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Distributed neural representations of
conditioned threat in the human brain

Zhenfu Wen1,2, Edward F. Pace-Schott3,4, Sara W. Lazar 3,4, Jörgen Rosén5,
Fredrik Åhs6, Elizabeth A. Phelps 7, Joseph E. LeDoux 1,8,9,10 &
Mohammed R. Milad 1,2,10,11

Detecting and responding to threat engages several neural nodes including the
amygdala, hippocampus, insular cortex, and medial prefrontal cortices.
Recent propositions call for the integration of more distributed neural nodes
that process sensory and cognitive facets related to threat. Integrative, sensi-
tive, and reproducible distributed neural decoders for the detection and
response to threat and safety have yet to be established. We combine func-
tional MRI data across varying threat conditioning and negative affect para-
digms from 1465 participants with multivariate pattern analysis to investigate
distributed neural representations of threat and safety. The trained decoders
sensitively and specifically distinguish between threat and safety cues across
multiple datasets. We further show that many neural nodes dynamically shift
representations between threat and safety. Our results establish reproducible
decoders that integrate neural circuits, merging the well-characterized ‘threat
circuit’ with sensory and cognitive nodes, discriminating threat from safety
regardless of experimental designs or data acquisition parameters.

Encountering a threatening stimulus triggers sensory systems to relay
multimodal information about the threat. This information is for-
wardedonto circuits that initiate implicit and explicit defensive actions
and form long-term memory representations that the organism uti-
lizes in future encounters1. Pavlovian threat conditioning has been a
valuable experimental paradigm to study these neural
representations2–6. Past research within this field has intensively
focused on the roles of a few subcortical and cortical structures in how
the association between the conditioned and the unconditioned sti-
muli is formed, and how the defensive responses are generated and
subsequently extinguished3,7–10. This approach has led to the notion of
the so-called ‘threat circuit’ that mainly includes subregions of the

amygdala, periaqueductal gray, hippocampus, medial prefrontal cor-
tex, and insular cortex. Across species, but especially in the rodent
literature, data suggest some specific associations between localized
functional activations of these nodes and particular behavioral
expressions or processes during the acquisition and extinction of
conditioned threat3,11,12. For example, the amygdala is important for the
expression of conditioned freezing responses and for extinction
learning13; while the hippocampus is involved in contextual informa-
tion processing4.

This simplifiedmodel based on Pavlovian reactions does not fully
account for the range of complex cognitive and memory representa-
tions that are formed, stored, and updated during conditioning and
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extinction learning. While the ‘threat circuit’ plays an important role in
the detection and response to threat, there is a need for studying how
this circuit interacts with other cognitive and sensory neural networks
to accomplish the complex processes during the encounter of
threat14,15. Currently, the field lacks established distributed neural
representations that are sensitive and reproducible for the encodingof
threat and safety cues across stages of threat conditioning and its
subsequent extinction learning and memory retrieval. A compelling
approach to study this is the machine learning-based multivariate
pattern analysis (MVPA)16. In contrast with the traditional univariate
analysis examining localized activation, MVPA enables the integration
of neural patterns across distributed regions to sensitively detect
subtle differences betweenmental processes. The cross-validation and
external validation procedures of MVPA provide ways to examine the
generalizability of activation patterns. Considerable evidence has
shown that the MVPA is more stable and sensitive than traditional
univariate analysis16–18. In addition, MVPA could examine whether
neural representations are similar across conditions or processes even
for overlapping univariate activations19, and thus allows one to test the
specificity of observed patterns to conditioned threat compared to
other triggers of negative affect.

In this work, we employ MVPA to investigate the neural repre-
sentations of conditioned threat throughout conditioning, extinction
learning, and extinctionmemory recall using two analytic approaches.
In the first approach, we examine fMRI-based neural patterns within
the ‘threat circuit’ in decoding stimuli that have been conditioned to
signal threat from those that have been conditioned to signal safety. In
the second approach, we examine neural patterns beyond the ‘threat
circuit’ in contributing to conditioned threat and safety representa-
tions. Specifically, based on recent conceptualizations that more dis-
tributed neural systems are engaged in threat processing14,15,20–24, we
conduct decoding analysis using distributed ‘whole-brain’ activation
patterns (with the ‘threat circuit’ excluded). We construct decoding
models based on a discovery dataset (n = 425) from participants that
underwent an established two-day threat conditioning and extinction
paradigm25,26, and evaluate the generalizability of the models on two
external validation datasets (n = 220) using the same paradigm. By
combining the ‘threat circuit’ and the brain regions identified in the
second analytic approach, we construct an extended circuit that
includes sensory, working memory, and cognitive neural nodes. We
then train new classifiers based on neural activations from this
extended circuit, and apply these decoders to 7 external datasets
(Supplementary Fig. 1). The objective here is to test the sensitivity,
specificity, and generalizability of this extended circuit and the newly
trained classifier to distinguish threat from safe cues across datasets
that used different variants of threat conditioning paradigms aswell as
other affect-related paradigms. We demonstrate that threat and safety
cues can be robustly decoded using activation patterns within and
beyond the ‘threat circuit’. The neural decoders sensitively and spe-
cifically distinguish between threat and safety cues across multiple
datasets acquired using varying paradigms. Thus, we establish gen-
eralizable and robust decoders for threat and safety in the
human brain.

Results
Decoding threat and safe cues based on patterns of the ‘threat
circuit’
First, we used activation patterns of the ‘threat circuit’, which mainly
included basolateral and centromedial amygdala (BLA, CMA), anterior
and posterior parts of hippocampus (aHPC, pHPC), subregions of the
insular cortex (dorsal anterior part, dAI; ventral anterior part, vAI;
posterior part, PI), dorsal anterior cingulate cortex (dACC), subgenual
ACC (sgACC), and ventromedial prefrontal cortex (vmPFC), for the
decoding analysis. We examined the sensitivity of the ‘threat circuit’
patterns in distinguishing threat from safe cues using a discovery

dataset (n = 425). This discovery dataset was constructed by all avail-
able data fromour laboratory that used theMilad et al. paradigm25,26 to
maximize the sample size (Supplementary Table 1). The paradigm
included three experimental phases. During threat conditioningphase,
two cues were pairedwith a shock (CS + ) and 1 cuewas not pairedwith
a shock (CS-). During extinction learning phase, a CS+ and a CS- were
presented without shock. The next day, extinction memory recall
phase was conducted by presenting all 3 cues: extinguished CS+
(CS + E), unextinguished CS+ (CS +U), and CS-. Considering the
dynamic nature of the threat/extinction learning processes24,27–31, we
divided each experimental phase into 4 trial-blocks (TB, from TB1 to
TB4). Since each experimental phase contained 32 trials in total, each
TB contained 8 trials (4 trials for each CS type). The activationmaps of
each CS type in each TB were estimated via the general linear model
(GLM), and separately used to build a decodingmodel for each TB.We
evaluated the decoding performance (forced-choice accuracy32–34) of
each trial-block across the two-day experiment using a 5-fold cross-
validation procedure.

As shown in Fig. 1A, activations from the ‘threat circuit’ success-
fully decoded CS types at all four trial-blocks of threat conditioning
(CS+ vs. CS-, TB1-TB4: 70.5%, 74.0%, 65.5%, 68.7%, all p < 0.001, per-
mutation test, one-sided, see Supplementary Table 2 for details), the
first trial-block of extinction learning (CS+ vs. CS-, TB1: 62.4%,
p < 0.001; TB2-TB4: 53.5%, p =0.077; 52.9%, p =0.12; 51.2%, p = 0.26),
and the first trial-block of extinction memory recall (CS + E vs. CS-,
68.0%, p < 0.001; CS +U vs. CS-, 67.4%, p < 0.001). In the conditioning
phase, the shock responsewas not likely to have amajor impact on the
classification performance, since we obtained comparable results in
decoding unreinforced CS+ from CS- (Supplementary Fig. 2). Con-
sidering that the autoregressive model of GLM suffers from removing
temporal autocorrelation35, the preceding shock signal might be
picked up by the classifier. To investigate this issue, we conducted an
additional analysis exclusively using trials not precededby a shock and
not paired with a shock. The results (Supplementary Fig. 3) demon-
strate that the classification performance was not predominantly
contributed by shock signal. Next, we tested the generalizability of the
decoding models on two external validation datasets (n = 98 and
n = 127, respectively) in which participants underwent the same para-
digm as those in the discovery dataset36,37. The paradigm setups (e.g.,
trial number, images used as CS) of the two external datasets were the
same as in the discovery dataset. The ‘threat circuit’-based decoding
models were successfully generalized to the two validation datasets
(Fig. 1B, C, see Supplementary Table 3 for details).

