construct the bonds. c The ligand and protein are
represented by one-hot encoded atom types and 3D coordinates. The ligand data
will be diffused to GL

t at an arbitrary time step while the protein will stay fixed
during training. d The construction of local and global edges.
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time step, the model outputs the (Stein) score, which represents the
logarithmic density of the data point. The ELBO objective is derived
from these scores and serves as the loss function (See Method).

In the sampling stage,we initialize the data state by sampling from
Nð0, IÞ and obtain the transition probability by the dual equivariant
encoder of PMDM, given the target pocket protein. The next less
chaotic states are iteratively generated by pθðGL

t�1jGL,GPÞ. The final
molecule G0 is generated by progressively sample Gt−1 for T times.
Finally, the atom types of the molecule are identified by adopting the
argmax function to choose the atom type that has the largest value
while we directly adopt rL0 outputted by the model.

Metrics
We adopt widely-used metrics26,38 to evaluate the quality of molecules
generated by PMDM: (1) Vina Score estimates the binding affinity
between the ligand and the target pocket which is the most important
measurement to evaluate how the generated molecule fits into the
protein pocket of interest; (2) High Affinity is the percentage of
the molecules whose Vina Score is higher than the ground truth
molecule in the test set; (3) QED estimates the drug-likeness of the
molecule via combining several desirablemolecular properties; (4) SA
(synthetic accessibility) measures the molecule synthetic accessibility;
(5) Lipinski measures how many rules the drug follows five Lipinski’s
rules39; (6) LogP indicates the octanol-water partition coefficient,
which should be between -0.4 and 5.6 if the molecule is a good drug
candidate40; (7) Diversity represents the average pairwise Tanimoto
dissimilarity of the generated molecules targeting for each pocket. (8)
Time is the average time to generate 100 samples for each pocket
across all the targets.

Baseline models
We compared PMDM with SOTA models for the SBDD task including
CVAE25, AR-SBDD26, andDiffSBDD35. CVAE andAR-SBDD adopt an auto-
regressive strategy to generate samples. DiffSBDD is based on the
diffusion model. Besides, we also report the calculation results of
molecules in the test set for a more comprehensive comparison.

Evaluation of PMDM on the general metrics
We generate 100 molecules for each target protein in the test set
(10000molecules in total).Here, the size of the generatedmolecules is
sampled from the size distribution of the training set. The overall
results of PMDM and the baseline models are presented in Table 1. We
observe that PMDM outperforms all the baseline models on almost
every metric except SA and Diversity. According to the Vina score,
PMDM is able to generate the molecules with high affinity to the
pocket (−7.472 ± 2.90) which is 20.2% better than the best auto-
regressive baseline, AR-SBDD and 15.0% than another diffusion model
DiffSBDD. Besides, PMDM surpasses AR-SBDD and DiffSBDD on QED
(0.594 ± 0.12) by 18.3% and 20.0%, and Lipinski (4.975 ± 0.16) by 3.9%
and 3.7%. The logP value of PMDM within the compliance range
(−0.4 ~ 5.6) implies that the molecules generated by PMDM hold
greater promise as drug candidates, which is crucial for clinical trials.
For the SA, PMDM performs much better than the diffusion model
DiffSBDD andCVAE, and archives competitive results compared to AR-
SBDD. On the other hand, the diversity of generatedmolecules should
fall within a reasonable range so that the ability to explore the mole-
cular space confined by protein pockets is high enough to discover
potential molecules. As in Table 1, the diversity of PMDM is a little bit
lower than that of AR-SBDD and DiffSBDD but higher than that of
CVAE, implying that our model satisfies this desired property.

Notably, the molecules generated by PMDM perform even better
than those in the test set on Vina Score, QED, and Lipinski, suggesting
that PMDM has great potential to generate more drug-like molecules
with higher affinity outside the distribution of the dataset. The one-
shot nature of PMDM ensures that the model effectively considers the

global information of the molecule rather than sampling the local
optimum atom like auto-regressive methods, which is time-
consuming. Besides, although DiffSBDD also generates molecules in
a one-shot manner, it incorporates neural networks to learn the user-
defined parameters which also requires additional computations.
Thus, as a one-shot method with fewer back forward parameters,
PMDM is able to samplemolecules up to twenty times faster than auto-
regressivemodels and two times thanDiffSBDDwhile achieving better
or competitive performance.

Analysis of PMDM on local geometries
Although conventional metrics can reflect the quality of generated
molecules to a certain extent, the quality of the sub-structures of
generated molecules also needs to be considered when evaluating
model performance. We select several pocket proteins to visualize as
representative samples for sub-structure analysis. As depicted in Fig. 2,
we choose 14GS, 2RMA, and 3AF2 as the targeted pocket protein. We
observe that the AR-SBDD DiffSBDD tends to generate the three-atom
rings while our proposed model PMDM avoids generating such
unstable rings. Although the dataset contains only 3% three-atom
rings, AR methods generate more of these unstable structures, which
means that thesemethods get stuck in local optima and fail to learn the
data distribution well. Instead, PMDM can consider the shape of the
pocket hole and generate larger andmore complicated ringswhich are
shown in the 3AF2 pocket samples.

To obtain a global overlook of the structure distributions of
generated molecules, we present the ring number distribution of
molecules generated by PMDM and the molecules in the test set and
the train set (Fig. 3a). The distribution of the PMDM is close to the test
set and the train set. The molecules generated by PMDM contain
around 2.990 rings while themolecules in the test set and the train set
contain 2.470 rings and 2.737 rings on average. Overall, the results
suggest that PMDM is able to learn the ring sub-structure size dis-
tribution from a local perspective and the distribution of ring numbers
from a global perspective.

