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BASALT refines binning from metagenomic
data and increases resolution of genome-
resolved metagenomic analysis

Zhiguang Qiu 1,2,22, Li Yuan2,3,4, Chun-Ang Lian 1,2, Bin Lin3, Jie Chen2,3,4,
Rong Mu1, Xuejiao Qiao1, Liyu Zhang1, Zheng Xu5,6, Lu Fan 7, Yunzeng Zhang8,
Shanquan Wang 9, Junyi Li 10, Huiluo Cao11, Bing Li 12, Baowei Chen13,
Chi Song 14,15, Yongxin Liu 16, Lili Shi2,17, Yonghong Tian 2,3,4, Jinren Ni 1,18,
Tong Zhang 19, Jizhong Zhou 20, Wei-Qin Zhuang21 & Ke Yu 1,2,22

Metagenomic binning is an essential technique for genome-resolved char-
acterization of uncultured microorganisms in various ecosystems but ham-
pered by the low efficiency of binning tools in adequately recovering
metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Bin-
ning Across a Series of Assemblies Toolkit) for binning and refinement of short-
and long-read sequencingdata. BASALTemploysmultiple binnerswithmultiple
thresholds to produce initial bins, then utilizes neural networks to identify core
sequences to remove redundant bins and refine non-redundant bins. Using the
same assemblies generated from Critical Assessment of Metagenome Inter-
pretation (CAMI) datasets, BASALT produces up to twice as many MAGs as
VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment
dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21
unique class-level prokaryotic lineages. Functional annotations reveal that
BASALT can retrieve 47.6% more non-redundant opening-reading frames than
metaWRAP. These results highlight the robust handling of metagenomic
sequencing data of BASALT.

Genome-resolved metagenomic analysis has led to major advances in
the identification of uncultured microorganisms1–3. Several large
initiatives have been launched to investigate the scope of microbial
diversity on planet Earth, such as the Earth Microbiome Project (EMP),
Marine Microbiome Initiative (https://imos.org.au/), and the Urban
Microbiome Initiative (https://www.humicity.org), which archived
petabase-scale metagenomic data available publicly. For example, the
EMP has generated more than 52,000 species level Metagenomic
Assembled Genomes (MAGs)4,5 from human6,7, freshwater8, marine9,10,
engineered environment11,12, and soil13,14 metagenomic data. However,
these findings only scratch the proverbial surface of the microbial
diversity likely to occur in nature because MAGs with high complete-
ness and low contamination (hereafter referred to as high-quality
MAGs) remain challenging to assemble from environmental samples.

However, this process is nevertheless critical for experimental advan-
ces, such as the isolation of uncultivated microorganisms, dissecting
novel metabolic or signaling pathways, quantitative determination of
metabolic capacity, and decoding microbial interactions15–20.

Binning is an essential step in genome-resolved metagenomic
analysis in which assembled contigs originating from the same
source population are clustered based on coverage, contig edges, or
tetra nucleotide frequencies (TNFs). However, mis-clustering of
contigs into a single bin, erroneously separating contigs from one
genome into multiple bins, or mis-sorting multiple genomes into
shared bins due to overlapping genomic sequence can result in
redundant, artificial, or contaminated bins that interfere with the
accuracy of downstream analyses21–23. In light of these issues, many
new binning24–27 and refinement tools28,29 have been developed to
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improve resolution in high-diversity environmental sequencing
data30,31. However, refinement methods based on the reassociation of
clustered sequences of single assemblies only use ~30% of sequen-
cing reads that can meet reassociation criteria, effectively further
reducing the reads usage capacity (thereafter binning efficiency) for
high-diversity environmental samples, such as soils4,32. To improve
the efficiency of data utilization, short-read sequences (SRS) and
long-read sequences (LRS) data can be combined33,34 in hybrid
assembly exercises35. However, no tool is currently capable of inte-
grating both SRS and LRS data in the post-binning calibration of
assembled bins and complementation of genome gaps (i.e., refine-
ment), which could potentially maximize the number of allowable
reads while improving the quality of recovered genomes.

Here, we introduce BASALT, a toolkit for efficient and high-
resolution recovery of nonredundant bins from short- and long-read
metagenomic sequencing datasets. BASALT can also be used to refine
bins from multiple datasets based on neural network, correlation
coefficients, and reiteration algorithms to maximize binning efficiency.
In a proof-of-concept demonstration with CAMI benchmarking
datasets31, binning with BASALT recovers more and higher-quality
MAGs than other leading toolkits. Subsequent analysis of short-read
metagenomic sequencingdata fromsediment samples of Aiding Lake, a
previously uncharacterized inland saline lake in the northwest of Xin-
jiang Province, China, recovers ~30% more MAGs than metaWRAP
(Supplementary Fig. 1). BASALT is available as an open-source Python
program on GitHub (https://github.com/EMBL-PKU/BASALT).

Results
Overview of the BASALT workflow
BASALT is a binning–post-binning refinement tool that reconstructs
nonredundant and high-quality Metagenomic Assembled Genomes
(MAGs) frommetagenomic sequencing data by conducting automatic
mapping, binning, and post-binning refinements. To efficiently
increase the reads usage capacity and number of high-quality MAGs,
the Automated BinningModule performs the initial steps, using either
multiple single assemblies (SA) or/and co-assemblies (CA)36 generated
from short-read sequences (SRS) or a mix of SRS and long-read
sequences (LRS) as input. For this function, multiple binners are
applied, each at multiple thresholds, to increase the number of bin
outputs. Second, the Bin Selection Module identifies core sequences
from corresponding bins. This module was developed incorporating
the concept of coverage correlation coefficient (CCC), which uses an
interquartile range (IQR)-based algorithm tocalculate contig coverage.
These core sequences are further evaluated by the neural network to
facilitate the identification and removal of redundant bins generated in
the first step. Core sequences are further implemented in the Refine-
ment Module to remove outlier sequences and retrieve un-binned
sequences, including multi-copy genes from assembled contigs pool.
This module, which also relies on the tetranucleotide frequency (TNF)
of each bin, is designed to improve bin completeness and purity. In
order to ensure the highest possible MAG quality, the BASALT Gap
Filling module implements restrained Overlap–Layout–Consensus
(rOLC), accompanied by a de Brujin graph algorithm, to reassemble
genomes37. The workflow and detailed methods are illustrated in Fig. 1
and explained in detail in “Methods”.