We next examined the voxel contributions to the successful
decoding to obtain a more refined spatial resolution of the CS repre-
sentations within these nodes (Fig. 1D). The classifier weights were
transformed into predictive patterns using Haufe transformation to
provide a robust interpretation of voxel contributions38. Compared to
classifier weights, the predictive patterns are often smoother and
better resemble mass-univariate analysis38: voxels with positive pre-
dictive patterns (shown in red in Fig. 1D) show more activation to CS+
presentation, while voxels with negative predictive patterns (shown in
blue in Fig. 1D) showmore activation to CS- presentation. This analysis
showed several interesting results. First, subregions of the amygdala
and insular cortex differentially contributed to decoding the CS+ and
CS- across trial-blocks. For example, during early conditioning and
recall, the BLA mostly exhibited predictive patterns towards the CS-,
while the CMA exhibited predictive patterns associated with the pre-
sentation of the CS + , only during the first trial-block of conditioning,
which then subsequently switched to encoding for the CS-. Second,
several regions exhibited consistent predictive patterns across
decoding models of different trial-blocks. Specifically, dACC and dAI
consistently coded CS + , while the hippocampus and PI mainly coded
CS-. Third, the predictive patterns of regions such as amygdala, sgACC,
and vmPFCwere adaptive- changing the coding signal between theCS+
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and CS- across trial-blocks and phases, suggesting that these regions
were dynamically involved across the experiment. It is important to
note that we did not conduct significance tests on the changes of
encoding across trial-blocks within each of these subregions, and that
these changes may reflect those similar to a habituation effect.

Decode threat and safe cues based on patterns of the
whole brain
The decoding performances based on the ‘threat circuit’ activation
patterns are encouraging, and support the well-documented con-
tributions of these neural nodes to associative learning during threat

conditioning and extinction learning. Yet as noted in the introduction,
there are several prior studies now pointing out the significant con-
tributions of multiple other brain regions to threat and safety signal-
ing. We therefore moved forward to examine how activations from
multiple sensory, attention, and cognitive circuits might also con-
tribute to the encoding of CS+ and CS- information across learning
phases. Indeed, using ‘whole-brain’ activation patterns (excluding the
‘threat circuit’) led to numerically superior decoding performances
(Fig. 2A). We obtained decoding accuracies above 70% at all trial-
blocks of threat conditioning (TB1-TB4: 88.6%, 85.7%, 81.7%, 77.5%, all
p <0.001, permutation test, one-sided, see Supplementary Table 2 for
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details), early extinction learning (TB1: 80.2%, p <0.001), and early
extinction memory recall (CS + E vs. CS-, TB1: 74.6%, p <0.001; CS +U
vs. CS-, TB1: 72.6%, p <0.001). The decoding accuracies on the external
datasets were comparable to those obtained on the discovery dataset
(Fig. 2B, C, see Supplementary Table 3 for details), suggesting good
generalizability of the decoding models. The numerically superior
classification performance of the ‘whole-brain’ pattern over the ‘threat
circuit’ remained when the number of voxels was matched

(Supplementary Fig. 4). For completeness, we conducted additional
analysis by using all gray matter voxels (including the ‘threat circuit’
voxels) for the classification, which resulted in similar performance as
those in Fig. 2A (Supplementary Fig. 5).

We next used permutation tests to define voxel contributions to
the classifier across the brain. These analyses identified distributed
brain regions that extended into multiple neural systems (Fig. 2D, and
Supplementary Fig. 6). For extinction learning and extinctionmemory
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recall phases, we only show the predictive patterns of the first trial-
blocks because these were the trial-blocks that showed the most
robust classification performance in the two phases. Based on these
predictive patterns, we identified 14 representative brain regions that
significantly contributed to the decoding across multiple trial-blocks
(Fig. 3A), including: (1) angular gyrus (AG), (2) orbital frontal cortex

(OFC), (3) supplementary motor area (SMA), (4) primary somatosen-
sory cortex (S1), (5) primarymotor cortex (M1), (6) visual cortex (VIS)/
Occipital pole, (7) cerebellum (CER)/Crus I, (8) thalamus (TH), (9)
opercular part of the inferior frontal cortex (Opr), (10) triangular part
of inferior frontal gyrus (Tri), (11) middle frontal gyrus (MFG), (12)
caudate nucleus (Cd), (13) superior frontal gyrus (SFG), (14) posterior
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cingulate cortex (PCC). The results of identified regions were robust to
criteria in defining the percentage of voxels included for the analysis
(Methods, Supplementary Fig. 7). Although the OFC was not among
the regions thatmade the largest contributions, we included it because
it significantly contributed in thefirst trial-block of conditioning,which
is consistent with literature suggesting its important role in threat-
related processing39,40. These regions spatially overlap with neural
systems including the somatomotor network (SMN), ventral attention
network (VAN), frontoparietal control network (CON), and default
mode network (DMN). Although the precise functional specializations
of these neural systems are unknown in the current task, they have
been extensively associated with many high-level aspects of human
cognition, including attentional processes, cognitive control, and
conscious awareness41.

An extended circuit for threat processing
Based on the regions that exhibited significant contribution to the
‘whole-brain’ decoding models, and the traditional ‘threat circuit’, we
constructed an ‘extended threat detection and responding circuit’
(Fig. 3A), which, based on our data, better defines the brain regions
involved in threat processing than the ‘threat circuit’ alone. We used
representational similarity analysis42 to test the contribution of each
node within this updated circuit to the decoding of threat and safety
(Supplementary Fig. 8). Based on each region’s preferences of the CS
type across trial-blocks, we identified three region communities. The
first community (red color in Fig. 3A) consistently coded for threat
(CS + ) across conditioning, extinction learning, and recall, which
included the dACC, dAI, PCC, Opr, Cd, and TH. The second community
(blue color in Fig. 3A) consistently coded the safety of the cue (CS-),
which included the PI, aHPC, pHPC, and OFC. The third community
(yellow color in Fig. 3A) showed dynamic coding; shifting their signal
between threat and safety (CS+ or CS-) depending on the experimental
phase. This community included the BLA, CMA, vAI, vmPFC, sgACC,
AG, S1, M1, SMA, MFG, VIS, Tri, and CER. Overall, these results suggest
that the first two communities are likely tracking the valence of the CS
cues as negative and positive, respectively, while the third community
represents circuits needed to change how we perceive and regulate
our responses to the conditioned threat cues. These dynamic brain
regions may underlie adaptive learning and flexible responses to sali-
ent cues observed throughout the different phases of the threat con-
ditioning protocol.

The sensitivity and specificity of the extended circuit in decod-
ing threat stimuli
Lastly, we investigated how sensitive and specific the extended circuit
decoders are when classifying threat-conditioned stimuli across dif-
ferent paradigms. To accomplish this, decoding models were trained
anew by using the activation patterns of the extended circuit only on
our discovery dataset, and then separately applied to each of the 7

external datasets with different experimental paradigms (summarized
in Supplementary Table 4), including variant paradigms of Pavlovian
conditioning, paradigm assessing ‘subjective fear’ to frightening ima-
ges, and paradigms of negative affect to intrinsically salient stimuli.We
expected that the decoding accuracies on threat, especially
conditioned-threat stimuli would be relatively higher than on the other
intrinsically salient stimuli. Given that most of the external datasets
contain only threat conditioning data, we focused the analysis on the 4
decoding models from the conditioning phase.

We first tested the extended models on three visual threat con-
ditioning datasets (n = 299, n = 94, and n = 48, respectively) that dif-
fered in visual stimuli, trial structure, and experimental durations43–45.
All models showed significant accuracies in classifying CS+ from CS-
across all three independent datasets (Fig. 3B–D): the accuracies for
the threedatasetswere: dataset 3 (TB1-TB4: 78.3%, 91.0%, 88.6%, 79.6%,
all p <0.001; two-sided binomial test, see Supplementary Table 5 for
details), dataset 4 (TB1-TB4: 69.1%, 90.9%, 89.4%, 88.3%, all p < 0.001),
and dataset 5 (TB1-TB4: 79.2%, 87.5%, 85.4%, 83.3%, all p < 0.001). We
next tested the decoding models on a dataset (n = 68) that used an
auditory threat conditioning paradigm46, which again yielded sig-
nificant accuracies in 2 of the 4 models (TB1-TB4: 51.4%, p = 0.90;
83.8%, p < 0.001; 67.6%, p =0.005; 61.7%, p = 0.068; Fig. 3E). We next
applied themodels to another dataset (n = 65) that assessed ‘subjective
fear’22 induced by frightening images, which also revealed significant
accuracies (TB1-TB4: 76.9%, 81.5%, 73.8%, 80.0%, all p <0.001; Fig. 3F).
We then tested the specificity of themodels by applying them to other
paradigms that tested neural responses to intrinsically salient stimuli.
The accuracies of the classifiers were numerically lower when decod-
ing neural representations about picture-evoked negative affect34