To further quantify the ring sub-structure of the molecules gen-
erated by those methods, we report the proportion of molecules
containing rings of different sizes in the training set, the test set,
and the generated sets from the methods. In the case of molecules
that contain multiple rings, the counting process takes into con-
sideration each individual ring present, resulting in repeated counts
proportional to the number of rings. As presented in Fig. 3b, the
molecules generated by PMDM contain few unstable rings, including
the three-atom ring and the four-atom ring. Auto-regressive methods
have a tendency to limit themselves to the local topological structure
by considering only the previously generated part, which often
results in the generation of small rings. DiffSBDD constructs the fully
connected edges for all the atoms, which may lead to a higher like-
lihood of forming small rings due to the lessening of interatomic dis-
tances. Specifically, PMDM yields a mere 2% of molecules, while CVAE
generates 36.1%, AR-SBDD generates 48.4%, and DiffSBDD generates
44.4% of molecules containing three-atom rings. Regarding macro
rings, PMDM generates as many 8-atom and 9-atom rings as other
methods, except for DiffSBDD which generates 2.5% of molecules
containing 9-atom rings,whereasothermethods only generate 0.6%. It
is evident that both the training set and the molecules generated by
PMDM exhibit a Gaussian-like distribution in the number of rings. We
also notice that PMDM generates relatively more molecules with
7-atomrings. This is due to the fact that distinguishing between 7-atom
rings and 6-atom rings at the geometric level is challenging, given their
similar structural appearances. On the other hand, PMDM generates
fewer molecules which contain 8-atom and 9-atom rings compared to
DiffSBDD since PMDM constructs the local edges to consider close
atomic forces while DiffSBDD only constructs the fully connected
edges to incorporate many distant atomic interactions. In contrast,
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both auto-regressive methods and the diffusion model DiffSBDD are
prone to generate a relatively large amount of unstablemolecules with
three-atom rings and four-atom rings. Besides, PMDM is inclined to
generate more molecules with five-atom rings and six-atom rings,
where hydrogen bonds occurmost frequently. Such sub-structures are
actively used in drug design. Another meaningful phenomenon is that
PMDM generates molecules in a similar proportion to the test set,
which indicates that PMDM can learn the data distribution with-
out bias.

We also screen out the common bond pairs and triples according
to previous work41 and then adopt RDKit to calculate the bond angles
and the dihedral angles in radians. We measure the distribution of the
bond angles and dihedral angles of the generated molecules and
reference molecules and then assess the distribution deviation by
utilizing theKullback-Leibler (KL) divergence. As reported in 3c and3d,
the molecules generated by PMDM demonstrate the lowest KL diver-
gence in all the bond pair patterns and bond triple patterns among all

themodels. The results indicate that the PMDM is capable of capturing
the local atom geometry of the data.

Analysis of PMDM on chemical space distribution
Having analyzed the local geometry ofmolecules generated by PMDM,
we then evaluate the generatedmolecular chemical space distribution
from a global perspective. Since the three-dimensionality of the che-
mical structures is the essence of molecular design in medicinal
chemistry, we alsoplaceour focus on the shapeof chemical structures.
Herein, we adopt 2D and 3D molecular fingerprints including
Morgan42, RDKit, and USRCAT (Ultrafast Shape Recognition with
CREDO Atom Types)43 fingerprints to represent the chemical space of
generatedmolecules and test setmolecules. Specifically, we utilize the
Extended-Connectivity Fingerprints(ECFP) which are based on the
Morgan algorithm to assign the unique identifiers after preset itera-
tions. This kind of fingerprint takes atom types including connectivity
and chemical features such as Donor and Acceptor and the

Fig. 2 | The comparison of the example molecules which are generated by AR-
SBDD, DiffSBDD and PMDM, and from the test set, respectively. Themolecules
are targeting GLUTATHIONE S-TRANSFERASE (PDB id: 14GS), a complexed Crystal

Structure of Cyclophilin (PDB id: 2RMA), and Pantothenate kinase (PDB id: 3AF2),
respectively.

Table 1 | The comparison of 10000 generated molecules of PMDM and baseline models on the CrossDocked dataset

Methods Vina Score (kcal/mol) ↓ High Affinity ↑ QED ↑ SA ↑ Lipinski ↑ LogP Diversity Time (seconds) ↓

CVAE −6.144 ± 1.57 0.238 0.369 ±0.22 0.590 ± 0.15 4.367 ± 1.14 −0.140 ± 2.73 0.654 ±0.12 -

AR-SBDD −6.215 ± 1.54 0.267 0.502 ± 0.17 0.675 ± 0.14 4.787 ± 0.50 0.257 ± 2.01 0.742 ± 0.09 19659 ± 14704

DiffSBDD −6.584 ± 2.06 - 0.495 ± 0.15 0.336 ±0.09 4.795 ± 0.49 - 0.730 ±0.11 1634 ± 769

PMDM −7.572 ± 2.50 0.628 0.594 ± 0.12 0.611 ± 0.16 4.975 ± 0.16 0.301 ± 1.01 0.709 ±0.10 906 ± 110

Test set −7.024 - 0.466 0.725 1.413 0.929 - -

We generate 100 samples for each target pocket.
The bold values indicate the best performance results. These values may not necessarily be the largest or smallest, depending on the different metrics.
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neighborhood of each atom into account. RDKit fingerprint is
designed to measure the molecular 2D substructure by considering
the atom types and bond types, which is inspired by Daylight finger-
print. In contrast, USRCAT improved USR (Ultrafast Shape Recogni-
tion) algorithm by incorporating pharmacophoric information to
measure the molecular 3D shape. The visualization of the chemical

space distribution using t-SNE is presented in Fig. 4. The chemical
space of molecules generated by PMDM can cover themolecules from
the test set in the 2D substructure space, indicating that PMDM can
correctly model the 2D chemical space of the test set (Fig. 4a, b). As
shown in Fig. 4c, the 3Dchemical spaceof the generatedmolecules can
basically capture the spaceof the testmolecules due to the complexity

Fig. 3 | Local geometry analysis. aThe distribution of the number of rings of
molecules generated by PMDM.bThe ratio of themoleculeswhich contain rings of
different sizes. c The KL divergence of the bond angles of generated molecules

from models with the test set. d The KL divergence of the dihedral angles of
generated molecules frommodels with the test set. Source data are provided with
this paper.
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of the conformations. Despite the incomplete coverage of the refer-
ence chemical space, there are no significant distribution mismatches
between the generated and test setmolecules. Furthermore, the wider
three feature distributions of the molecules generated by PMDM
highlight the capacity of PMDM to generate molecules across a
broader chemical space. We have conducted an analysis of the che-
mical space distribution of molecules generated by other baseline
models, as depicted in Supplementary Fig. 2. Our findings indicate that
these models are unable to fully encompass the Morgan chemical
space of the test set. Additionally, we observed that both CVAE and
PMDM exhibited limited diversities in the 3D space.

