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Cost-effectiveness uncertainty may bias the
decision of coal power transitions in China

Xizhe Yan 1, Dan Tong 1 , Yixuan Zheng 2, Yang Liu1, Shaoqing Chen3,4,
Xinying Qin1, Chuchu Chen2,5, Ruochong Xu1, Jing Cheng 1, Qinren Shi5,
Dongsheng Zheng 1, Kebin He 5,6, Qiang Zhang 1 & Yu Lei 2

A transition away from coal power always maintains a high level of complexity
as there are several overlapping considerations such as technical feasibility,
economic costs, and environmental and health impacts. Here, we explore the
cost-effectiveness uncertainty brought bypolicy implementationdisturbances
of different coal power phaseout and new-built strategies (i.e., the disruption
of phaseout priority) in China based on a developed unit-level uncertainty
assessment framework. We reveal the opportunity and risk of coal transition
decisions by employing preference analysis. We find that, the uncertainty of a
policy implementation might lead to potential delays in yielding the initial
positive annual net benefits. For example, a delay of six years might occur
when implementing the prior phaseout practice. A certain level of risk remains
in the implementation of the phaseout policy, as not all strategies can guar-
antee the cumulative positive net benefits from 2018–2060. Since the unit-
level heterogeneities shape diverse orientation of the phaseout, the decision-
making preferences would remarkably alter the selection of a coal power
transition strategy. More strikingly, the cost-effectiveness uncertainty might
lead to missed opportunities in identifying an optimal strategy. Our results
highlight the importance of minimizing the policy implementation dis-
turbance, which helpsmitigate the risk of negative benefits and strengthen the
practicality of phaseout decisions.

Despite the increasing demand for energy, there have been substantial
reductions in air pollution emissions and PM2.5-related health risks
from the coal power sector in China that have resulted from a series of
actions, including power fleet optimization, ultra-low emission stan-
dard implementation, and energy-saving renovation1,2. However, in
2017, the coal power fleet still contributes considerably to national
emissions of carbon and air pollutants, namely, 35%of CO2, 17% of SO2,

19% of NOx, and 8% of PM2.5
3,4. Under pressure to the increase of

terminal electrification level and narrowedmitigation potential of end-
of-pipe controls, themost feasible route to achieve the synergetic goal
of carbon neutrality and clean air is to increase the pace of shrinking
coal-dominated power systems5–7. Since the enactment of the 11th Five
Year Plan (i.e., from2006), China introduced a set of policies aiming at
phasing out backward thermal power plants to address severe air
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pollution issues, leading to more than 119 GW of small, old, and inef-
ficient coal-fired capacity being eliminated over this period8. The
upcoming phaseout would pose a formidable barrier in a steady but
evolutionary transition9, as the majority of units were constructed
around 2010 with similar lifespans10. In addition to prioritizing pollu-
tion control, the shifting policy preferences (e.g., health protection
and climate mitigation) increase the complexity of phaseout
decision11,12. It is difficult to determine the policy choices without
capturing the patterns and uncertainties in prior practice. Thus, the
future coal transition (i.e., the decision to phaseout and new-built
power units) has been challenging in terms of finding probable and
even promising cost-effective pathways. It is essential to fully consider
the main factors of costs, climate impacts, and health burdens in
shaping future turnover, which in turn necessitates a comprehensive
assessment of the decision to phaseout and new construction.

The unit-level assessment of the coal power transition aligns with
the current principles of refined governance in China. In response to
various policy objectives, some global and regional studies have
explored optimal coal power phaseout pathways based on the unit-
level heterogeneities in health risks13–15, technical attributes16, and
economic and environment impacts17,18. Despite holding considerable
importance for public health and climate change mitigation, such
single- and multi-path analyses tend to strictly follow the phaseout
priority ranked by specific risks, which aims to reveal the maximized
health co-benefit13,14 or minimized asset stranding10. The practicality of
applying these pathway analyses in designing the future transition
roadmap may have limitations as the perfect management of unit
phaseout. It means decision-making could be less reliable without the
full evaluation of possible impact of policy implementation dis-
turbance. In addition, new-built units are involved into stranded assets
assessment of coal power transition19, while location-based uncer-
tainty of new-built units has not been unveiled, confounding the esti-
mation of cost-effectiveness. Several studies have tried to manage the
trade-offs among multiple policy objectives using multicriteria
methods20,21; however, there is a limited understanding of the overall
cost-effectiveness and uncertainty of various targeted phaseout stra-
tegies compared with historical strategies. As the design of coal power
transition is at a critical juncture, there is an urgent need for an
uncertainty assessment framework for various power fleet turnover
trajectories that considers a full combination of objectives.

In this study, we developed an uncertainty assessment framework
for multi-preference decision making at the unit level for the coal
power transition in China (see Supplementary Fig. 1). Starting from the
unit-level heterogeneities in stranded assets, carbon emissions, and
health risks, we simulated the possible trends in different strategy-
targeted pathways based on the prior phaseout practices from
2018–2060. We explored the cumulative risks and opportunities in
those strategies while considering certain disturbance of phaseout
policy implementation (i.e., the disruption of unit-level phaseout
priority) and the uncertainty of new-built geolocations. In addition, we
highlighted the potential impacts of cost-effectiveness uncertainty on
the preference-based decision-making of coal power transition. In
summary, unit-level information on carbon and air pollutant emis-
sions, technical attributes (i.e., capacity, age, and coal consumption
rate), and geolocations are directly obtained from the China coal-fired
Power plant Emissions Database (CPED)4. Unit-level coal power-related
deaths are isolated as potential phaseout health co-benefits, by using
the Global ExposureMortality Model (GEMM)22 as the epidemiological
exposure–response function and GEOS-Chem adjoint model23 as sen-
sitivity analysis tools. Under the harmonized provincial coal power
demand projections24 and the penetrations of Carbon Capture, Utili-
zation and Storage (CCUS) in line with carbon peak and carbon neu-
trality goals24,25, we defined five phaseout strategies (see
Supplementary Table 1 in detail): the first allows power plants to
operate for their historical expected lifetime (i.e., Historical strategy;