(n = 182, high vs. low emotionality, TB1-TB4: 75.3%, p < 0.001; 70.3%,
p <0.001; 72.0%, p <0.001; 50.5%, p =0.94; Fig. 3G). On another
dataset (n = 59) that examinedneural responses topain and rejection19,
most of the models showed numerically reduced accuracies for phy-
sical pain (high vs. low pain, TB1-TB4: 49.2%, p = ~1.0; 71.2%, p = 0.002;
50.8%, p = ~1.0; 57.6%, p =0.30; Fig. 3H) or social rejection (friend vs.
ex-partner, TB1-TB4: 50.8%, p = ~1.0, 61.0%, p =0.12; 61.0%, p =0.12;
57.6%, p = 0.30; Fig. 3I). For each trial-block, we further compared the
decoding accuracies across paradigm types (see Methods). Decoding
accuracies for conditioned threat (datasets 3–6) were not significantly
different from those for ‘subjective fear’ (dataset 7) (Chi-square test,
TB1: χ2(1) = 0.26, p =0.81, odds ratio [OR] = 0.81, 95% confidence
interval [CI] = [0.41, 1.53]; TB2: χ2(1) = 3.14, p =0.15, OR= 1.98, 95% CI =
[0.90, 4.07]; TB3: χ2(1) = 5.22, p =0.09, OR = 2.11, 95% CI = [1.08, 3.99];
TB4: χ2(1) = ~0.0, p = ~1.0, OR =0.95, 95% CI = [0.46, 1.85]; FDR-cor-
rected, two-sided), and significantly higher than those for intrinsically
salient stimuli (datasets 8–9) at trial-blocks 2–4 (TB1: χ2(1) = 1.05,
p =0.31, OR = 1.21, 95% CI = [0.85, 1.72]; TB2: χ2(1) = 47.49, p = 5.5E-12,
OR = 3.88, 95% CI = [2.56, 5.90]; TB3: χ2(1) = 30.60, p = 3.2E-8, OR =
2.80, 95% CI = [1.91, 4.11]; TB4: χ2(1) = 55.63, p = 8.8E-14, OR= 3.46, 95%

Fig. 3 | The ‘threat detection and flexible responding circuit’ and its general-
izations to external datasets. A Schematic illustrativemapof the extended ‘threat
detection and flexible responding circuit’. Red-colored regions consistently code
theCS+across experimental phases. Blue-colored regions consistently code theCS-
across experimental phases. Yellow-colored regions dynamically code CS+ or CS-
depending on the experimental phase. B Performances on Vinberg et al. dataset44

(n = 299). The 4 decoding models (for trial-blocks 1–4; TB1-TB4) from the con-
ditioning phase were applied to the external datasets separately. C Performances
on the Visser et al. dataset45 (n = 94). D Performances on the Hennings et al.
dataset43 (n = 48). E Performances on the Reddan et al. dataset46 (n = 68).
F Performances on the Zhou et al. dataset22 (n = 65). G Performances on the Chang
et al. dataset34 (n = 182). H Performances on the Woo et al. dataset19 that used a
physical painparadigm(n = 59). IPerformanceson theWooet al. dataset19 that used
a social rejection paradigm (n = 59). Bounds of the box represent the 1st (25%) and
3rd (75%) quartiles, the central line represents the median, the whiskers represent

the values within 1.5 times of the interquartile range, the flier points represent
outliers falling beyond the whiskers. Images in (A) were created with BioR-
ender.com. The displayed examples of experimental pictures in (B–I) are royalty-
free pictures obtained from pixabay.com. These pictures are displayed for illus-
tration purposes and are not the pictures included in the original stimulus sets. AG
angular gyrus, OFC orbital frontal cortex, SMA supplementary motor area, S1 pri-
mary somatosensory cortex, M1 primary motor cortex, VIS visual cortex, CER cer-
ebellum, TH thalamus, IFG inferior frontal gyrus, Opr opercular part of the IFG, Tri
triangular part of the IFG; MFG, middle frontal gyrus; Cd, caudate nucleus; SFG,
superior frontal gyrus; PCC posterior cingulate cortex, vmPFC ventromedial pre-
frontal cortex, dAI, dorsal anterior insular cortex, vAI ventral anterior insular cor-
tex, PI posterior insular cortex, dACC dorsal anterior cingulate cortex, sgACC
subgenual anterior cingulate cortex, aHPC anterior hippocampus, pHPC posterior
hippocampus, BLA basolateral amygdala, CMA centromedial amygdala.
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CI = [2.46, 4.90]; FDR-corrected, two-sided). These data suggest that
the neural representations for conditioned threat are distinct from
those evoked by intrinsically salient stimuli.

Discussion
By examining neuroimaging data obtained across multiple experi-
mental paradigms from 1465 participants, we show that brain
responses to stimuli representing conditioned threat, its subsequent
extinction learning, and memory recall can be classified using activa-
tion patterns from the ‘threat circuit’. Importantly, however, the clas-
sification accuracies were numerically superior when activation
patterns from other distributed neural systems (excluding the ‘threat
circuit’) were used. Based on these findings, we constructed the
‘extended threat detection and responding circuit’ and validated its
sensitivity and specificity in classifying conditioned threat. The trained
classifiers are sensitive and reproducible regardless of experimental
paradigms or MRI scanners across countries. Our results continue to
support the important role of the ‘threat circuit’ in the detection and
response to threat. These results support current conceptions in the
field by showing that sensory and cognitive neural nodes are also
essential in enhancing the classification accuracies related to threat
and safety processing; thereby highlighting the importance of con-
sidering multiple neural systems in concert for a comprehensive
understanding of the underlying mechanism of threat encounters.

A few studies have employed MVPA methods to examine neural
representations during threat conditioning and extinction43,46–48. The
datasets used in these studies, however, were much smaller (n < 70)
and contained one version of the conditioning paradigms, thus raising
concerns regarding the sensitivity and generalizability of MVPA
studies49,50. Unlike prior studies, our results are based on amuch larger
sample size from multiple datasets ascertained across different
experimental paradigms. Using activation patterns within the ‘threat
circuit’, we decoded threat from safety cues across experimental
phases of threat conditioning, extinction learning, and extinction
memory recall (Fig. 1A), which showed robust generalizability to two
validation datasets (Fig. 1B, C). These findings are consistent with
ample evidence suggesting the important role of the ‘threat circuit’ in
threat detection and responding3,7,9,21. Many rodent studies showed
that neural manipulations within the amygdala and parts of the ven-
tromedial prefrontal cortices significantly modulated conditioned
responses (for review, see refs. 11,12,51). Human lesion studies also
provide valuable support to the necessary contributions of neural
nodes like the amygdala and medial prefrontal cortex to conditioned
threat and negative affect processing52–57. Due to challenges related to
the spatial resolution of our fMRI data, we did not include regions like
periaqueductal gray andbednucleus of the stria terminalis (BNST) into
the ‘threat circuit’, although previous studies showed their important
roles in fear and/or anxiety-related processing11,58.

In addition to the ‘threat circuit’, our data highlight the value of
other nodes that are also important in conditioned threat processing.
Importantly, numerically higher decoding performances were
obtained when including neural patterns from other systems that go
beyond the ‘threat circuit’. When we encounter a threat, we need to
process all sensory information, pay attention to our surroundings,
retrieve prior memories related to the encounter of this or similar
threats, and decide how to respond. Indeed, our results do suggest an
engagement of multiple sensory and cognitive systems during
the encounter of threat and safety cues, which is likely needed for the
processing of these complex representations. Our results provide
compelling empirical evidence for conceptual frameworks that threat
processing involves multiple processes encompassing multiple brain
circuits14,21. We identified 14 representative regions spanning across
the primary sensory and motor cortex, frontal-parietal cortex, and
cerebellum, that significantly contributed to the decoding models
across threat conditioning and extinction learning phases. The high

decoding performances here suggest the important role of these
regions in supporting implicit and explicit representations of threat
and safety. While the OFC only significantly contributed to the early
conditioning phase, we included it because it was reported to be
involved in threat-related processing across studies39,40. There might
beother regions that are only transiently engaged at specific stages of
conditioning and/or extinction (like the OFC here), that were not
identified. Our objective here is not to thoroughly identify all the
brain regions that are involved in the processing. Rather, we are
highlighting amore integrative view in aggregating the ‘threat circuit’
together with other neural systems involved in sensory and cognitive
processes, to study neural mechanisms underlying threat encounter,
as proposed in recent conceptualizations14,15,20–24.

Our analyses of voxel contributions to the decoding of CS+ and
CS- across experimental phases revealed interesting predictive pat-
terns (Figs. 1D, 3A). Specifically, parts of the insular cortex (posterior),
medial OFC, and parts of the hippocampus, continuously encode the
representation of the safe stimulus (CS-) regardless of the experi-
mental phase. In contrast, multiple brain regions, e.g., the dAI and the
dACC consistently contributed to the classification of the CS + , sug-
gesting a role in the encoding of the associative aspect related to
threatening cues. These brain regions continued to signal, or encode,
theCS+ evenduring extinction learning andduring extinctionmemory
retrieval, consistent with maintaining some representation of the
initial conditioned threatmemory regardlessof extinction3. These data
provide neurobiological support from the human brain to the now
well-accepted concept that extinction does not erase the original
conditioned threat associations, first proposed by Pavlov in 192759. Of
note, the brain regions discussed above also respond to a broad range
of stimuli60–63, and our experimental design and analyses used in our
study could not determine whether they are preferentially associated
with Pavlovian threats vs. other processes. Several neural nodes
showed dynamic preferences in the encoding of the CS+ and CS-
across experimental phases, especially those associated with sensory
processing, attention, and cognitive control like theMFG, SFG, vmPFC,
and amygdala, amongst others (results based on the representational
similarity analysis, Fig. 3A and Supplementary Fig. 8). For example,
sub-nuclei of the amygdala (BLA andCMA) exhibitedpreferences toCS
+ during early extinction learning, while BLA exhibited preferences to
CS- and CMA exhibited preferences to CS+ types during early threat
conditioning and extinction memory recall (Fig. 1D). This observation
is consistent with rodent and human studies showing that amygdala
contributes to threat and safety processing in an anatomically specific
way30,64–66. We refer to those neural nodes that dynamically code CS + /
CS- as ‘flexible’ coders.