Since the shape of 3D chemical structures is crucial for evoking
molecular recognition activities with biological targets44, we consider
leveraging molecular descriptors to characterize the three-
dimensionality of molecular structures beyond the aforementioned
fingerprints. Here, we adopt two widely adopted molecular descrip-
tors: Principal Moments of Inertia (PMI)45 and Plane of Best Fit (PBF)46,
to investigate the specific 3D shapes from two perspectives. Specifi-
cally, the PMI descriptors can reflect the extent to which a given
molecular geometry is rod-shaped, disc-shaped, or sphere-shaped
while the PBF descriptors introduce the plane of best fit across all the
heavy atomsof amoleculewith a given conformation and calculate the
distance of heavy atoms from theplane. Fig. 4ddepicts theNormalized
Principal Moment of Inertia ratios(NPR) on a ternary plot. The closer a
point is to the three corners, the more its morphology exhibits these
primitive shape classes. We can observe that the generated molecules
exhibit a similar gather tend to the molecules from the test set. Both
the generated and test set molecules are prone to gather around the

rod corner of the triangle. Furthermore, the generatedmolecules even
touch the disc corner and sphere corner which are not covered by the
original test data distribution, indicating that PMDMcan not only learn
themolecule 3D shape distribution of the dataset but also can explore
shapes beyond the dataset by importing the random information,
which can alleviate the out of distribution (OOD) problems inmachine
learning. In other words, PMDM has the potential to generate more
diverse molecules even when facing proteins which do not obey the
distributions of the proteins in the training set.We further calculate SA
of these out-of-distribution molecules and the mean SA value is
0.628 ±0.29, which is higher than the average SA value of the whole
generated molecules, indicating that these molecules are computa-
tionally synthesizable. In addition, we have generated the NPR (Nor-
malized Property Ratio) distributions of molecules produced by
alternative baseline models, as shown in Supplementary Fig. 3. Our
observations indicate that the molecules generated by PMDM exhibit
the closest resemblance to the test set distribution. Conversely, the
molecules generated by CVAE tend to cluster in the central region,
while those from AR-SBDD extend towards the disc corner. Further-
more, DiffSBDD displays limited diversity in its generated molecules.

Besides, the molecules also achieve reasonable values on other
chemical properties. As shown in Fig. 4g, we observe that the PBF
values of the generated molecules align well with those of the test set
molecules, indicating a similar degreeofdistance from the 2D shape. In
contrast, CVAE exhibits a substantial gap compared to the test set,
suggesting that the heavy atoms are significantly distant from the
predefined plane (Supplementary Fig. 4). To summarize, PMDM can
correctly model the distribution of important 3D and 2D molecular

Fig. 4 | The chemical space distribution visualization. a Morgan. b RDKit.
cUSRCATfingerprints using t-SNE in two-dimensional space. 3D chemical structure
measuredby chemical descriptors.d Shape distribution of generated (left) and test
set (right)molecules, which is visualized using theNormalized PrincipalMoment of

Inertia ratios(NPR) descriptors. e The Plane of Best Fit (PBF) descriptor values
(n = 10,000 for PMDM, n = 100 for test set; center line, median; box limits, upper
and lower quartiles; upper line, maxima; whiskers, lower line, minima; 1.5 × inter-
quartile range;). Source data are provided with this paper.
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structures and has the potential to guide a more comprehensive
exploration to develop drug-like structures.

Lead generation and optimization
PMDM enables bioactive molecule generation towards specific
targets. To further investigate the practical implications of PMDM, we
apply the trained model to generate the molecules targeted for SARS-
CoV-2 relatedproteinswith high affinities.Herein, we select SARS-CoV-

2main protease (Mpro) as a test case to perform noncovalent inhibitors
design following the previous work47. Mpro in SARS-CoV-2 is the main
protease which can cleave the polyproteins at multiple positions to
cleave the polyproteins, enabling it to be treated as a viable drug tar-
get. Recently, Zhang et al.48 redesigned the weak hit perampanel to
develop a series of potent noncovalent and nonpeptidic inhibitors
targetingMpro. In contrast to the peptide-likemolecules that covalently
bind to the residue (Cys145), thedesigned inhibitors avoid the issues of

Fig. 5 | Lead generation case of SARS-CoV-2main protease (Mpro). a The complex
structure of noncovalent and nonpeptidic inhibitor Compound 5 targeting Mpro

with the pharmacochemucal properties. b The structure of the compound 5. The
blue part is the seed fragment which we utilize to generate the molecules. c The
hydrogen bonds between compound 5 and Mpro. d The Vina score, QED, and SA

distribution of the generated molecules with high affinities. e The spatial dis-
tribution of the key pharmacophore groups of generated molecules with high
affinities. f Examples of the scaffolds of generated molecules with high affinities.
gTwoexamples of generatedmoleculeswithhigh affinities and lower free energies.
Source data are provided with this paper.
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Fig. 6 | Scaffold hopping case of Cyclin-dependent Kinase 2 (CDK2). a The
complex structure of the inhibitor Compound 13 targeting CDK2 with pharmaco-
chemucal properties. b The generated molecules with desired properties by the
scaffold hopping strategy.We selected fourmolecules for wet-lab experiments and
the inhibitory activities for CDK2/E1 and CDK1/A2 were evaluated by LANCE Ultra
time-resolved fluorescence energy transfer (TR-FRET) assays c The generated

macrocyclic CDK2 inhibitor by the linker generation method. We selected two
molecules for wet-lab experiments and the inhibitory activities for CDK2/E1 and
CDK1/A2 were evaluated by LANCE Ultra time-resolved fluorescence energy
transfer (TR-FRET) assays. The wet-lab results of Molecule 16 are reported from
previous work.
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proteolytic degradation, limited antiviral activity, and molecular pro-
miscuity toxicities. Fig. 5a shows the crystal structure of one of the
inhibitors complexed with Mpro with high bioactivity which is included
in the Protein Data Bank (PDB ID: 7L11). There are several features
which contribute to the high binding affinity of themoleculewithMpro,
(1) the four rings of themolecule are being placed in the four sites (S10,
S2, and S3) of the pocket; (2) the carbonyl group in the central pyr-
idinone ring forms a hydrogen bond with the backbone NH of residue
Glu166; (3) the Nitrogen in the pyridinone ring connected by the
central pyridinone ring forms a hydrogen bond with the residue
His 163.