assuming 40 years lifetime); the second remains consistent with the
previous phaseout practice (i.e., business as usual, BAU strategy); the
third gives priority to public health protection (i.e., Health strategy);
the fourth targets climate change mitigation (i.e., Carbon strategy);
and the final strategy targets economic loss avoidance (i.e., Age-to-
Capacity strategy).Within strategies other thanHistorical, we assumed
all existing coal capacity would be shut down by 2050 (an aver-
age lifetime of ~25.8 years). Future power fleet was simulated by
incorporating an uncertainty simulation module, based on the Monte
Carlo method, into a unit-by-unit coal power phaseout and new-built
algorithm. We then examined how cost-effectiveness uncertainty
might disrupt preference-based decision making of coal power tran-
sition by conducting a preference analysis using multiple criteria
decision making (MCDM) methods. Finally, a series of sensitivity tests
on the related factors (i.e., lower power demand, faster phaseout rate,
higher health risk, and theCCUSpriority) were conducted to reveal the
potential variations of net benefits of different phaseout strategies, as
well as to uncover the potential alternations in following preference-
based decision makings (Supplementary Table 2).

Results
Unit-level heterogeneity
Figure 1 shows the geographical distribution of coal-fired power units
and reveals heterogenous characteristics in 2018. Overall, China pos-
sesses a young coal power fleet with a large total installed capacity
(Fig. 1a), accounting for 3.5 Gt of CO2 emissions and 90,400 PM2.5-
related premature deaths in 2018. Due to the drastic variation among
individual units, a small fraction of the generating capacity is dis-
proportionately responsible for a large part of the climate threat
(Fig. 1c) and health burden (Fig. 1d). For instance, approximately 13.7%
of the total capacity is responsible for a quarter of CO2 emissions.
Similarly, 1.7% of the total capacity contributes to a quarter of air
pollution-related deaths as there are relatively large dis-
proportionalities between unit-level pollutant emissions and installed
capacity (Supplementary Fig. 2). Across all categories of capacity, CO2

emission intensity (defined asCO2 emissions per capacity, highlighting
theheterogeneity inCO2 emissions) and the death intensity (defined as
deaths per capacity, highlighting the heterogeneity in health risks; see
“Methods” in detail) of small units (i.e., ≤100MW) are 1.4 and 4.0 times
larger than the national average level (Supplementary Fig. 3). These
disparities can be attributed to the low penetration of advanced
combustion technologies and end-of-pipe control measures in small
units. By contrast, the distribution of the remaining unit-level
assets exhibits a relatively even pattern, where 25% of the remaining
assets are possessed by 20.3% of the capacity. This is because the
majority of coal capacity (i.e., 71%) lies in units greater than 300MW
and younger than 15 years. These heterogeneous characteristics not
only highlight the importance of a future customized phaseout of
generating units, but also successfully reflect previous phaseout
practice (Supplementary Fig. 4). Small, old, and inefficient units were
prioritized for phaseout, leading to the retirement of 80% of units
under 30MWandmore than 85% of units with coal consumption rates
higher than 400 gce/kWh.

Trends and uncertainties of different coal power transition
strategies
Figure 2 shows the trends and uncertainty ranges in CO2 emissions,
deaths, and overall monetized benefits related to the coal power
transition for each strategy. CO2 emissions of coal power would peak
at 4.1–4.3 Gt in 2030 and drop to 31−36 Mt (i.e., near zero, ~3% of total
national emissions25) by 2060 (Fig. 2a), as the demand of coal power
has drop to 8%of current level and themajority of coal power units are
projected to complete CCUS retrofitting (~99%; see Supplementary
Figs. 5 and 6). Such emissions from coal power would probably been
offset by bioenergy with carbon capture and storage (BECCS) to
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achieve carbon-negative in the power sector26,27. The differences in
emission trends among strategies are relatively minor, with variations
of less than 5% in 2030, due to the successful identification of part of
low-efficient power units with higher CO2 emission intensities in all
strategies (Supplementary Fig. 2) and the same assumption of new
capacity by ignoring the unit-level heterogeneity (i.e., 270 gce/kWh28 in
energy efficiency, see “Methods”). Nevertheless, Carbon strategy
would hold in a most effective CO2 emission reduction of 210 Mt
compared to Historical strategy in 2030, which is around 1.4 times
greater than that achieved through Age-to-Capacity strategy. It indi-
cates that the strategic phaseout decision is still effective for deeper
decarbonization. Distinct diversity exists in the death trends of dif-
ferent strategies, especially in the short and medium term

(i.e., 2019–2040; Fig. 2b). Compared to the Historical strategy, the
annual avoided deaths driven by the Health strategy are 108% to 150%
higher than those achieved by the Carbon strategy during 2019–2040
(Fig. 2b). This is due to its ability to capture the heterogeneous pat-
terns of death intensity, indicating substantial health benefits when
implementing health-targeted phaseout strategy.

