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Shaping activematter from crystalline solids
to active turbulence

Qianhong Yang 1,4, Maoqiang Jiang2,4, Francesco Picano 3 & Lailai Zhu 1

Active matter drives its constituent agents to move autonomously by har-
nessing free energy, leading to diverse emergent states with relevance to both
biological processes and inanimate functionalities. Achieving maximum
reconfigurability of active materials with minimal control remains a desirable
yet challenging goal. Here, we employ large-scale, agent-resolved simulations
to demonstrate that modulating the activity of a wet phoretic medium alone
can govern its solid-liquid-gas phase transitions and, subsequently, laminar-
turbulent transitions in fluid phases, thereby shaping its emergent pattern.
These two progressively emerging transitions, hitherto unreported, bring us
closer to perceiving the parallels between activematter and traditionalmatter.
Our work reproduces and reconciles seemingly conflicting experimental
observations on chemically active systems, presenting a unified landscape of
phoretic collective dynamics. These findings enhance the understanding of
long-range,many-body interactions amongphoretic agents, offer new insights
into their non-equilibrium collective behaviors, and provide potential guide-
lines for designing reconfigurable materials.

Active matter represents a class of material systems comprised of
autonomous units capable of converting free energy into mechanical
work1,2. The collective motion of these units, mediated by their inter-
actions, can bring in fascinating self-organization, pattern formation,
and coherent activities3–5. Their emergence and maintenance are cru-
cial in biological systems6,7, inspiring the development of synthetic,
autonomous agents as the foundation for reconfigurable, functional
materials8,9. A key objective of designing such bio-inspired systems is
to maximize their reconfigurability with minimal control. Prior
research has demonstrated controlling activity to achieve either phase
change in active matter10,11 or laminar-turbulent transition in active
fluids12,13, but not both. Here, we find that remarkably, tuning the
activity of a phoretic medium alone can control its solid–liquid–gas
phase transitions and, subsequently, laminar-turbulent transitions in
fluid phases. Through large-scale, agent-resolved simulations, we
investigate suspensions of isotropic phoretic agents (IPAs) epitomized
by active droplets14–27 and camphor surfers28, explicitly resolving their
many-body hydrochemical interactions. Our dual consideration of

long-range hydrodynamic and chemical interactions enables not only
reproducing characteristic collective behaviors of IPAs observed in the
lab, but also reconciling seemingly divergent experimental observa-
tions—active crystallization or turbulence. The unified landscape of
phoretic collective dynamics is unattainable by resolving either the
hydrodynamic or chemical interaction alone.

We focus on a two-dimensional (2D) paradigmatic system of IPAs.
An IPA, unlike Janus colloids29,30, acquires autonomous propulsion
through instability, but otherwise in a stable stationary state. For
instance, an active droplet undergoing uniform surface reaction
exchanges solutes with the ambient, causing an isotropic solute dis-
tribution (Fig. 1b). Aperturbation inducing aMarangoni interfacialflow
advects the solute, amplifying itself.When the ratio of the destabilizing
advection to the stabilizing solute diffusion—characterized by Péclet
(Pe) number, exceeds a threshold, instability emerges, driving the
droplet to swim steadily (Fig. 1c, left); increasing Pe may trigger its
chaotic movement31–36 (Fig. 1c, right). Similarly, this mechanism allows
camphor disks to swim continuously or intermittently37,38.
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We consider N overdamped disks of radius a in a doubly periodic
square domain of size ~L (Fig. 1a). Hereinafter,~denotes dimensional
variables. The disks uniformly emit a chemical solute of molecular
diffusivity D at a constant rate A>0. The solute distribution
~c ~r= ~x,~yð Þ,~t� �

causes a slip velocity ~uslip =M I� nnð Þ � ~∇~c, with M the
mobility coefficient and n the outward normal at the disk surface. We
vary the phoretic activity Pe =AMa=D2 and area fraction ϕ =πN/L2

(L= ~L=a) of disks to explore their collective dynamics, solving dimen-
sionless physicochemical hydrodynamics involving the fluid velocity u
and pressure p, and solute concentration c, see “Methods” and Sup-
plementary information (SI) Sec. II.

