nature communications

Article

https://doi.org/10.1038/s41467-024-46517-z

Three-dimensional flat Landau levels in an
inhomogeneous acoustic crystal

Received: 16 November 2023

Accepted: 29 February 2024

Published online: 11 March 2024

M Check for updates

Zheyu Cheng ®'%, Yi-Jun Guan?3¥¢, Haoran Xue®* '/, Yong Ge?, Ding Jia2,
Yang Long ®", Shou-Qi Yuan ®2, Hong-Xiang Sun®?3' , Yidong Chong®'° ' &
Baile Zhang®'®

When electrons moving in two dimensions (2D) are subjected to a strong
uniform magpnetic field, they form flat bands called Landau levels (LLs). LLs can
also arise from pseudomagnetic fields (PMFs) induced by lattice distortions. In
three-dimensional (3D) systems, there has been no experimental demonstra-
tion of LLs as a type of flat band thus far. Here, we report the experimental
realization of a flat 3D LL in an acoustic crystal. Starting from a lattice whose
bandstructure exhibits a nodal ring, we design an inhomogeneous distortion
corresponding to a specific pseudomagnetic vector potential (PVP). This dis-
tortion causes the nodal ring states to break up into LLs, including a zeroth LL
that is flat along all three directions. These findings suggest the possibility of
using nodal ring materials to generate 3D flat bands, allowing access to strong

interactions and other attractive physical regimes in 3D.

LLs first arose in Landau’s 1930 derivation of the magnetic suscept-
ibility of metals, based on a quantum mechanical model of non-
relativistic electrons in a uniform magnetic field'. If the electrons are
constrained to the 2D plane perpendicular to the magnetic field, the
LLs form a set of equally spaced flat energy bands independent of the
in-plane momentum. Such 2D LLs were subsequently found to exhibit
quantized Hall conductance (the integer quantum Hall effect) due to
their nontrivial band topology**. Other 2D models host different types
of LLs; for example, particles governed by a 2D Dirac equation (such as
electrons near the Dirac points of graphene), when subjected to a
uniform magnetic field, produce 2D LLs that are flat but unequally
spaced in energy, with a zeroth LL at zero energy*”. Flat bands such as
2D LLs are of broad interest in multiple fields of physics since their high
density of states provides access to strong-interaction regimes®™, such
as strong inter-electron interactions in condensed matter systems,
which give rise to phenomena like the fractional quantum Hall
effect®”'*", and strong light-matter coupling in optoelectronic
systems'", Although LLs are not the only way to achieve flat bands,

they are attractive because of their rich physics and relative accessi-
bility. Aside from using real magnetic fields, LLs can also arise from
PMFs induced by lattice distortions without breaking time-reversal
invariance'®. This is achievable in electronic materials through strain
engineering'®" or inter-layer twisting®, and in synthetic metamaterials
like photonic or acoustic crystals through structural engineering?® .
PMFs are highly tunable and can reach higher effective field strengths
than real magnetic fields.

In 3D, flat bands are challenging to realize, whether via LLs or
some other mechanism. For example, stacking 2D quantum Hall sys-
tems turns the LLs into 3D bands that are non-flat along the stacking
direction, so long as there is nonzero coupling between layers (similar
to the original Landau model)*. Likewise, if we generalize 2D Dirac
particles to Weyl particles in 3D, applying a uniform magnetic field
produces chiral LLs that can propagate freely along the field
direction®~,