All strategies likely bear unprecedented negative annual net
benefits at the beginning stage (i.e., 2019–2021), and the timing for
achieving a high-probability (>95%) positive annual net benefit varies
when implementing thedifferent strategies. Taking theHealth strategy
as an example, the annual net benefit is −20.6 (CI, −25.1 ~ −16.5) billion
RMB in 2019 and soon reaches promising positive annual net benefits
of 12.2 (CI, 4.9–19.3) billion RMB in 2022. Similar trends could be

Fig. 1 | Heterogenous characteristics of China’s coal-fired power units. a Geographical distribution, installed capacity and age of China’s coal-fired generating units in
2018. b–d Ranking capacity by Age-to-Capacity ratio, carbon intensity, and death intensity reveals the drastic variation among individual generating units.
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observed in the Age-to-Capacity and BAU strategies, but the latter
could not reach a high-probability positive annual net benefit until
2024, revealing that targeted phaseout decisions would undergo an
adaptationperiod in termsof net benefits during the early stage. This is
becauseononehand the implementation of the phaseout policyhas to
endure considerable economic losses in the near term, which would
thenbe alleviated by the ageing processof the current youngfleets.On
the other hand, the economic losses would soon be exceeded by the
gross benefits (except for the Carbon strategy), due to the structural
changes (e.g., cleaner ones are kept) in power fleet driven by phaseout
decisions. The possible trend in annual stranded assets of the BAU
strategy lags behind that of the Age-to-Capacity strategy by approxi-
mately 3 years (Supplementary Fig. 7).

There is a potential delay in reaching the time in which the stra-
tegies start yielding positive annual net benefits as the disturbance of
policy implementation. The attainment of initial positive net benefits
from the Health and Age-to-Capacity strategies could be delayed by 3
years, while surprisingly, the BAU strategy might experience a 6-year
delay (i.e., postpone from2021 to 2027), as the potential gross benefits
of the BAU strategy remain relatively comparable with the possible
cost during 2021–2027. It is noted that, by 2030, 30–55% of the total

benefit uncertainty is contributed by the disturbance of phaseout
policy implementation (Supplementary Fig. 8). While, as the majority
of existing units were phased out around 2050, the increasingly
dominant role of new-built capacity in supply future coal power gen-
eration within all targeted strategies (from ~65% in 2030 to ~85% in
2040), especially under the anticipate of reductions in utilization rate
of both existing and new capacity (i.e., more new-built capacity is
needed to supply the samegeneration demand; Supplementary Text 1;
Supplementary Fig. 9), reveals that new-built capacity does holds
importance in shaping net benefit and its associated uncertainty.
Therefore, both phaseout and new construction decisions should be
cautiously planned due to its vital role in quickly and continuously
achieving positive net benefits.

Cumulative cost-benefits and uncertainties
Figure 3 illustrates the cumulative costs and benefits from2018–2060,
whose differences among the strategies would be further amplified.
In terms of public health protection, for example, the greatest health
co-benefit is achieved through the Health strategy, cumulatively
avoiding over 563,000 (CI, 515,900–611,000) premature deaths, while
the Carbon strategy performs worst, avoiding 259,200 (CI,
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213,100–305,000) cumulative premature deaths. In addressing CO2

emission mitigation, Carbon strategy has the potential to achieve a
cumulative reduction exceeding 5 Gt, when the energy efficiency of
new capacity meets the standard of 270 gce/kWh, which is around 1.2
times greater than that of Age-to-Capacity strategy. Taking the
advancements in combustion technology driven by phaseout into
consideration, the cumulative decarbonization efforts are further
amplified among all targeted strategies (Supplementary Text 2; Sup-
plementary Fig. 10), if Historical strategy remains current average
energy efficiency (i.e., 307.6 gce/kWh29). Especially in the Carbon
strategy, CO2 emissions are cumulatively reduced by over 7 Gt during
2018 to 2060. It indicates that both strategic phaseout and energy
efficiency improvements would make a difference in decarbonization.

A large disparity in the cumulative monetized net benefits arises
across different strategies. For example, the Health strategy yields the
highest cumulative monetized net benefits of 587.9 (CI, 435.7–739.3)
billion RMB among all the strategies, while the Carbon strategy has the
lowest (−378.1 billion RMB; CI, −527.7 ~ −230.6). The high level of value
of a statistical life (VSL) amplifies the potential for a health-focused
phaseout strategy to achieve maximal overall net benefits, while the
current low carbon price remains an obstacle for a climate-focused
strategy to attain positive net benefits (see Supplementary
Tables 3 and4; “Methods”). Carbon strategy is likely to achievepositive
cumulative net benefits, whichwould be comparable to the cumulative
net benefits of other strategies if the European carbon price (75.5 USD/
t CO2) is implemented (Supplementary Fig. 11).

A certain level of risk still remains in the phaseout policy imple-
mentation. When conducting the BAU or Age-to-Capacity strategy,
there is a certain probability of achieving cumulative negative net
benefits (Fig. 3a, c). It means that targeted phaseout strategies do not
guarantee a 100%positive outcomebrought by policy implementation
disturbance. When it comes to a faster phaseout rate to close the prior
practice (i.e., 30-year lifetime for Historical strategy and assuming an
entire phaseout of existing units by 2040 for all targeted strategies),
the risk of negative outcomes would be amplified by rapidly dimin-
ishing the benefit gap between Historical and other strategies (Sup-
plementary Text 3; Supplementary Fig. 12). In addition to designing a

proper phaseout strategy, measures such as strategizing the reason-
able introduction of new-built units, maintaining the current level
of annual utilization hours for advanced units, and extending the
lifespan of advanced units by prioritizing the CCUS installation would
be useful to mitigate the risk of cumulative negative outcomes and
maximize net benefits (Supplementary Texts 4 and 5; Supplementary
Figs. 13–15).