Results
Crystalline solid, liquid, and gas-like phases
Adisk suspension ofϕ =0.12 exhibits Pe-dependent collectivepatterns
(Fig. 1d–f). At Pe = 2, disks undergo transient, disordered motion that
decays in time. Hence, their root-mean-square (RMS) velocity

Urms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1 PN

k = 1 U
2
k

q
(Uk is the translational velocity of the k-th disk)

eventually approaches zero, when they self-organize into a stationary
hexagonal lattice resembling a 2D crystalline solid (Fig. 1d and Sup-
plementary Video 1). This resemblance is supported by the pair cor-
relation function gðRÞ versus the inter-disk distance R (SI Sec. I)
depicted in Fig. 1d, which reveals the signature of a 2D hexagonal

crystal with a lattice constant ‘= ð2πϕ�1=
ffiffiffi
3

p
Þ1=2: gðRÞ peaks around

discrete inter-disk distances R=‘= 1,
ffiffiffi
3

p
, 2,

ffiffiffi
7

p
, . . .. Importantly, the

lattice constant ‘ ≈ 5.5 considerably larger than the disk diameter
implies that this solid shares similarity with the Wigner crystal con-
stituting electrons, as theoretically predicted39,40 and directly visua-
lized in experiments very recently41. Unlike the long-range Coulomb
force causing the electronic Wigner crystallization, the chemorepul-
sion among phoretic disks18,25,42 creates the active Wigner crystal. This
phenomenon agrees with the experimental observations on camphor
surfers43 and active droplets19, as well as numerical predictions for the
former44. Such active Wigner crystals are distinct from the hexagonal
closed-packed crystallization commonly reported in other active
suspensions45–52, where active units tend to achieve the highest pack-
ing fraction akin to the atomic arrangement in graphene layers and
some metals.

Increasing the activity to Pe = 3, the disks freely swim like Brow-
nian gasmolecules (Fig. 1f and Supplementary Video 2), with randomly
fluctuating speed Urms (Fig. 1g). After a transient period, this fluctuat-
ingmotion exhibits normal diffusion, as evidenced by themean square
displacement (MSD) of disks (Fig. 1h). Dynamic arch-shaped chains of
closely spaced disks also appear, similar to chains of active droplets
observed experimentally14,19. These chains form, collide, annihilate,
and reform continuously (Supplementary Video 2). This dynamic

Fig. 1 | Activity-induced phase transition. a N circular phoretic disks of radius a
freely swimming in a periodic square domain of size ~L. The notation~represents
dimensional variables throughout. The side panel illustrates the numerical dis-
cretization (Supplementary information Sec. II). b sketch of a single phoretic disk
attaining a swimming velocity, ~U, spontaneously via instability. Green dots indicate
a chemical solute emitted by the disk, while ~uslip denotes its surface slip velocity
induced by the chemical gradient. c A swimming disk of low (left) or high (right)
activity—implied by the Péclet number Pe—follows a straight or chaotic trajectory,
respectively. The colormap shows the scaled solute concentration c=cmax and the
insets depict the trajectories. The streamlines surrounding the swimmer at Pe = 2.5

demonstrates its pusher-like dipolar signature, as previously identified
numerically31 and experimentally88. d–f Disks with an area fraction ϕ =0.12 self-
organize into hexagonal solid (Pe = 2), liquid (Pe = 2.5), and gas-like (Pe = 3) phases
depicted in a quarter of the domain. Disks are colored by their swimming speed ∣U∣
and the arrow indicates the instantaneous direction of U. The second row displays
the corresponding pair correlation function gðRÞ. Here, R denotes the inter-disk
distance and ‘= 2πϕ�1=

ffiffiffi
3

p� �1=2
represents the lattice constant. g, h Root-mean-

square (RMS) disk velocity Urms versus time and the scaled mean square displace-
ment (MSD) versus the time lag τ, respectively, for varying Pe. See Source data.
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chaining differs from the single stable chains observed at lower frac-
tion ϕ, which originate from a balance between inter-disk chemor-
epulsion and hydrodynamic attraction (SI Sec. III). Overall, this
suspension reveals features of both a gas phase and chain formation,
as statistically evinced in Fig. 1f: gðRÞ≈ 1 in most region of R≥ 2,
characteristic of a homogeneous molecular distribution; it develops
peaks with decreasing magnitudes approximately at even multiples of
the disk radius, i.e., R≈ 2, 4, and 6—that signify chain forming.