We aim to generate molecules with more diverse scaffolds, which
is called lead generation. Toward this end,weutilize three atomsas the
seed fragmentwhich is theblue partof Fig. 5b.We adopt the inpainting
method to diffuse the data of the seed fragment according to the time
step and assemble with the generation part which remains denoising.
The manually diffused fragment is finally denoised together with the
part denoised in the previous step (See section Sampling given specific
fragments). We generate 40000 molecules and filter out those whose
Vina scores are smaller than -8.0 kcal/mol. Finally, we obtain 10627
molecules with high affinities. We checked all the filtered molecules,
and none of them is presented in the training set. It indicates that
PMDM can still generate molecules binding well to the targeting pro-
teins despite the high affinity of the reference molecule. As demon-
strated in Fig. 5, we plot the distribution of three key properties (QED,
SA, and Vina score) of the filtermolecules. Aswe can observe, PMDM is
capable of generating molecules with good affinities while containing
nice properties. Statistically, the averageQED value of themolecules is
0.57, which is higher than the reference compound 5, and the max-
imum QED value is 0.75. For Vina score, the average value is −8.6 and
theminimum value is -12.3 despite sacrificing performance in terms of
synthetic accessibility which the average SA value is 0.30 and the
maximum SA value is 1.0. The results demonstrate that PMDM can
learn the distribution of the training data. Thus it could generate the
molecules that adapt to the pocket structure and satisfy the require-
ment for high drug-likeness and good synthetic accessibility without
inputting the desired properties as conditional information.

As we mentioned before, compound 5 contains several features
contributing to its high affinity with the Mpro. In order to investigate
whether the generated molecules contain the same features, we first
calculate the pharmacophore models using the software Align-It. We
selected the hydrophobic groups including aromatic ring(AROM),
lipophilic region(LIPO), and aromatic and lipophilic(HYBL), to visualize
the spatial distribution. As shown in Fig. 5e, the hydrophobic groups
are clustered in the S1’, S1, S2, S3, and S4, which is in accordance with
the compound 5, revealing the reducing capacity of PMDM. The visual
inspection of the hydrogen bond acceptors demonstrates that the
interactions of HIS 163 and GLU166 are covered by the generated
molecules and the position of the hydrogen bond donors aligns well
with those of compound 5. Besides, there are other cluster regions
which suggest that the molecules also form hydrogen bonds with the
residues of the pocket.

Since we only incorporate a small fragment which only contains
three atoms as the seed fragment, PMDM manages to generate
molecules with more rational scaffolds. Finally, we extracted 8950
Bemis-Murcko scaffolds by RDKit from the 9209 filter molecules.
Fig. 5f shows examples of the scaffolds. The scaffolds reflect a shared
commonality that all the scaffolds contain multiple rings, especially
aromatic rings. The rings occupy the key binding sites (S1, S2, S3, and
S4), which is key binding sites of Mpro. Besides, we found that there are
scaffolds similar to that of the reference molecules. Specifically, the
first and third example scaffolds shown in Fig. 5f consist of the aro-
matic ring connected to three rings.

The results imply that PMDM can discover the significant struc-
ture patterns which are verified by the reference molecule. To further

investigate the quality of generated molecules, we selected two com-
pounds with improved Vina scores andMM-PBSA values. We searched
PubChem, ChEMBL, and DrugBank and found the two compounds are
not recorded in all the datasets. Both compounds form similar inter-
action patterns with multiple residues of Mpro. In addition to the
hydrogen bond with residue HIS163, the compounds form hydrogen
bonds with more residues to achieve higher binding affinities. Speci-
fically, the hydroxyl group besides the seed fragment in the generated
sample 1 forms three hydrogen bonds with three residues: SER144,
LEU141, and CYS145. For the generated sample 2164, the hydroxyl
groups form five hydrogen bonds with four residues: HIS163, CYS145,
GLN192, and THR190. Furthermore, both the generated molecule
contains an aromatic ring connecting with three aromatic rings, which
occupy the desired binding sites. These results spotlight that PMDM
can generate molecules highly binding to the targeted proteins.

PMDM enables scaffold hopping and linker generation for real
synthetic bioactive molecule design. Scaffold hopping is very
important with appropriate hit compounds in lead optimization since
it could not only generate known active scaffolds and improve binding
affinity but also identify core structures that confer improved prop-
erties to overcome challenges in in-vitro profiles49. The development
of advanced methods for making, analyzing, and purifying molecules
of drug-like size has made it possible to synthesize analogs based on a
common scaffold, along with the higher and more widespread access
to commercial building blocks50. In order to validate whether our
model could be applied in scaffold hopping to improve the binding
affinities of the given basic bioactive molecule, we select Cyclin-
dependent Kinase 2 (CDK2) as the target protein to generate desired
molecules with core structures. The transition from G1 to S phase is
driven by CDK2 in complex with its canonical partner cyclin E1
(CCNE1), which is often amplified in various cancers and is associated
with worse survival outcomes in patients with breast, ovarian, and
other malignancies51–54. Therefore, CDK2 is a potential cancer therapy
target with abnormal levels or activity ofmany tumors. However, there
is only a limited number of selective CDK2 inhibitors which are active
in clinical trials.

