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Cobalt catalyzed practical hydroboration of
terminal alkynes with time-dependent
stereoselectivity

Jinglan Wen1,2, Yahao Huang1,2, Yu Zhang1,2, Hansjörg Grützmacher 2,3 &
Peng Hu 1,2,4

Stereodefined vinylboron compounds are important organic synthons. The
synthesis of E−1-vinylboron compounds typically involves the addition of a B-H
bond to terminal alkynes. The selective generation of the thermodynamically
unfavorable Z-isomers remains challenging, necessitating improved methods.
Here, such a proficient and cost-effective catalytic system is introduced,
comprising a cobalt salt and a readily accessible air-stable CNC pincer ligand.
This system enables the transformation of terminal alkynes, even in the pre-
sence of bulky substituents, with excellent Z-selectivity. High turnover num-
bers (>1,600) and turnover frequencies (>132,000h−1) are achieved at room
temperature, and the reaction can be scaled up to 30mmol smoothly. Kinetic
studies reveal a formal second-order dependence on cobalt concentration.
Mechanistic investigations indicate that the alkynes exhibit a higher affinity for
the catalyst than the alkene products, resulting in exceptional Z-selective
performance. Furthermore, a rare time-dependent stereoselectivity is
observed, allowing for quantitative conversion of Z-vinylboronate esters to the
E-isomers.

Organoboron compounds are remarkable versatile building blocks for
organic synthesis due to their availability and exceptional tolerance
toward various functional groups1–6. Among these compounds, alke-
nylboron compoundswith adefined stereochemistryplaya crucial role
in a wide range of cross-coupling reactions. These reactions lead to the
generation of functionalized alkenes possessing specific configura-
tions, which are important for the synthesis of bioactive compounds
and natural products7–20. The hydroboration of terminal alkynes
represents a straightforward and economically efficient method to
generate vinylboron compounds. The anti-Markovnikov addition of
the B-H group to the C≡C bond of terminal alkynes primarily affords E-
1-alkenylboron compounds as the major products8–32. Conversely,
achieving the production of Z-alkenylborones from terminal alkynes
via hydroboration presents a more challenging task, primarily due to

the fact that the E-isomers are thermodynamically more stable. Con-
sequently, only a dozen of catalytic reactions leading selectively to the
Z-isomers through hydroboration of terminal alkynes have been
reported31–44. Notably, these studies predominantly employ noble
metal catalysts, including rhodium34,35,44, iridium34, ruthenium36,42, and
palladium37,40. Among these catalytic systems, the ruthenium pincer
catalyst reported by the Leitner group stands out as the most versatile
and active one, displaying moderate turnover numbers (TON) of up to
920 and turnover frequencies (TOF) of up to 38 h−1 at −15 °C36. To date,
the highest TONof 9800was achieved by Saito et al. using a ruthenium
complex with an N-heterocyclic carbene and PCy3 ligand but this
reaction necessitated a long reaction time of 6 days and heating42.

In the pursuit of developing more sustainable catalysts, the
exploration of complexes with earth-abundant metals has been in
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the focus of recent research45–54, which includes the investigation of
Z-selective hydroboration of terminal alkynes38,39,41,43. To date, three
pincer Co and Fe complexes have been developed to facilitate this
transformation with favorable Z-selectivity (Fig. 1a). Pioneering work
by Chirik et al. demonstrated the possibility to perform the Z-selective
hydroboration of alkyl and aryl alkynes at room temperature using a
bis(imino)pyridine cobalt catalyst38. Kirchner et al. developed an iron
polyhydride catalyst [Fe(PNP)(H)2(η

2-H2)] with a non-classical hydro-
gen ligand for the hydroboration reaction in C6D6, demonstrating
moderate TONs of up to 245 and TOFs of up to 82 h−141. Furthermore,
de Ruiter et al. recently reported the use of a related iron complex
[Fe(PCNHCP)(H)2(N2)] with a labile dinitrogen ligand as catalyst pre-
cursor for performing this type of reaction43.