In this work, we design and experimentally implement a 3D lattice
exhibiting LLs that are flat in all three directions. This is accomplished
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with an acoustic crystal-a synthetic metamaterial through
which classical sound waves propagate—that incorporates an inho-
mogeneous structural distortion. In the absence of the distortion, the
band structure contains a circular nodal ring (i.e., a ring in momentum
space along which two bands touch)***°. The introduction of the dis-
tortion generates a PVP pointing radially from the nodal ring’s center in
momentum space, as well as varying in real space (Fig. 1a). The nodal
ring spectrum hence splits into 3D flat bands (Fig. 1b), in a manner
analogous to the formation of 2D LLs from Dirac points'. This 3D flat
band spectrum has potential uses for enhancing nonlinearities and
accessing interesting 3D phenomena such as inverse
Anderson localization*. The acoustic crystal design might also help
develop solid-state materials hosting 3D LLs, which could access cor-
related electron phases not found in lower-dimensional flat band
systems*2,

Results

Continuum model

In PMF engineering, as performed in strained graphene'® and related
materials'®"*?**, a lattice distortion shifts a band structure’s nodal
points (e.g., Dirac points) in momentum space, which is analogous to
applying a vector potential A. For instance, a slowly varying (compared
to the lattice constant) distortion can be implemented A=Bx;é,
(where x5, denotes position coordinates and €, , ; the unit vectors),
corresponding to a uniform PMF VxA=Be,. A similar manipulation
can be applied to nodal lines rather than nodal points****. Consider the
continuum Hamiltonian*

1
H(k)= . (k; - ké)‘ﬁ +U3k30,, @
7]

where k= (ky, k», k3) is 3D momentum vector, 0y, are Pauli matrices,
k= ki +k3, and my, ko, v are positive real parameters. This hosts a
nodal ring at k,=ko, k3=0, with energy £=0*. Now, suppose we
impose a PVP

A(kl,kz,x:;) =Box3é ), (2)
where €, = k;l(kl,kz,O) is the radial vector in the plane of the nodal
ring. If we treat x3 as a constant, the Peierls substitution k - k + A shifts
the nodal ring’s radius to ky, =k, — Byx5. For a slow variation, x3 = —id/

0ks, we can expand H close to the nodal ring (i.e., |k, — ko|<k) to
obtain

k
H(k)= m_o (kp +Box3 — ko)al +U3k30,. 3
7

ks Nodal ring

ko ]
ki

This is a 2D Dirac equation based on coordinates p and x3, with a
uniform PMF. Its spectrum is FE,=sgn(n)w.+/|n], where

w.=4/2v3Bykg/m, and n=0,%1,+2,... (Supplementary Information
section II). Each LL is flat along k,, k3, and the nodal ring plane’s azi-
muthal coordinate (which H does not depend upon).

Lattice model

Following our scheme, the key to realizing 3D LLs is to have a band
structure with a circular nodal ring, whose radius can be parametrically
varied without losing its circularity. Such a situation arises in a tight-
binding model of an anisotropic diamond lattice*®. As shown in Fig. 2a,
the cubic cell has period a. There are two sublattices with one s orbital
per site, and the nearest-neighbor couplings are ¢ (red bonds) and ¢
(blue bonds). The momentum-space lattice Hamiltonian is

0 telkd 1y ik,
H(k)= . . 22 .4
te—ké 4 ¢ Z?:Z e—ikd; 0

where &y, ...,6, are the nearest-neighbor displacements shown in
Fig. 2a (Supplementary Information section II). The first Brillouin zone
is depicted in Fig. 2b. Thereafter, we set ¢’ =1 for convenience. This
lattice is known to host a nodal ring when 1 < t < 3*¢, whereas for > 3 it
is a higher-order topological insulator*’*%, In the former regime, the
nodal ring occurs at £=0 and

2
K2+ K= <2f¢3‘_7> , )
n
K3=v3_, (6)

where (K},K,,K3) is the position on the nodal ring. The nodal ring
forms a circle in momentum space (Supplementary Information
Fig. S1, and Fig. 2c, d). Crucially, its radius is determined solely by ¢. We
can form any shape of nodal lines in the continuum model*’, but it is
hard to realize circle-shaped nodal rings. In most cases, nodal line
semimetals hold either discrete lines*® or closed rings with other
Shapeszto,so—sa'