We utilize PMDM to perform scaffold hopping on compound 13
complexed with CDK2 (PDB ID: 8H6T) to develop potential
inhibitors54. The reference compound 13 is illustrated in Fig. 6a. The
aminopyrazole moiety of the reference compound forms two hydro-
gen bonds with residues LEU83 and GLU81 and the carboxyl of the
compound formsone hydrogen bondwith the residue LYS 33. Besides,
the gatekeeper residue’s phenyl side chain has van der Waals interac-
tions with the cyclopentyl ring of the compound. The pyridine moiety
of the compound is oriented towards the solvent-accessible region and
does not exhibit any significant polar or nonpolar contacts with CDK2.
After reviewed by chemical experts, we remove the pyridine ring
(dashed box in Fig. 6a) and reserve the remaining fragment as the seed
scaffold (Fig. 6a) which is the key scaffold of the existing CDK2
inhibitors54,55. Finally, we leverage PMDM to generate a library of
10000 molecules for relacing the essential fragments. Then the
potential inhibitors were filtered through Vina docking and MM-PBSA
values with visual selection. We selected four compounds for further
visual inspection, synthesizing, and testing. As illustrated in Fig. 6b, all
thepotential inhibitors exhibit higher Vina scores andMM-PBSA values
with suitable SA scores. In-vitro experiments were conducted to assay
their CDK1/2 inhibitory activities. As reported in Fig. 6b, all the mole-
cules displayed improved CDK2 activity in enzyme assay, with sig-
nificant CDK1 selectivity of at least ~44-fold. Compound 6793, which
reintroduced a cyano group on the pyridine, displayed the best
CDK1 selectivity (124-fold). Notably, compound 6849, containing the
pyrazine ring with a hydroxymethyl, exhibited the highest CDK2
activity with substantial CDK1 selectivity. Additionally, compound
6849 turned out to be an advanced lead molecule during the lead
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optimization campaign and exhibited good selectivity against other
closely related kinases, including CDK9 (CDK9/T1 inhibition
IC50 = 32.3 nM, CDK9/CDK2 = 127) and GSK3β (GSK3β inhibition
IC50 = 703 nM, GSK3β/CDK2 = 2780).

The reference compound 13 exhibits a U-shaped conformation
with the 6-position carbon of the pyridine ring and the nitrogen atom
of the carbamatemoiety oriented towards eachother. The interatomic
distance between the two atoms is determined to be 5.2 Å, offering
logical connection points for macrocyclization. Given that our model
facilitates ring formation via global edge construction, we investigated
the potential of our model to generate linker molecules for macro-
cyclization. Unlike the specific fragments strategy, which utilizes the
sampling given specific fragments strategy,we fix the seed fragment to
enable themodel to be aware of the fragment geometries (See section
Sampling for linker generation). This could help the model generate
linkers which connect the fragments coherently (Fig. 6c). The effect of
linker length on the pharmacological properties of the reference
compound is examined by medicinal chemists employing structure-
based drug design approaches. Therefore, we explore linkers ranging
from 4 – 6 atoms in length54. We fix the connecting points of the linker
at the pyridine ring and the nitrogen atom of the carbamate motif.
Finally, we utilize PMDM to generate 5000 macrocycles for the refer-
ence compound with the preset attachment points. We selected five
potential macrocylized inhibitors for visual inspection after filtering
through Vina docking and MM-PBSA values with visual selection. As
illustrated in Fig. 6c, PMDM successfully generated the linkers which
connect the preferred attachment points although we do not train
PMDM on the specific linker datasets. The generated linkers improve
the Vina score of the reference compound while retaining similar
biological activity. Similar to the linear molecules, we selected three
potential inhibitors which have better MM-PBSA values to investigate
their in-vitro results. Specifically, macrocyclic compound 16 is gener-
ated again by PMDM which has been discovered by the previous
work54. We performed in-vitro experiments on two additional com-
pounds, namely compound 7138 and compound 6261. The two mac-
rocyclic compounds are featured with different linker types and also
display improved CDK2 inhibition activity and comparable CDK1
selectivity than the reference compound 13.

Discussion
In thispaper,weproposed a conditional diffusionmodel, PMDMwhich
enables 3D small-molecule ligand generation conditioned on specific
target proteins in a one-shot manner by incorporating the diffusion
framework. PMDM utilizes a dual equivariant encoder to handle dif-
ferent (global & local) molecular dynamics. To achieve protein-
conditioned generation, PMDM employs the cross-attention mechan-
ism to consider the protein semantic information by fusing the protein
representation and the ligand representation in a shared high-
dimension space and incorporates the whole pocket as the input of
the equivariant kernel in which the protein spatial information is fixed
across the neural net layers, to consider the protein structure
information.

With much less complexity and sampling time, PMDM achieves
substantially better or competitive performance against the SOTA
methods. The chemical space analysis for generated molecules
demonstrates the rationality of the generated molecule structures
compared to reference molecules in both 2D and 3D spaces. Further-
more, PMDM exhibits the ability to generate a large number of
bioactive molecules with high binding affinity for target proteins that
are not included in the training set. This inspires us to leverage PMDM
to conduct lead compound generation and optimization for SARS-
CoV-2 main protease (Mpro) and Cyclin-dependent Kinase 2 (CDK2),
respectively. The lead generation results demonstrate that PMDM can
generate molecules containing structure patterns verified by the
reference molecule. By proposing the sampling algorithm given

specific fragments and sampling algorithm for linker generation, our
model could be applied in lead optimization scenarios including
scaffold hopping and generation without retraining it on the specific
datasets. The selected lead optimization molecules are synthesized
and evaluated for their in-vitro activities against CDK1 and CDK2. The
in-vitro results indicate that all the molecules displayed improved
CDK2 activity with suitable CDK1 selectivities. We anticipate that
PMDM can advance the de novo drug optimization targeting the
specific protein and accelerate future research in drug development.

Methods
Data processing
We conduct experiments to evaluate the generative performance of
PMDM on the CrossDocked dataset36. This dataset contains 22.5mil-
lion docked protein-ligand pairs and each pair has different poses to
multiple pockets across the Protein Data Bank. The ligands that were
associated with a specific pocket were subsequently subjected to
docking with each receptor assigned to that particular pocket by uti-
lizing smina through Pocketome. The binding data (pK) for the
CrossDocked2020 set was obtained from PDBbind v2017, and it was
observed that 41.9% of the complexes have available binding affinity
data. For a fair comparison, we follow previous work26 to only choose
the binding pose data whose root-mean-squared deviations (RMSD) is
<1Å. The dataset is then refined through clustering at 30% sequence
identity using MMseqs256, finally we obtain 100,000 pairs for training
and 100 pairs for evaluation. Figs. 5a and 6b are generated by Chi-
meraX software57.