Despite the existence of successful catalytic examples demon-
strating highly Z-selective hydroboration of terminal alkynes, the cat-
alytic systems reported so far often suffer from limitations in terms of
substrate scope, stereoselectivity, and reactivity toward sterically
hindered alkyl and/or aryl alkyne substrates. For instance, arylacety-
lenes with substituents at ortho or evenmeta positions on aryls proved
to be challenging substrates. Achieving good Z-selectivity typically
requires the use of ligands and complexes synthesized in multiple-
steps, which hinders their practical application in syntheses31–44. Typi-
cally, bulky pincer ligands with flexible arms are employed to stabilize
the complexes and improve catalytic performance. However, the use
of such bulky complexes inevitably leads to low efficiencies in catalytic
reactions with sterically encumbered substrates. Given the limitations
of the currentmethods on one side but the broad use of vinylboronate
esters on the other, there is a high need for the development of a
general, cost-effective, highly-efficient, and practical synthetic route
for the stereo-selective hydroboration of terminal alkynes.

Results
In this work, we present a catalytic system utilizing a cobalt salt and a
CNC-iPr ligand as precursors to generate stereoselective hydrobora-
tion catalysts (Fig. 1b). The CNC-iPr ligand was synthesized following a
procedure previously reported by Herrmann with modifications55. By
employing commercially inexpensive compounds, we successfully
synthesized the air-stable saltCNC-iPr inone-stepwith an isolated yield
of 99% (Fig. 1c). The flat structure of the CNC-pincer ligand—obtained
from the salt in situ by double deprotonation—with two isopropyl
groups in the periphery pointing away from the metal center should
allow to coordinate a wide range of terminal alkynes, including those
with sterically demanding substituents that were previously challen-
ging to functionalize selectively. Indeed, this catalytic system exhibits
an exceptional TON of up to 1680, surpassing the performance of
noblemetal catalysts at room temperature. Additionally, TOFs of up to
132,480 h−1 were reached. To the best of our knowledge, this repre-
sents the fastest transition metal-catalyzed hydroboration reaction
reported to date. Also, a rare time-dependent stereoselectivity was
observed which allows to prepare either the Z-isomer or E-isomer only
by variation of the reaction time.

The initial investigation focused on utilizing different NHC-pincer
ligands in conjunctionwith CoCl2 to achieve Z-selective hydroboration
of phenylacetylene (1a) in DMF at room temperature (Table 1). A sig-
nificant influence of the structure of the ligands on the reaction out-
come was observed (entries 1–6). Notably, the use of the CNC-iPr
ligand resulted in the formation of styrylboronate ester (1b) with a
remarkable 99% yield and high E/Z selectivity of 98:2 (entry 4). How-
ever, when ligands with smaller (entries 1–3) or bulkier N-substituents
(entries 5, 6) were employed, the reactions gave lower or no yields and
also lower E/Z selectivities. To our surprise, we discovered that redu-
cing the reaction time to just 10min led to the formation of
Z-styrylboronate ester in 99% yield with an inverse Z/E selectivity of
96:4 (entry 7). This result suggests the possibility of aZ/E isomerization
process during the reaction and indicates that the stereoselectivity of

hydroboration may be kinetically controlled (entry 7 vs. 4). Interest-
ingly, reducing the amount of pinacol borane, HBpin, to 1.5 equivalents
significantly suppressed the isomerization process (entry 8 vs. 4).
Furthermore, substituting CoCl2 (entry 9) with Co(acac)2 proved to
give a more efficient catalyst in combination with CNC-iPr as ligand
(entry 10). After furtheroptimization (SupplementaryTables 9–12), the
reaction could be successfully carried out with excellent Z-selectivity,
achieving a 90% isolated yield at a low catalyst loading of 0.1mol%
(entry 11). Notably, reducing the amount of HBpin did not affect the
performance of the reaction (entry 12).

Subsequently, we investigated the applicability of our catalytic
system to various terminal alkynes for Z-selective hydroboration
(Fig. 2). Delightfully, very high selectivity and moderate to excellent
yields for all the tested substrates were observed (1a–42a). Arylace-
tylenes bearing electron-donating groups on the para-position of the
benzene ring (1a–6a vs. 8a–12a) generally exhibited higher yields of
Z-styrylboronate esters (1b–6b) compared to those with electron-
withdrawing groups (8b–12b). Aryl alkynes (13a–16a) with meta-sub-
stituted phenyl groups displayed no diminished reactivity or selectiv-
ity. Ortho-substituted Z-styrylboronate esters (17b–22b) could be
obtained in high yields with excellent Z-selectivity from the corre-
sponding arylacetylenes, which are typically challenging substrates
due to steric hindrance. Surprisingly, even sterically highly demanding
phenylacetylenes with two ortho-substituents on the phenyl ring, such
as 2,6-diisopropylphenylacetylene (26a), exhibit excellent Z-selectivity
and yields ofZ-styrylboronate esters (23b–26b) are high (>80%). These
results highlight the excellent compatibility of the Co(acac)2/CNC-