Between the solid and gas-like phases, a liquid phase appears at
Pe = 2.5 (Fig. 1e and Supplementary Video 3). The disks vibrate, move
around, and slide over each other mimicking the behavior of liquid
molecules. TheUrms displays a super-oscillatory time evolution (Fig. 1g),
and the MSD∝ τ0.75 exhibits subdiffusive dynamics (Fig. 1h). This
anomalous diffusion, unlike the normal diffusion of classical liquids, is
typical of crowded fluids containing suspended macro-molecules or
colloids that act as obstacles53,54. The identified liquid phase is con-
firmed by the pair correlation function gðRÞ depicted in Fig. 1e, where
several oscillations at short distances R attenuate with increasing R,
indicating the diminished long-range order characteristic of liquids.

Phase diagram and theoretical prediction of the solid–liquid
transition
Displaying the time-averaged mean disk velocity Urms versus the
fraction ϕ and activity Pe in Fig. 2, we reveal the ϕ − Pe phase diagram
of the suspension. Besides the solid-liquid-gas transitions, we divide
the gas-like phase into four regimes: no pattern; single stable chain;
dynamic chaining (Fig. 1f); and self-organized large-scale flows exhi-
biting instability, transition and active turbulence, which will be dis-
cussed later; the first two regimes are analyzed in SI Sec. III. For now,
we focus on theoretically explaining the solid-liquid transition.

Upon increasing Pe to cross a threshold (dashed curve in Fig. 2),
the suspension transitions from a quiescent hexagonal pattern to an
unsteady motion. This change is in reminiscent of the stationary-to-
swimming instability of an IPA with sufficient activity Pe. The

theoretically predicted onset of instability for a single IPA32,55–57 pro-
vides inspiration for a prediction that characterizes the collective
instability of our suspension.

We consider the hexagonal tiling of disks as the unperturbed
state. Following Pe =AMa=D2, which determines the instability of a
single disk, we define Pecol for the collective instability of many fea-
turing ϕ. From the dimensional advection–diffusion equation
(“Methods”), we infer

Pecol =
~u
� �

~∇~c
h i

D ~∇
2
~c

h i , ð1Þ

using �½ � to represent the characteristic scales. As for a single disk,
~u
� �

=AM=D remains. Further limited to the low-ϕ regime corre-
sponding to a large inter-disk distance ~‘≫a (‘≫ 1), we regard the disks
as points and thus approximate j~∇~cj at the disk center by its exact value
A=D at the disk boundary. At the midpoint of two neighboring disks,
~∇~c=0 due to thehexagonal symmetry (SI Sec. III.A). Hence, j~∇~cj decays
from A=D to zero within the distance ~‘=2, leading to ~∇

2
~c

h i
=2A= D~‘

� �
and subsequently

Pecol =
π

2
ffiffiffi
3

p
	 
1=2

ϕ�1=2 Pe / ϕ�1=2Pe: ð2Þ

Assuming that the instability occurs whenϕ−1/2Pe exceeds a constant C,
we obtain, via fitting, the predicted threshold ϕ�1=2 Pe = C (solid curve
in Fig. 2) that matches the actual one reasonably when ϕ ⪅ 0.4.

Two-dimensional melting via a hexatic phase
Further tuning Pe as the activity-induced effective temperature, we
scrutinize the solid-liquid transition at ϕ =0.12 as a melting scenario.
We identify an intermediate phase that is neither solid nor liquid. As
indicated in Fig. 3a, the structure factor S qð Þ (SI Sec. I.C) for Pe = 2.3
exhibits definite Bragg peaks with six-fold symmetry, revealing the
formation of a crystalline solid. Raising the effective temperature to
Pe = 2.5, the Bragg peaks are almost smeared out, leaving an isotropic
ring pattern of S qð Þ with insignificant orientational symmetry. This
suggests that the suspension has melted, reaching a liquid state. At
Pe = 2.4, the translational order is lost while six-fold orientational
symmetry preserves. This intermediate state corresponds to a hexatic
phase between the solid and liquid, as described by the celebrated
Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY) theory58–60.
This theory, originally built for equilibrium systems, has also been
tested upon non-equilibrium counterparts of active agents50,61–64.