Using a high-performance computer workstation (AMD Ryzen
Threadripper 3970X@ 3.7GHz, 32 cores, and 256GBmemory), hybrid
assembly of the CAMI-high dataset (SRS + LRS) using OPERA-MS34

required 35.1 h to complete without polishing, but took another 187.4 h
for polishing. Notably, long-read polishing in the hybrid assembly pro-
cess needed a significant amount of time, and hence subsequent ana-
lyses were performed without long-read polishing by OPERA-MS. Using
unpolished assemblies, BASALT spent 12.7 h (real time) to finish the
Automated Binning and Bin Selecting Modules, 7.8 h to finish the

Refinement Module, and 20.8 h to finish Gap Filling module (Supple-
mentary Fig. 2A).

BASALT generates high-quality MAGs from a benchmarking
dataset
To evaluate the binning efficiency of BASALT, Critical Assessment of
Metagenome Interpretation (CAMI)31 that comprises syntheticmicrobial
genomedatawas selected as benchmarking datasets. UsingOPERA-MS34

to generate hybrid assemblies from the CAMI dataset (CAMI-high, 596
genomes), BASALT recovered 392 nonredundant bins spanning 596
benchmarking genomes (Supplementary Data 1). Using an in-house
script (see “Methods”) based on average nucleotide identity (ANI) to
calculate bin completeness and contamination for comparison with
benchmark genomes, BASALT recovered 62.2% of bins (371/596) at
baseline quality (completeness ≥35 and contamination ≤20) compared
to the gold standard genomes, including 89.8% (333/371) of
metagenome-assembled genomes (thereafter MAGs) that met MIMAG
standards (completeness—5 * contamination ≥50, thereafter quality
≥50)38,39 in the final output (Fig. 2a–c).

Assessment of non-coding RNAs (ncRNAs, i.e., rRNA and tRNA) in
the recovered bins showed that, among the 371 bins, 5 S, 16 S, and 23 S
rRNA reads were found in 91.5%, 59.4% and 74.6% of bins, respectively,
whereas 24.5% of bins contained all three types of rRNA sequence
(Fig. 2d). In the detection of tRNA genes encoding 20 standard amino
acids, 368 of the recovered bins contained tRNA reads, with an average
of 18.32 ± 0.12 standard amino acids per bin, including 94% of bins that
had ≥15 amino acids (Fig. 2e).

To test the effectiveness of each module in post-binning steps, we
assessed the completeness, contamination, and quality of each recov-
ered bins processed by the Bin Selection, Refinement and Gap Filling
modules, respectively. Overall, an average increase of 5.26% was found
in completeness, while contamination was reduced by 3.76% (a 13.7
overall increase in quality) after refinement, compared with that after
Bin Selection. These results indicated that the core sequence extraction
method was effective in both outlier removal and Sequence Retrieval
steps (Fig. 2f). Comparisonof outputs between the Refinement andGap-
filling modules showed a 2.92% average increase in completeness and
3.06% reduction in contamination (overall 13.28 quality increase) after
Gap Filling. This finding suggested that the combined rOLC plus de
Brujin graph reassembly process was robust, consistent with bin opti-
mization (Fig. 2f). Following the Refinement and Gap Filling modules,
the number of high-quality bins was also obviously increased (com-
pleteness ≥90 and contamination ≤5) (Fig. 2a, c), suggesting that each
BASALT module could generate more high-quality genomes than the
previousmodule. Collectively, these results indicated the high quality of
the recovered bins and the efficient recovery of genomes by BASALT.

BASALT recovers more and higher-quality MAGs from Bench-
marking datasets than other binning tools
To further assess the performance of BASALT in assembling genomes
from metagenomic data, we used the CAMI benchmarking dataset to
compare the outputs of BASALTwith twobinning pipelines: DASTool40

and metaWRAP29, and a recently developed binner VAMB27. Overall, a
total of 352 MAGs were obtained by all four toolkits together, 168 of
which were shared by all four platforms. By contrast, BASALT recov-
ered 69 MAGs that were absent among those generated by the other
tools (Fig. 3a). In addition, a comparison of shared MAGs showed that
bins produced by BASALT had significantly higher completeness and
lower contamination than the same bin produced by the other tools,
resulting in significantly higher quality (Kruskal–Wallis test, P < 10−7,
Fig. 3b and SupplementaryData 2). Pairwise comparison ofMAGsdelta
values, which indicate bin quality, between BASALT and other tools
further revealed that MAGs generated by BASALT had ~9.6-, 14.6-, and
6.1-fold higher delta values than the corresponding MAGs produced
by VAMB, DASTool, or metaWRAP, respectively (Fig. 3c and
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identify outlier sequences. Then, a sequence retrieval step connects and reiterates
un-binned inliers from the SR and LR contig pools via pair-end (PE) or long-read
tracking, resulting in refined bins. Reads that successfully mapped to the refined
bins are further polished to generate polished bins. rOLC is then conducted by
overlapping refined/polished bins with corresponding redundant bins before
reassembly is conducted with both SRS and LRS. Reassembled bins are further
polished, followed by another round of rOLC to produce the final bin-set. Blue
frame: automated binning module; red frame: bin selection module; green frame:
refinementmodule; purple frame: gap-fillingmodule. +LRS indicates that long-read
sequencing data can be used at this step. CSI core sequence identification, OR
outlier removal program, rOLC restrained overlap–layout–consensus program.
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Supplementary Data 2). In addition, BASALT analyses produced 54.8%,
52.8%, and 26.1% more MAGs than VAMB, DASTool, and metaWRAP,
respectively (Fig. 3d and Supplementary Data 2), due in large part to
the emphasis on bin refinement in BASALT. Notably, this refinement
feature not only led to the recovery of more total MAGs but alsomore
high-quality MAGs, with BASALT yielding 128%, 259%, and 102% more
genomes with quality scores ≥90 than VAMB, DASTool, and meta-
WRAP, respectively (Fig. 3d).