The phaseout priorities of coal power units conflict across distinct
strategies (Fig. 4). Limited correlations (R2 < 0.2) in the ranking orders
are observed among the Health, Carbon, and Age-to-Capacity strate-
gies. For example, 20% to 30% of the prioritized retired units (defined
as units with ranking orders below the 40th percentile) are unique to
their respective strategies (Fig. 4b), which indicates that different
strategies would restructure the coal power fleet in entirely divergent
directions, underscoring the importance of choosing and insisting
appropriate strategies to meet the long-term strategic needs. In com-
parison, the phaseout priorities of the Age-to-Capacity and BAU stra-
tegies are much closer (Supplementary Fig. 16), leading to similar
cumulative monetized net benefits. However, 37.3% (i.e., 828 units) of
prioritized retired units are shared among the Health, Carbon, and
Age-to-Capacity strategies. Those shared units exhibit poor perfor-
mance in all policy objectives and should be promptly decommis-
sioned as low-hanging fruits16.

The bias of strategy selection based on decision preferences
The unit-level heterogeneous characteristics shape the orientation of
diverse decision making and guide the design of phaseout strategies
tailored to varying preferences (Fig. 5). Specifically, the benefits of
climate mitigation (weighed by α), stranded asset avoidance (γ), and
health co-benefits (β) could all serve as potential direct or indirect
benefits from the coal power phaseout. That is, CO2 emission reduc-
tion would represent the direct benefits of the climate-targeted coal
power phaseout policy, while health co-benefits and economic loss
would constitute its indirect benefits. A dimensionless indicator
(named the normalized net benefit) obtained by normalizing and
weighed summing the above three factors can assist decision makers
in strategy assessment based on their time-varying preferences
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(Supplementary Fig. 17). Taking the Health strategy as an example, the
normalized net benefit of theHealth strategy is particularly sensitive to
γ (preference of cost saving). Health strategy could lead to substantial
losses if costs are prioritized over the health co-benefits; conversely,
there is the potential to yield considerable gains because the Health
strategy has relatively higher health co-benefits and implementation
costs compared to other strategies, which indicates that Health strat-
egy should be chosen only when health protection becomes the pri-
mary objective. Regarding the Age-to-Capacity strategy, the
normalized net benefits are relatively insensitive to changes in γ,
remaining positive among almost all preferences due to its lowest
economic loss. It reveals that the Age-to-Capacity strategy is relatively
conservative, although it may not be the optimal strategy under cer-
tain preferences.

Phaseout decisions should be tailored to policy preferences
(Fig. 5a). It is advisable to execute a phaseout policy following the Age-
to-Capacity strategy and prioritize the decommissioning of old or
small generating units with fewer remaining assets under decision
making that emphasizes cost savings (e.g., γ > 2). In addition, in the
context of an ageing population and the healthy China initiative,
safeguarding public healthmight also become a primary preference in
coal power phaseout (e.g., β > 2 and γ <0.5). TheHealth strategywould
be the optimal choice for promptly decommissioning super-polluting
units located in densely populated areas. In some situations (e.g., α, β
and γ ~ 1), the current strategy (i.e., BAU) has its advantages. This is
because its principle of prioritizing the phaseout of small and

inefficient units allows it to balance emission reduction and economic
loss avoidance, indicating that the prior phaseout strategy might be
feasible and effective in the future transition.

The uncertainty of policy implementation would might lead to
a decision deviating from the optimal strategy to address specific
policy objectives, and bias the strategy selection in the preference-
based decision making (Fig. 5b–e). Given a specific preference (e.g., α,
γ =0.6 and β = 1.8), there is a certain possibility for the BAU strategy to
miss the opportunity for maximum net benefits; instead, the Health or
Age-to-Capacity strategy might be better. And uncertainty would still
have an undeniable impact on the preference-based decision making
at the local scale (the case study in Inner Mongolia; Supplementary
Text 6; Supplementary Fig. 18). Therefore, the phaseout decision
should be carefully designed according to the decision preferences
of policy makers while minimizing the disturbance in policy
implementation to optimize overall benefits and alleviate the risk of
uncertainty.

Discussion
In this research, our uncertainty assessment framework for the coal
power transition decision in China simulates future possible turnover
at the unit level in support of carbon peak and carbon neutrality goals
by 2060, estimates the annual cost effectiveness of each possible
turnover, and reveals the potential impact of policy implementation
uncertainty on coal transition decisionmaking. Phaseout strategies are
tailored based on the unit-level heterogeneity compatible with
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different policy preferences. Within this framework, our evaluation
implies that not all the phaseout strategies can guarantee positive
cumulative net benefits. Rather, the extent to which cumulative net
benefits of phaseout policy could ultimately be realized might hinge
on the following key factors: one is the tailored phaseout strategy
corresponding to decision preference; one is the limited disturbance
of policy implementation; one is the strategic designof newpower unit
construction; and one is the time-varying operating factors for existing
units (e.g., shifts in phaseout rate, and utilization hours).

A series of sensitivity tests are carried out to explore potential
variations related to operating factors (Supplementary Table 2), which
has been presented in the Supplementary Information in detail. It is
noted that the tests of CCUS priority (i.e., allocating 50% of the CCUS
demand to new-built units and assign the remaining demand to
existing units) and stable annual utilization hours (i.e., remaining the
current level annual utilization hours) show that the net benefits of
targeted phaseout would increase within all strategies (see Supple-
mentaryTexts 4 and 5). It’s becausewell-performing existing unitswith
lower phaseout priorities have a chance to retain their roles in themid-
or long-term. Especially in the test of CCUSpriority,more than 250GW
of existing units could be involved into CCUS retrofitting, and keep
operating beyond their assumed lifetimes (15-year protection as
investment recovery period of CCUS retrofitting30,31). Those units
would continuously expand the disparities in cost-effectiveness
among strategies tailored to different preferences and ultimately
make strategies other than BAU becomes more competitive across
preferences (Supplementary Fig. 19).