Within the KTHNY theory, melting of 2D crystals is mediated by
progressive creation of topological defects, as illustrated in Fig. 3b for
our case. When Pe = 2.3, we detect bound dislocation pairs. Increasing
the activity, we observe the dissociation of such pairs into free dis-
locations at Pe = 2.4 (Supplementary Video 4), and the unbinding of
dislocations into isolated disclinations at Pe = 2.5 (Supplementary
Video 5). The two successive processes drive the solid-to-hexatic and
hexatic-to-liquid transitions, respectively, which highlight the sig-
nature two-step storyline of the KTHNY framework.

To confirm this scenario quantitatively, we examine, close to the
phase transition, the correlation functions gq0

Rð Þ and g6 Rð Þ of the
translational and orientational order (SI Sec. I.C). As illustrated in
Fig. 3c, the former gq0

Rð Þ / R�η with η ≈ 1/25 when Pe = 2.3 (SI Sec.
III.E). This algebraic scaling, suggestive of the quasi long-range trans-
lational order, typifies a 2D solid, with the power-law exponent − η
≥ − 1/365. Conversely, gq0

Rð Þ decays exponentially at Pe = 2.35, visually
faster than the limiting behavior gq0

/ R�1=3 of solids65. The corre-
sponding short-range translational order implies a liquid/hexatic
phase when Pe ≥ 2.35. Akin to gq0

Rð Þ, we depict in Fig. 3d the orien-
tational order correlation function g6 Rð Þ that features three scaling

Fig. 2 | Phase diagramover the area fractionϕ and activity Peofphoretic disks.
The disks form crystalline solids (hexagon), liquids (star), or gas-like phases con-
sisting of four classes: no pattern (circle); single stable chain (square); dynamic
chaining (diamond); and self-organized coherent flows (triangle). Symbols are
coloredby the time-averagedRMSvelocityUrms of disks. The solid curve represents
the theoretical prediction Eq. (2) of the solid-liquid transition, where C denotes a
fitting parameter. The dashed box encloses the three phases showcased in Fig. 1.
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laws: at the lowest temperature Pe = 2.3, the peaks of g6 Rð Þ remain
approximately constant, evidencing the long-rangeorientational order
of 2D solids; in the other limit Pe = 2:5, g6 / exp �R=40

� �
indicates

the short-range orientational order possessed by liquids; at inter-
mediate temperatures, g6 / R�η0

, where �η0 >� 1=4 at Pe = 2.35 and
2.4 but �η0 ⪅� 1=4 when Pe = 2.45. Recalling that the orientational
order of a hexatic phase decays algebraically with the exponent
�η0 ≥ � 1=4 according to the KTHNY prediction59,66, we confirm the
presence of a hexatic phase at Pe∈ [2.35, 2.4]. Although this specific
regime may vary marginally upon doubling the domain size L, the
overarching two-stepmelting process remains consistent (SI Sec. III.E).

Instability, transition, and active turbulence
Viewing the melted disk suspension of ϕ =0.5 as a continuum active
fluid,weexamine the spatial-temporal evolution of its Eulerian velocity
UE = UE,VE

� �
and area fraction ϕE (SI Sec. I.D). Here, ΦE = ϕE � ϕ

� �
=ϕ

effectively measures the “pressure” of the active fluid.
At Pe = 3, the domain-averaged (〈〉xy) speed hjUEjixy and absolute

pressure hjΦEjixy approach nearly zero after a transient decline
(Fig. 4b), reaching a quiescent flow state (laminar). Conversely, such
Eulerian quantities at Pe = 5 grow and level off at considerable values,
indicating a self-organized active flow of disks (Fig. 4a and Supple-
mentary Video 6). The flow appears as large-scale waves indicated by
the time-periodic evolution of the x-averaged pressure hΦEix and
velocity 〈V〉x (Fig. 4c), and the undulating kymograph of ΦEjx = L

2
at the

middle line x = L
2 (Fig. 4d, top). The timeevolutionofwave (Fig. 4e, top)

shares a qualitative similarity with the occurrence of an oscillatory
hydrodynamic instability via a Hopf bifurcation—an infinitesimal dis-
turbance growing exponentially saturates to a periodic state. The
similarity hints at the resemblance between this activity-induced
quiescence-oscillation transition and inertia-triggered hydrodynamic
instabilities, as recognized for polar active fluids13; that instability
occurs when Reynolds (Re) number inversely related to the kinematic
viscosity grows. Analogously, increasing Pe here enables the transition
from a more viscous to a less viscous phase (solid-to-liquid-to-gas) as
shown in Fig. 2, indeed enlarging the effective Re of the active fluid and
thus promoting its instability.