We assessed the time effort combined with MAG output using
VAMB,DASTool, andmetaWRAP, respectively, aswell as BASALT at each
module. Overall, VAMB, DASTool, metaWRAP, and BASALT spent 4.6 h,
9.2 h, 29.7 h, and 41.3 h to finish the entire procedures, respectively,
while BASALT spent a shorter time to finish up to Refinement Module
(20.5 h) thanmetaWRAP (29.7 h)with betterMAGyields (Supplementary
Fig. 2A). In addition, BASALT MAGs mapped 64.9%, 72.2%, and 77.6% of
raw sequencing readswhen finishing Bin Selection, Refinement, andGap
Filling modules, respectively, whereas VAMB, DASTool, and metaWRAP
generated MAGs mapped 61.8%, 49.6%, and 69.0% of raw sequencing
reads, respectively (Supplementary Fig. 2B). These results suggested that
BASALT had higher read usage efficiency than other tools.

To further evaluate BASALTefficiency inprocessing different types
of assemblies, BASALT was compared with other tools in processing
CAMI-high andCAMI-mediumSRS datasets co-assembled using SPAdes
andMEGAHIT.We found that binning efficiencywas significantly higher
with BASALT than other binning tools, resulting in a higher number of
nonredundant, high-quality MAGs than other leading tools (Supple-
mentary Figs. 3 and 4 and Supplementary Data 3). Overall, these find-
ings suggested that BASALT can produce more MAGs with better
quality than other tools, regardless the microbial diversity (low or
moderate in this case) or input assembly types.

BASALT genome retrieval from high-diversity environmental
samples
To further test the quality of BASALT binning and genome extraction
in high microbial diversity environmental samples, we analyzed four
metagenomic samples obtained from Aiding Lake sediments. Non-
pareil curves showed that the diversity of Aiding Lake sediment sam-
ples was higher than that in the CAMI-high dataset, and close to that in
soil samples (Supplementary Fig. 5)41, suggesting that the Aiding Lake
sediment samples contained a highly complex microbial community.
As Aiding Lake sediment samples only contained SRS, we further
supplemented nine datasets, including four datasets with both SRS
and LRS, and five PacBio High-Fidelity (HiFi) datasets, to assess the
performance of BASALT on real samples. The four SRS + LRS datasets
comprised a subset dataset from human gutmicrobiome (ten Illumina
SRS samples, 204GB in total, ten Oxford Nanopore (ONT) LRS sam-
ples, 113.6 GB in total)42, a subset dataset from marine plankton
microbiome (four Illumina SRS samples, 263.8 GB in total, and four
Pacbio LRS samples, 91.6 GB in total)43, a dataset from activated sludge
microbiome (two Illumina SRS samples, 245.6GB in total, and three
ONT samples, 105.8GB in total)44, and a dataset from Antarctic soil
microbiome (one Illumina sample 67.2 GB, oneONT sample 83.5GB)45.
The five PacBio HiFi datasets comprised a human gutmicrobiome (five
samples, 182.6 GB in total)46, a sheep gut microbiome (one sample,
92.1 GB)47, a chicken gut microbiome (three samples, 366.8 GB in
total)48, a hot spring sedimentmicrobiome (one sample 53.2 GB)49, and
an anaerobic digester microbiome (one sample 28.6 GB)50. Details of
the above datasets were provided in Supplementary Data 9.

Using SRS assemblies, BASALT produced 557 nonredundant
MAGs (completeness = 80.8% ± 12.57%, contamination = 1.45%± 1.44%,
quality = 73.2 ± 12.38) from Aiding Lake sediment samples, including
155 high-quality MAGs (completeness ≥90%, contamination ≤5%),
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checked using CheckM51. Based on our above results showing meta-
WRAP could generate more and higher-quality MAGs than VAMB and
DASTool in CAMI-high data, we used metaWRAP for comparison with
BASALT in genome extraction from Aiding Lake samples. We found
that processing with metaWRAP yielded 392 nonredundant MAGs
(completeness = 71% ± 13.2%, contamination = 2.4% ± 1.4%, quality =
58.9 ± 12.4), including 79 high-quality MAGs. Among the MAGs pro-
duced by BASALT and metaWRAP, 320 were determined to be iden-
tical based on ≥99% ANI and ≥60% alignment fraction (AF). In
comparison between MAGs produced by BASALT and metaWRAP,
BASALT obtained 96% more high-quality MAGs than metaWRAP
(Supplementary Fig. 7 and Supplementary Data 10). Among shared
MAGs, BASALT could also produce higher-quality MAGs than meta-
WRAP (Supplementary Fig. 8A). Similar results were also obtained
from the other nine real sample datasets (see details in Supplementary
Notes). Among non-identical MAGs, BASALT produced 237 unique
MAGs, while metaWRAP produced 72. Furthermore, analysis of

average coverage for each MAG revealed that BASALT could produce
significantly more bins at lower coverage than metaWRAP
(Kruskal–Wallis test, P < 2.2 × 10−16), with quality scores ranging from
50 to 90 for low coverage MAGs (average coverage <10) (Fig. 4a and
Supplementary Data 4). These results suggested that BASALT could
also recover low-abundance genomes from different types of samples,
including highly complex communities.

