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Population imaging cerebellar growth for
personalized neuroscience

Zi-Xuan Zhou & Xi-Nian Zuo Check for updates

Growth chart studies of the human cerebellum,
which is increasingly recognized as pivotal for
cognitive development, are rare. Gaiser and
colleagues utilized population-level neuroima-
ging to unveil cerebellar growth charts from
childhood to adolescence, offering insights into
brain development.

The cerebellumcontains themajority of neurons in thehumanbrain and
is massively connected with most cortical and subcortical areas. Abun-
dant evidence from the past few decades has significantly expanded our
understanding of the cerebellum, highlighting its contributions to cog-
nitive functions beyond motor control. Furthermore, despite its pro-
longed development, vulnerability to disruption, and association with
various neurodevelopmental disorders, research on human cerebellar
growth in children and adolescents remains limited. Writing in Nature
Communications, Gaiser and colleagues1 leveraged population-level
magnetic resonance imaging (MRI) data from the Generation R study2

to investigate themorphological growth of the human cerebellum from
6 to 17 years of age with unprecedented scale and detail.

To accurately characterize the general patterns and individual
variabilities of cerebellar growth at the population level, Gaiser and
colleagues analyzed cerebellar morphometric measurements from MRI
scans using the so-called normative modeling approach3, constructing
normative growth models for both anatomical and functional sub-
regions of the cerebellum, i.e., cerebellar growth charts. Similar to
commonly used height or weight growth charts in pediatrics, the nor-
mative modeling approach establishes models for the trajectories of
populationdistributionswithin a transparent statistical framework. Such
models enable the derivation of centile scores or normative deviations
for corresponding measurements at the individual level (Fig. 1a). While
normative modeling has been increasingly adopted to chart normative
models of human brain development4,5, the cerebellum has rarely been
addressed in previous studies. Gaiser and colleagues’ new study fills the
gap in brain growth charts for the human cerebellum, providing a
valuable resource for studying cerebellar development and its genetic
and environmental underpinnings. Furthermore, by investigating the
subregional growth rates across the cerebellum, they reported anterior-
posterior growth trends, offering insights into an integrative picture of
human cerebellar and cerebral development. Finally, they demonstrated
the use of the growth charts in detecting cerebellar abnormalities,
underlining their potential for personalized neuroscience. Herein, we
further discuss the implications of these advances.

Integrating general principles of human brain growth
With the advent of large-scale cohort resources, human neuroscience
has demonstrated the intricate links between inter-individual

differences in brain and behavior6,7. These findings underline the
necessity of exploring the genetic and environmental factors under-
lying individual variabilities under the guidanceof generalprinciples of
neurodevelopment. However, current research on human brain
development disproportionately emphasizes the cerebral cortex,
often overlooking the cerebellum. This neglect hinders a deeper
understanding of how the cerebellum contributes to cognitive func-
tions and its association with various neurodevelopmental disorders,
not to mention exploring the cerebellum-cerebrum interactions and
their cognitive significance during the developmental process. Gaiser
and colleagues’ observations on cerebellar growth patterns provide
informative cues for integrating general principles of humancerebellar
and cerebral development.

Based on a recently proposed functional parcellation of the
human cerebellum8, Gaiser and colleagues investigated the growth
trajectories of gray and white matter density in each functional sub-
region from childhood to adolescence. Consistent with principles of
cerebral development, most cerebellar subregions showed a decrease
in gray matter density and an increase in white matter density during
this age range. Furthermore, they extracted the standardized age-
related coefficients of cerebellar growth from childhood to adoles-
cence for each functional subregion and correlated these growth
coefficients with the anterior-posterior spatial positions of the sub-
regions according to their centroids. They detected significant corre-
lations between the cerebellar growth coefficients of gray or white
matter density and the anterior-posterior positions of the subregions
for both females and males, providing new evidence for the anterior-
posterior growth gradient of the cerebellum9. Specifically, during this
age range, the developmental changes in the motor areas located
anteriorly in the cerebellum were significantly less than those in the
posterior cognitive areas, suggesting that the cognitive areas in the
cerebellum may mature later than the motor areas. This echoes the
potential intrinsic developmental gradient from sensorimotor to
association cortices in the human cerebral cortex10.