iPr
catalytic system with sterically hindered substrates. Further explora-
tion of arylacetylene substrates revealed good tolerance toward thie-
nyl (27b, 28b) and polycyclic aryl (29b) groups. Interestingly, even a
substrate bearing two ethynyl groups smoothly underwent the reac-
tion, leading to the target product with an impressive 82% isolated
yield and very high ZZ selectivity (30b). Importantly, we also examined
the possibility of conducting reactions with a low catalyst loading of

Fig. 1 | Selective hydroboration of terminal alkynes catalyzed by earth-
abundantmetals. a Comparison of three reported earth-abundant metal catalysts
for achieving highly Z-selective hydroboration of terminal alkynes. The Z selectiv-
ity, highest turnover numbers (TONs), and turnover frequencies (TOFs) of each
system are shown. b This work: an efficient and general cobalt catalyst system for
hydroboration of terminal alkynes with time-dependent stereoselectivity. c Easy
large-scale production of CNC-iPr from inexpensive commercially available com-
pounds with high isolated yields. Prices listed are sourced from bidepharm.com.
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0.05mol% and with p-methoxystyrene 3a we achieved yields of 77%
(TON= 1540) and 84% (TON= 1680) in 24 and 48 h, respectively (3b).

The compatibility of the Co(acac)2/CNC-
iPr catalytic system with

alkyl (31a–39a) and alkenyl alkynes (40a–42a) was investigated.
Similar to the sterically hindered arylacetylene substrates, tert-butyl
and cyclic alkyl/alkenyl functionalized terminal alkynes were also effi-
ciently converted into the desired vinylboronate esters (36b–40b)
with excellent Z-selectivity. This unique capability of the catalytic
system to hydroborate both aryl and alkyl substituted terminal
alkynes, particularly those containing bulky substituents with overall
very high Z-selectivity (Z:E > 95:5), is not found in the literature.
Importantly, the reaction exhibits a broad substrate scope, accom-
modating various important functional groups, thereby providing
flexibility for subsequent transformations.

To assess the practicality of our procedure, we conducted large-
scale reactions under an inert atmosphere (nitrogen). Initially, an ice
bathwas employed to regulate the temperature due to the exothermic

nature of the reaction. Figure 3 illustrates the results obtained from
reactions on the 30mmol scale, which proceeded smoothly and
rapidly, yielding various Z-alkenylboronate esters 1b, 3b, 13b, 22b,
28b, 31b, and 38bwith good to excellent isolated yields and selectivity.
Most reactions at the 30mmol scale gave even better results when
compared to the small-scale reactions. Significantly, the utilization of
compound 3b has been demonstrated in the synthesis of the natural
product Nyasol19. This methodology holds promise for the efficient
large-scale production of valuable Z-alkenylboronate esters8–19,31,32.

Discussion
The performance of the Co(acac)2/CNC-

iPr catalytic system prompted
us to revisit the optimization study (vide supra) with the aim to better
understand under which conditions Z or E selectivity can be achieved
(Table 1, entries 4, 7). Typically, obtaining good Z/E stereoselectivity
in the synthesis of alkenylboron compounds requires the use of
two different catalyst systems, each favoring either a kinetic or

Fig. 2 | Scope of Z-selective hydroboration of terminal alkynes. Reaction con-
ditions: terminal alkyne (1.0 equiv, 0.4mmol), HBpin (1.3 equiv), Co(acac)2 ([Co],
0.5mol%), CNC-iPr (1.4 equiv to [Co]), tBuOK (5.6 equiv to [Co]) in DMF (0.5ml) at
room temperature (r.t.). See Supplementary Information for experimental details.
1H NMR yields are shown with methylene bromide or mesitylene as the internal

standard. Isolated yields and Z/E ratios are provided in parenthesis. a0.1mmol%
Co(acac)2, 0.8mmol scale. b1 mmol% Co(acac)2.