In alignment with the historical patterns of phaseout decision,
BAU might remain the most appropriate and feasible phaseout strat-
egy in future coal power transition, for its advantages in balancing
emissionmitigation and economy. However, considering the changing
preferences and above-mentioned time-varying external factors, pha-
seout decision is still an open issue. Especially when it dives to the local
level, decision makers should tailor phaseout plans according to the
specific characteristics of coal power fleet. For example, Age-to-
Capacity strategymight bemore suitable for InnerMongolia than BAU
strategy as its young and huge coal fleet (Supplementary Text 6;
Supplementary Fig. 20).

Our study has some limitations and uncertainties that require
deeper exploration in future endeavors. First, various coal power
generation scenarios (i.e., reflecting the degrees of clean energy
development) may introduce uncertainties due to the insufficient
temporal resolution of integrated assessment models (IAMs) and the
overlooked feedback of changing cost effectiveness when imple-
menting different phaseout strategies. Our test of a lower coal power
demand (82% of original demand in 2030) indicates that the relative
gaps of benefits and costs among strategies has not changed notice-
ably as the same assumption for phaseout and new-built mechanism
(Supplementary Text 7; Supplementary Figs. 21 and 22). Second,
baselined emission dataset (i.e., CPED) contains a small number of
blank spots and missing information (Supplementary Table 5) and it
can comprehensively capture the key features of coal power fleet in
China after appropriate imputation (Supplementary Texts 8 and 9).
Third, future retrofits of end-of-pipe control measures in coal power
are disregarded in our study when focusing on phaseout policy
assessment, as the meet of ultra-low emission standard for most coal-
fired power units. The further stringency of pollution controls would
have limited mitigation potential and may result in considerable costs
and CO2 emissions. Fourth, health risk assessment based on GEMM
andGEOS-Chemadjointmodelmayarise certain uncertainties for their
incomplete understanding of mortality risk, chemical and physical
processes, future meteorological conditions, and structural evolution
in the population, leading to a potential underestimation of the health
co-benefit32 (Supplementary Text 10; Supplementary Fig. 23). Finally,
we ignored the uncertainty distribution of parameters (e.g., emission

factor) to emphasize the cost-effectiveness uncertainty caused by
phaseout decisions.

Regardless, bymodeling the possible turnover of coal power fleet
at the unit level, our results add important nuance to policy-relevant
discussions of the potential impact of cost effectiveness uncertainty in
the decision of coal power transition. In support of the synergetic
governance of the power sector, our data-driven dynamic uncertainty
assessment framework for coal power transition may not only reveal
the complexity of phaseout policy but also provide decision makers
with a more comprehensive understanding of the risk and potential
outcomes of preference-based decisions. Recognizing the dynamic
nature of phaseout decision affected by variable factors such as
socioeconomic changes, technology innovation, and implemented
policies, wewill incorporate themost up-to-date unit level information
into ourmodeling framework and keep tracking the cost-effectiveness
uncertainty of preference-based coal transition decision in a 5-year
step (in line with the Five-year Plans of China). This, in turn, enhances
the robustness, adaptivity, and applicability of cautiously designed
phaseout strategies, ensuring that they remain promisingly cost-
effective in response to different policy preferences.

Methods
Unit-level emission database and premature deaths isolation
We extract emissions data, technical attributes, and locations from the
unit-level database, then estimate the premature mortality attributed
to long-term PM2.5 exposure and isolate the unit-level coal power-
related health burden as potential phaseout health co-benefit.

We employ unit-based information (i.e., locations, unit capacity,
start year of operation, coal consumption rate, and CO2 and pollutants
emission) from CPED. Constructed based on unit-level information
sourced from the Ministry of Ecology and Environment (MEE, unpub-
lished data), CPED is a high-resolution emission inventory that pro-
vides year-by-year emissions from coal-fired power plants since 1990
in China developed by Tsinghua University4,33. More details about
CPED canbe found in Supplementary Text 8 and a detailed description
about the preprocessing of baseline emission inventory has been
added in the Supplementary Text 9.

The assessment of premature mortality attributable to PM2.5

exposure necessitates an understanding of the relationship between
chronic exposure and response (C-R). Burnett et al.34. developed
integrated concentration-response functions (IER) for the Global Bur-
den of Diseases Study (GBD), based on cohort studies of ambient air
pollution, first- and second-hand tobacco smoking, and household
indoor airpollution. Although IER arewidely applied to calculate PM2.5-
related mortality in research community35,36, non-ambient PM2.5-mor-
tality associations in IER functions and additional causes of death other
than the five (i.e., ischemic heart disease, stroke, chronic obstructive
pulmonary disease, lung cancer, and lower respiratory infections)
considered by the GBD may bias mortality estimation, especially in
highly polluting region like China. To resolve those uncertainties,
premature mortality attributable to ambient PM2.5 exposure is esti-
mated by using the GEMM in our study, which was developed by
Burnett et al.22 in 2018 across almost the entire global PM2.5 exposure
range, especially the polluted areas like China. GEMM is applied to
estimate the hazard ratios between long-term PM2.5 exposure and all
the non-accidental deaths due to non-communicable diseases (NCDs)
and lower respiratory infections (LRIs). The relative risk (RR) of
NCD+ LRI on PM2.5 concentration (C) is calculated as:

RR Cð Þ= e
θ× ln 1 + z

αð Þ
1 + exp u�z

vð Þ, z = maxð0,C � 2:4Þ ð1Þ

where z represents the maximum of 0 and (C−2.4). No risk is assumed
below the counterfactual concentration of 2.4μg/m3. e represents
Euler’s number, and θ, α, μ, and υ are parameters that determine the

Article https://doi.org/10.1038/s41467-024-46549-5

Nature Communications |         (2024) 15:2272 7



shape of PM2.5-mortality function. In GEMM framework, the RR of
NCD+ LRI is estimated by age for adults aged from25 to 85,with 5-year
intervals. The attributable fraction (AF) of mortality is converted by
relative risk as:

AF Cð Þ= RR Cð Þ � 1
RR Cð Þ

� �
ð2Þ

Following Geng et al.37, premature mortality attributable to PM2.5

exposure (M) for a population subgroup s (divided by age) in grid j as:

Ms,jðCjÞ= Pj × PSs ×Bs ×AFsðCjÞ ð3Þ

where Pj represents the total population in grid j, PSs are the national
percentage fraction of a population subgroup s to total population, Bs
is national cause-specific baseline mortality incidence rate of NCD+
LRI for population subgroup s andAFs(Cj) is the attributable fraction of
NCD+ LRI at PM2.5 exposure level Cj for population subgroups. 2018-
specific spatial distribution of population (Pj) is from LandScan global
population database (https://landscan.ornl.gov/)38 and ground-level
PM2.5 concentration (Cj) is derived fromTracking Air Pollution in China
dataset (TAP; http://tapdata.org.cn/)39. Both PSs and Bs are derived
from Global Burden of Disease Study 2019 (https://ghdx.healthdata.
org/gbd-2019)40.

Unit-level health burden is isolated by GEOS-Chem adjointmodel,
on this basis of PM2.5 related mortality. Widely used in source appor-
tionment, the adjoint of GEOS-Chem is able to calculate the response
of PM2.5-related premature deaths to the change in emission of major
PM2.5 precursors (i.e., SO2, NOx, NH3), carbonaceous particles (i.e., OC,
BC) and primary dust. In this work, we use GEOS-Chem adjoint v35i
model to perform nested China (15°S–55°N, 70°E–150°E) simulation
driven by the Multi-resolution Emission Inventory of China (MEIC:
http://www.meicmodel.org/)3 at a horizontal resolution of 0.25° lat ×
0.3125° lon. The dynamic boundary condition is derived fromglobal 2°
lat × 2.5° lon simulation driven by Community Emissions Data System
(CEDS) inventory41. GEOS-FP data from Global Modeling and Assim-
ilation Office (GMAO) is used as the meteorological input of both
nested and global simulations. To reduce computation cost, we con-
ducted4months simulations (January, April, July, andOctober of 2018)
for each season and their results are averaged to represent the annual
level adjoint sensitivity result in 2018. GEMM PM2.5-related premature
mortality, as Eqs. (1–3), is defined as the cost function in this adjoint
model. The output of adjoint simulation provides the partial deriva-
tives ( ∂M∂Ej,k

) of total premature deaths in China (M) to emission in grid j
(Ej,k; k represents species). The precursor species considered in this
study are SO2, NOx, NH3, BC, OC and primary PM2.5. Following Zhao
et al.36, we combine the sensitivity and gridded emission to obtain the
semi-normalized sensitivity (SS):

SSj,k =
∂M
∂Ej,k

× Ej,k ð4Þ

SS is further normalized to calculate the contribution of grid-
specified emission to premature deaths:

Pj,k =
SSj,kP

j

P
kSSj,k

× 100% ð5Þ

According to previous studies, the normalization process mini-
mizes the nonlinear effect among emission change, air quality and
mortality42. Integrating unit-level emission information taken from
CPED4, we attributes prematuredeaths into each coal-fired power unit,

following Eq. (6):

Mi =M*
X

k
ðPj,k*βi,kÞ ð6Þ

whereMi represents premature deaths caused by pollutants emission
from units i, βi,k represents the emission ratios of species k caused by
unit i in grid j.

In pervious study, emission intensity (tonnes per MW) is used to
depict the relationship between generating capacity and environment
impact from each coal-fired units and further identify the super-
polluting units18,43. Inspired by definition of emission intensity, we
defined death intensity (deaths per MW) as unit-level PM2.5-related
premature deaths (Mi) per installed capacity (Ci) to highlight the
notable heterogeneity in health risks among units7, following Eq. (7):

Death intensityi =
Mi

Ci
ð7Þ

Strategy design and uncertainty framework for coal power
transition
The structure and characteristics of the future coal power fleet would
reshape driven by phaseout decision. In this study, five coal power
phaseout strategies are designed considering the prior phaseout
practice and various heterogeneities. For the Historical strategy, the
40-year lifetime is set for all units, according to the historical lifespan
of global power plants and reflecting the economic consideration of
operating costs, replacement costs, and revenues. For the BAU strat-
egy, phaseout policy is implemented as the previous phaseout practice
following the phaseout priority obtained from Cox model. For the
Carbon strategy, units with large value of carbon intensity are prior-
itized for phaseout, aiming at deep decarbonization. For the Health
strategy, units with large value of death intensity are prioritized for
phaseout to maximize the health co-benefits. For the Age-to-Capacity
strategy, units with large ratio of age to capacity size are prioritized for
phaseout, in order to mitigate the risk of stranding assets as possible.