Preliminary
Let G = (x, r) denote the 3D molecular geometry where
x = (x1, x2,⋯ , xn)∈ {0, 1}n×fdenotes thediscrete one-hot encoded atom
types (a.k.a, chemical elements), and r= ðr1, r2, � � � , rnÞ 2 Rn× 3

denotes the continuous atom coordinates as depicted in Fig. 1c. Spe-
cifically, we denote 3D ligand geometry as GL = (xL, rL) and 3D protein
pocket geometry as GP = (xP, rP). We denote Gt for t = 1,…, T as a
sequence of latent geometries where t indicates the index of
diffusion steps.

Background
The diffusion model28 is formulated as two Markov chains: diffusion
process and reverse process (a.k.a denoising process). The diffusion
process iteratively adds Gaussian noises to the data according to a
variance preserve schedule while the reverse process gradually refines
the data until it recovers the real data by eliminating the noise. The
refined goal of the diffusionmodel is to learn the reverse process via a
parameterized neural network.

The diffusion process gradually diffuses the real data distribution
into a predefined noise distribution with the time setting 1…T. The
transformation in every time step is set as a Gaussian distribution. This
whole process is then formulated as a fixed Markov chain that gradu-
ally adds Gaussian noise to the data with a variance schedule β1…βT
(βt∈ (0, 1)):

q Gt jGt�1

� �
=N Gt ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

q
Gt�1,βt I

� �
,q G1:T jG0

� �
=
YT
t = 1

q Gt jGt�1

� �
,

ð1Þ
whereGt−1 ismixedwith theGaussian noise to obtainGt and βt controls
the extent of the mixture. By setting �αt =

Qt
s = 1 1� βs, a delightful

property of the diffusion process is achieved that any arbitrary time
step, t, sampling of the data has a closed-form formulation via a
reparameterization trick as:

q Gt jG0

� �
=N Gt ;

ffiffiffiffiffi
�αt

p
G0, 1� �αt

� �
I

� �
: ð2Þ
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We can observe that the final distribution will be closer to a
standard Gaussian distribution if the time step is large enough.

The reverse process is designed to recover the real data G0 from
the diffused dataGT ~ p(GT) which is achieved by the diffusion process.
The reverse process is also a Markov chain with learnable parameters
which can be formulated as follows:

pθ Gt�1 jGt

� �
=N Gt�1;μθ Gt , t

� �
,σ2

t I
� �

,pθ G0:T�1 jGT

� �
=
YT
t�1

pθ Gt�1 jGt

� �
,

ð3Þ

where μθ denotes the parameterized neural networks to approximate
themean, and σ2

t denotes user-defined variance. Specifically, we follow
previous work29 to paramterize μθ as:

μθ Gt , t
� �

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� βt

p Gt �
βtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p ϵθ Gt , t
� � !

, ð4Þ

where ϵθ is a neural network w.r.t trainable parameters θ. Having
formulated the reverse process, we could maximize the likelihood
of the training data as our object. Since directly calculating the
likelihood is intractable, we adopt the variational lower bound
(VLB)29 to optimize.

E � logpθ Gð Þ	 

≤EqðG0Þ � log

pθ G0:T

� �
q G1:T jG0

� � !" #

=EqðG0Þ½DKL q GT jG0

� �kp GT

� �� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LT

+
XT
t = 2

DKL q Gt�1jGt ,G0

� �kpθ Gt�1jGt

� �� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lt

� logpθ G0jG1

� �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
L0

�,

ð5Þ

where qϕ( ⋅ ) denotes a learnable variational noising encoder. The
detailed derivation is left in the Appendix.LT is a constant andL0 can
be approximated by the product of the PDF of N x0;μθ x1, 1

� �
, σ2

1 I
� �

and discrete bin width. Hence, we adopt the simplified training
objective as follows:

Lt =EG0
γ k ϵ � ϵθ Gt , t

� �k2	 

, ð6Þ

where γ = β2
t

2ð1�βt Þ 1��αtð Þσ2
t
refers to a weight term. We can observe that

the terminal goal of the reverse process is to learn the noised
added in the diffusion process. Actually, ϵt can be represented as
Gt�

ffiffiffiffi
�αt

p
G0ffiffiffiffiffiffiffiffi

1��αt

p from Eq. (2) via the reparameterize trick, where
ffiffiffiffiffi
�αt

p
G0 is

the mean μ and 1� �αt is the variance σ2. Since the logarithmic
gradient of q Gt jG0

� �
can be formulated as ∇Gt

logqσðGt jG0Þ=

� Gt�
ffiffiffiffi
�αt

p
G0

1��αt
, then we can obtain that ϵ = � ∇Gt

logqσðGt jG0Þ*σ. In

other words, the purpose of the diffusion model is equivalent to
moving the data distribution to the high-density region of the
distribution led by the logarithmic gradient which initially starts
from a low-density region. Therefore, the negative modified
eliminated noise part − ϵθσ is also regarded as the (stein) score58,
the logarithmic density of the data point at every time step. Now
we can rewrite Eq. (4) as:

μθ Gt , t
� �

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� βt

p Gt +βt � sθ Gt , t
� �� �

: ð7Þ

PMDM: Pocket based Molecular Diffusion Model
In this section, we will elaborate on our proposed model PMDM:
Pocket based Molecular Diffusion Model. Different from the pure
diffusion model, PMDM is a conditional diffusion model instead,
where the pocket protein guides the molecule generation. Thus,
we attempt to model the pθ GLjGP

� �
to obtain the distribution of

the ligand binding to the pocket protein. The conditioned pocket
protein semantic information is achieved by the cross-attention
layer, which is effective for fusing various modalities. Specifically,
we design a dual equivariant diffusion model for learning and
generating the binding molecule geometry. Based on our pre-
vious model MDM15, we devise two equivariant kernels to simulate
the local chemical bonded graph and the global distant graph. In
order to ensure the relative distance between the ligand and the
protein, we employ an equivariant graph neural network EGNN to
handle the whole pocket which can treat the pocket geometry as
the condition information. Fig. 1b presents an overview of PMDM
framework. We will elaborate on each component of PMDM in the
following sections.

