
Article https://doi.org/10.1038/s41467-024-46485-4

AlphaPept: a modern and open framework
for MS-based proteomics

Maximilian T. Strauss 1,2 , Isabell Bludau 1, Wen-Feng Zeng 1,
Eugenia Voytik1, Constantin Ammar1, Julia P. Schessner 1, Rajesh Ilango3,
Michelle Gill3, Florian Meier 1,4, Sander Willems1 & Matthias Mann 1,2

In common with other omics technologies, mass spectrometry (MS)-based
proteomics produces ever-increasing amounts of raw data, making efficient
analysis a principal challenge. A plethora of different computational tools can
process the MS data to derive peptide and protein identification and quanti-
fication. However, during the last years there has been dramatic progress in
computer science, including collaboration tools that have transformed
research and industry. To leverage these advances, we develop AlphaPept, a
Python-based open-source framework for efficient processing of large high-
resolution MS data sets. Numba for just-in-time compilation on CPU and GPU
achieves hundred-fold speed improvements. AlphaPept uses the Python sci-
entific stack of highly optimized packages, reducing the code base to domain-
specific tasks while accessing the latest advances.We provide an easy on-ramp
for community contributions through the concept of literate programming,
implemented in JupyterNotebooks. Largedatasets can rapidly be processed as
shown by the analysis of hundreds of proteomes inminutes per file, many-fold
faster than acquisition. AlphaPept can be used to build automated processing
pipelines with web-serving functionality and compatibility with downstream
analysis tools. It provides easy access via one-click installation, a modular
Python library for advanced users, and via an open GitHub repository for
developers.

Increasingly large datasets, combined with likewise increasing com-
putational power and algorithmic advances are transforming every
aspect of society. This is accompanied and enabled by developments
in open and transparent science. The open-source community has
been a particular success, starting as a fringe movement to become a
recognized standard for software development whose value is
embraced and adapted even by the largest technology companies.
Public exposure supports high code quality through scrutiny by
developers from diverse backgrounds, while increasingly sophisti-
cated collaboration mechanisms allow rapid and robust development
cycles. The most advanced machine and deep learning research, for

example, builds on open-source projects and datasets and is itself
open-source. These laudable developments reflect the core ideas of
science and present great opportunities in the ever more important
computational fields.

In mass spectrometry (MS)-based proteomics, algorithms and
computational frameworks have been a cornerstone in interpreting
the data, resulting in a large variety of different proteomic software
packages and algorithms, ranging from commercial, and freely avail-
able to open-source, exemplified by and reviewed in ref. 1,2. Typical
computational workflows comprise the detection of chromatographic
features, peptide-spectrum matching, all the way through protein

Received: 20 December 2022

Accepted: 20 February 2024

Check for updates

1Department of Proteomics andSignal Transduction,Max Planck Institute of Biochemistry,Martinsried,Germany. 2NNFCenter for Protein Research, Faculty of
Health Sciences, University of Copenhagen, Copenhagen, Denmark. 3Nvidia Corporation, Santa Clara, CA, USA. 4Functional Proteomics, Jena University
Hospital, Jena, Germany. e-mail: maximilian.strauss@cpr.ku.dk; mmann@biochem.mpg.de

Nature Communications | (2024) 15:2168 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3320-6833
http://orcid.org/0000-0003-3320-6833
http://orcid.org/0000-0003-3320-6833
http://orcid.org/0000-0003-3320-6833
http://orcid.org/0000-0003-3320-6833
http://orcid.org/0000-0002-2601-238X
http://orcid.org/0000-0002-2601-238X
http://orcid.org/0000-0002-2601-238X
http://orcid.org/0000-0002-2601-238X
http://orcid.org/0000-0002-2601-238X
http://orcid.org/0000-0003-4325-2147
http://orcid.org/0000-0003-4325-2147
http://orcid.org/0000-0003-4325-2147
http://orcid.org/0000-0003-4325-2147
http://orcid.org/0000-0003-4325-2147
http://orcid.org/0000-0003-3361-9830
http://orcid.org/0000-0003-3361-9830
http://orcid.org/0000-0003-3361-9830
http://orcid.org/0000-0003-3361-9830
http://orcid.org/0000-0003-3361-9830
http://orcid.org/0000-0003-4729-175X
http://orcid.org/0000-0003-4729-175X
http://orcid.org/0000-0003-4729-175X
http://orcid.org/0000-0003-4729-175X
http://orcid.org/0000-0003-4729-175X
http://orcid.org/0000-0003-1292-4799
http://orcid.org/0000-0003-1292-4799
http://orcid.org/0000-0003-1292-4799
http://orcid.org/0000-0003-1292-4799
http://orcid.org/0000-0003-1292-4799
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46485-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46485-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46485-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46485-4&domain=pdf
mailto:maximilian.strauss@cpr.ku.dk
mailto:mmann@biochem.mpg.de