As Pe is raised from 5 to 10, the undulatory dynamics becomes
irregular (Fig. 4e, bottom). In parallel, the kymograph ofΦEjx = L

2
exhibits

a disrupted wave pattern (Fig. 4d, bottom), seemingly indicative of a
secondary instability that is known to trigger the breakdown of streaks
andwaves in classical hydrodynamics67.Moreover, thewavebreakdown
here is reflected by the emergent clusters of disks showcased in Fig. 4f
(Supplementary Video 7), which imply fluctuations of the effective
pressure ΦE. The cluster size distribution PðNcluÞ shown in Fig. 4g fur-
ther evidences the clustering events at Pe = 10 quantitatively.

At a even higher activity Pe = 20, oscillatory patterns fade sig-
nificantly in favor of emerging vortical structures (Fig. 5a and Sup-
plementary Video 8), hinting the occurrence of active turbulence.
Concurrently, enhanced clustering is evident, potentially resulting
from the turbulence, as identified in polar active fluids68.

Despite their Lagrangian appearance (SI Sec. III.F), Fig. 5bmanifests
the vortical structures by the Eulerian flow streamlines and vorticity
field ωE ⋅ ez. This Eulerian description enables using the Okubo-Weiss
parameter (SI Sec. I.D) to quantify the vortex sizes, which are shown in
Fig. 5d to feature aGaussian probability density function (PDF). Besides,
we pinpoint the largest cluster of disks and identify its effective size
lclu(t) as the longest disk-disk distance (Fig. 5c). The evolution of lclu
depicted in Fig. 5e reveals its time-averaged value ‘clu≈87.

Apart from the graphic depiction, we compare the statistics of the
turbulent diskmotion at Pe = 20 to those at Pe = 5. As shown in Fig. 5g,
thePDFof the velocity componentU is approximatelyGaussian inboth
cases. Compared to the less active scenario (Pe = 5), PDF at Pe = 20
departs slightly more from the Gaussian distribution attributed to the
corresponding packed and dissipative clusters69. Akin to under-
standing inertial turbulence, we examine the velocity difference
ΔU t,R,Rð Þ=U t,R +Rð Þ � U t,Rð Þ between two disks separated by a
displacement R, focusing on statistics of its longitudinal component
ΔUk =ΔU �R=jRj. Reducing the separation R from 20 to 5, Fig. 5h, i
suggest that the PDF of ΔU∥ deviates more from the Gaussian profile.
The deviation is more pronounced at Pe = 20, as reflected by the fat-
tailed distribution for R= 5 (Fig. 5i). The fat tails manifest a stronger
probability of high-amplitude extreme events associated with small-
scale intermittent processes as well recognized in canonical

Fig. 3 | Defect-mediated melting via a hexatic phase. a Structure factor S(q) of a
ϕ =0.12 disk suspension at three Pe values, indicative of a growing effective tem-
perature. b Evolving topological defects associated with the three phases in
a showing a bound dislocation pair, two free dislocations, and coexisting disloca-
tions and disclinations, consecutively. Disks with N = 5 and 7 neighbours are

marked green and yellow, respectively. c Translational order correlation function
gq0

Rð Þ at Pe∈ [2.3, 2.5]; the horizontal dashed line indicates a constant, non-
decaying gq0

Rð Þ. d Similar to c but for the orientational order correlation func-
tion g6 Rð Þ.
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turbulence70,71 and also highlighted very recently in a dry active
system72. Here, they are linked to the formation of intense vortical
structures yielding a larger relative velocity of two disks.