BASALT expands opening-reading frame annotations
from MAGs
To evaluateMAGs obtained fromAiding Lake sediments using BASALT
or metaWRAP, we next performed ORF prediction in all MAGs
obtained by each toolkit (Fig. 4b and Supplementary Data 4). While
941,662 ORFs were identified in metaWRAP MAGs, a total of 1,466,017
ORFs were predicted in BASALT MAGs, a 47.6% increase compared to
metaWRAP. In addition, the rate of unclassified ORFs (31.6%) was
higher in BASALT than in metaWRAP ORFs (30.6%), suggesting that
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ference≤1, light blue) quality scores.dNumberofMAGs recovered fromCAMI-high
dataset using DASTool (MaxBin2, CONCOCT, and MetaBAT2, MCM), VAMB,
metaWRAP (MCM), or BASALT. Bar colors from light to dark indicate increasing
MAG quality scores. The boxplot shows the distribution of data, the central dot in
the box represents the median, the box bounds represent the 25th and 75th per-
centiles, and whiskers represent the minima to maxima values.
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BASALT could recognize slightlymore putative functions in the Aiding
Lake sediment metagenomic data. Among the shared MAGs, BASALT
had 36,939 (4.7%) more ORFs than metaWRAP (Fig. 4b and Supple-
mentary Data 4), further supporting the higher resolution of BASALT
analysis. Similarly, moreORFs were also identified in BASALTMAGs on
marine and human gut datasets compared to metaWRAP MAGs,
regardless the MAGs were shared or unique (see details in Supple-
mentary Notes).

In the context of metabolic pathways in Aiding Lake MAGs, 13
complete modules from 18 MAGs were unique to BASALT, including
photosynthesis, biosynthesis of secondary metabolites, biosynthesis
of terpenoids and polyketides, degradation of aromatic compounds,
antibiotic resistance, and cationic antimicrobial peptide (CAMP)
resistance (Fig. 4c and Supplementary Data 5). This finding suggested
that BASALT had a higher capacity for acquiring complete modules
from complex metagenomic data than metaWRAP.

BASALT identifies class-level microbial lineages undetectable
with other tools
To identify the taxonomy of MAGs obtained from Aiding Lake sedi-
ments using BASALT or metaWRAP, The 557 MAGs produced by
BASALT and 392 MAGs by metaWRAP were annotated by searching
against the Genome Taxonomy Database (GTDB)39. MAGs obtained
from BASALT revealed the presence of 54 phyla (46 bacterial and 8
archaeal). The bacterial MAGs were mainly distributed in Patesci-
bacteria, Acidobacteriota, Proteobacteria, Myxococcota, Desulfo-
bacterota clade, PVC, FCB and Terrabacteria clades, while archaeal
MAGs spanned the Halobacteriota, Asgardarchaeota, Thermo-
plasmatota, Thermoproteota, TACK and DPANN clades (Fig. 5 and
Supplementary Data 6). However, 54.6% bacterial (258 MAGs) and
54.1% archaeal (46 MAGs) could not be assigned to any known genera
in the GTDB, suggesting that Aiding Lake sediments might contain a

preponderance of uncharacterized genetic material. MAGs obtained
from metaWRAP comprised 45 phyla (37 bacterial and 8 archaeal),
whichwere all covered by BASALTMAGs. Notably, nine bacterial phyla
were uniquely found in BASALT MAGs, including Deinococcota,
Desulfobacterota_B, FEN-1099, Firmicutes_E, Fusobacteriota, Sumer-
laeota, UBA3054, UBA6262, and UBP6. At lower taxonomic levels, a
total of 21 bacterial classes and 2 archaeal orders were exclusively
detected among BASALT MAGs (Fig. 5 and Supplementary Data 6),
with the completeness of these MAGs ranged from 50.93 to 96.80%
(mean= 73.42%), and the contamination ranged from 0 to 4.47%
(mean= 1.29%) (Supplementary Data 8). Eleven of these 21 classes
exclusive to BASALT were unclassified or phylogenomically close to a
tentatively assigned class, suggesting that BASALT was capable of
screening new lineages at high taxonomic levels from these sequen-
cing data. Two MAGs from phyla Margulisbacteria and Cyanobacteria
were obtained uniquely by BASALT inmarine datasets (Supplementary
Fig. 10), while lineages obtained uniquely by BASALT were underclass
level in human gut datasets (Supplementary Fig. 11). In summary,
BASALT was capable of acquiring more MAGs, as well as more MAGs
from different taxonomic groups than metaWRAP, from the same
dataset, suggesting the potential to substantially expand the scope of
distinct branches in the tree of life.

In these data, we identified 174 MAGs that were closely related to
the phylum Patescibacteria (also known as candidate phyla radiation/
CPR superphylum) and the archaeal superphylum DPANN, among
which92.6% (101/109) of the PatescibacteriaMAGs and 100% (65/65) of
the DPANN MAGs could not be assigned or were assigned to a candi-
date family. Functional analysis at the ORF level revealed the presence
of specific pathways that were rarely reported in previous studies. For
example, we found two archaeal MAGs in phylum Nanoarchaeota that
possessed putative CAMP resistance modules. In addition, two MAGs
classified as genus Prometheoarchaeum (class Lokiarchaeia, phylum
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Fig. 4 | Comparison of MAGs obtained by BASALT vs. metaWRAP from Aiding
Lake sediment samples. a Boxplot of bin coverage (top) in BASALT unique MAGs
(red, n = 237), metaWRAP unique MAGs (cyan, n = 72), and shared MAGs (blue,
n = 320). Benjamini–Hochberg adjusted P values were calculated by the Dunn test.
Significant differences between MAGs unique to BASALT and MAGs unique to
metaWRAPwere determined by P = 7.49 × 10−9. Breakdown of the number of MAGs
in bin coverage (log10 transformed, second from top). Number of MAGs at each
level of quality (lower right), and Scatter plot of MAGs quality and coverage (lower
left). MAGs were unique to BASALT (red) or metaWRAP (cyan) with ANI ≥99% and
AF≥ 60% (blue). The average relative abundance of MAGs from BASALT was sig-
nificantly lower than those frommetaWRAP, and lower-coverageMAGswereevenly