inferenceandquantification3,4. Advances in (MS)-basedproteomics are
also being accelerated through the sharing of datasets, such as publicly
available data on the Proteome Exchange repository5,6 and the appli-
cation of deep learning technologies7,8. There are increased efforts to
achieve reproducible computational workflows by using pipelines
such as the Nextflow framework9 that allow scalable execution using
software containers. Community efforts such as nf-core10 build on
Nextflow for collaborative, peer-reviewed, best-practice pipelines,
such as quantms for proteomics11.

Note that this array of tools includes widely used software with
innovative and performant algorithms. Yet, closed-source software
and lack of transparency and continuous testing can limit the potential
for wider scientific collaboration and progress. We believe that ulti-
mately code, being a method, should be published as part of the
results themselves. Developments in many areas, not least in AI,
underscore the immense value of open-source alternatives. Not only
does this foster a culture of collaboration and continuous refinement,
but it ultimately encourages trust in scientific results.

Prompted by the developments in the Python scientific environ-
ment and in collaborative development tools, we developed Alpha-
Pept, a Python-based open-source framework for the efficient
processing of large amounts of high-resolution MS data. Our main
design goals were accessibility, analysis speed, and robustness of the
code and the results. Accessibility refers to the idea of facilitating the
contribution of algorithmic ideas for (MS)-based proteomics, which is
today typically limited to bioinformatics experts. We decided on
Pythonbecauseof its clear, easy-to-understand syntax andbecause the
excellent supporting scientific libraries make it easier for developers
from different backgrounds to contribute to and implement innova-
tive ideas. Using community-tested packages makes the code base
more maintainable and robust, allowing us to focus on domain
knowledge instead of implementation details. We furthermore adop-
ted a recent implementation of “literate programming”12, in which
code and documentation are intertwined. Using the nbdev package,
the code base is connected to extensive documentation in Jupyter
Notebooks in a way that immediately explains the algorithmic back-
ground, making it easier to understand the underlying principles and
document design decisions for others13. With the help of the Numba
package for just-in-time compilation (JIT) of Python code14, AlphaPept
achieves very fast computation times. Furthermore, we implemented

robust design principles of software engineering on GitHub, such as
continuous integration, deployment and extensive automated
validation.

Depending on the user, AlphaPept can be employed in multiple
ways. A “one-click” installer can be freely downloaded for Windows,
provid†ing a web server-based graphical user interface (GUI) and a
command-line interface; A Python library that allows re-use and
modification of its functionality in custom code, including in Jupyter
Notebooks that have become a standard in data scienceandfinally, in a
scalable could environment.

In the remainder of the paper, we describe the functionality of
AlphaPept on the basis of nbdev notebooks, such as feature finding,
peptide identification and protein quantification. We demonstrate
the capabilities of AlphaPept on small- and large-scale datasets.
Finally, we demonstrate how AlphaPept can be utilized as a pro-
teomic workflow management system and how it can be integrated
with downstream analysis tools such as Perseus or the Clinical
Knowledge Graph (CKG)15,16, and provide an outlook on further
developments.

Results
Overview of AlphaPept architecture
Academic softwaredevelopment is oftenhighly innovative but is rarely
undertaken with dedicated funding or long-term personnel stability.
Such constraints have successfully been mitigated by collaborative
software engineering approaches and the collective efforts of volun-
teers. This is exemplified in state-of-the-art open-source projects such
as NumPy17 and scikit-learn18. This paradigm has also been taken over
by relatively recent and highly popular deep learning frameworks like
Google’s Tensorflow19 and Facebook’s PyTorch20 and is thought to lead
to increased code quality due to community exposure and a large
testing audience. Inspired by these developments, AlphaPept imple-
ments robust design principles of software engineering on GitHub,
such as continuous testing and integration. For instance, code con-
tributions can be made via pull requests which are automatically vali-
dated. Bymaking the code publicly available and providing a stringent
testing environment, we hope to encourage contribution and testing
fromadiversebackgroundwhilemaintaining very high codequality. In
the realm of proteomics, the recent open-source example of Sage21,
which uses the same fragment-ion indexing as the closed-source

Fig. 1 | AlphaPept “ecosystem” and modules. a AlphaPept relies on multiple
community-tested packages. We use highly optimized libraries such as Numba,
NumPy, CuPy, scikit-learn, SciPy, and pandas to achieve performant code. As GUI,
we provide a browser-based application built on streamlit. For data handling, the
HDF5file technology is used. The repository itself is hosted onGitHub, and the core
code is documented in Jupyter Notebooks using the nbdev package. To ensure
maintainability, packages are continuously monitored for updates via dependabot.