To generate the 3D LLs, we modulate ¢ along the spatial axis x3
perpendicular to the plane of the ring so that the nodal ring’s radius
increases linearly with x3. This leads to the gauge field (Supplementary

n=2
n=
n=0
n=-1
E n=-2

ko ‘
ki

Fig. 1| Pseudomagnetic field induced Landau levels in 3D nodal ring systems. a lllustration of the pseudomagnetic vector potential (yellow arrows) at different
positions of the nodal ring (blue circle). b Under the pseudomagnetic vector potential shown in a, the nodal ring splits into 3D flat Landau levels.
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Fig. 2 | 3D Landau levels in an inhomogeneous anisotropic diamond lattice.
a Cubic cell of the anisotropic diamond lattice. The cubic cell has side length a. Red
and blue bonds denote nearest-neighbor couplings ¢ and t/=1, respectively, and
nearest-neighbor sites are separated by the vectors §;(i=1, 2, 3, 4). The Cartesian
coordinate axes are x;(i =1, 2,3), such that x3 is parallel to -6, and x; is parallel
to -85 + 64. b Schematic of the first Brillouin zone. The reciprocal lattice vectors
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k{i=1,2,3) are oriented along LK, LW, and I'L, respectively. ¢ Shapes of the nodal
ring for various t. d Projections of the nodal ring onto the k;—k; plane, for the values
of t used in (c). e and f Local density of states in the k, direction for B=0 (e) and

B=0.0073a2 (f), calculated using a 600-site chain. Solid white lines in f represent
the analytically predicted Landau levels. g Wavefunction amplitude of the zeroth

Landau level at (k;,k,) = (0,0.70m/a).
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0

A(x3,0)=Bx;

with parameter B=0.4./3m/Na?, which controls the magnitude of
PVP. Here, N is the number of unit cells along the x5 direction, and ¢ is
the azimuth angle in the k;—k, plane. Such a PVP splits the original
nodal degeneracy into discrete LLs described by £, =sgn(n)/|nw,,
where w, =v+/2B is the cyclotron frequency (see Fig. 2e, ). While the
nonzero LLs are not ideally flat due to the k-dependence of the group
velocity v, the zeroth LL is exactly flat, which indicates a mechanism for
generating flat bands in 3D systems. A numerically calculated profile of
the zeroth LL is plotted in Fig. 2g, whose localization in bulk is well-
captured by the low-energy theory (Supplementary Informa-
tion Fig. S3).

Acoustic lattice design

Next, we design an acoustic diamond lattice to realize the above
phenomenon. Figure 3a shows the acoustic unit cell, which consists of
two sphere cavities connected by cylindrical tubes with radii r; or ro.
The whole structure is filled with air and covered by hard walls. Here,
the two-sphere cavities act as two sublattices (denoted as “A" and “B";
see Fig. 3¢), and the cylindrical tubes control the coupling strengths.
We define a dimensionless parameter £=r/ro which describes the
anisotropic strength of couplings. Like the tight-binding model, this
acoustic lattice hosts a circular-like nodal ring in its band structure. We
numerically find that the square of the radius of the nodal ring is
controlled by a single parameter £ and scales linearly with £ (Fig. 3b).
Moreover, for different values of & the frequency of the nodal ring
remains almost unchanged (the inset to Fig. 3b). We can straightfor-
wardly engineer PMFs in this acoustic lattice with these nice proper-
ties. The supercell of the designed structure is schematically illustrated

in Fig. 3¢, where £ gradually varies along the x; direction. This variation
makes the radius of the nodal ring linearly dependent on space coor-
dinates, similar to the case in the tight-binding model. We cut part of
the top and bottom cavities to tune on-site potential. After precisely
controlling h, and hy,, the drumhead surface state is almost flat
(Fig. 3e), which is an advantage in the drumhead state measurement.