distributed across the range of MAG quality scores, indicating that BASALT could
more effectively recover MAGs with lower coverage at any genome quality. The
boxplot shows the distribution of data, the central dot in the box represents the
median, the box bounds represent the 25th and 75th percentiles, and whiskers
represent the minima to maxima values. b Summary of ORFs predicted in MAGs
obtained by BASALT (red) or metaWRAP (cyan). c Modules only found in BASALT
with corresponding MAGs. Green: photosynthesis; orange: biosynthesis of sec-
ondary metabolites; purple: degradation of aromatic compounds; pink: biosynth-
esis of terpenoids and polyketides; blue: antibiotic resistance; red: cationic
antimicrobial peptide (CAMP) resistance.
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Asgardarchaeota) were also observed in these samples, which have
only been reported to date in marine samples. These analyses cumu-
latively provide a proof-of-concept demonstration of the high-resolu-
tion/high-quality/metagenomic sequence analysis with BASALT, and
reveal the depth of complexity that has been likely overlooked with
previous computational tools.

Discussion
In this study, we demonstrated the use of BASALT for obtaining more
and higher-quality genomes from low diversity or high-complexity
whole-metagenome sequence data compared with other widely used
toolkits. In particular, higher bin quality produced by BASALT enabled
more bins obtained at MAG level than other tools, not only in low-
abundant genomes but across all coverage levels, resulting in phylo-
genies contained more branches at all taxonomic levels (Figs. 4 and 5
and Supplementary Data 4). More importantly, the increase in binning
efficiency suggests that information is extracted from the sequencing
data,whichwill not only improve analyses of new sequencing data, but

will also facilitate more rigorous re-analyses of published datasets and
publicly available binned data. BASALT also increases the usage effi-
ciency of low-abundance reads by integratingmultiple inputs of single
assemblies and/or co-assemblies, enabling the recoveryof high-quality
genomes from low coverage, high-complexity community
samples4,32,52. In addition to binning and post-binning refinement,
BASALT contains additional functions that enable the processing and
management of inputs from different stages of processing, including
raw sequences, contigs, unpolished bins, and even polished bins,
which enables dereplication and refinement of binsets generated by
other tools (see details in Supplementary Notes). Overall, these results
suggest that BASALT performs better than metaWRAP and similar
tools in highly complex samples, which could, to some extent, reduce
the burden of data processing reported in the EMP project4. Future
development of BASALT could see the extension of input data types
beyond the short-read or long-read sequencing data, to accommodate
emerging technologies, such as DNA stable isotope probing (SIP)53, Hi-
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C47, Pore-C54, and single-cell assembled genomes (SAGs)55, among
others, for targeted analyses.

For this proof-of-concept study, the CAMI datasets were selected
instead of the newer CAMI II challenge datasets because of the higher
microbial diversity in CAMI-high data compared to CAMI and CAMI II
datasets56 (Supplementary Fig. 5). The lower diversity CAMI-medium
dataset was used for comparison31,57. Furthermore, we processed
metagenomic data from Aiding Lake sediments with BASALT to
demonstrate its analytical power in high-complexity samples (Sup-
plementary Fig. 5), comparable with soil samples58, since no such high-
diversity benchmarking datasets are currently available in public
databases. Accuracy is essential to draw robust conclusions from
metagenome data, and such assessment tools are available to assess
the quality of processed metagenomic data31,51,57,59. However, bench-
mark datasets, e.g., gold standard assemblies simulated by CAMISIM60,
published specifically for this purpose could not be implemented in
our study because it does not reflect actual assembly quality, only the
potential quality under ideal conditions27. In this study, we used
assemblers such as SPAdes, MEGAHIT, and Opera-MS, to produce
contigs instead of gold standard (i.e., simulated) assemblies. In addi-
tion, we developed a custom script (detailed in “Methods”) for asses-
sing MAG quality. This script utilizes genome ANI against
corresponding reference genomes from the CAMI project. Our
approach deviates fromusing AMBER61 as the assessment tool because
of AMBER’s limitation to the gold standard simulated assemblies,
which are not representative of most metagenomic analyses derived
from environmental samples. For the environmental samples,
CheckM51 has been used to evaluate MAG quality based on the pre-
sence of taxonomic marker genes in the absence of a reference gen-
ome. Furthermore, we have integrated CheckM262, amachine learning-
enhancedquality assessment tool intoBASALT. This implementation is
particularly pertinent for the analysis of HiFi datasets, ensuring
BASALT’s outputs are comparable with that of the MAG-HiFi pipeline
(https://github.com/PacificBiosciences/pb-metagenomics-tools).
Despite the advent of CheckM2, CheckM is still considered as a major
software predominantly used for quality assessment in most of the
studies4,7,30,55,63,64. Consistent with this widespread usage, and to
maintain comparability with the metaWRAP pipeline, CheckM was
utilized for quality assessment of the remaining real sample datasets in
our study.