Focusing on the active turbulence at Pe = 20, we display in Fig. 5j
the spectrum Eðq̂Þ of its kinetic energy 〈U2〉/2, versus the modified
wavenumber (SI Sec. I.E), q̂=2π= R� 2ð Þ. The spectrum scales as
Eðq̂Þ∼ q̂�5=3 and Eðq̂Þ∼ q̂�2=3, respectively, at small (large q̂) and inter-
mediate length scales. Furthermore, we observe a regime with a
positive scaling exponent at large length scales (small q̂). Specifically,
the scaling Eðq̂Þ∼ q̂4=3 is pronounced for an enlarged domain size of
L = 400. This regime connects with the Eðq̂Þ∼ q̂�2=3 regime via a peak
that signifies the maximal energy injection73,74. Notably, the whole
spectrum spanning these three regimes mirrors, in its shape, that of
the experimentally observed active nematic turbulence75. In the latter
case, the E(q) ~ q−1 regime is confined to an intermediate length scale,
above a vortex size ‘vtx, and below a viscous length scale where E(q)
peaked. Analogously, our intermediate Eðq̂Þ∼ q̂�2=3 regime is bounded
likewise: the lower bound exceeds the mean vortex size ‘vtx ≈ 8 iden-
tified in Fig. 5d; the upper bound, where the energy spectrum also
approximately peaks, aligns closely to the time-averaged size ‘clu ≈ 87
of the largest cluster (Fig. 5e).

We note that our simulations have incorporated a weak yet
finite fluid inertia of Re = 0.5 to approximate Stokes flow (Meth-
ods). However, inertia is not the primary factor driving our active
turbulence, contrary to other configurations76–78 featuring a

dominant inertial effect. Specifically, ref. 76 demonstrates that a
suspension of rotating disks exhibits consistent collective beha-
viors at varying Re up to ≈ 0.6, transitioning to chaos at Re ⪆ 5 (see
their Figure 7c).

On the other hand, ref. 78 highlights the high sensitivity of the
emerging active turbulence to Re even below 0.1, unlike the weak Re-
dependence depicted here (SI Sec. III.F). To rationalize the dis-
crepancy, we first emphasize that both settings involve a driving
nonlinearity and anauxiliary counterpart. In that study, an electricfield
of magnitude ~E above a threshold ~Ec drives an electro-hydrodynamic
instability quantified by γ = ~E=~Ec. In our setting, the driving non-
linearity arising from the phoretic transport causes a hydrochemical
instability characterized by Pe. Despite their different driving
mechanisms, both studies feature the same auxiliary nonlinearity:
inertia. The reason why the strong Re-dependency in ref. 78 is absent
here stems fromadistinction in the strengthof thedrivingnonlinearity
relative to the inertial one. When the driving nonlinearity is compar-
able or even weaker than its inertial counterpart, the driver could
feasibly intensify the impact of changing Re, whereas a dominant
driving nonlinearity may mitigate this impact. Reference 78 adopts a
nonlinearity level of γ = 1.1, just above the instability threshold: γ = 1,
representing a weak driving nonlinearity. Conversely, we demonstrate
active turbulence at Pe = 20, a value far above the threshold, Pe ≈0.5.
Hence, our driving nonlinearity substantially exceeds the inertial
counterpart, implying that variations in Re around unity may wield

Fig. 4 | Instability and transition of the active fluid withϕ = 0.5. a An oscillatory
active flow self-organizes via instability at Pe = 5, when the dense population
of disks shifts periodically between the corners (this snapshot) and the center
(SI Sec. III.F) of the domain. b History of domain-averaged absolute pressure
hjΦEjixy and speed hjUEjixy of the active fluid implies the absence and emergence of
a self-organized flow at Pe= 3 and Pe = 5, respectively. c Wave-like spatiotemporal
evolution of x-averaged pressure hΦEix and velocity component hVEix at Pe = 5.

d Corrugated kymograph of ΦEjx = L
2
sampled along the median x = L/2 when Pe = 5

(upper) versus its disrupted counterpart for Pe = 10 (lower). e History of hΦEjx = L
2
i
y

depicts the evolution and saturation of disturbances mimicking those of their
canonical hydrodynamic analog. f, when Pe= 10, disks form clusters that break-
down the wave patterns. The clusters are characterized by the numberNclu of their
constituting disks. g Cluster size distribution function PðNcluÞ, and its fitted curves
following PðNcluÞ= C1N�C2

clu exp �Nclu=N
∤
clu

� �
defined in SI Sec. I.D. See Source data.
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minimal influence, as indeed supported by additional simulations
(SI Sec. III.F).