New code is automatically validated using GitHub actions and summary statistics
(timing, identifications, and quantifications) are uploaded to a MongoDB database
and visualized. b All algorithmic code of AlphaPept is organized in Jupyter Note-
books. For the key processing steps in the pipeline, such as importing raw data,
Feature Finding, FASTA processing, Searching, Recalibrating, Scoring, Quantifying,
and Matching, there are individual notebooks with background information and
the code.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 2

MSFragger22, exemplifies how performant open-source software is
cherished by the community.

Organization in notebooks with nbdev allows us to collect doc-
umentation, code, and tests in one place. This enables us to auto-
matically generate the documentation, extract production code and
test functionality by executing the notebooks. From a user perspec-
tive, this can serve as an ideal educational resource as changes in the
code can be directly tested. Furthermore, we extend the notion of unit
and system testing by including real-world datasets on which the
overall improvement of newly implemented functionality is routinely
evaluated. To continuously monitor system performance, summary
statistics are automatically uploaded to a database where they are
visualized in a dashboard.

The advantages of high-level languages generally come at the
price of execution speed, especially for Python. As a result, this
expressive language is often only used as a thin wrapper on C++
libraries. In AlphaPept, we make use of the Numba project14, which
allows us to compile our Python algorithms directly with the industry-
standard LLVM compiler (backend to most C++ compilers and super-
computing languages such as Julia). This allows us to speed up our
code by orders of magnitude without losing the benefits of the intui-
tive Python syntax. We note that while Numba functions are written in
Python, they need to be optimized for the task at hand, additionally
emphasizing the need for transparent code. The current AlphaPept
code base utilizes design patterns that were only possible with later
updates of the Numba package. Furthermore, AlphaPept readily par-
allelizes computationally intensive parts of the underlying algorithms

on multiple CPU cores or—if available—Graphical Processor Units
(GPUs) for further performance gains.

As far as possible, AlphaPept uses the standard, but powerful
packages of the Python data analysis universe, namely NumPy for
numerical calculations, pandas23 for spreadsheet-like data structures,
CuPy24 for GPU, and scikit-learn for machine learning (ML) (Fig. 1a).
Furthermore, we chose the binary, high-performance HDF5 (hier-
archical data format 5)file format, which is used across scientific areas,
including ‘big data’ projects (see below). All these packages are plat-
form-independent, allowing deployment of AlphaPept on Windows,
Mac, and Linux computers, including cloud environments.

An integral feature of AlphaPept development are Jupyter note-
books, which have become ubiquitous in scientific computing. Using
the nbdev package, each part of the MS-based proteomics workflow is
modularized into a separate notebook. This allows extensive doc-
umentation of the underlying algorithmic production code, which is
automatically extracted from and synchronized with the notebooks.
Furthermore, the notebooks capture the background information of
each part of the computational proteomics workflow, making it much
easier to understand the underlying principles. As Jupyter Notebooks
can be interactively explored and each code cell can be individually
executed, this serves as an educational resource because algorithmic
changes can be readily tested on a cell-level within the Notebook. We
have found this to be an excellent way of developing software, which
brings together the typical cycle of exploration in notebooks with the
production of a robust and tested code base. Figure 1b shows an
overview of the steps in the analysis of a typical proteomics

Append
for each

step

a b

Raw
Features

Search

c d

Thermo
(.raw)

Bruker
(.d)

Other
(e.g.

mzML)

IO

Pyteomics

TimsData
C/C++ Library

Thermo RawFileReader
pyRawFileReader

Thermo RawFileReader Example

Dataindex

Spectrum data
Metadata

RT

m/z
Intensity

Fig. 2 | Highly efficient and platform-independent MS data access. a MS data
from different vendors is imported into an HDF5 container for fast and platform-
independent data access. To read Thermo data, we provide a Python application
programming interface. Bruker data is accessed via Bruker’s proprietary DLL.
Additionally, generic data can be imported using the Pyteomics package. b The
output of each processing step is appended to the HDF5, allowing processing in a

modular way. c To efficiently store MS spectra, multiple spectra of variable length
are concatenated, and start indices are saved in a lookup table. d HDF5 Accessing
times. Loading data from HDF5 into memory takes less than 1 s for a typical 2 h full
proteome analysis of a HeLa sample acquired on a Thermo Orbitrap mass
spectrometer.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 3

experiment in AlphaPept corresponding to the notebooks. These
separate processing steps will be discussed in turn in the sec-
tions below.