Why do the ‘flexible’ coders change their encoding of the CS type?
One possible explanation for this change is that it may reflect training-
induced dynamic change in neural representation- similar to a habi-
tuation effect. Another plausible explanation might be related to the
fast neural encodingduring associative learning and/or rapidbehavioral
flexibility that accompanies this learning. During threat conditioning
and extinction learning, the significance of the conditioned stimuli
changes across the learning phases, which requires a dynamic learning
signal. Associations between eachCS color and the presence or absence
of shock occur in the early trials of threat conditioning. Similarly, during
early extinction, the distinction between the CS+ which represents
threat, and the CS- which represents safety, is diminished due to
extinction learning within a few trials. The diminished difference
between CS+ and CS- led to rapidly decreased decoding accuracy after
early extinction which ended up in chance-level performances in late
extinction (Figs. 1A–C, 2A–C). The same pattern of drop in accuracies
was also observed during extinction memory recall. This is the case for
the extinguished (CS + E) and unextinguished (CS +U) cues. The rapid
decrease in accuracies is consistent with the well-documented excep-
tionally quick extinction learning in humans both during extinction
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learning and extinctionmemory recall3,67. During these learning phases,
the subjective feelings, behaviors, and psychophysiological indices are
also dynamically changing. These dynamic neural coders could there-
fore underlie learning/behavioral changes at varying times during each
experimental phase. In support of this idea, we recently showed that
activations within sub-nuclei of the amygdala change during threat
conditioning in a temporally specific manner30. Temporal dynamics
across distributed neural networks in activation and functional con-
nectivity also change trial-by-trial during extinction learning, suggesting
extinction-induced neural plasticity24,68. Future studies focusing on the
temporal dynamics of these brain activations and how they might be
linked to the encoding of neural plasticity or behavioral outcomes are
needed to further clarify the flexibility of these nodes to encode threat
and safety cues.

The external threat conditioning datasets used for validations
were acquired using different MRI scanners and experimental para-
digms that were substantially distinct from the Milad et al.
paradigm25,26 used to train the classifier. These paradigms used a
variety of conditioned stimuli, and applied complex and differing
reinforcement schedules. Despite all of these variations, the models
trained on one paradigm (theMilad et al. paradigm) were still sensitive
and specific in distinguishing threatening from non-threatening con-
ditioned cues across paradigms (Fig. 3B–D), suggesting that the clas-
sifiers learned some general patterns of conditioned threat. A note of
caution to make here is that our trained models cannot make a dis-
tinction between decoding features that represent the general pro-
cessing of conditioned threat from features that might be specific to
the paradigm used to train the classifiers (such as specific colors or
modality of CS, reinforcement schedule, etc.). The classification
accuracies were numerically lower when our trained classifiers were
applied to a study that used auditory fear conditioning (Fig. 3E), sup-
porting the idea that some coded information in the original classifiers
was indeed specific to the paradigm on which it was trained. As
expected, the accuracies of our models tested in the negative affect
and pain processing studies (Fig. 3G–I) were significantly lower (based
on the Chi-square test) compared to those obtained from the threat
conditioning studies (Fig. 3B–E). Despite the low accuracies, some of
these models were still significant, suggesting a partial overlap in
neural coding between conditioned threat and those related to general
negative affect. Additional studies are needed to further parse out
aspects of the neural representations that are specific to the paradigm
used to train the models from those that are unique to threat and
negative affect processing.

Several limitations of this study should be noted. First, the masks
for some ‘threat circuit’ regions, including vmPFC, sgACC, and dACC,
were defined using small spheres around coordinates derived bymeta-
analysis. These masks could not fully cover the three relatively large
cingulate cortices. Thus, patterns of activations within voxels outside
of these masks may have contributed to the ‘whole-brain’ classifica-
tion. We note that the size of the mask definition is unlikely to have
impacted the ‘whole-brain’ classification results. This is because we
conducted additional analyses using much larger masks (thus
excluding more voxels from the same cingulate regions) and the out-
come of the ‘whole-brain’ classifiers did not change (Supplementary
Fig. 9). Second, the regional coding preference pattern summarized in
Fig. 3A (consistent for CS + , CS-, or flexible) represents a general
schematic illustration of the activation patterns specific to our
experimental design and its structure. We speculate that while the
engagement of these brain regions across different experimental sti-
muli and experimental design might be consistent, their decoding
patterns across experimental phases might differ from one study to
another. Further studies are needed to examine the dynamic neural
representations of these regions across paradigms. Lastly, the results
obtained from this study should not be misinterpreted to infer caus-
ality, given the indirect nature of fMRI data and the lack of direct

manipulations of the brain signals. Future mechanistic studies are
needed to test how the patterns of activations we observed might
influence, or lead to, behavioral changes pertaining to the expression
and extinction of threat responses across experimental phases.

In summary, our results point to the important contribution of
multiple sensory and cognitive neural nodes to the decoding of stimuli
associated with threat detection and responding. While prior studies
have indeed reported the engagement of sensory and cognitive brain
regions during threat conditioning and extinction, our study provides
evidence of an integrative circuit that encodes for threat and safety,
consistently, specifically, and sensitively- irrespective of experimental
paradigm variations or site of data acquisition. Our results support
recent conceptualizations calling for the integration of broad networks
required for the implicit and explicit processing of threat. Cortical
nodes involved in attention and sensory perception in other animal
models have received relatively less attention when examining threat
conditioning and extinction. We propose that broadening our focus to
multiple cortical nodes would provide valuable data to further our
understanding of how we detect and respond to threat. A potential
application for the decoders is in neuromodulation studies where we
could envision inducing some neuromodulation on one or more of the
nodes from the extended circuit and evaluate how such manipulation
might change the decoding accuracies and the dynamic interactions
and encodings we observed.

Methods
Participants
We analyzed data from a total of 1465 participants across multiple
studies. No statistical method was used to predetermine sample size.
No data were excluded from the analyses. Participants from the dis-
covery dataset (n = 425) were combined from multiple previous
studies25,26,69–73 and unpublished studies from the Milad lab (see Sup-
plementary Table 1 for details). Themethods used to ascertain the new
unpublished data, including all experimental procedures conducted
were identical to those used for all of our published studies. The data
of the external validation datasets 1 (n = 98) and 2 (n = 127) were from
two other studies36,37. All participants in those datasets underwent the
Milad threat conditioning and extinction paradigm25,26. Data from the
external validation datasets 3–9 were from other studies that used
variants of threat conditioning paradigms or other affect-related
paradigms19,22,34,43–46 (see Supplementary Table 4 for the summary). As
stated in all of the above-referenced studies, all procedures were
approved by the Institutional Review Boards of the corresponding
research sites. The procedures for collecting the newunpublished data
were approved by the Institutional Review Board of theMassachusetts
General Hospital. All participants provided written informed consent
before they participated in the studies.

Experimental procedure
Thedescription of the experimental procedures and the neuroimaging
data acquisition section below pertain to only the participants from
the discovery dataset and the validation datasets 1–2. Descriptions of
experimental procedures and statistics for validation datasets 3–9 will
be provided below. Participants underwent a validated 2-day fear
conditioning and extinction paradigm25,26 during fMRI scanning. On
day 1, participants were first exposed to threat conditioning, during
which they were presented with three colored lights (conditioned
stimuli, CS). Two of the lights were paired with a mild electric shock
(CS + , 8 trials for each CS + , reinforcement rate: 62.5%) and the other
was not (CS-, 16 trials). Threat conditioning was followed by an
extinction learning phase, when the CS- and one of the CS+ were
repeatedly presented in the absenceof shock (16 trials for eachCS).On
day 2, participants underwent a memory recall phase to assess their
extinctionmemory. During this phase, all three lights: the extinguished
CS+ (CS + E, 8 trials), the unextinguished CS+ (CS +U, 8 trials), and the
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CS- (16 trials) were delivered without shock. The trial structure was
similar across experimental phases. Specifically, each trial started by
presenting a context image (either a library or an office) for 3 s, after
which the CS was presented for 6 s. In a reinforced CS+ trial, a shock
was delivered at the end of the CS for 500ms. In other CS trials, no
shock was delivered. A fixation was then presented during the inter-
trial intervals, which ranged between 12 and 18 s, with an average of
15 s. The order of trials was pseudorandom. The colored lights used as
CS+s and CS- were counterbalanced across participants. The con-
ditioning occurred in one context (e.g., the ‘office’ image) while the
extinction learning and extinction memory recall phases occurred in
the other context (e.g., the ‘library’ image). The context assignments
were counterbalanced across participants.