Conditioned protein semantic information encoder. Here, we adopt
an invariant graph neural network SchNet37 to encode the protein
semantic information first. SchNet is a graph neural networkmodeling
quantum interaction in molecules in 3D space. It consists of
continuous-filter convolutional layers to model atomistic systems and
maintain the invariant properties, achieving state-of-the-art perfor-
mance for benchmarks of equilibrium molecules and molecular
dynamics trajectories. Formally, the updates of protein node features
are computed as follows:

mij =ϕw dij

� �
ϕs hl

j

� �
,mi =

X
j2NðiÞ

mij ,hi
l + 1 =hl

i +ϕmðmiÞ, ð8Þ

where ϕw denotes a weight network,ϕs and ϕm are multilayer per-
ceptrons (MLPs), dij denotes the Euclidean distance between atom i
and atom j of the pocket protein, and N(i) is the radius neighborhood
of atom i. We obtain the protein vector of the first hidden layer by a
single leaner layer: h0 = Linear(xP). We denote the final output of the
protein encoder ashP for a clear description. Similarly, we also employ
another SchNet to project the ligand atom feature into an intermediate
representation:

zL =SchNetðxL, rLÞ: ð9Þ

We implement the cross-attentionmechanism to fuse the protein
semantic information and ligand hidden information:

Attention ðQ,K ,V Þ= softmax
QKTffiffiffi

d
p

 !
� V , withQ=WQ � zL,K

=WK � hP ,V =WV � hP ,

ð10Þ

where
ffiffiffi
d

p
turns the attention matrix into a standard normal distribu-

tion. Specifically, the protein information is considered as the query to
compute the attention score. The output of the cross-attention layer
incorporates the protein semantic information as the conditioned
context.

The dual equivariant score kernels. As the molecular geometries
are invariant to rotations and translations, we should take this
property into account when devising the Markov kernels. In essence,
Kohler et al.13, proposed an equivariant invertible function to
transforman invariantdistribution into another invariantdistribution.
This theorem is also applied to the diffusion model59. If p(GT) is
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invariant and the neural network qθ which learns to parameterize
p(Gt−1∣Gt) is equivariant, then the distribution p(G0) is also invariant.
Therefore, we utilize an equivariant Markov kernel to achieve this
desired property.

Edge construction
As we mentioned before, molecular geometries in 3D generation are
represented as point clouds. Thus, we need to construct edges
manually for the point clouds to feed them into the subsequent
equivariant kernels. Previous works13,14 consider the fully connected
edges to feed into the equivariant graph neural network. However, the
fully connected edges connect all the atoms and treat the interatomic
effects equally but regret the effects of covalent bonds. Besides, the
redundant edges contain meaningless information, leading to ineffi-
ciency. Therefore, we further define the edges whose lengths are
shorter than the radius τl as local edges to simulate the covalent bonds
and the edges whose lengths are between τl and τg as global edges to
capture the long-distance information such as van der Waals force,
which is shown in Fig. 1d.

Practically, we set the local radius τl as 3 Å which could
include almost all the chemical bonds and the global radius τg as
6 Å. The one-hot encoded atom features and coordinates with the
local edges and global edges are fed into the dual equivariant
encoders, respectively. Specifically, the local equivariant encoder
models the intramolecular force such as the real chemical bonds
via local edges while the global equivariant encoder captures the
interactive information among distant atoms such as van der
Waals force via global edges.

Conditioned protein spatial information
In addition to the conditioned protein semantic information, we also
need to consider the conditionedprotein spatial information to ensure
the generated ligand can fit the pocket structure without the clash
issue. Here, we combine the ligand and protein as the complete pocket
as the input of the equivariant kernel. Thus, we construct the local
edges and global edges for the input pocket. Specifically, we only
construct the edges within the ligand and the edges within the protein
to avoid cross-modal distance inference.

Ag
pocket =

Ag
ligand 0

0 Ag
pocket

" #
,Al

pocket =
Al
ligand 0

0 Al
pocket

" #
, ð11Þ

where aij = ð0, 1Þ 2 Ag
pocket and τl < di,j ≤ τg if aij = 1, and amn = ð0, 1Þ 2

Al
pocket and di,j ≤ τl if amn = 1. It should be noted that we also remove the

self-loop edges to eliminate replicated calculations. By constructing
such separate edges, PMDM can perceive the shape of the pocket hole
and ensure that the ligand can aggregate the neighborhood informa-
tion independently via the message-passing process of graph neural
networks. Since the pocket spatial information is treated as the
condition, we keep the protein position fixed during the update of
each layer of the equivariant kernel.

Equivariant kernel
We employ E(n) Equivariant Graph Neural Networks (EGNN)12 to
achieve the equivariant property. Here, EGNN is equivariant w.r.t the
SE(3) group: EGNN(AG+b) =AEGNN(G) +b where A is an orthogonal
rotation matrix and b is a translation vector. Here, we concatenate
the ligand atom embeddings which already contain the protein
semantic information and pocket atom features as x0 = [zL, hP], and the
ligand atom coordinates and the protein coordinates as r0 = [rL, rP].
Specifically, the equivariant convolution layer takes the node embed-
dings xl 2 Rn×d , corresponding coordinate embeddings rl 2 Rn× 3

and edge information eij as inputs at layer l and outputs xl+1 and rl+1.

Formally, the updates of node feature and coordinate embeddings of
each layer are computed as follows:

mij =ϕe hl
i ,h

l
j ,dij ,aij

� �
,mij = eatt �mij , m̂ij = jri � rj jϕm mij

� �
,

mi =
X
j2NðiÞ

mij , m̂i =
X
j2NðiÞ

m̂ij ,

xl + 1
i =xl +ϕxðmiÞ,

rl + 1i =
rli + m̂i, if atom i 2 ligand

rli , if atom i=2ligand

(
,

ð12Þ

where ϕe, ϕm, and ϕx are MLPs, and aij =MLP(dij) is the edge
length embedding. eatt =ϕinf(mij) where ϕinf : R

n×d ! ½0, 1�1 is to
estimate the edge value by an attention mechanism. mij is the
message vector aggregated for atom nodes while m̂ij is the mes-
sage vector aggregated for edges. Here, we only update the
coordinates of ligands to maintain the protein spatial context
fixed at each layer of EGNN.