Highly efficient and platform-independent MS data access
MS-based proteomics or metabolomics generates complex data types
ofMS1-level features, variable lengthMS2data, andmappings between
them. Furthermore, data production rates are rapidly increasing,
making robust and fast access a central requirement. The different MS
vendors have their own file formats, which may be highly optimized
but are meant to be accessed by their own software and are, in some
cases, confined to certain operating systems. We therefore faced the
task of extracting the raw data into an equally efficient but vendor and
operating system-neutral format that could be accessed rapidly.

First, AlphaPept needs to convert vendor-specific raw files. For
Thermo files, we created a cross-platform Python application pro-
gramming interface (API) that can directly read.RAW MS data (pyR-
awFileReader, Fig. 2a). It uses PythonNET for accessing Thermo’s
RawFileReader.NET library25, obviating the need for Thermo’s pro-
prietary MSFileReader. For Windows, PythonNET can be directly
installed with Windows’.NET Framework. For Linux and MacOS,
PythonNET requires the open-source Mono library. Although our
solution uses stackedAPIs, loading the spectraof a Thermo.RAW file of
1.6 Gb intoRAMtakes only about oneminute,whichcanbe speededup

even more by parallel file processing. Access to Bruker’s timsTOF raw
data is also directly handled fromour Python code, in this case through
a wrapper to the external timsdata.dll C/C++ library, both made
available by Bruker. In parallel with this publication, we provide
AlphaTims26, a highly efficient package to access large ion mobility
time-of-flight data through Python slicing syntax and with ultra-fast
access times (https://github.com/MannLabs/alphatims). While this
ensures cross-platform compatibility, we recommend file conversion
on an operating system similar to the acquisition computer, due to
vendor-imposed dependencies to read the files.

To accommodate raw data acquired through other vendors, we
use Pyteomics27,28. This package allows reading mzML and other stan-
dard MS data formats with Python. Thus, by first converting raw data
with external software such as, e.g., MSConvert29, AlphaPept also
provides a generic framework for all vendors.

As a storage technology, we chose HDF5 (Hierarchical Data For-
mat 5), a standard originally developed for synchrotron and other
large-scale experimental datasets, that has now become popular in a
wide range of scientific fields30. HDF5 has many benefits, such as
independence of operating systems, arbitrary file size, fast accession,
and a transparent, flexible data structure. The latter is achieved by
organizing HDF5 files in groups and subgroups, each containing arrays
of arbitrary size and metadata which describes these arrays and (sub)
groups. Multiple community tools allow the exploration of HDF5 files,

Fig. 3 | Extracting isotope features anddatabase search. a IndividualMSpeaks of
similar masses are connected over the retention time using a graph approach,
resulting in “hills”. Using a native Python implementation, hill extraction takes
several minutes. Numba, parallelization on CPUs or GPUs reduces hill extraction to
seconds. CuPy refers to using GPU, Numba for single-threaded implementation,
andNumba threaded toNumba usingmultiple threads.b Extracted hills are refined
by splitting at local minima and only allowing well-formed elution profiles.
c Startingwith 20million points for a typical ThermoHeLa shotgun proteomicsfile,
these are connected to approximately one million hills, which increased to

1.5 million after hill splitting and filtering. Subsequent processing results in
200,000 pre-isotope patterns that ultimately yield 230,000 isotope patterns due
to assignment to specific charge states.dThe FASTAprocessing notebook contains
functionality to calculate fragment masses from FASTA files which are saved in an
HDF5 container for subsequent searches. e Initially, a first search is performed, and
masses are subsequently recalibrated. Based on this recalibration, a second search
with more stringent boundaries is performed. f Using the decorator strategy, the
search can be drastically sped up, from 10 h in a pure Python implementation to
seconds with Numba and CuPy.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 4

https://github.com/MannLabs/alphatims

further facilitating user access to the rawdata. It is alsobecomingmore
popular in the field ofMS31. AlphaPept adopts the HDF5 technology via
Python’s h5py package32.