c0.05mmol% Co(acac)2, yield
determined byGC-MS. d24 h. e48h. f2.5 equiv. HBpin. g3 equiv. HBpin. hWith 10mol%
diphenylacetylene, i0.2mmol% Co(acac)2.

j2 equiv. HBpin.
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thermodynamically controlled process. However, with the Co(acac)2/
CNC-iPr catalyzed reactions it is possible to produce both isomers
selectively using the same catalyst system at room temperature but at
different reaction times. Thisfinding indicates a significantly faster rate
for the formation of the Z isomer compared to the E isomer (Fig. 4a,
k1 » k2, k3). Additionally, we observed a relatively slow but nearly irre-
versible Z/E isomerization process (k3 » k−3), leading predominantly to

the E-configured product after a longer reaction time. To gain further
insights into the dynamic progress of the reaction, we monitored the
amounts of 1a, Z-1b, and E-1b over time (Fig. 4b). Using 0.5mol% cat-
alyst and 2 equivalents of HBpin, the reaction exhibited an induction
period of ~70 s, indicating the formation of the catalytically active
species. Subsequently, there was a rapid consumption of 1a within
90 s, leading to an almost quantitative formation of Z-1b and only
negligible amounts of E-1b were observed. Over the next 5 h, Z-1b
gradually transformed into E-1b at a nearly constant rate (see Sup-
plementary Fig. 1). This phenomenon suggests that the increasing
concentration of E-1b does not affect the transformation rate, which
differs from traditional reversible isomerization processes. Impor-
tantly, it is this feature of the Co(acac)2/CNC-

iPr catalytic system that
explains the formation of E-1b with an excellent E-stereoselectivity
(large E/Z ratio).

Further analysis revealed that the reaction exhibited a pro-
nounced kinetic response to both the catalyst concentration and the
amount of HBpin. Therefore, the increased presence of HBpin can
significantly promote the reaction process due to kinetic effects
(Supplementary Table 4, see also Fig. 2). Variation of the catalyst
concentration has a more significant influence. To investigate the
kinetics of the reaction, we examined the apparent reaction rate con-
stants (kobs) at different catalyst concentrations ([Co]) (Fig. 4c and
Supplementary Fig. 2). Remarkably, plotting log(kobs) against log[Co]
yielded a straight line with a slope of 2.30, indicating an approximately
second-order dependence of the reaction on the catalyst

Fig. 3 | Large scale reaction. Reaction conditions: terminal alkyne (1.0 equiv,
30mmol), HBpin (1.3 equiv), Co(acac)2 ([Co], as presented), CNC-

iPr (1.4 equiv to
[Co]), tBuOK (5.6 equiv to [Co]) in DMF (35ml) at 0 °C–room temperature (r.t.).

b c

Fig. 4 | Kinetic investigation. a Proposed equilibrium equation of the hydrobora-
tion of terminal alkynes. b Kinetic profile of the hydroboration of phenylacetylene
(1a). Reaction conditions: 1a (1.0 equiv, 0.4mmol), HBpin (2.0 equiv), Co(acac)2 ([Co],
0.5mol%), CNC-iPr (1.4 equiv to [Co]), tBuOK (5.6 equiv to [Co]) in DMF (0.5ml) at
room temperature (r.t.). c Kinetic analysis of the formal reaction order based on the
concentration of catalyst ([Co]). d Time-dependent stereoselective hydroboration of

terminal alkynes. Reaction conditions: terminal alkyne (1.0 equiv, 0.4mmol), HBpin
(3.0 equiv), Co(acac)2 ([Co], 0.5–5mol%), CNC-iPr (1.4 equiv to [Co]), tBuOK (5.6 equiv
to [Co]) in DMF (0.5ml) at room temperature (r.t.). See Supplementary Information
for experimental details. 1H NMR yields are shown with methylene bromide as the
internal standard. Isolated yields and Z/E ratios in parenthesis. The reaction time for
the transformation of the E isomers was not optimized.
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concentration ([Co]). This result is in agreement with the experiments
that showed larger reaction rates at higher catalyst concentrations.