Discussion
By regarding its activity Pe as the analog of temperature, we showcase
a wet active matter preserving all thermodynamic phases, as pre-
viously depicted for dry active matter50,61. Moving ahead by increasing
this activity analogous to Reynolds number, the fluid phase exhibits
progressively, a quiescent laminar state, waves via an oscillatory
instability, clusters that break the waves down signifying transition,
and finally, vortical structures suggestive of active turbulence. This
progression highlights a stronger phenomenological resemblance
between active and classical fluids in their laminar-turbulent transition
than previously recognized.

Controlling both the phase transition and laminar-turbulent
transition by activity solely is remarkable, yet not an isolated obser-
vation. Prior experiments on camphor swimmers have independently
demonstrated their crystalline solid state43 and turbulent-like collec-
tive activity79, indeed indirectly supporting our unified interpretation
of these dual phenomena. Their difference stems from the specific
range of phoretic activity: lower activity prompts crystallization, while
higher activity induces turbulence (SI Sec. III.F), corroborating our

predictions (Fig. 2). Ultimately, this discovery offers a paradigm to
optimize the reconfigurability and functionality of active systems
using minimal control.

The observed capability to discern both experimentally identified
transitions is attributed to the simultaneous integration of long-range
hydrodynamic and chemical interactions. Studies focusing solely on
chemical interaction reproduced hexagonal crystallization but failed
to capture active turbulence44. Conversely, simulations considering
only hydrodynamic interaction illustrated turbulence but missed
crystallization80,81. This comparative analysis highlights the unique
predictive power unlocked by concurrently addressing both hydro-
dynamic and chemical interactions in modeling chemically active
fluids—an aspect that merits broader recognition within the
community.

Methods
A more detailed description of the materials and methods is provided
in SI Sec. II.

Mathematical model and governing equations
We adopt the minimal physicochemical hydrodynamic model of IPA55.
Without considering its internal flow, the IPA has been modeled as a

Fig. 5 | Active turbulence. a Instantaneous motion of disks colored by their speed
∣U∣ and concentration field c=cmax. Here, Pe = 20,ϕ =0.5, and the domain size is
L = 200. b, vortex-showing streamlines and vorticity component ωE ⋅ ez of the
continuum flow field UE. c Clusters characterized by the number Nclu of their
constitutingdisks and the size lclu of the largest cluster.b, c showing the full domain
are scaled versus a.d, probability density function (PDF)of the vortex size lvtxwith a
mean of ‘vtx ≈ 8. e History of lclu and its time-averaged value ‘clu≈ 87. f, kymograph
of ΦEjx = L

2
implies chaos and fading oscillatory patterns. g PDF of the disk' velocity

component U. h, PDF of the longitudinal velocity difference ΔUkðRÞ between two

disks separated by a distanceR when Pe = 5. i Similar to (h) but for Pe = 20. In g–i,
〈s〉 and σs denote the average and standard deviation of a random variable s,
respectively; the curve represents the unit-variance Gaussian function
1=

ffiffiffiffiffiffi
2π

p
expð�s2=2Þ. j Kinetic energy spectrum Eðq̂Þ versus the modified wave-

number q̂ (SI Sec. I.E), with an additional dataset incorporated for an expanded
domain where L = 400. Here, qc =π is the characteristic wavenumber correspond-
ing to the disk diameter. The left vertical line indicates the size, ‘clu≈ 87 of the
largest cluster, while the right linemarks themean vortex size, ‘vtx ≈ 8; both pertain
to the case of L = 200. See Source data.
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three-dimensional spherical particle or a 2D circular disk32. The Mar-
angoni interfacial flow is represented by a solute-induced tangential
velocity at the surface of particles or disks. The simple concept makes
it a popular reference model for researching the behavior of a single
IPA32,34,35,57 or a pair82,83. Most importantly, it retains the critical sig-
nature of an IPA, viz., exploiting the convection of a chemical product
to sustain a Marangoni propelling flow upon spontaneous symmetry-
breaking. Concomitantly, the signature scenarios of IPAs observed in
experiments33,84 can be capturedby themodel32,34,85: by increasing Pe, it
transitions from a stationary state to steady propulsion, and further to
chaotic motion.