As an additional design choice, we also store intermediate pro-
cessing results in the HDF5 container so that individual processing
steps can be performedmodularly and fromdifferent computers. This
enables researchers to quickly implement and validate new ideas
within the downstream processing pipeline. Thus, for each new sam-
ple, AlphaPept creates a new.ms_data.hdf file and for each step in the
workflow, the file is extended by a new group (Fig. 2b). In this way,
the.ms_data.hdf file ensures full portability transparency and repro-
ducibility while being fast to access and with minimal storage
requirements. For example, the 1.6Gb Thermo file mentioned above is
converted to an HDF5 file of 200 MB, all of which can be accessed in a
total of 0.2 s (Fig. 2d).

We next provide functionality forMS data pre-processing, such as
centroiding and extraction of the n-most abundant fragments, should
this not already have happened in the vendor software. MS1 and MS2
scans form the twomajor subgroups in the HDF5 file. As HDF5 files are
not optimized for lists of arrays with variable lengths, we convert the
many individual spectra into a defined number of arrays, each con-
taining a single data type, but concatenating all spectra. These arrays
are organized in two sets: Spectrum metadata (spectrum number,
precursorm/z, RT, etc.), where each array position corresponds to one
spectrum; and spectrum data, where each array position corresponds
to a single m/z-intensity pair. To unambiguously match the spectrum
datapoints to their metadata, an index array is created. It is part of the
first set of arrays and contains a pointer to the position of the first data
pair for each spectrum within the second set. The position of the last
pair does not need to be stored as it is implied by the start position of
the next spectrum. Thereby, all m/z values and intensities for each
spectrumcaneasily be extractedwith simple base Python slicing,while
fixing the number of arrays contained in the hdf container. Loading
data from HDF5 to RAM takes less than a second, effectively speeding
up data accession more than 300-fold compared to loading the RAW
file (Fig. 2d).

Extracting isotope features
Having stored the MS peaks from all mass spectra in an efficient data
structure, we next determine isotope patterns over chromatographic
elution profiles. This computationally intensive task is crucial for
subsequent peptide identification and quantification. MaxQuant33

introduced the use of graphs for feature finding, which was then
improved upon by the Dinosaur tools34, and we also decided to follow
this elegant approach. Another recent development that builds on
Dinosaur in Python is Biosaur35.

In the first step—called hill building—centroided peaks from
adjacent scans are connected. As there are millions of centroids, our
first implementations using pure Python took several minutes of
computing time. We subsequently refactored the graph problem and
parallelized it for CPUs using Numba and CuPy for GPUs, resulting in a
150-fold speed up (about 2 s on GPU). Since not every user has access
to GPUs, AlphaPept employs dedicated Python “decorators”, a meta-
programming technique allowing a part of the program to modify its
another part at compile time to transparently switch between paral-
lelized CPU, GPU, and pure Python operation.

In more detail, AlphaPept refines hills by first splitting them in
case they have local minima indicating two chromatographic elution
peaks (Fig. 3a). Additionally, hills are removed whose elution profiles
do not conform to minimal criteria, like minimal length and the exis-
tence of local minima. To efficiently connect hills, we compute sum-
mary statistics such as weighted average m/z value and a bootstrap
estimate of its precision. Hills within retention time boundaries are
grouped into pre-isotope patterns. To correctly separate co-eluting
features,wegenerate seeds,whichweextend inelution time and check

for consistency with a given charge state, similarity in elution profile,
and conformity with peptide isotope abundance properties via the
averagine model36. This results in a feature (here a possible peptide
precursor mass), which is described by a table.

Feature finding on the Bruker timsTOF involves ionmobility as an
additional dimension. Currently, this functionality is provided by a
Bruker component, which we linked into our workflow via a Python
wrapper, and is the only part that is not in natively included as Python
code in AlphaPept. Instead, this wrapper uses Python’s subprocess
module, which can integrate other tools into AlphaPept just as easily.

For a typical proteomics experiment performed on an Orbitrap
instrument, Fig. 3c provides an overview of the number of datapoints
fromMSpeaks to the final list of isotope patterns. Note that AlphaPept
can perform feature finding separately for each file as soon as it is
acquired (described below). Furthermore, although described here for
MS1 precursors, the AlphaPept feature finder is equally suited to MS2
data that occur in parallel reaction monitoring (PRM) or DIA (data-
independent acquisition) acquisition modes.