Neuroimaging data acquisition and preprocessing
Neuroimaging data from the discovery dataset and the validation
datasets 1–2 were acquired using three different MRI settings. Details
about the different settings are listed in Supplementary Table 1.Within
the discovery dataset, data from 121 participants were collected with
setting 125,26, and data from 304 participants were collected with set-
ting 269,70. Data fromvalidationdataset 1were collectedwith setting 336,
and data from validation dataset 2 were collected with setting 237.

Imaging data were preprocessed using fMRIPrep 20.0.274. The T1-
weighted (T1w) were corrected for intensity non-uniformity with
N4BiasFieldCorrection (ANTs 2.3.3) and used as T1w-reference
throughout the preprocessing. The T1w-reference was skull-stripped,
segmented into cerebrospinalfluid, white-matter and gray-matter, and
then spatially normalized into the Montreal Neurological Institute
(MNI) space (MNI152NLin2009cAsym) through nonlinear registration
with antsRegistration (ANTs 2.3.3). The functional images were head-
motion corrected using mcflirt (FSL) and slice-timing corrected using
3dTshift (AFNI). The preprocessed functional images were then co-
registered to the T1w-reference using flirt (FSL) with the boundary-
based registration (nine degrees of freedom), and spatially normalized
into the MNI152NLin2009cAsym space by applying the parameters
obtained from T1w-reference spatial normalization. Normalized func-
tional images were resampled to 2 × 2 × 2mmvoxel size using Lanczos
interpolation (ANTs 2.3.3) and smoothed with a 6-mm full-width half-
maximum (FWHM) Gaussian kernel.

Brain activation estimation
We used a univariate general linear model (GLM) implemented in the
Nistats 0.0.1rc toolbox to estimate activation maps of different stimuli.
Since previous human and rodent studies have shown distinct neural
activations across trials even within an experimental phase24,27–30, we
divided trials of each CS type into trial-blocks (4 trials per trial-block)
and separately modeled the brain activity to each trial-block. For the
conditioning or extinction phase, there were 4 trial-blocks for each CS.
For the recall phase, there were 2 trial-blocks of CS + E/CS +U and their
corresponding CS- trial-blocks. For each trial-block, the regressor was
modeled as boxcar functions time-locked to the CS presentations and
convolved with the canonical hemodynamic response function (HRF).
We also included the 6 motion parameters, high-pass temporal filtering
(128 s) terms, volume-censoring indicators (volumes with framewise
displacement >0.9mm75), and polynomial drift in the GLM model as
nuisance variables. A first-order autoregressive model was used to
account for the temporal structureof thenoise. For eachparticipant, the
GLMmodel resulted in two activationmaps for each trial-block (one for
CS + , one for CS-), which were used for the following decoding analysis.

The first analytic approach: decoding based on the ‘threat net-
work’ patterns
We separately trained classifiers to discriminate CS type at each trial-
block (conditioning: CS+ vs. CS-, extinction: CS+ vs. CS-, recall: CS + E

vs. CS- and CS +U vs. CS-) based on the estimated brain activations.
Voxel activations from the key nodes of the ‘threat network’ (Supple-
mentary Fig. 1A) were used as features.

The CMA andBLAmasks were defined based on amygdalamasks
constructed by Shackman and colleagues76. These masks provide
enhanced anatomical sensitivity and selectivity compared to the
Juelich/SPMamygdalamasks (see ref. 76).We added a coronal view of
the amygdala masks (Supplementary Fig. 10) to enable readers to
judge the alignment of themaskswith theMNI152 template. Here, the
CMA was defined by combining the central nucleus and medial
nucleus. The BLA was defined by combining the lateral nucleus,
basolateral and basomedial nuclei. The aHPC and pHPC masks were
defined using theHarvard-Oxford subcortical probabilistic atlas (50%
probability threshold, aHPC and pHPCwere separated by Y = −21mm
in MNI space77). The dAI, vAI, and PI masks were defined based on
clustering analysis of resting-state functional connectivity78. The
vmPFC, dACC, and sgACC masks were created using Neurosynth79

with “conditioning” as the keyword. An 8mm sphere was created for
each of the following identified peak coordinates: vmPFC
(MNIxyz = −2, 46, −10), dACC (MNIxyz = 0, 14, 28), and sgACC
(MNIxyz = 0, 26, −12). Voxels within the masks were concatenated as
feature vectors for classification.

The second analytic approach: decoding based on ‘whole-brain’
patterns
We tested recent conceptualizations that more distributed neural
systems are engaged in threat processing14,15,20–23. We extracted voxel
activations from the whole brain (restricted to the gray matter and
excluded the ‘threat circuit’, Supplementary Fig. 1B) for the classifica-
tion. To eliminate the impact of the ‘threat circuit’ on the decoding,
voxels from the ‘threat circuit’, and their neighborhoods within a
radius of 3 voxels, were excluded from the analysis.

Classification procedure
We used logistic regression with L2-regularization (or ridge regres-
sion) from scikit-learn80 as the classifier. The hyper-parameter of the
L2-regularization term was selected from 20 equally distributed
values between 0.01 and 100. The optimal hyperparameter was
selected based only on training data. We assessed the classification
performance on the discovery dataset using a 5-fold cross-validation
procedure. Specifically, we evenly divided participants from the
discovery dataset into 5 folds, trained the classifier (including hyper-
parameter selection) using data from 4 folds of the participants, and
tested the performance using data from the left-out participants.
This procedure was repeated 5 times, with each fold of participants
being the test set once. To avoid a potential bias of dataset split, we
repeated the cross-validation procedure 10 times, using different
splits in each repetition. Mean performance across all 10 repetitions
was reported.Wemeasured the decoding performance using forced-
choice accuracy—a metric that is less sensitive to individual differ-
ences in overall activations and particularly suitable for fMRI analysis
across sites32–34. In the forced-choice test, the classifier outputs of the
two feature vectors of each left-out participant were compared, and
the feature vector that led to a higher classifier output was chosen as
CS + . The forced-choice accuracies were averaged across partici-
pants and reported.

Generalization of the classifiers
We examined the generalization capability of the classifiers using
validation datasets 1–2 which were from two studies with the same
paradigm procedures and settings. We trained the classifier using all
data from the discovery dataset and applied it to the two datasets that
were never used during classifier training to evaluate the classification
performance.
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Contribution of activation patterns to the classification
We examined the contribution of each voxel to the classification. We
first extracted the model weights from the classifier trained based on
the discovery dataset. We then transformed the model weights using
the Haufe transformation to obtain the predictive weight of each
voxel38. Differing from themodel weight, the predictive weight ismore
reliable in representing the contribution of a voxel in the decoding.
Furthermore, the predictive weights indicate the preference of voxel
activations to the CS type—voxels with positive predictive patterns are
more activated to CS+ (or CS + E/CS +U in extinction memory recall)
presentation, while voxels with negative predictive patterns are more
activated to CS- presentation. To increase the robustness of the esti-
mated predictive weights, we repeated the procedure using the
bootstrap resampling 10 times. The predictive weights were obtained
by averaging values across the repetitions. We further conducted
permutation tests for the whole-brain-based analysis to identify voxels
that significantly contributed to the decoding. Specifically, we ran-
domly shuffled the labels of the discovery dataset and re-estimated the
predictive weight 1000 times, which generated the null distribution of
predictive weight for each voxel. We then calculated Z scores and two-
tailed p values based on the mean and standard deviation of the null
distribution. The significant voxels were identified based on false dis-
covery rate (FDR) corrected p values (p <0.05, two-sided).

Extended circuit
Based on the voxel contributions in the whole-brain-based analysis, we
identified 14 brain regions (bilateral) that significantly contributed to
the classification. With the P values from the permutation tests
described above, we estimated the overall contribution of each voxel
in the classification by averaging the mean (-log(p)) values across the 7
trial-blocks that showed robust classification performances81. We
considered ‘robust’ classification as significant decoding accuracies in
both discovery dataset and validation datasets 1–2 (Fig. 2A–C). All 4
trial-blocks of conditioning, the first 2 trial-blocks of extinction learn-
ing, and the first trial-block of extinction learning recall (bothCS + E vs.
CS- and CS +U vs. CS-) met this criterion. We did not include the sec-
ond trial-block of extinction learning in the analysis, because the
accuracy dropped a lot from the first to the second trial-block (both in
the discovery dataset, and in the validation dataset 1), and the
accuracies in the second trial-block for the two validation datasets
were lower than 65% (64.9% and 60.3%). We then selected the top 10%
voxels with the largest contributions. This choice was made because
the mean percentage of voxels that significantly contributed to the
classification (p <0.05, FDR-corrected, two-sided) across the trial-
blocks (Fig. 2D and Supplementary Fig. 6) was around 10%
(9.5%± 2.2%). Also, the results were robust overall regarding the
choices of percentage (Supplementary Fig. 7). Based on the distribu-
tion of these voxels, we identified 14 regions. All these regions except
the OFC and CER were defined using the Harvard-Oxford probabilistic
atlas (probability threshold: 50%). The OFC and CER were defined
using the automated anatomical labeling (AAL) atlas. These 14 regions,
together with the 10 traditional ‘threat circuit’ regions, comprised the
updated threat detection and flexible responding circuit.