Based on the kinetic studies, a time-dependent method for the
stereoselective hydroboration of terminal alkynes was successfully
developed (Fig. 4d). Apart from substrate 1a, numerous alkyne sub-
strates were effectively converted into their corresponding Z- and E-
alkenylboronate esters selectively within varying reaction times, uti-
lizing the same reaction setup. Notably, both isomers exhibited very
high stereoselectivity. Note that the catalyst derived from Co(acac)2/
CNC-iPr shows the fastest rates ever reported for Z-selective hydro-
boration reactions, with certain reactions completing instantaneously
uponmixing the reactants and catalyst, leading to impressive TOFs for
the production of some Z-alkenylboronate esters (see Z-2b, Z-3b,
Z-13b).

Deuterium labeling experiments were performed in order to gain
a deeper understanding of a possible reaction mechanism. The
hydroboration of 1-(4-methoxyphenyl) acetylene-2-d (3a-d) produced
Z-3b-d with 99% deuterium retention at the beta position of the Bpin
group (Fig. 5a, eq 1 left and Supplementary Fig. 3). This result is con-
sistent with the 1,1-hydroboration process observed in the catalytic
hydroboration of alkynes by noble metals (Rh, Ir, Ru)34–36 and earth-
abundant metals (Co, Fe)38,41 as previously reported. With 1mol%
Co(acac)2/CNC-

iPr and 1 equiv of HBpin, isomerization of Z-3b-d to E-
3b-d occurred, resulting in a reduced deuteration percentage (from
>99% to 46%) at the beta-position of the Bpin group (Fig. 5a, eq 1 right
and Supplementary Fig. 4). Prolonging the reaction time did not alter
this deuteration ratio, and no isotopic labeling was observed geminal
to the BPin group. These findings suggest that a Co-H insertion fol-
lowed by a β-H elimination occurs during the isomerization process56.
An appropriate excess of HBpin can ensure the generation of a suffi-
cient concentration of the Co-H complex and provide a reductive
environment to stabilize it. Similar reactions applying 3a and DBpin
were also performed, leading to the same conclusion as Fig. 5a, eq 1
(Supplementary Figs. 5–7). This observation is distinct from the reac-
tions performed by Chirik et al.38. When a 1:1 mixture of 1-phenylace-
tylene-2-d (1a-d) and 4-methoxy-phenylacetylene (3a) was employed,
both corresponding hydroboration products exhibited ~50% deuter-
ium exchange, indicating intermolecular hydrogen transfer of the
C(sp)-H bonds (Fig. 5a, eq 2 and see Supplementary Figs. 8 and 9). We
also conducted kinetic isotope effect experiments on theC(sp)-Hbond
and B-H bond, and observed similar KIE values (1.07 and 0.96,
respectively, see Supplementary Figs. 10 and 11), suggesting that acti-
vation of either bond is not the rate-determining step (Fig. 5a, eq 3 and
4). Furthermore, the different deuterium-labeled Z-alkenylboronate
esters clearly demonstrate that the hydrogen atom adjacent to the
Bpin group originates from HBpin, while the hydrogen at the beta
position is transferred from the alkynyl hydrogen, in accordance with
eq 1 (Fig. 5a, eq 3 and 4).

Subsequently, amixture of 3a and0.1 equivof 1,2-diphenylethyne,
which remained inert at room temperature, was prepared using a
0.5mol% catalyst system with 3 equiv of HBpin to investigate the
influence of an alkyne on the Z/E isomerization process (Fig. 5b). In the
absence of 1,2-diphenylethyne, complete conversion of 3a to Z-3bwas
achieved within 5 s, followed by subsequent Z/E isomerization
(Fig. 4d). But the presence of 1,2-diphenylethyne slowed down the
hydroboration procedure, leading to a significantly longer reaction
time of 120 s for the full conversion of 3a to Z-3b. Notably, already a
small amount of 1,2-diphenylethyne strongly inhibited the isomeriza-
tion process. Even after 24 h, Z-3b was still observed in high yield and
high Z/E ratio. This inhibition of the Z/E isomerization process can be
attributed to the higher affinity of the alkyne (in this case 1,2-diphe-
nylethyne) to the cobalt catalyst compared to Z-3b56. This phenom-
enon partially explains the unique kinetic behavior of the reaction and
provides a rationale for the excellent Z selectivity, indicating that the E
isomer can only formafter nearly complete consumption of the alkyne