Peptide-spectrum matching
The heart of a proteomics search engine is the matching of
MS2 spectra to peptides in a protein sequence database. AlphaPept
parses FASTA files containing protein sequences and descriptions,
“digests” them into peptides, and calculates fragment masses
according to user-specified rules and amino acid modifications
(Fig. 3a). We again use HDF5 files, which enables efficient storage of
fragment series despite their varying lengths. Generation of this
database only happens once per project and only takes minutes for
typical organisms and modifications. From a FASTA file of the human
proteome, typically, five million “in silico” spectra of fragment masses
are generated. In case no enzyme cleavage rules are specified or for
open search with wide precursor mass tolerances, the fragments are
instead generated on the fly to avoid excessive file sizes.

To achieve maximum speed, AlphaPept employs a very rapid
fragment-counting step to determine initial peptide-spectrum mat-
ches (PSMs). In brief, this step involves two pointers that iterate over
the lists of sorted theoretical and experimental fragment masses and
compare their mass difference. If the mass difference between a
fragment pair falls within the search tolerance, this is considered a
hit, and the counter is incremented by one. As this step only involves
the addition and subtraction of elements in numerical arrays, the
machine code produced by Numba is very efficient and easily par-
allelized. For each hit, we additionally compute the fraction of
MS2 signals accounted for by the match and add this fraction to the
counter. Consequently, for each peptide-spectrummatch, we store a
floating-point number that represents the integer number of hits and
the matched intensity fraction of these hits, effectively re-
implementing the Morpheus score. This score, despite its computa-
tional simplicity, can outperform the somewhat more complex X!
Tandem score37. This leaves a much smaller number of peptides that
have at least a minimum number of fragment matches to the
experimental spectrum. For the human proteome and mass mea-
surement accuracy of parts per million, the initial millions of com-
parisons are decreased to a maximum of Top-N remaining
candidates per MS2 spectrum (typically 10). Supplementary Fig. 1
provides a comprehensive overview of how the number of identified
precursors changes with varying Top-N depending on the score used.
This enables more computationally expensive scoring in the second
step. Different scores can be implemented in AlphaPept, such as the
widely used X!Tandem score38. We have implemented a ‘generic
score’, that is inspired by the Morpheus score (number of hits and
matched intensity fraction), the intuition behind the X!tandem
hypergeometric distribution, and the length of the matched
sequence (See Supplementary Formula 1). Note that the sole function
of this score is to rank the PSMs, whereas statistical significance is

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 5

determined by counting reverse database hits and by machine
learning (see below).

Weperformafirst search for thepurposeof recalibrating themass
scale as a function of elution time (Fig. 3e). Here, we use weighted
nearest neighbor regression instead of binning by retention time
(explained in the accompanying Jupyter Notebook). The k-nearest
neighbors regressor that we selected allows non-linear grouping in
several dimensions simultaneously (retention time and mass scale in
the case of Orbitrap data and additionally ion mobility in the case of
timsTOF data).

Having recalibrated the data, the main search is performed with
an adapted precursor tolerance. We furthermore calculate the mat-
ched ion intensity, matched ions, and neutral loss matches for further
use and reporting togetherwith charge, retention time, andother data.

To demonstrate the speed-up achieved by our architecture and
theperformancedecorator, we timed illustrative examples (Fig. 3f). On
a HeLa cell line proteome acquired in a single run, comparing 260k
spectra to 5 million database entries, the computing time in pure
Pythonwas about 10 h. This decreased to 80 swhen employingNumba
(~ 450x improvement), to 77 s when using Numba with CuPy on GPU,
and further to 9 s on multi-threaded CPU (see companion Figure
Notebook). The GPU acceleration is not larger because the code is
already very efficient on the CPU, and some workflow tasks are
memory-bound instead of computationally bound. Improvedmemory
management on GPU could further decreaseGPU computational time.
In any case, AlphaPept reduces the PSM matching step to an insignif-
icant part total computation time. Note that GPUs can achieve higher

processing speeds over single CPUs and are therefore particularly
useful for specialized operations, for instance, real-time. However, we
found that for runs with default settings and especially when proces-
singmultiple files in parallel, CPUswithmultiple processors are usually
better suited.