Representational similarity analysis
To test the similarity of regional contributions to the decoding across
the newly defined circuit, we performed a representational similarity
analysis42. We estimated the inter-regional representational similarity
based on the cross-participant correlation between the regional
representation responses of every two regions, which resulted in a
24 × 24 symmetric matrix R. Conceptually, a high representational
similarity value Ri,j between two regions i and j suggests that they
contributed to the classification similarly, while a low representa-
tional similarity value suggests that they contributed to the classifi-
cation differently. More specifically, we first calculated the regional

representation response for each participant. For a specific region i
and a participant n, given its classifier weight vector wi and the par-
ticipant’s activation vector to CS+ (xn,i,cs+) and CS- (xn,i,cs-), we calcu-
lated the regional representation response Yn,i using a dot product:
wi*(xn,i,cs+ - xn,i,cs-)/vi, where vi is the voxel number of region i to
account for the effects of region size. A region with Yn,i larger than
zero contributed more to code CS+ while a region with Yn,i smaller
than zero contributed more to code CS-. We then calculated the
Pearson’s correlation between vector (Y1,i, Y2,i, …, YN,i) and vector
(Y1,j, Y2,j, …, YN,j) across all N participants as the representational
similarity value Ri,j. After we obtained the representational similarity
matrix R, we conducted the multidimensional scaling (MDS) with the
number of components set to 2 to visualize the representational
similarity between regions. In the MDS analysis, regions that con-
tributed similarly to the classification were clustered together. For
each trial-block, we identified two clear clusters, with one cluster
composed of regions showing preferences for CS+ (regional repre-
sentation response larger than zero) and another cluster composedof
regions showing preferences for CS- (regional representation
response smaller than zero). Across all trial-blocks, the regions were
assigned to three communities that showed different patterns of
preferences for CS types: consistently coded the CS + , consistently
coded the CS-, or dynamically switched its preference to CS + /CS-
depending on the trial-block.

Validation on external datasets using different paradigms
Classifiers trained with brain activations of the extended circuit were
tested on external datasets 3–9, which included threat conditioning
paradigms, paradigms assessing ‘subjective fear’ to frightening ima-
ges, as well as paradigms probing negative affects using intrinsically
salient stimuli. These datasets were independently collected in other
studies using paradigms different from the discovery dataset and the
external datasets 1–2. We briefly describe the paradigms of these
datasets here (summarized in Supplementary Table 4); more detailed
descriptions can be found in the original publications.

External dataset 3 (n = 299) is from a visual conditioning task44

using two male three-dimensional virtual humanoid characters as CS
(one as CS + , the other as CS-). Each CS type was presented 16 times,
with 8 of the CS+ presentations reinforced by an electric shock on the
participants’ wrist. The fMRI data were acquired using a 3 T GE MR
scanner using an 8-channel head coil. The data were preprocessed
using fMRIPrep 20.0.2, with the same settings as the discovery dataset.
The GLM model included regressors for the reinforced CS + , unrein-
forced CS + , CS-, and shock. We used two regressors to model CS-
trials, with one regressor containing the same number of CS- trials as
unreinforced CS+ trials (8 trials), and the other regressor containing
the remaining CS- trials (8 trials). This setting equalized the number of
trials for unreinforcedCS+ andCS- beta estimations. The betamaps for
unreinforced CS+ and the corresponding CS- were used for validation.

External dataset 4 (n = 94) is combined from 3 different studies
using visual conditioning paradigms45. The paradigms involved 2 CS+
(a face image and a house image) and 2 CS- (another face image and
another house image). Each CS was presented 13 times, with 6 of the
CS+ presentations reinforced by an electric shock on the participants’
shin. The fMRI data were acquired using a 3 T PhilipsMR scanner using
an 8-channel or 32-channel head coil. The data were preprocessed
using fMRIPrep 20.0.2, with the same settings as the discovery dataset.
We followed the same strategy as the original studies for this dataset in
constructing the GLM, which resulted in 4 beta maps of interest
(CS+ face, CS- face, CS+ house, CS- house). We separately validated the
classifiers on two tasks: CS+ face vs. CS- face, and CS+ house vs.
CS- house. The accuracies were averaged for the two classification
tasks and reported.

External dataset 5 (n = 48) is from a visual conditioning task43 that
used two categories of objects as CS—one category as CS + , the other
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as CS-. Pictures of 24 different tools and 24 different animals were
presented, with 12 pictures of the CS+ reinforced by an electric shock
on the participants’ fingers on the left hand. The fMRI data were col-
lected in a Siemens Skyra 3 TMR scanner using a 32-channel head coil.
The data were preprocessed using fMRIPrep 20.0.2, with the same
settings as the discovery dataset. The GLM model was similar to the
external dataset 3, with beta maps for unreinforced CS+ and the cor-
responding CS- used for validation.

External dataset 6 (n = 68) is from an auditory conditioning task46

that used two tones (800 or 170Hz) as CS—one as CS + , the other as
CS-. The CS+ was presented 16 times, with 8 reinforced presentations
that pairedwith an electric shock to the right wrist, and 8 unreinforced
presentations. The CS- were presented 8 times with no shock deliv-
ered. The fMRI datawere collected in a 3 T SiemensAllegraMR scanner
using a 32-channel head coil. Two betamaps (one for the unreinforced
CS + , the other for the CS-) for each participant were obtained from
the original study and used for validation.

External dataset 7 (n = 65) is from a study that investigated the
subjective experience of fear22. Participants were presented with 80
different pictures and were instructed to report the fearful state they
experienced for the stimuli from 1 (neutral/slightest fear) to 5 (strong
fear). The fMRI data were collected in a 3 T GE MR scanner. The beta
maps for each rating score (rating 1–5) were obtained from the original
study and used for validation. We focused on classifying low vs. high
fear, where features of low fear were obtained by averaging beta maps
of ratings 1 and 2, and features of high fear were obtained by averaging
beta maps of ratings 4 and 5.

External dataset 8 (n = 182) is from a study that examined picture-
induced negative affect34. Participants were presented with 15 neutral
and 15 negative pictures and were instructed to report their emotional
state using a 5-point Likert scale (1 for neutral, 5 for strong negative).
The fMRI data were collected in a 3 T Siemens Trio MR scanner using a
12-channel head coil. The beta maps for each rating score were
obtained from the original study. We focused on classifying low vs.
high negative states, where features of low negative states were
obtained by averaging beta maps of ratings 1 and 2, and features of
high negative states were obtained by averaging beta maps of rat-
ings 4 and 5.

External dataset 9 (n = 59) is from a study that examined the
neural representations for physical pain and social pain19. The partici-
pants underwent somatic pain and social rejection tasks. In the somatic
pain task, participants received heat (painful) or warm (non-painful)
thermal stimuli that were delivered to their left volar forearm. In the
social pain task, participants were presentedwith photographs of their
ex-partner or a close friend, and they were instructed to think about
the break-up experience or positive experience, respectively. The beta
maps for each experimental conditionwere obtained from the original
study. We focused on classifying warm vs. heat for the somatic pain
task and friend vs. ex-partner for the social rejection task.

To compare the decoding accuracies across different paradigm
categories, we divided the external datasets 3–9 into 3 groups: con-
ditioned threat (datasets 3–6), ‘subjective fear’ (dataset 7), and intrin-
sically salient stimuli (datasets 8–9). For each group, we calculated the
proportion of participants whose beta maps were correctly decoded
across datasets. And then used the Chi-square test to compare the
proportion between every two dataset groups. This analysis was
separately done for the model of each trial-block, with the obtained
p-values adjusted based on false discovery rate (FDR) correction.

Statistical analysis
Permutation testswereused to determine the statistical significanceof
the classification performance. Specifically, we randomly permuted
the labels of the activation maps (CS+ or CS-) 1000 times. We con-
ducted the cross-validation procedure as described above using the

permuted labels to obtain the null distribution of the classification
accuracy. The p value was calculated by counting the percentage of
accuracies within the null distribution that was higher than the accu-
racy obtained with the real data (i.e., one-sided, since we care about
accuracies higher than chance level). For external validation datasets
1–2, we trained the classifier using the label-permuted discovery
dataset and applied it to the external datasets to obtain the null dis-
tribution. For external validation datasets 3–9, we used two-sided
binomial tests to evaluate the significance of the forced-choice
accuracies32–34.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The validation dataset 237 is available at NIMH Data Archive through
collection ID 2393. The validation dataset 445 is available in OpenNeuro
database with the following accession numbers: ds003550, ds003553,
and ds003554. The validation dataset 543 is available at https://doi.org/
10.17605/OSF.IO/QEG83. The validation dataset 646 is available at
https://doi.org/10.17605/OSF.IO/68YWZ. The validation dataset 722 is
available at https://doi.org/10.6084/m9.figshare.13271102.v2. The vali-
dation dataset 834 is available at https://identifiers.org/neurovault.
collection:503. The validation dataset 919 is available at https://github.
com/cocoanlab/interpret_ml_neuroimaging. The discovery dataset
(including data from published25,26,69–73 and unpublished studies), and
the validation datasets 136 and 344, are available upon request due to the
need to establish data sharing agreements. There are no restrictions to
who the data can bemade available to, and there are no restrictions for
data use for research. Requests for discovery dataset should be direc-
ted to M.R.M (mohammed.r.milad@uth.tmc.edu). Requests for the
validation dataset 1 should be directed to S.W.L. (sla-
zar@mgh.harvard.edu). Requests for validation dataset 3 should be
directed to F.A. (fredrik.ahs@miun.se). The regional masks, predictive
patterns, and trained classifiers are available at https://github.com/
zhenfu-wen01/threat-mvpa and in a Zenodo repository at https://doi.
org/10.5281/zenodo.1045294982. Source data are provided with
this paper.