We numerically test our design using a lattice with 300 layers
along the u3 direction. Figure 3d plots the frequencies of n={-1,0, 1}
LLs under different PMFs. As can be seen, the spacings between the LLs
follow well with the theoretical curve E,=sgn(n)/|nw.. Figure 3e
shows the dispersion along the k, direction under B = 0.0073a%, where
the acoustic LLs are clearly presented. Notably, the zeroth LL is
exponentially localized in bulk and is smoothly connected to the sur-
face modes (Fig. 3f). All these numerical results are consistent with the
low-energy theory and tight-binding calculations.

Experiment

To observe the LLs experimentally, we fabricate two 12-layer samples
with stronger PMFs under B=0.27a%, B=0.18a2, and one sample with
B=0 for comparison, as shown in Fig. 4a-c. Figure 4a shows the top
layer of the sample, and Fig. 4c shows the experiment setup. The
stepping motor controls the mechanical arm, allowing precise field
mapping. The strong PMF leads to LLs with wide-space spacing to be
measured in a simple pump-and-probe experiment (see the “Methods”
subsection “Experimental measurements”). Figure 4d plots the mea-
sured spectrum when the source and the probe are placed at two bulk
sites (Supplementary Information Fig. S8). As can be seen, there are
pronounced peaks at the corresponding frequencies of the pre-
dicted LLs.

To visualize the effect of the PMF, we plot the acoustic field dis-
tributions at several representative frequencies corresponding to the
frequencies of the n={-1, 0, 1} LLs or the middle frequencies between
these LLs. As shown in Fig. 4e, f, the excited fields spread a noticeable
area when the source operates at LL frequencies. In contrast, the
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Fig. 3 | Pseudomagnetic fields and Landau levels in an acoustic nodal-ring
crystal. a Unit cell of the acoustic lattice, consisting of two sphere cavities con-
nected by cylindrical tubes. The radii of the tubes are r; = §ro and ro, respectively.
The radius of the sphere cavity is R. b Plot of the square of the nodal ring’s radius

K,= \/K? + K3 against the geometry parameter ¢ for different polar angles ¢. Blue
markers and the red line represent the data and the linear fit, respectively. The
lower inset displays the nodal ring’s frequency variation when ¢ changes.

¢ Schematic of a 12-layer inhomogeneous acoustic lattice. The value of § gradually
changes along the x; direction, which leads to the ring shrinking and induces a
pseudomagnetic field. To realize flat drumhead surface states, the top and bottom

resonators are cut by A, and hy, respectively. d Eigenfrequencies of the first three
Landau levels at (k;,k,) = (0,0.70m/a) for acoustic lattices under different pseu-
domagnetic fields. The simulation results (blue dots) are well predicted by the
theoretical model (red curves). e Dispersion along k, for an inhomogeneous
acoustic lattice with 300 layers and B = 0.0073a 2. Black lines represent analytically
predicted Landau levels. f Pressure amplitude distributions for the four eigen-
modes labeled in (e). Both s; and s, are two-fold degenerate. One eigenmode
localizes at the top surface, whereas the other moves from bottom to bulk as k;
increases. The plots only display the chain’s top, middle, and bottom parts and omit
other regions where sound pressure is neglectable.

excited fields are highly confined to the source position at midgap
frequencies.

Furthermore, we compare the three samples’ acoustic field
distributions at Dirac frequency and gap frequencies. As shown in
the 2nd to the 4th columns in Fig. 4e-g, the stronger the PMF,
the more localized the field. Such a sharp comparison is a
direct consequence of the Landau quantization of the acous-
tic bands.

Conventional nodal-line crystals are accompanied by the
drumhead surface states, which are bounded by the projection of
the bulk nodal line***°**, In the presence of the PMF, we find that
the drumhead surface states are also modified. As illustrated in
Fig. 5a, due to the spatial variation of the nodal ring’s radius, the
momentum space area of the drumhead surface states at the top
and bottom surfaces are different (Supplementary Information
Fig. S4). To see this effect, we measure the acoustic fields at the
top and bottom surfaces for three samples with different PMF
strengths, and the corresponding Fourier spectra are given in
Fig. 5b-d. Due to the small dispersion of drumhead surface states,
the drumhead surface state frequency is at 6.13kHz, shifting
slightly from the zeroth LL. As shown in Fig. 5b, c, the surface
states at the top surface indeed occupy a larger area in the
momentum space compared to those at the bottom.