Machine learning-based scoring and FDR estimation
Assessing the confidence of PSMs requires a scoring metric that
separates true (correctly identified) from false (wrongly identified)
targets in the database. Multiple defined features are calculated by the
AlphaPept search engine and used in a score to rank the targets. A
nonsense database of pseudo-reversed sequences where the terminal
amino acid remains unchanged39 is used to directly estimate the False
Discovery Rate (FDR) by counting reverse hits. Score thresholds sub-
sequently decide which targets should be considered identified. To
further validate this approach and to ensure accurate FDR estimation
across different development stages in AlphaPept, our GitHub testing
routine includes an empirical two-species FDR test based on an
“entrapment strategy”40–42.

In recent years, machine learning has gained increasing momen-
tum in science in general, but also in its specific applications toMSdata
analysis. One of the first of these was the combination of multiple
scoring metrics to a combined discriminant score that best separates
high-scoring targets fromdecoys. Thiswas initially integrated intoPSM
scoring through an external reference dataset to train the classifier43.
The widely used Percolator approach subsequently employed a semi-
supervised learning approach that was trained directly on the dataset

a b
Candidate

PSMs

Scored
PSMs FDR

1

2 3

4

5

Hyperparameter
optimization

Evaluation

c d

20 %
Training set

80%
Test set

Cross Validation

Best
classifier

Fig. 4 | Machine learning-based scoring and FDR estimation. a We train a Ran-
domForest (RF) classifier on a subset of candidate PSMs to distinguish targets from
decoys based on PSMs characteristics. A semi-supervised machine learning model
is applied with the following steps: (1) extraction of all candidate PSM scores, (2)
selection of a PSM subset for machine learning, (3) training of an RF classifier, and
(4) application of the trained classifier to the full set of PSM candidates. Finally, the
probability of the RF prediction is used as a score for subsequent FDR control (5).
b Training of the classifier (step 4 in panel a) follows a train-test split schemewhere
only a fraction of the candidate subset is used for training. Using stringent cross-
validation, multiple hyperparameters are tested to achieve optimal RF

performance. The best classifier is benchmarked against the remaining test set.
c Example feature importance for an Orbitrap test set, where the number of y-ion
hits is the highest contributing factor to the model. Note that the RF algorithm can
utilize any database identification score, such as the X!Tandem score chosen here,
which is the fourthmost important feature. The generic_score, our “generic score”,
is a score based on the peptide length, the total number of fragment hits, b-ion hits,
and thematched intensity ratio. See the AlphaPept workflow and filesNotebook for
anexplanationof features.dOptimized identificationwith theML score. Compared
to the X!Tandem score alone, the ML optimization identified about 14.4% more
PSMs for the same q value.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 6

itself 44. This automatically adapts the ML model to the experimental
data, and along with other MS analysis tools45–49, we also employ semi-
supervised learning for PSM scoring in AlphaPept.

The AlphaPept scoring module falls into five parts: (1) feature
extraction for all candidate PSMs, (2) selection of a candidate subset,
(3) training of a machine learning classifier, (4) scoring of all candidate
PSMs, and (5) FDR estimation by a target-decoy approach (Fig. 4a).
Most features for scoring the candidate PSMs are directly extracted
from the search results, such as the number of b- and y-ion hits and the
matched ion intensity fraction. Some additional features are subse-
quently determined, including the sequence length and the number of
missed cleavages. After feature extraction, a subset of candidate PSMs
is selected with an initial 1% FDR threshold based only on conventional
scores, such as X!Tandem, Morpheus or our “generic score” (Fig. 4b).
Together with an equal number of randomly selected decoys, this
creates a balanced dataset for machine learning. This is split into
training and test sets (20 vs. 80%) and provides the input of an ML
classifier.We chose a standard scikit-learn random forest (RF) classifier
as it performed similarly toXGBoostwith fewer dependencies onother
packages. We first identify optimal hyperparameters for the classifier
with a grid search via five-fold cross-validation. The resulting best
classifier optimally separates the target from decoy PSMs on the test
set. Applying the trained classifier to the entire set of candidate PSMs
yields discriminant scores that are used to estimate q values based on
the classical target-decoy competition approach.

The contribution of different features to the discriminant score
for an exemplary tryptic HeLa sample is shown in Fig. 4c. Interestingly,

for our data, the number of matched y-ions alone outperforms the
basic search engine score, and most of the top-ranking features are
related to the number of matched ions and their intensity. The ML
algorithm markedly improved the separation of targets vs. decoys,
retrieving a larger number of PSMs at every q value (Fig. 4d). ML-based
scoring in AlphaPept improved identification rates by 14.4 at a 1% FDR
at the PSMs level, in line with previous reports44. AlphaPept allows
ready substitution of the underlying PSM score and machine learning
algorithms. Furthermore, additional features to describe the PSMs are
readily integrated, such as ion mobility or predicted fragment inten-
sities. We envision that this kind of flexibility will enable continuous
integration of improvedworkflows aswell as novelML techniques into
AlphaPept. Our recently developed deep learning framework Alpha-
PeptDeep allows seamless integration to learn properties from
sequences based on AlphaPept search results50.