Code availability
The codes and data to generate the main figures and results are
available at https://github.com/zhenfu-wen01/threat-mvpa and in a
Zenodo repository at https://doi.org/10.5281/zenodo.1045294982.

References
1. LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and com-

putational implications of a new taxonomy of defensive behaviour.
Nat. Rev. Neurosci. 19, 269–282 (2018).

2. Lonsdorf, T. B. et al. Don’t fear ‘fear conditioning’: methodological
considerations for the design and analysis of studies on human fear
acquisition, extinction, and return of fear. Neurosci. Biobehav. Rev.
77, 247–285 (2017).

3. Milad,M. R. &Quirk, G. J. Fear extinction as amodel for translational
neuroscience: ten years of progress. Annu. Rev. Psychol. 63,
129–151 (2012).

4. Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implica-
tions for fear conditioning, extinction and psychopathology. Nat.
Rev. Neurosci. 14, 417–428 (2013).

5. Bienvenu, T. C.M. et al. The advent of fear conditioning as an animal
model of post-traumatic stress disorder: Learning from the past to
shape the future of PTSD research. Neuron 109, 2380–2397 (2021).

6. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23,
155–184 (2000).

Article https://doi.org/10.1038/s41467-024-46508-0

Nature Communications |         (2024) 15:2231 11

https://nda.nih.gov/edit_collection.html?id=2393
https://doi.org/10.18112/openneuro.ds003550.v1.0.1
https://doi.org/10.18112/openneuro.ds003553.v1.0.0
https://doi.org/10.18112/openneuro.ds003554.v1.0.0
https://doi.org/10.17605/OSF.IO/QEG83
https://doi.org/10.17605/OSF.IO/QEG83
https://doi.org/10.17605/OSF.IO/68YWZ
https://doi.org/10.6084/m9.figshare.13271102.v2
https://identifiers.org/neurovault.collection:503
https://identifiers.org/neurovault.collection:503
https://github.com/cocoanlab/interpret_ml_neuroimaging
https://github.com/cocoanlab/interpret_ml_neuroimaging
https://github.com/zhenfu-wen01/threat-mvpa
https://github.com/zhenfu-wen01/threat-mvpa
https://doi.org/10.5281/zenodo.10452949
https://doi.org/10.5281/zenodo.10452949
https://github.com/zhenfu-wen01/threat-mvpa
https://doi.org/10.5281/zenodo.10452949


7. Kredlow,M. A., Fenster, R. J., Laurent, E. S., Ressler, K. J. & Phelps, E.
A. Prefrontal cortex, amygdala, and threat processing: implications
for PTSD. Neuropsychopharmacology 47, 247–259 (2021).

8. LeDoux, J. Rethinking the emotional brain. Neuron 73,
653–676 (2012).

9. Shackman, A. J. & Fox, A. S. Two decades of anxiety neuroimaging
research: new insights and a look to the future. Am. J. Psychiatry
178, 106–109 (2021).

10. Fullana,M.A. et al. Neural signatures of human fear conditioning: an
updated and extended meta-analysis of fMRI studies. Mol. Psy-
chiatry 21, 500–508 (2016).

11. Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and
anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

12. Herry, C. et al. Neuronal circuits of fear extinction. Eur. J. Neurosci.
31, 599–612 (2010).

13. Pare, D. & Duvarci, S. Amygdala microcircuits mediating fear
expression andextinction.Curr.Opin.Neurobiol.22, 717–723 (2012).

14. LeDoux, J. E. & Pine, D. S. Using neuroscience to help understand
fear and anxiety: a two-system framework. Am. J. Psychiatry 173,
1083–1093 (2016).

15. Pessoa, L. The entangled brain. J. Cogn. Neurosci. 35,
349–360 (2023).

16. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyondmind-
reading:multi-voxel pattern analysis of fMRI data. TrendsCogn. Sci.
10, 424–430 (2006).

17. Kragel, P. A., Han, X., Kraynak, T. E., Gianaros, P. J. & Wager, T. D.
Functional MRI can be highly reliable, but it depends on what you
measure: a commentary on Elliott et al. (2020). Psychol. Sci. 32,
622–626 (2021).

18. Marek, S. et al. Reproducible brain-wide association studies require
thousands of individuals. Nature 603, 654–660 (2022).

19. Woo, C.-W. et al. Separate neural representations for physical pain
and social rejection. Nat. Commun. 5, 5380 (2014).

20. Taschereau-Dumouchel, V., Kawato, M. & Lau, H. Multivoxel pattern
analysis reveals dissociations between subjective fear and its phy-
siological correlates. Mol. Psychiatry 25, 2342–2354 (2020).

21. Grogans, S. E. et al. The nature and neurobiology of fear and anxi-
ety: state of the science and opportunities for accelerating dis-
covery. Neurosci. Biobehav. Rev. 151, 105237 (2023).

22. Zhou, F. et al. A distributed fMRI-based signature for the subjective
experience of fear. Nat. Commun. 12, 6643 (2021).

23. Levy, I. & Schiller, D. Neural computations of threat. Trends Cogn.
Sci. 25, 151–171 (2021).

24. Wen, Z., Chen, Z. S. & Milad, M. R. Fear extinction learning mod-
ulates large-scale brain connectivity. NeuroImage 238,
118261 (2021).

25. Milad, M. R. et al. Recall of fear extinction in humans activates the
ventromedial prefrontal cortex and hippocampus in concert. Biol.
Psychiatry 62, 446–454 (2007).

26. Milad,M. R. et al. Neurobiological basis of failure to recall extinction
memory in posttraumatic stress disorder. Biol. Psychiatry 66,
1075–1082 (2009).

27. Büchel, C., Morris, J., Dolan, R. J. & Friston, K. J. Brain systems
mediating aversive conditioning: an event-related fMRI study.
Neuron 20, 947–957 (1998).

28. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A.
Human amygdala activation during conditioned fear acquisition
and extinction: a mixed-trial fMRI study. Neuron 20, 937–945
(1998).

29. Quirk,G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances
different temporal components of tone-evoked spike trains in
auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997).

30. Wen, Z. et al. Temporally and anatomically specific contributions of
the human amygdala to threat and safety learning. Proc. Natl. Acad.
Sci. 119, e2204066119 (2022).

31. Armony, J. L., Quirk, G. J. & LeDoux, J. E. Differential effects of
amygdala lesions on early and late plastic components of auditory
cortex spike trains during fear conditioning. J. Neurosci. 18,
2592–2601 (1998).

32. Wager, T. D. et al. An fMRI-based neurologic signature of physical
pain. N. Engl. J. Med. 368, 1388–1397 (2013).

33. Kohoutová, L. et al. Toward a unified framework for interpreting
machine-learning models in neuroimaging. Nat. Protoc. 15,
1399–1435 (2020).

34. Chang, L. J., Gianaros, P. J.,Manuck, S. B., Krishnan,A.&Wager, T. D.
A sensitive and specific neural signature for picture-induced
negative affect. PLOS Biol. 13, e1002180 (2015).

35. Mumford, J. A., Turner, B. O., Ashby, F. G. & Poldrack, R. A.
Deconvolving BOLD activation in event-related designs for multi-
voxel pattern classification analyses. NeuroImage 59,
2636–2643 (2012).

36. Sevinc, G. et al. Strengthened hippocampal circuits underlie
enhanced retrieval of extinguished fear memories following mind-
fulness training. Biol. Psychiatry 86, 693–702 (2019).

37. Seo, J. et al. Associations of sleep measures with neural activations
accompanying fear conditioning and extinction learning and
memory in trauma-exposed individuals. Sleep 45, zsab261 (2021).

38. Haufe, S. et al. On the interpretation of weight vectors of linear
models in multivariate neuroimaging. NeuroImage 87,
96–110 (2014).

39. Milad, M. R. & Rauch, S. L. The role of the orbitofrontal cortex in
anxiety disorders. Ann. N. Y. Acad. Sci. 1121, 546–561 (2007).

40. Rolls, E. T. & Grabenhorst, F. The orbitofrontal cortex and beyond:
fromaffect to decision-making.Prog.Neurobiol.86, 216–244 (2008).

41. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition:
emerging methods and principles. Trends Cogn. Sci. 14,
277–290 (2010).

42. Kriegeskorte, N.,Mur, M. & Bandettini, P. Representational similarity
analysis - connecting the branches of systems neuroscience. Front.
Syst. Neurosci. 2, 4 (2008).