Since 11th Five Year Plan, small, old, and inefficient units were
prioritized for phaseout in most case (Supplementary Fig. 4). In order
to simulate the phaseout strategy as prior practice, we conduct sur-
vival analysis based on proportional hazards regression (also known as
Cox regression)33. Taking the key technical attributes (i.e., age, instal-
led capacity and coal consumption rate) into consideration, the sur-
vival outcomes of all operating and retired in-fleet coal power units in
CPED are brought into thismodel as training data. The function of Cox
regression in our study is shown as:

½b, logl,H, stats�= coxphfitð½Varcap,Varcorat �,age, 0censoring0, censorÞ ð8Þ

where b represents coefficient estimates, logl represents log likelihood
value, H represents estimated baseline cumulative hazard; stats
represents coefficient statistics. coxphfit represents cox proportional
hazards regression, censoring indicator for censoring Varcap and
Varcorat represent installed capacity and coal consumption rate of
coal-fired power units, age represents lifetimes for the retired units
and operated years for the in-fleet units. censor is the indicator for
censoring by using 1 for the in-fleet units and 0 for the retired units.

The concordance index (C-index) is not only a metric which is
used to assess the goodness of fit of a Coxmodel similar to R-squared,
but also an indicator which represents the ability of the model to
correctly provide a reliable ranking of the survival probability based on
the individual risk scores. The C-index value is 0.68 in this model, and
the function analog effect is good. Based on the construction of this
Cox function, we predict the survival curve of in-fleet operating units
and determine their phaseout order by their median age of retire-
ments. This approach helps to depict the future phaseout trajectory
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following the previous decisions orientation (BAU strategy), and
determine a 32%margin of disturbance in the phaseout prioritieswhen
policy implementation.

Constrained by provincial projection of future coal power gen-
eration under the carbon peak and carbon neutrality goals (Supple-
mentary Fig. 5), a possible power fleet projection model that couples
phaseout algorithm with Monte Carlo framework is constructed to
simulate the lifespan and operating status of each unit on an annual
basis. To reflect disturbance of phaseout policy implementation, the
model first divides coal-fired power units into ten groups according to
the phaseout priority of specified strategy; and then randomly selects
32% (corresponding toC-Index estimatedbyCoxmodel) of the units in
each group and disturbs their phaseout priorities. The sensitivity test
for the setting of disturbance groups is tested in Supplementary
Text 2. For each strategy, the possible future power fleet turnover is
projected according to a set of runs (n = 10,000) in the Monte Carlo
framework with uncertain disruptions of the original phaseout
priorities.

Then,within eachprovince inChina, for a given year, thephaseout
algorithm retires a certain coal power capacity following each possible
phaseout priority of specific strategy, and calculates the deliverable
power generation within the existing power fleet after implementing
phaseout policy, which is determined by the installed capacity and
capacity factors of in-fleet units. Considering the structural
changes and the flexibility transformation of coal power, the current
existing units in China would be completely phaseout in 205044,
while the unit-level capacity factors is configured to decay by a rate
of 2.5% annually. If the existing units is unable to meet the provincial
power demand, new-built units with higher efficiency and advanced
emission control device (see Supplementary Table 6) would put into
commission in order to fill the generation gap; else, the capacity
factors of current existing units would be adjusted to satisfy the bal-
ance of generation and load. The site selection for new-built units is
randomly selected from the locations of retired units. Note that the
future coal power fleet is driven by the coal power demand projection,
and specific phaseout decision (i.e., shifting coal power fleet to other
low-carbon energy sources) is out of our discussion.

Based on the unit-level projection of generation and capacity
factors, we further model the emission and health burden of current
existing units and new-built units. For current existing units, the una-
bated emission factors of SO2, NOx, PM2.5, BC, and CO2 are assumed
to remain constant. The emission and death caused by current
existing units are directly calculated by the changing rate of capacity
factors. The NOx emission factors for new power units are obtained
from the CPED for corresponding boiler size (i.e., 600MW) and com-
bustion technology (i.e., ultra-supercritical). The provincial average
emission factors from the CPED are adopted for the SO2, PM2.5, BC,
and CO2 emission factors of new units. Then, we calculate SO2, NOx,
PM2.5, BC, andCO2 emissions for new-built units by using the following
equation:

Es,i =Gi ×P ×
H0

Hk
× EFs,k × ð1� ηsÞ× 10�6 ð9Þ

where s, k, i represent emission species, province and new-built unit,
respectively. E represents unit-level emissions (kg), G represents
specific power generation for each unit (kWh); P is the coal
consumption rate (gce/kWh); H represents the provincial average
heating value of coal used in power generation (kJ/g); H0 is the heating
value of standard coal (29.27 kJ/gce), and the ratio of H0 to H converts
the coal equivalent (gce) to the physical quantity of coal (gram). EF
represents the provincial unabated emission factors (g/kg); and η
represents the removal efficiency meeting ultra-low emission stan-
dards (details in Supplementary Table 6). The estimations of health
burden for new-built units are consistent with aforementioned

procedure (details in Unit-level emission database and premature
deaths isolation section).

Amethod framework of CCUS retrofit in Chinese coal-fired power
units is shown in Supplementary Fig. 24. We first combine the future
harmonized coal power demand projection and the CCUS retrofitting
ratio (see Supplementary Fig. 6) explored by Cheng et al., 202125 to
obtain possible supply curve of provincial CCUS retrofit in coal power.
Most provinces are slated to initiate large-scale commercialization of
CCUS around 2030, with the majority of coal capacity completing
retrofitting by 2060. Similar to the phaseout algorithm, a CCUS ret-
rofitting algorithm is further designed to retrofit a certain coal power
capacity within each province in China for a given year, according to
each possible phaseout priority of specific strategy and unit-level
generation projection. To minimize the risk of stranding assets
resulting from CCUS retrofitting, we assume that the installation
requirements for CCUS would be prioritized for new-built capacity. If
the new-built units could not meet the supply curve of Coal-CCUS
demand, old units with less phaseout priority are prioritized for CCUS
retrofitting to fill the gap. A sensitive test of the allocation of CCUS
installation requirements among new-built and existing capacities is
further discussed in Supplementary Text 5.