Then only the node embeddings and coordinate embeddings of
the ligand part of the final layer are reserved. Finally, we add the out-
puts of the local equivariant kernel and the global equivariant kernel to
obtain the corresponding sθ:

x0
local, r

0
local = EGNNlocalðGpocketÞ,x0

global, r
0
global = EGNNglobalðGpocketÞ,

sθðxÞ=x0
local +x

0
global, sθðrÞ= r0local + r0global,

sθ = ½sθðxÞ, sθðrÞ�
ð13Þ

Training. The goal of the diffusion model is to learn to reverse the
diffusion process. Recall Eq. (6), we also adopt the ELBO objective of
the loss function. The differences here are that we have considered the
protein context information and converted the ϵθ to sθ, thus the loss
function becomes:

Lt =EGL
0
γ k sθ GL

t ,G
P , t

� �
� ∇GL

t
logqσðGL

t jGL
0,G

PÞk2
h i

: ð14Þ

As shown in Fig. 1c, PMDM sample t from theUniformdistribution
for training every iteration. From another perspective, it ensembles t
small models to learn the reverse process. Have achieved the equiv-
ariance of sθ, we also need to take this property of the coordinates of
∇GL

t
logqσðGL

t jGL
0Þ into account. Hence, we calculate ∇dL

t
logqσðdL

t jdL
0Þ

instead of ∇rLt
logqσðrLt jrL0Þ via the chain rule60:

∇~ri
logqσð~ri j riÞ=

X
j2NðiÞ

∇~dij
log qσð~dijjdijÞ � ri � rj

� �
dij

, ð15Þ

where ~r denotes the diffused atom coordinate rLt and ~d denotes the
corresponding diffused distance. We approximately calculate

∇~d logqσð~d jdÞ as �
ffiffiffiffi
�αt

p
ð~d�dÞ

1��αt
.

Empirically, if γ in Eq. (14) is ignored and set as 1 during the
training phase, the model performs better than instead with the sim-

plified objective whose γ = β2
t

2ð1�βt Þ 1��αtð Þσ2
t
, which is verified by previous

work29. Such a simplified objective is equivalent to learning the sθ in
terms of the gradient of log density of data distribution by sampling
the diffused molecule Gt at a stochastic time step t.

Sampling from scratch. Since we have formulated the model of sθ,
now we can calculate the μθ by Eq. (4). As presented in Fig. 1a, the
chaotic stateGT is sampled fromNð0, IÞ and μθ is obtained by the dual
equivariant encoder, given the target pocket protein. The next less
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chaotic stateGT−1 is generatedbyNðGT ;μθ,σ
2
T IÞ. ThefinalmoleculeG0

is generated by progressively sampleGt−1 for T times. Finally, the atom
types of the molecule are identified by adopting the argmax function
to choose the atom type which has the largest value while we directly
adopt rL0 outputted by the model. We adopt OpenBabel61 to build the
chemical bonds according to the atom pairwise distances (Fig. 1b). For
the generic structure-based molecule generation, we adopt this sam-
ple strategy.

Sampling given specific fragments. Different from the sampling
strategy from scratch which samples the molecule noise from the
standard Gaussian distribution, the given fragment information Gf

should be fixed as a seed start point. Here, we adopt amasked strategy
to simulate the sampling process from scratch. During each iteration,
the seed fragment is masked by the diffusion process according to the
corresponding time step,

q Gf
t jGf

0

� �
=N Gf

t ;
ffiffiffiffiffi
�αt

p
Gf

0, 1� �αt

� �
I

� �
: ð16Þ

The manually diffused fragment is denoised together with the
part denoised in the previous step,

pθ Gl
t�1,G

f
t�1jGl

t ,G
f
t

� �
=N Gl

t�1,G
f
t�1;μθ Gl

t ,G
f
t , t

� �
,σ2

t I
� �

ð17Þ

We drop the denoised fragment dataGf
t�1 and only retain the rest

of the denoised part Gl
t�1 for the next iteration. The identification of

atom types and coordinates is the same as the sampling process from
scratch. Finally, we combine the fragment data and the denoised part
to obtain the completemolecule by OpenBabel. For lead optimization,
we adopt this sample strategy.

Sampling for linker generation. In order to generate linkers given
specific fragments, we keep the seed fragments fixed to enable the
model to be aware of the geometries of fragments. The global edges
will connect the distant atoms based on the known positions. In each
iteration, the seed fragment is fixed and serves as the context that
contains the protein information. The generation part is denoised by
conditioning on the seed fragment data,

pθ Gl
t�1jGl

t ,G
f

� �
=N Gl

t�1;μθ Gl
t ,G

f , t
� �

, σ2
t I

� �
ð18Þ

The identification of atom types and coordinates is the same as
the sampling process from scratch. Finally, we combine the fragment
data and the denoised part to obtain the complete molecule by
OpenBabel. For linker generation, we adopt this sample strategy.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data we used in this study has been deposited in the CrossDocked
dataset: https://bits.csb.pitt.edu/files/crossdock2020/. The PDB file of
SARS-CoV-2 main protease (Mpro) and Cyclin-dependent Kinase 2
(CDK2) has been deposited in the PDB dataset https://www.rcsb.org/
under accession code https://www.rcsb.org/structure/7l117L11 and
https://www.rcsb.org/structure/8H6T8H6T. The data generated in this
study and processed training and test data have been publicly
deposited to Zenodo under https://zenodo.org/records/10630921.
Source data are provided with this paper.

Code availability
The code of PMDM is freely available at https://github.com/Layne-
Huang/PMDM/tree/main. The code is also available at Zenodo (https://
zenodo.org/records/10631358).
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