In addition to validating the toolkit, BASALT was also used in
this work to recover a large number of genus-level, unclassified MAGs
from lake sediment samples, including some recently discovered
lineages such as Patescibacteria and DPANN (Fig. 5). The reported
genomes of Patescibacteria and DPANN are both relatively small,
with characteristically incomplete metabolic functions typical of
microbial symbionts63,65. Interestingly, we found two MAGs in phylum
Nanoarchaeota with putative CAMP resistance modules. Although
these two MAGs have not reached 90% of completeness (81.07% and
89.25%, respectively), their low contamination rates (0.47% and 0.93%,
respectively) suggested that annotated genes in these twoMAGs were
possibly originated from their own genomes. Archaea are known to be
insusceptible to a wide range of antimicrobials66,67, and previous stu-
dies mainly found that some archaeal microorganisms could produce
CAMP-like peptides68,69, the presence of a CAMP resistance module
might be redundant per se. However, it might represent a key factor
enabling symbiosis with microalgae or other eukaryotes, which needs
further exploration. Overall, BASALT analysis further expanded our
understanding of the evolution and ecology of these microbes and
their interaction partners as part of the so-calledmicrobial darkmatter
in the tree of life70–73.

Furthermore, this analysis uncovered two previously undocu-
mented Lokiarchaeia genomes in Aiding Lake sample sediments,
belonging to the recently designated Asgardarchaeota phylum,
which is putatively linked to the origin of eukaryotes74. To date,

candidate Lokiarchaeia genomes have all been recovered from deep-
sea hydrothermal vent and marine sediment ecosystems74–79.
Although one recent study reported finding candidate Lokiarchaeia
in brackish lakes connected to the Black Sea80, to our knowledge,
these genomes represent the first members of phylum Lokiarchaeia
detected in deep inland, non-marine samples. Previous genomic
analyses of Lokiarchaeia and other candidate Asgardarchaeota
species17,77,78,81,82 have suggested that candidate Lokiarchaeia are
likely adaptive to different marine environments through various
metabolic pathways, such as lignin or protein degradation. Based on
the relative isolation of Aiding Lake, it would be interesting to
explore how these candidate Lokiarchaeia species were introduced
or evolved to persist in the saline conditions of this inland saline lake,
in comparison with other reported candidate Lokiarchaeia MAGs.
Future comparison with MAGs/isolates from other geographically
distinct niches will help to resolve the evolutionary history and sur-
vival mechanisms of these organisms.

Methods
Overview of BASALT
BASALT is a binning and post-binning bioinformatics tool that
recovers, compares, and optimizes assembled genomes across series
of assemblies generated from short-read, long-read, or hybrid plat-
forms to produce high-quality MAGs. Although BASALT can function
with only a single metagenomic dataset, the overall bin quality
including MAG quality can be improved using multiple datasets
and assemblies as inputs36,83. A set of nine programs, designed
in-house, work in concert to carry out functions including Auto-bin-
ning, Bin selection, Best-bins grouping, Core Sequence Identification,
Outlier Removal, Sequence Retrieval, Polishing, Restrained
Overlap–Layout–Consensus (rOLC), and Reassembly (Fig. 1). These
functions are packaged into four modules: Automated Binning, Bin
Selection, Refinement, and Gap Filling.

BASALT is a command line software compiled in Python
3.0 scripts, with each of the above modules containing one or more
algorithms/programs. As an automated tool running with a single
command line interface, checkpoints in each BASALT module allow
users to stop and restart at any checkpoint as needed. In addition, each
module can be executed individually, enabling users to customize the
preferences as appropriate for their specific dataset(s). Further details
regarding the code and tutorials are available atGithub (https://github.
com/EMBL-PKU/BASALT).

Automated binning
By importing multiple metagenomic assemblies, BASALT calculates
coverage by mapping raw sequence reads to the assembled contigs,
then performs automated binning using multiple prominent binning
tools, such as MetaBAT2, Maxbin2, and CONCOCT24–26, etc., each set
with multiple thresholds, to generate the initial binsets. Since binning
with multiple binners and each with multiple thresholds may generate
redundant bins84, a Bin merging program is implemented to merge
clustered contigs from potential redundant bins (identified by com-
prising same contigs) into a hybrid bin. Merged contigs in each hybrid
bin are then dereplicated to generate hybrid binsets. A full list of
available binning tools is provided in Supplementary Data 7.

Bin selection
The Bin selection module is separated into two programs: Best-bins
grouping and Core sequence identification (CSI). In the Best-bins
grouping program, ANI is first calculated between each bin pair in the
hybrid binsets. Bins at ANI ≥ 99% and AF ≥ 50% are grouped for further
bin dereplication.

In the CSI algorithm, contig coverage is then calculated for each
bin, after which a core coverage value ðxiÞ is calculated for each bin

Article https://doi.org/10.1038/s41467-024-46539-7

Nature Communications |         (2024) 15:2179 8

https://github.com/PacificBiosciences/pb-metagenomics-tools
https://github.com/EMBL-PKU/BASALT
https://github.com/EMBL-PKU/BASALT


using Eq. (1):

Q1� k IQRð Þ< xi <Q3 + k IQRð Þ, ð1Þ

in which Q1 and Q3 represent the 25th and 75th percentiles of all
contigs, respectively, with IQR (interquartile ranges) calculated by
Q3–Q1; xi represents the core coverage value range; and k represents a
constant for estimating IQR range, while BASALT performs core con-
tigs identification with k value at 0.

Core sequences in eachbin that fall within the core coverage value
range, xi, are considered inliers, while sequences falling outside the xi

range areoutliers. To identify redundant bins, inliers for a given bin are
pairwise aligned and compared within groups sorted by the Best-bins
grouping program. In addition, a subset of inlier pairs that meet both
the ANI ≥ 99% and length ≥1000bps thresholds are further compared
to determine the depth normalization ratio, �X , calculated by Eq. (2):

�X =
1
n

Xn

i = 1

covp:inlierA1i
covp:inlierA2i

, ð2Þ

In this formula, A1 and A2 represent the paired bins (e.g., Bin A1
and Bin A2); n represent the number of inlier pairs that meet the
ANI ≥ 99% and length ≥1000bps thresholds; and covp:inlierA1i represent
the coverage of a paired inlier sequence from Bin A1. While it is less
likely that no inlier sequence pairswill be detected between two bins at
ANI ≥ 99% and AF ≥ 50%, BASALT will retain both sequences as a non-
redundant bin in this situation (Fig. 1).