Discussion
To sum up, we have theoretically proposed and experimentally
demonstrated the generation of PMFs in 3D nodal ring systems.

Our results open a route to studying the physics of artificial gauge
fields in gapless systems beyond Dirac and Weyl semimetals.
From the perspective of wave manipulation, the PMF-induced LLs
provide a method to generate flat bands in 3D systems'’, which
could be helpful in sound trapping, energy harvest, and slow-
wave devices. In future studies, it would be interesting to inves-
tigate the effects of other forms of PMF beyond the constant
one® and the interactions between PMFs and different types of
band degeneracies, such as nodal link, nodal knot, and nodal
surfaces. Extending the idea to photonic and electronic systems is
also highly desired, where nonlinear and correlated physics can
be studied.

Methods

Tight-binding calculations

The nodal ring structures in Fig. 2c, d are obtained by directly diag-
onalizing the lattice Bloch Hamiltonian (i.e., Eq. (4)) and then tracing
the degenerate eigenvalues. The local density of states of plots
(Fig. 2e, f) is calculated via Green’s function:

1

C=Frh—H

®

as - Im (3-;c400buiksices Gii) /- Here H is the Hamiltonian for a supercell
with 600 sites along the x; direction and is periodic in the other two
directions and y = 0.01. In Fig. 2e, we fix t unchanged, and the radius of
the nodal ring is 0.70m/a. In Fig. 2f, The coupling parameter ¢ varies
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Fig. 4 | Experimental detection of the acoustic Landau levels. a The top view of
the sample, with 11 x 11 sites on x3x, plane and 12 layers along x3 direction, which
induce pseudomagnetic fields under B=0.27a%, B=0.18a% B=0 for samples 1-3,
respectively. b A photo of the sample. Sphere cavities are connected by tubes. ¢ The
photo of the experiment setup. The probe is ensembled on the mechanical arm and
controlled by a stepping motor. d Measured acoustic pressure spectra at the same
bulk site for samples 1 (blue), 2 (red), and 3(cyan). The black arrow indicates fre-
quency n =0 Landau levels for samples 1 and 2. The blue (red) arrows indicate
frequencies of n=1{-1,1} Landau levels for samples 1(2). e Measured acoustic

£ = 6.00 kHz (Oth)

f =600 kHz

Oth

|p| (arb.units)

0l : ‘ , ‘
5.0 5.5 6.0 6.5 7.0
f (kHz)
Sample 1 Sample 2 Sample 3
®5-027a2 ®B=0184> B=0 % Source

f=7.10 kHz (1st)

f = 6.25 kHz (gap) f=6.75 kHz (1st)

f=625kHz f=6.75kHz

pressure distributions for the n={-1, 0, 1} Landau levels and two gap frequencies in
sample 1. The radii of the blue spheres are proportional to the acoustic pressure.
f Measured acoustic pressure distributions for the n={-1,0, 1} Landau levels and
two gap frequencies in sample 2. The radii of the red spheres are proportional to
the acoustic pressure. g Measured acoustic pressure distributions with five fre-
quencies in sample 3. The radii of the cyan spheres are proportional to the acoustic
pressure. The green marker denotes the sound source’s position, located at the
sample’s center.

along x5, and the radius of the nodal ring expands from 0.5m/a (bot-
tom) to 0.91/a (top).

Acoustic lattice design

The side length of the cubic cell is set to be a=4cm, while other
structural parameters are all tunable. All tunable structural parameters
are controlled by the dimensionless parameter & Specifically, the radii
of the tubes are given by r;=&ry and ro with ro=0.4cm, and the
sphere’s radius is R=0.8 cm.