Previously, analyses of resting-state functional networks have
revealed two functional gradients that effectively characterize the
intrinsic cerebral cortical organization11, including the sensorimotor-
association gradient and the visual-somatomotor gradient (the prin-
cipal and secondary gradients in young adults, respectively). The
changes in cortical gradient patterns over different life stages have
been shown in subsequent studies12, indicating that the intrinsic
developmental sequence of the human cerebral cortex may follow the
gradient from sensorimotor to association cortices10. Functional gra-
dients for the intrinsic cerebellar organization have also been deli-
neated in young adults with similar approaches13, although their
relevance to development is rarely explored. By visualizing the dis-
tribution of growth coefficients for different functional subregions
along the first two cerebellar functional gradients, Gaiser and collea-
gues observed that the inter-regional differences in the growth
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coefficients appear to primarily follow the secondary functional gra-
dient from task-unfocused to task-focused processing (Fig. 1b). This
suggests that human cerebellar regions involved in task-focused pro-
cessing (e.g., the frontoparietal network) undergo a longer develop-
mental process than those involved in task-unfocused processing (e.g.,
motor areas and the default mode network). These observations on
cerebellar development align with findings in the cerebral cortex that

the frontoparietal network matures later than the sensorimotor cor-
tices but contrastwith the longer developmental processof the default
mode network. The inconsistency could be resolved by the interac-
tions between the frontoparietal and default mode networks during
development14. To sum up, Gaiser and colleagues’ findings shed new
light on unifying current knowledge about cerebellar and cerebral
growth patterns for a holistic picture of human brain development.
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Fig. 1 | The potential of charting normative models for human brain develop-
ment.Given a reliablemeasurement of the human brain, its growth can be charted
via normative models of brain development across different life stages (i.e., brain
charts) by leveraging large-scale, representative samples. These charts (a) offer key
insights into general patterns of brain development (b) and effectively condense

information on individual variabilities for deriving individual-level centile scores or
normative deviations (c). Brain charts are expected to serve as a better lens for
exploring the genetic and environmental underpinnings of population hetero-
geneity, offering valuable insights and benchmarks for broader neuroscience
research, and eventually becoming valid tools in personal healthcare.
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Charting individual variation for personalized neuroscience
Beyond examining the general patterns of cerebellar growth at the
population level, Gaiser and colleagues further illustrated the utility of
the established cerebellar normative models for benchmarking indi-
vidual variabilities across different ages/sexes, thereby precisely
detecting cerebellar abnormalities at the individual level. Specifically,
normative models capture higher-order statistics on sample distribu-
tions beyond the mean trajectories. With this prior knowledge on
sample distributions, normative models can serve as benchmarks for
deriving individual-level centile scores or normative deviations, ben-
efiting downstream analyses or new small-scale studies, which is
impossible for models focusing solely on mean statistics.

To fully realize the promise of establishing benchmarks through
normative modeling for not only general principles but also individual
variabilities, it is imperative to first obtain representative, reliable, and
valid measurements of individual variabilities15. Gaiser and colleagues
have put considerable efforts into approaching this promise. They used
a large-scale population-based longitudinal sample and carefully asses-
sed the sample’s representativeness and dropout patterns. They
employed advanced cerebellar imaging segmentation tools, including a
multi-atlas-based anatomical segmentation algorithm adaptable to dif-
ferent age groups, to improve the modeling of individual variabilities in
cerebellar morphology, and visually inspected each MRI scan to ensure
segmentation quality. To mitigate the gap between cerebellar morpho-
logical anatomy and functional activity patterns, they compared cere-
bellar growth charts under both anatomical and functional
segmentation andobserved complementary patterns. To investigate the
validity of the established cerebellar growth charts, they evaluated the
normative deviations of the cerebellum in a subpopulation of children
with autistic traits within the cohort. By revealing the heterogeneity of
cerebellarmorphology in the subpopulation, they reconciled previously
inconsistent findings on the cerebellar anatomy in autism spectrum
disorder, demonstrating the unique value of using these growth charts
to assess cerebellar normative deviations and understand their neuro-
pathological implications. Furthermore, Gaiser and colleagues also
mentioned the prospects of utilizing these charts to benchmark intra-
individual longitudinal changes, i.e., quantifying deviations of intra-
individual longitudinal trajectories relative to population trends (Fig. 1c).
Future studies that quantify intra-individual cerebellar growthwith these
charts will further validate their potential for personalized applications.

Concluding remarks
In summary, Gaiser and colleagues leveraged recently available
population-level MRI data on human brain development to study the
morphological growth of the cerebellum in youth. The studymarks an
essential step in advancing cerebellar neuroscience through the lens of
normative modeling and opens new avenues for exploring cerebellar
development in the field of neuroimaging. On one hand, their findings
on the cerebellar growth gradient suggest potential coordinated and
interactive principles between the human cerebellum and cerebrum
during the developmental process. These findings not only highlight
the importance of considering both cerebellar and cerebral growth in
future explorations but also provide solid evidence for the potential
rich rewards of studying cerebellar development. On the other hand,
they charted and released, for the first time, normative growth charts
of the humancerebellum fromchildhood to adolescence. These charts
provide reliable prior knowledge on both inter-individual and intra-
individual variabilities in cerebellar morphology during this age range,

promising to serve as a basic resource for personalized cerebellar
neuroscience research.
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