Based on the depth normalization ratio, �X , normalized average
inlier coverage of Bin A2 can be then calculated by multiplying �X with
the average inlier coverage of Bin A2, which is comparable with Bin A1.
The delta coverage (Δ) between Bin A1 and Bin A2 is obtained by
calculating the difference in average coverage of all inliers (including
paired and unpaired inlier sequences) using Eq. (3):

Δ= jμinlierA1 � �X � μinlierA2j, ð3Þ

in which, μinlierA1 represents the average coverage of all inlier sequen-
ces inBinA1, whileΔ <w indicates redundant bins,withw representing
the threshold value trained by neural networks with multiple fully
connected layers to distinguish absolute differences of average cov-
erage (Δ). Details of the architecture of neural networks, loss function
and model ensemble are available in Supplementary Methods. Finally,
redundant bins are removed, while nonredundant bins are retained for
further processing with the Refinement module.

Refinement
The BASALT refinement module contains two programs: Outlier
Removal (OR) and Sequence retrieval (Fig. 1), as well as a Polishing
program for use with LRS data. The OR algorithm effectively removes
contaminated sequences but avoids the simultaneous removal of
multi-copy sequences from selected bins. Nonredundant bins are first
assessed by twoparameters to identify outlier contigs: tetranucleotide
frequency (TNF) and coverage correlation coefficient (CCC). While
TNF is widely used in microbial genomics studies85, CCC can also be
informative, calculated as the ratio of coverage values between input
datasets using Eq. (4):

CCCab = cova=covb, ð4Þ

In this equation, cova and covb are the coverages of a given contig
in datasets a and b, respectively. The CCC value of a contig is then
calculated as a series of values for each pairwise comparison between
datasets. Both core TNF and CCC are obtained following the core
coveragemethod (Eq. (1)), while amultidimensional IQR is determined

using the k value at 0, 0.5, 1, 2. Outlier sequences are then identified
and removed to generate outlier-depleted bins (ODBs).

The un-binned sequences, including multi-copy genes that were
potentiallymis-assigned in the initial binning, are then retrieved by the
Sequence Retrieval tool, which was designed to retrieve both un-
binned short-read and long-read inlier contigs from the contigs pool,
as previously assessedbyOR.These inliers are then connected toODBs
via pair-end (PE) tracking86. Multiple iterations of contig connections
are then performed to accommodate new inlier sequences in order to
connect these sequences to bins refined in previous iterations. The
iteration process is terminated when no new sequences can be con-
nected to existingbins. To avoid generatingpotentially redundant bins
in this step, CSI is conducted again to ensure that the refined binsets
are nonredundant.

After sequence retrieval, the Polishing program is run to refine the
mapped reads from polished bins. The polishing process is performed
at this step to reduce computation time over that of polishing in the
hybrid assembly process because only reads that mapped to the
refined bins will be included in the analysis. Briefly, mapping is per-
formed using raw SRS and LRS with refined binsets to extract mapped
reads. Extracted sequences, especially LRS, are then polished using
Pilon (v1.23)87 through as many as ten iterations to correct sequence
errors. To extract more mapped reads, a second round of mapping is
then performed on polished bins using mapped reads from the
polished bins along with unmapped reads. The polishing program is
run for three cycles of polishing andmapping before running the gap-
filling module.

Gap filling
The BASALT Gap Filling module includes two restrained
Overlap–Layout–Consensus (rOLC) processes with a reassembly step
and a Polishing step in between, followed by a CSI step before the final
bin-set is produced. The rOLC algorithm is designed to retrieve
sequences not included in the BASALT binning and refinement pro-
cesses, and fill sequence gaps using SRS/LRS data. First, the inlier
sequences from redundant bins removed by CSI are reused after fil-
tering with OR. Then, using a threshold of length ≥300bp and ANI
≥99% for overlapping sequences, reads are overlappedwith target bins
in the Layout step, andmerged with target bins in the Consensus step.
To avoid filling contamination sequences into target bins, a restricted
algorithm is applied in the Layout step if an overlapping sequence is (1)
longer than target bin sequences at both ends, or (2) the length of a
gap-filled sequence is <105% of the summed target bin sequence(s)
length (Fig. 1). This strategy initially corrects long-read sequences by
replacing low-quality base-pairs with N, and then re-aligns the cor-
rected long reads from target bins with the original assembled
sequences to retrieve more assembled sequences that were not pre-
viously included in the original bins.

After running the rOLC program, mapping is performed again to
extract mapped reads from merged bins by Bowtie288, followed by a
reassembly step using two state-of-art assemblers: SPAdes and
IDBA89,90 (note that hybridSPAdes91 is used if LRS data are included).
The Polishing program is run at this step to polish newly clustered
reads generated in the rOLC and reassembly steps. Then, a second
round of processing with rOLC is performed at a more stringent
threshold overlap length of ≥500 bp and ANI ≥99% to further fill
genomic gaps. A final round of CSI is conducted to select the best
bin-set.

Sample collection, DNA extraction and sequencing
Saline lake sediment samples were collected in July 2018 from Aiding
Lake, located in an arid region in Turpan City, Xinjiang Uygur Auton-
omous Region (42°41'30“N 89°15'15“E). The map showing the location
of Aiding Lake was generated using Google Map (Supplementary
Fig. 1). Briefly, about 50 g of sediment samples (n = 4) were randomly
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collected at 0–10 cm depth in the lake and placed in sterile 50-ml
conical centrifuge tubes. Samples were immediately placed on dry ice
for transport to the laboratory and stored at −80 °C until further DNA
extraction was performed.