Numerical simulations

All simulations are performed using the acoustic module of COMSOL
Multiphysics, which is based on the finite-element method. The pho-
tosensitive resin used for sample fabrication is set as the hard
boundary due to its large impedance mismatch with air. The real sound
speed at room temperature is co =346 m/s. The density of air is set to
be 1.8 kg/m?>. The results in Fig. 3b are obtained by computing the band
structure of one unit cell, with the Floquet boundary condition applied
to all directions. The data points are selected by scanning the
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Fig. 5 | Pseudomagnetic field modified drumhead surface states. a lllustration of
the drumhead states at the top and bottom surface. b-d Measured Fourier intensity
at the bottom (top) surface at 6.13 kHz for three samples. The gray circles denote
the projections of the nodal ring near the surfaces.

dispersion along ki, k», k3 and tracing the degenerate points. We note
this is a good measure of the nodal ring’s radius due to its circular
shape (Fig. 3b and Supplementary Information Fig. S5). In the simula-
tions of Fig. 3d-f, a supercell with 300 layers along the x3 direction is
used. In Fig. 3e, f, £ changes from 1.973 to 1.704 from bottom to top.
Accordingly, the radius of the nodal ring expands from 0.5m/a to
0.91/a. To realize flat drumhead surface states, the top and bottom
resonators are cut by h, = 0.246rq and hy, = 0.216r, respectively. More
simulations can be found in Supplemental Information.

Sample details

The sample is fabricated via 3D printing technology with a fab-
rication error of 0.1 mm. The triclinic sample has a side length of
28.28 cm x 28.28 cm x 32.01 ¢cm and contains 2904 sphere cavities
and several waveguides. All spheres at the surface are cut in half
to mimic radiation boundary conditions. During the measure-
ment, the sample is surrounded by sound-absorbing sponges to
reduce the reflection from the sample boundaries. When we
measure the top (bottom) drumhead surface states, the top
(bottom) surface is covered by an acrylic plate (Supplementary
Information Fig. S10). All three samples have 12 layers. The
parameters of the three samples are listed in Table 1.

Experimental measurements

In the LL experiment, a broadband sound signal (4-8 kHz) is
launched from a narrow long tube in Fig. 4c (diameter of about
0.3 cm and length of 35 cm) that is inserted into the centermost

Table 1| Parameters of three samples®

Sample & koa/m h, hy

1 1.612-2.016 1.0-0.4 0.258r, 0.148rq
2 1.704-1.973 0.9-0.5 0.246rq 0.216r¢
3 1.858 0.7 0.278r¢ 0.226rp

2The meaning of &, h;, and hy, defines the geometry of the unit cell, and they are illustrated in
Fig. 3. k, describes the radius of the nodal ring.

site, which acts as a point-like sound source for the wavelength
focused here. The pressure of each site is detected by a micro-
phone (Briiel&Kjaer Type 4961) adhered to a long tube (diameter
of about 0.2 cm and length of 35 cm). The signal is recorded and
frequency-resolved by a multi-analyzer system (Briiel&Kjeer 3160-
A-022 module). In the drumhead state experiment, the source is
located at the 2nd (12th) layer when we measure the bottom (top)
drumhead state (Supplementary Information Fig. S10). Other sets
are the same as before.

Data analysis

In the LL experiment, pressure data of the outermost sites (cut sites
and sites that connect them directly) are discarded. The source’s fre-
quency spectrum normalizes all pressure data before they are used to
create the plots in Fig. 4. In the drumhead state experiment, all data are
processed by Fourier transformation.

Data availability

The experimental data are available in the data repository for Nanyang
Technological University at this link (https://doi.org/10.21979/N9/
RS60NB). Other data supporting this study’s findings are available
from the corresponding authors upon reasonable request.
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