43. Hennings, A. C., McClay, M., Drew, M. R., Lewis-Peacock, J. A. &
Dunsmoor, J. E. Neural reinstatement reveals divided organization
of fear and extinction memories in the human brain. Curr. Biol. 32,
304–314 (2022).

44. Vinberg, K., Rosén, J., Kastrati, G. & Ahs, F.Whole brain correlates of
individual differences in skin conductance responses during dis-
criminative fear conditioning to social cues. eLife 11, e69686 (2022).

45. Visser, R. M., Bathelt, J., Scholte, H. S. & Kindt, M. Robust bold
responses to faces but not to conditioned threat: challenging the
amygdala’s reputation in human fear and extinction learning. J.
Neurosci. 41, 10278–10292 (2021).

46. Reddan, M. C., Wager, T. D. & Schiller, D. Attenuating neural threat
expression with imagination. Neuron 100, 994–1005 (2018).

47. Graner, J. L., Stjepanović, D. & LaBar, K. S. Extinction learning alters
the neural representation of conditioned fear. Cogn. Affect. Behav.
Neurosci. 20, 983–997 (2020).

48. Visser, R. M., Scholte, H. S., Beemsterboer, T. & Kindt, M. Neural
pattern similarity predicts long-term fear memory. Nat. Neurosci.
16, 388–390 (2013).

49. Varoquaux, G. Cross-validation failure: small sample sizes lead to
large error bars. NeuroImage 180, 68–77 (2018).

50. Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building
better biomarkers: brainmodels in translational neuroimaging.Nat.
Neurosci. 20, 365–377 (2017).

Article https://doi.org/10.1038/s41467-024-46508-0

Nature Communications |         (2024) 15:2231 12



51. Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular
mechanismsof fear learning andmemory.Cell 147, 509–524 (2011).

52. Bechara, A. et al. Double dissociation of conditioning and declara-
tive knowledge relative to the amygdala and hippocampus in
humans. Science 269, 1115–1118 (1995).

53. LaBar, K. S., LeDoux, J. E., Spencer, D. D. & Phelps, E. A. Impaired
fear conditioning following unilateral temporal lobectomy in
humans. J. Neurosci. 15, 6846–6855 (1995).

54. Klumpers, F., Morgan, B., Terburg, D., Stein, D. J. & van Honk, J.
Impaired acquisition of classically conditioned fear-potentiated
startle reflexes in humans with focal bilateral basolateral amygdala
damage. Soc. Cogn. Affect. Neurosci. 10, 1161–1168 (2015).

55. Battaglia, S., Garofalo, S., di Pellegrino, G. &Starita, F. Revaluing the
role of vmPFC in the acquisition of Pavlovian threat conditioning in
humans. J. Neurosci. 40, 8491–8500 (2020).

56. Weike, A. I. et al. Fear conditioning following unilateral temporal
lobectomy: dissociation of conditioned startle potentiation and
autonomic learning. J. Neurosci. 25, 11117–11124 (2005).

57. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired
recognition of emotion in facial expressions following bilateral
damage to the human amygdala. Nature 372, 669–672 (1994).

58. Shackman, A. J. & Fox, A. S. Contributions of the central exten-
ded amygdala to fear and anxiety. J. Neurosci. 36, 8050–8063
(2016).

59. Pavlov, P. I. Conditioned reflexes: an investigation of the physiolo-
gical activity of thecerebral cortex.Ann.Neurosci. 17, 136–141 (2010).

60. Chang, L. J., Yarkoni, T., Khaw, M. W. & Sanfey, A. G. Decoding the
role of the insula in human cognition: functional parcellation and
large-scale reverse inference. Cereb. Cortex 23, 739–749 (2013).

61. Shackman, A. J. et al. The integration of negative affect, pain and
cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12,
154–167 (2011).

62. Uddin, L. Q. Salience processing and insular cortical function and
dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).

63. de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D. & Yarkoni, T.
Large-scale meta-analysis of human medial frontal cortex reveals
tripartite functional organization. J. Neurosci.36, 6553–6562 (2016).

64. LeDoux, J. The amygdala. Curr. Biol. 17, R868–R874 (2007).
65. Boll, S., Gamer, M., Gluth, S., Finsterbusch, J. & Büchel, C. Separate

amygdala subregions signal surprise and predictiveness during
associative fear learning in humans. Eur. J. Neurosci. 37,
758–767 (2013).

66. Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned
fear. Neuron 82, 966–980 (2014).

67. Dunsmoor, J. E., Niv, Y., Daw, N. & Phelps, E. A. Rethinking extinc-
tion. Neuron 88, 47–63 (2015).

68. Wen, Z., Seo, J., Pace-Schott, E. F. &Milad, M. R. Abnormal dynamic
functional connectivity during fear extinction learning in PTSD and
anxiety disorders. Mol. Psychiatry 27, 2216–2224 (2022).

69. Marin, M.-F., Hammoud, M. Z., Klumpp, H., Simon, N. M. &Milad,M.
R. Multimodal categorical and dimensional approaches to under-
standing threat conditioning and its extinction in individuals with
anxiety disorders. JAMA Psychiatry 77, 618–627 (2020).

70. Marin,M.-F. et al. Association of restingmetabolism in the fear neural
network with extinction recall activations and clinical measures in
trauma-exposed individuals. Am. J. Psychiatry 173, 930–938 (2016).

71. Zeidan,M.A. et al. Estradiolmodulatesmedial prefrontal cortex and
amygdala activity during fear extinction in women and female rats.
Biol. Psychiatry 70, 920–927 (2011).

72. Holt, D. J., Coombs, G., Zeidan, M. A., Goff, D. C. & Milad, M. R.
Failure of neural responses to safety cues in schizophrenia. Arch.
Gen. Psychiatry 69, 893–903 (2012).

73. Milad, M. R. et al. Deficits in conditioned fear extinction in
obsessive-compulsive disorder and neurobiological changes in the
fear circuit. JAMA Psychiatry 70, 608–618 (2013).

74. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for
functional MRI. Nat. Methods 16, 111–116 (2019).

75. Siegel, J. S. et al. Statistical improvements in functional magnetic
resonance imaging analyses produced by censoring high-motion
data points. Hum. Brain Mapp. 35, 1981–1996 (2014).

76. Tillman, R. M. et al. Intrinsic functional connectivity of the central
extended amygdala. Hum. Brain Mapp. 39, 1291–1312 (2018).

77. Poppenk, J., Evensmoen, H. R., Moscovitch,M. &Nadel, L. Long-axis
specialization of the human hippocampus. Trends Cogn. Sci. 17,
230–240 (2013).

78. Deen, B., Pitskel, N. B. & Pelphrey, K. A. Three systems of insular
functional connectivity identified with cluster analysis. Cereb.
Cortex 21, 1498–1506 (2011).

79. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager,
T. D. Large-scale automated synthesis of human functional neu-
roimaging data. Nat. Methods 8, 665–670 (2011).

80. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

81. Kohoutová, L. et al. Individual variability in brain representations of
pain. Nat. Neurosci. 25, 749–759 (2022).

82. Wen, Z. et al. Distributed neural representations of conditioned
threat in the human brain. Zenodo https://doi.org/10.5281/zenodo.
10452949 (2024).

Acknowledgements
This work was supported by the National Institute of Mental Health
grants R01MH123736, R01MH125198, R33MH111907, R01MH097880,
and R01MH097964 to M.R.M. R01MH109638 to E.F.P.-S. and
1R01AT006344 to S.W.L.

Author contributions
Z.W., E.A.P., J.E.L. andM.R.M.conceivedanddesigned the study. E.F.P.-S.,
S.W.L., J.R. and F.A. provided data for analyses. Z.W. analyzed the data
under the supervisionofM.R.M. Z.W. andM.R.M. interpreted thedatawith
input from all authors. Z.W. and M.R.M. drafted the manuscript. All
authors revised the manuscript and approved its final version for
submission.

Competing interests
Praxis PrecisionMedicines, Inc. providedpartial salary support to E.F.P.-S.
The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46508-0.

Correspondence and requests for materials should be addressed to
Mohammed R. Milad.

Peer review information Nature Communications thanks Luiz Pessoa
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-46508-0

Nature Communications |         (2024) 15:2231 13

https://doi.org/10.5281/zenodo.10452949
https://doi.org/10.5281/zenodo.10452949
https://doi.org/10.1038/s41467-024-46508-0
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-46508-0

Nature Communications |         (2024) 15:2231 14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Distributed neural representations of conditioned threat in the human�brain
	Results
	Decoding threat and safe cues based on patterns of the ‘threat circuit’
	Decode threat and safe cues based on patterns of the whole�brain
	An extended circuit for threat processing
	The sensitivity and specificity of the extended circuit in decoding threat stimuli

	Discussion
	Methods
	Participants
	Experimental procedure
	Neuroimaging data acquisition and preprocessing
	Brain activation estimation
	The first analytic approach: decoding based on the ‘threat network’ patterns
	The second analytic approach: decoding based on ‘whole-brain’ patterns
	Classification procedure
	Generalization of the classifiers
	Contribution of activation patterns to the classification
	Extended circuit
	Representational similarity analysis
	Validation on external datasets using different paradigms
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