substrate (Fig. 4b, d). The influence of the alkyne was further investi-
gated using a combination of the terminal alkynes phenylacetylene
(1a) and 4-chlorophenylacetylene (9a). Separately, 9a exhibited lower
reactivity compared to 1a. However, when theyweremixed together, a
reversal in the transformation rates of the two alkynes was observed,
with 9a undergoing a more rapid transformation (Fig. 5c and Supple-
mentary Fig. 12). This observation suggests that the reaction may be
influenced by the acidity of the alkynyl hydrogen in the alkyne sub-
strate (although the KIE experiment indicated that activation of the sp
C-H bond is not the rate-determining step; Fig. 5a, eq 3). In comparison
to 9a, phenylacetylene possesses a lower C(sp)-H acidity, resulting in
inferior reactivity in the mixed system.

Based on the aforementioned experiments and relevant studies in
the literature, a mechanistic pathway consistent with the observed
results can be proposed. It is postulated that an in situ formed [Co(II)
(CNC-iPr)] (CNC-iPr = 2,6-bis(3-isopropylimidazol-2-ylidene)pyridine)
complex serves as the catalyst precursor. Supporting evidence for the
formation of this complex (Co-A, see Fig. 5d and Supplementary
Fig. 13) was obtained by analyzing the high-resolution mass spectro-
metry (HRMS) data from a solution containing CoBr2, CNC-

iPr, and
KOtBu. Unfortunately, we were not able to isolate any stable [Co(II)
(CNC-iPr)] complex because these undergo rather rapidly a dis-
proportionation reaction. As a result, a single crystal of a [Co(III)
(CNC-iPr)2]

3+ complex (Co-B) was obtained (see Fig. 5e, Supplementary
Figs. 14 and 15 and Supplementary Tables 13–15). An X-ray diffraction
(XRD) study using a single crystal of Co-B confirms, however, the
suggested coordinationmode of the ligand and double deprotonation
of the bis(imidazolium salt) CNC-iPr. The [Co(III)(CNC-iPr)2]

3+ complex
is presumed to represent the resting state of the active catalyst and
using Co-B as catalyst precursor likewise results in significant catalytic
activity (see Supplementary Fig. 16).

Upon reduction of the Co(II) precursor (Fig. 5f), an active Co-H
species (I) was formed, which was observed by HRMS (Supplementary
Fig. 17). Similar Co(I) species have been proposed in numerous
hydrogenation56–58 and hydroboration38,59–62 reactions, and can be
readily generated fromCo(II)38,56–61,63 orCo(III)64 pincer complexeswith
suitable reductants. Subsequently, a reaction between I and a terminal
alkyne leads to the deliberation of dihydrogen (H2 was detected in
course of the reaction, Supplementary Fig. 18) resulting in the forma-
tion of an alkynylcobalt complex (II). This complex then reacts with
pinacolborane under oxidative addition of the B-H bond to yield an
intermediate Co(III) species (III) which rearranges under reductive
elimination to a Co(I) alkynylboronate complex (IV). Sequentially, a
stereoselective syn-hydrocobaltation takes place, generating a vinyl-
cobalt intermediate (V). After protonation and ligand exchange with a
terminal alkyne, V ultimately leads to the formation of the Z-vinyl-
boronate ester product and the regeneration of the alkynylcobalt
complex II. When the alkyne substrate is (nearly) fully consumed, an
insertion of the Z-vinylboronate ester into the Co-H bond may occur
resulting in the generation of the corresponding E-vinylboronate ester
through a β-H elimination step56,60,61,65,66. The mechanism is in accord
with the labeling experiments and the different hydrogen atoms
transferred during the reaction are visualized in Fig. 5f in blue, red,
and black.