Although CCUS could substantially reduce CO2 emissions,
the additional electricity demand as CCUS systems in the future
may have a non-negligible impact on fuel consumption and
coal-related health risk45,46. In this study, coal power units with CCUS
installation are adopted to achieve a CO2 capture rate of 90% with
an additional 15% energy consumption. Furthermore, it is reported
that the unit capital cost of CCUS retrofitting would vary from
3300 RMB/kW to 8500 RMB/kW30,47. A potential life extension of
15 years is allocated to units with CCUS installation, aligning with ret-
rofitting investment recovery periods that takes thehigh costof capital
cost, operating and maintenance cost into consideration30,31. The
potential impact of life extension is then feedbacked to adjust the
Coal-CCUS demand gap.

Benefit assessment and preference analysis
The cost effectiveness of phaseout policy in our study is represented
by the monetized net benefit (Benef itnet). We calculate the monetized
net benefit for all possible turnover, which is consists of economic
benefits of decarbonization ðBenef itdecarbonizationÞ, health co-benefits
ðBenef ithealthÞ, and assets stranding (Costassets stranding), using following
equation:

Benef itnet,i,y = Benef itdecarbonization,i,y +Benef ithealth,i,y
� Costassets stranding,i,y

ð10Þ

where i and y represent the specific phaseout turnover and year,
respectively. We estimate annual economic benefits of decarboniza-
tion by the CO2 emission reduction of turnover i compared to His-
torical strategy as:

Benef itdecarbonization,i,y = EHistorical,y � Ei,y

� �
×CP ð11Þ

Carbon price (CP, in units of RMB per tCO2) is assumed as
50 RMB per tCO2, according to the average trading prices of
emission right of National Carbon Emission Trading System in
202148,49. A sensitivity test of implementing European carbon
price is performed to assess the impacts if carbon price is higher
in the future (Supplementary Text 2). The monetized health co-
benefits of each pathway are estimated by the number of deaths
avoided and VSL as:

Benef ithealth,i,y =
X
p

�
DeathHistorical,y,p � Deathi,y,p

�
×VSLp

� �
ð12Þ
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where p represents the specific province in China. VSLs in all provinces
are obtained from previous literature (Supplementary Table 4)50,51,
which arebasedonwillingness to paymethod inChina and adjustedby
provincial GDP per capita values. The annual assets stranding of each
turnover is calculated by Eq. (13)52:

Costassets stranding,i,y =
X
r

OCC ×Ci,y,r ×
ðLT � Agei,y,rÞ

LT
ð13Þ

where r represents the specific coal power unit retired in year y in
turnover i; OCC represents overnight capital cost (RMB/MW), which is
compiled from previous literature12 and report53; C represents the
installed capacity of unit r; LT represents the average campaign life-
time of coal power units(year); Age represents the operating time of
unit r in year y (year). A 40-years campaign lifetime is presumed,
consistent with the setting of Historical strategy. Retiring units that
have operated for more than 40 years would not lead to any stranded
assets, since initial capital costs are fully paid54.

Shaped by unit-level heterogeneities, diverse decision orienta-
tions in China’s coal power plant turnover (i.e., climate change miti-
gation, public health safeguard, economic loss avoiding) are taken into
consideration in our study. To incorporate those policy preferences
into phaseout decision making, we conduct a preference analysis
based on multi-criteria decision-making (MCDM) method. We first
normalize the cumulative economic benefits of decarbonization,
cumulative health co-benefits, and cumulative assets stranding of all
possible turnover in sequence by Min-Max Normalization method,
following Eq. (14):

X *
i = ðXi � XminÞ=ðXmax � XminÞ ð14Þ

Then, the preference weighting factors (i.e., α, β, and γ) are
applied to represent the diverse decision preferences towards phase-
out decision making. We calculate the normalized net benefits
(dimensionless indicator) by taking the weighted sum of normalized
cumulative economic benefits of decarbonization, normalized cumu-
lative health co-benefits, and normalized cumulative assets stranding
following Eq. (15):

Normalized net benef iti = α ×Benef it*decarbonization,i +β×Benef it
*
Health,i

� γ ×Cost*assets stranding,i
ð15Þ

where the sum of α, β and γ identically equals three. A lower value of
normalized net benefits indicates a relatively lower cost effectiveness
of specific turnover under certain decision preference.

Data availability
The unit-level emissions and premature deaths data of coal power are
compiled fromCPED and available at Zenodo (https://doi.org/10.5281/
zenodo.10672759). The raw CPED are protected and are not available
due to data privacy laws. The Multi-resolution Emission Inventory of
China database is available from http://www.meicmodel.org.cn/. The
ground-level PM2.5 concentration used in this study is available at
http://tapdata.org.cn/. The baseline mortality incidence data are
available at https://ghdx.healthdata.org/gbd-2019.

Code availability
The code of the GEOS-Chemadjointmodel to simulate the sensitivities
of pollutant emissions to PM2.5-related premature deaths is available at
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_
Adjoint. The codeused tomanipulate the data and generate the results
is available from the corresponding author upon reasonable request.
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