We describe the hydrochemical model by the dimensional Stokes
equation for the velocity ~u and pressure ~p, along with the advection-
diffusion counterpart for the solute concentration ~c of a chemical
species:

~∇ � ~u=0, ~∇~p=μ~∇
2
~u, ð3aÞ

∂~c
∂~t

+ ~u � ~∇~c=D~∇
2
~c, ð3bÞ

where μ is the dynamic viscosity of the solvent.
In addition to the fluid motion and solute transport, the model

encodes the physicochemical activity at the disk surface by specifying
its boundary conditions. This involves twoprocesses:first, the uniform
and constant solute emission from its surface

Dn � ~∇~c= �A; ð4Þ

second, the generation of a slip velocity by a local solute gradient

~uslip =M I� nnð Þ � ~∇~c ð5Þ

tangential to the surface.
The dimensionless equations are

∇ � u=0, ∇p=∇2u, ð6aÞ

∂c
∂t

+u � ∇c= 1
Pe

∇2c: ð6bÞ

Here, we have chosen a,AM=D,μAM= Dað Þ, and Aa=D as the char-
acteristic length, velocity, pressure, and concentration scales, respec-
tively, e.g., u = ~u= AM=D� �

and c = ~c= Aa=D� �
. The dimensionless

versions of (4) and (5) read

n � ∇c= � 1, ð7aÞ

uslip = I� nnð Þ � ∇c: ð7bÞ

The slip velocity Eq. (7b) allows the disk to freely move with a trans-
lational velocity U and a rotational velocity Ω =Ωez with ez = ex × ey.
Note that (7b) is not the boundary condition for u, which involves U
and Ω as detailed in SI Sec. II.A.

It is worth noting that our numerical implementation does not
exactly solve the Stokes equation (6a) but rather the Navier-Stokes
equation featuring a finite yet small Reynolds number
Re =AMa= νDð Þ, where ν is the kinematic viscosity of the solvent. We
choose Re = 0.5 throughout this study. The associated inertia term is
needed for time-marching the momentum equation. We find that its
influence on the dynamics of a phoretic disk is reasonably weak, as
discussed in SI Sec. II.D. In addition, we have also shown in SI Sec. III.F
that variations in inertia within the range Re∈ [0.1, 2] do not

significantly alter the critical features of the collective phenomenon,
including vortex size, velocity statistics, and the energy spectrum.

Unless otherwise specified, the size of the doubly-periodic
domain is L = 100. In certain configurations, L = 200 and L = 400 are
adopted.

Numerical simulations
We numerically solve the dimensionless Eq. (6) in a periodic square
domain of size L, subject to the boundary conditions (7) at the
surfaces of freely moving disks. We have adapted a massively par-
allel flow solver86,87 to cater for our physicochemical hydrodynamic
configuration. The solver employs a lattice Boltzmann method to
resolve fluid motion and solute transport while integrating an
immersed boundary method to represent the surfaces of finite-
sized disks. The implementation and validations are presented in SI
Sec. II.

Using four computer nodeswith four Intel XeonGold6230RCPUs
and 104 cores each, a typical simulation runs for several days to weeks,
depending on Pe and L. For example, active turbulence tends to
emerge at a high ϕ values, corresponding to a larger number of disks.
Moreover, to broaden the energy spectrum of active turbulence, we
use a domain of size L = 200 that doubles the default size, and even
L = 400 for a more definitive insight (see Fig. 5j). These cases typically
run for weeks using nine nodes to attain statistically invariant transi-
tional or turbulent dynamics.

We have studied a few phoretic swimmers, as elaborated in
SI Sec. III.D and illustrated through Supplementary Videos 9–11.
Numerical simulations have successfully captured the key experi-
mental observations on a pair of interacting active droplets33.

Data availability
The numerical source data89 underlying Fig. 1d–f (top), 4a and 5a are
provided with this paper. They are available at Zenodo (https://doi.
org/10.5281/zenodo.7775033). The data shown in the figures and the
correspondingMATLAB codes are shared in “Code Availability”. Time-
dependent field data, which are huge in size, are available upon
request.

Code availability
TheMATLAB codes and related data90 for reproducing the curve plots
in the figures are available at https://github.com/qyang2025/phoretic_
disks.git.
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