Genomic DNA (gDNA) was extracted from the frozen sediment
samples (~250mgdryweight per sample) using aDNeasyPowerSoil Kit
(Qiagen, Hilden, Germany), following the manufacturer’s instructions.
Extracted DNA was quality-checked by NanoDrop 2000 (Thermo
Fisher Scientific, Waltham, MA, USA) and quantified by Qubit Fluo-
rometer (Thermo Fisher Scientific). Quantity- and quality-checked
gDNA samples were sent to Novegene Co., Ltd, Nanjing, China for
shotgun metagenomics sequencing on the Illumina NovaSeq platform
(2 × 150bp paired end chemistry).

Sequence processing
To evaluate the efficiency of BASALT, standard Critical Assessment of
Metagenome Interpretation (CAMI) datasets, including low-
complexity (132 genomes, CAMI-medium) and moderate-complexity
(596 genomes, CAMI-high) synthetic communities, were downloaded
from (https://data.cami-challenge.org/participate)31. The rationale
for selecting these benchmark datasets was based on the complexity
of the synthetic communities compared to that of other CAMI
datasets (Supplementary Fig. 5). Specifically, the experimental design
used to generate the CAMI-high dataset included time-series sample
which aligned with environmental research scopes, and thus we
selected CAMI-high dataset for hybrid assembly to compare binning
efficiency among different tools, whereas strictly SRS assembly was
performed with the CAMI-medium dataset. Since LRS data was una-
vailable for the CAMI-high dataset, we simulated 50% of the CAMI-high
sequences usingCAMISIM60 asONT reads input to ensure a 2:1 SRS:LRS
dataset size ratio (SRS: 150 GB, 2 × 150 paired-ended; LRS: 75 GB, No.
contigs >1 kb: 1,945,842 ± 173.32, N50: 9,397.6 ± 2.42). To reflect the
actual data analysis process, rather than using the gold assembly
provided by CAMI, we used SPAdes (v3.14.1)89 to individually assemble
the simulated SRS reads into contigs in “–meta” mode, specifying
k-mer sizes of 21, 33, 55, 77, and MEGAHIT (v1.2.9)92, specifying k-mer
sizes of 79, 99, 119, 149, whichultimately generated contigs >1000 bps.
To improve binning performance in SRS-only analyses, reads
were further co-assembled using SPAdes and MEGAHIT with the
same assembly parameters as above. A hybrid assembly of the
CAMI-high dataset was co-assembled by OPERA-MS34 with/without a
polishing step.

To compare with other binners/toolkits, both short-read-
assembled and hybrid-assembled contigs were each processed
with DASTool, VAMB, metaWRAP, and BASALT. To verify the
accuracy of results obtained from the four binners/toolkits,
the redundancy, completeness, and contamination of MAGs were
calculated against that of standard CAMI genomes by aligning all
sequences from a test bin to the gold standard genome using an
in-house proprietary script, Bin_quality_evaluation.py, available on
GitHub (https://github.com/EMBL-PKU/BASALT). In addition, this
script also predicts ORFs and performs pairwise comparisons
between the gold standard assembled genomes and test bins to
detect contaminating ORFs. High-quality MAGs (completeness—
5*contamination ≥50%) were retained for further statistical ana-
lysis, while bins that did not meet this quality cut-off were
discarded.

BASALT and metaWRAP were individually used to process shot-
gun metagenomic sequences of Aiding Lake sediment samples, fol-
lowing the same procedure as that for CAMI-medium and CAMI-high
datasets (SRS-only) above. MAG completeness and contamination
were then estimated using CheckM version 1.1.351 with lineage-specific
marker genes and default parameters, with only high- and medium-
quality MAGs (completeness—5*contamination ≥50%) retained for
further analyses.

Functional annotation
Opening Reading Frames (ORFs) of MAGs were predicted using Pro-
digal (v2.6.3) with default parameters93, before annotation with Dia-
mond (v2.0.11.149)94, in “more-sensitive” mode, based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and NCBI-NR databases,
at an e value cut-off of 1e-15.

Phylogenetic analysis
The GTDB-Tk v1.5.095 program was used to assign taxonomic classifi-
cations to the MAGs (release r202). Phylogenetic analyses were con-
ducted for MAGs from both studies using IQ-TREE296 with best-fit
model. Phylogenetic trees were visualized and edited in the iTOL v6
(https://itol.embl.de) online platform97.

Statistical analysis and data visualization
Data organization and formattingwere conducted using the R package
“dplyr”. Statistical analysis was conducted using the “vegan”, “stats”
and “FSA” R packages. Data visualization was performed using the R
packages “ggplot2” and “venn”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CAMI benchmarking datasets are available at CAMI Challenge
(https://data.cami-challenge.org/participate). The test genomes data
generated in this study have been deposited in the CNCB-NGDC
database (https://ngdc.cncb.ac.cn/) under accession code
PRJCA014711. The metagenomic sequence data of Aiding Lake are
deposited in the CNCB-NGDC database under accession code
PRJCA014712. The accession codes of real datasets from other studies
used in this study are downloaded from ENA sequence archive,
including PRJEB52999 and PRJEB48021; NCBI sequence archive,
including PRJNA820119, PRJNA648801, PRJNA681475, PRJNA750084,
PRJNA595610, and PRJNA748109; DDBJ sequence archive DRR290133.
Details of the sample accession codes are provided in Supplementary
Data 9. The other data generated in this study are provided in themain
text or the Supplementary Information.

Code availability
All BASALT codes, including in-house scripts for quality checking
against benchmarking datasets, are available at the GitHub repository
(https://github.com/EMBL-PKU/BASALT) and Zenodo (https://doi.org/
10.5281/zenodo.10653187).
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