In summary, we have developed a highly efficient method for the
stereoselective hydroboration of terminal alkynes, providing access to
a wide range of vinylboronate ester compounds with excellent ste-
reoselectivity. This transformation is achieved using a simple and cost-
effective cobalt catalyst system generated in situ from a readily avail-
able CNC pincer ligand and Co(acac)2. The catalyst system can be
applied to a wide range of substrates and is especially suited for the
conversion of terminal alkynes with sterically demanding substituents
using commercial pinacol borane. This synthetic protocol exhibits
excellent scalability, making it suitable for large-scale reactions with-
out compromising neither the efficiency nor the selectivity. Impressive
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TONs and TOFs were achieved, with the highest hydroboration rate
reported so far for the production of Z-vinylboronate esters. Kinetic
investigations allow toproposeamechanism inwhich alkynes exhibit a
higher affinity toward the cobalt catalyst compared to the Z-vinyl-
boronate ester products. This preferential binding inhibits a fast Z/E
isomerization process, which can only occur after almost complete
consumption of the alkyne substrate to Z-vinylboronate ester. It is this
special feature of the catalytic system that leads to a time-dependent
stereoselectivity.

Methods
General procedure for catalytic Z-selective hydroboration
In a nitrogen atmosphere, a vail was charged with Co(acac)2 (4.1mg,
0.016mmol), CNC-iPr (10.2mg, 0.022mmol), tBuOK (10.1mg,
0.09mmol) in dry DMF (2ml) and was stirred for 5min. The freshly
prepared stock solution of the in situ prepared active catalyst ([Co] =
8.0mM in DMF) was added via a micro-syringe (50–500 µl,
0.0004–0.004mmol, 0.1–1mol%, as noted) to a vial charged with
HBpin (75 µl, 0.52mmol, 1.3 equiv., unless otherwise noted) and

Fig. 5 | Mechanistic study. a Deuterium labeling experiments. b Inhibition of Z/E
isomerization with an inert alkyne. c Kinetic trace of Z-selective products for
reactions employing 1a, 9a, andmixture of 1a and 9a, respectively. Products of the
mixed system have been marked in the profile. Reaction conditions: terminal
alkyne (1.0 equiv, 0.4mmol), HBpin (1.3 equiv), Co(acac)2 ([Co], 0.5mol%), CNC-iPr
(1.4 equiv to [Co]), tBuOK (5.6 equiv to [Co]) in DMF (0.5ml) at room temperature

(r.t.). dHigh ResolutionMass Spectrometry (HRMS) of [Co(II)(CNC-iPr)Br]+. e X-ray
structure of [Co(III) (CNC-iPr)2]Br3. Hydrogen, bromine, and solvent atoms are
omitted for clarity. See Supplementary Fig. 14 and Supplementary Tables 13–15 for
details. f Proposed mechanism. The positions of the colored hydrogen atoms have
been traced by the deuterium labeling experiments (a).
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DMF([alkyne] = 0.8M). The mixture was stirred for 5min. Alkyne
(0.4mmol, unless otherwise noted) was added rapidly and the result-
ing mixture was stirred for 12 h. The reaction was then quenched by
adding water. Twenty ml EtOAc was added and the organic phase was
washed with 10ml brine twice to remove most of DMF. Pure product
was isolated by column chromatography over silica gel deactivated
with 2% NEt3 in petroleum ether using petroleum/EtOAc as the eluent.
For some specific substrates, the reaction conditions were slightly
changed, the detailed information of which can be found in the SI.

General procedure for large scale catalytic Z-selective hydro-
boration of terminal alkynes
In nitrogen atmosphere, a 100ml Schlenk vial was chargedwith alkyne
(30mmol) and dry DMF (20ml), the alkyne solution was placed in an
ice path. In another vial charged with Co(acac)2 (38.6mg, 0.15mmol),
CNC-iPr (96.0mg, 0.21mmol), tBuOK (94.3mg, 0.84mmol), dry DMF
(15ml) was stirred for 5min and HBpin (5.6ml, 39mmol) was added
and stirred for a further 5min. The catalyst solution was added drop-
wise into the alkyne solution under ice bath during 10min. After that,
ice bath was removed and the mixture was stirred at room tempera-
ture for a certain time. The reaction was then quenched by adding
water. Three hundred ml EtOAc was added and the organic phase was
washedwith 3*100mlwater and 2*100ml brine. the organic phase was
passed through a short pad of silica gel. Pure product was obtained
after removing volatiles under reduced pressure.

Data availability
The data supporting the findings of this study are available within the
paper and its Supplementary Information. The X-ray crystallographic
coordinate for the structure reported (Co-B) has been deposited at the
Cambridge Crystallographic Data Centre (CCDC), under deposition
number CCDC 2288260. The data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk.
All data are available from the corresponding author upon request.
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