Once a set of PSMs at a defined FDR is identified, protein groups
are determined via the razor protein approach51. Here, peptides that
could potentially map to multiple unique proteins are assigned to the
protein group that already has the most peptide evidence. We deter-
mine protein-level q values by selecting the best scoring precursor per
protein, followed by FDR estimation by target-decoy competition
similar to the peptide level52–55. Finally, we validated the scoring and
FDR estimation in AlphaPept with the entrapment strategy mentioned
above, by analyzing a HeLa sample with a mixed-species library, con-
taining targets and decoys derived from both a human FASTA and a
FASTA from Arabidopsis thaliana. This revealed that AlphaPept pro-
vides accurate q-value estimates, reporting approximately the same

a

b d

Benchmarking Optimizers

c

E. coliE. coliHuman HumanE. coliHuman

Fig. 5 | Algorithm selection and performance of label-free quantification.
a Timings of different, highly optimized solvers from the SciPy ecosystem to
extract optimal protein intensity ratios in AlphaPept. Solvers showed drastic dif-
ferences in speed, closeness to “ground truth”, and proportion of successful opti-
mizations on in silico test data. Eachoptimizationwas run repeatedly (n = 200), and
error bars show one standard deviation. Based on these tests, AlphaPept employs a

hybrid optimization strategy that uses L-BFGS-B and Powell for optimized perfor-
mance, robustness, and speed. b Uncorrected MaxQuant intensities. c Intensity
distributions after MaxQuant LFQ optimization. d Comparing the AlphaPept LFQ
solver on MaxQuant output data demonstrates better separation in mixed-species
datasets with smaller standard deviations and more protein groups retained.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 7

number of Arabidopsis thaliana proteins as decoy proteins at 1% pro-
tein FDR (See also Supplementary Figs. 6, 7).

Label-free quantification
The ultimate goal of a proteomics experiment is to derive functional
insights or assess biomarkers fromquantitative changes at the protein-
level, to which peptide identifications are the only means to an end.
Algorithmically this quantification step entails either the determina-
tion of isotope ratios in the same scans (for instance, SILAC, TMT, or
EASI-tag ratios) or the somewhat more challenging problem of first
integrating peaks and then deriving quantitative ratios across samples
(label-free quantification),whichwe focus onhere.We initially adapted
the MaxLFQ approach for label-free quantitative proteomics data56.
The first task is to determine normalization factors for each run as
different LC-MS/MS (tandem mass spectrometry) runs need to be
compared—potentially spaced over manymonths in which instrument
performancemayvary— and as total loading amounts likewise vary, for
instance, due to pipetting errors. The basic assumption is that the
majority of peptides are not differentially abundant between different
samples. This allows deriving the run-specific normalization factors by
minimizing the between-sample log peptide ratios56 (Note that this
assumption is not always valid and can be restricted to certain protein
classes). In the second step, adjusted intensities are derived for each
protein, such that protein intensities between differentMS runs canbe

compared. To this end,wederive themedianpeptide fold changes that
maximize consistency with the peptide evidence.

The normalization, as well as protein intensity profile construction,
are quadratic minimization problems of the normalization factors or
the intensities, respectively. Suchminimization problems can be solved
in various ways, but one fundamental challenge is that these algorithms
have a time complexity of O(n2), meaning that the computation time
increases quadratically with the number of comparisons. One strategy
to overcome this limitation is to only performminimization on a subset
of all possible pairs (termed “FastLFQ”)56. Despite this, the computation
time of the underlying solver will determine the overall runtime and
account for the long run times on very large datasets. However, a
variety of very efficient solvers that are based on different algorithms
are contained in the Python SciPy package57. To test these approaches,
we created an in silico test dataset with a known ground truth (see
Quantification Notebook). Comparing different solvers using our
benchmarking set repeatedly (n = 200) uncovered dramatic differences
in precision, runtime, and success rate (Fig. 5a). Among the better-
performing algorithms were the least-squares solvers that were pre-
viously used. The Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B),
Sequential Least-Squares Programming (SLSQP), and Powell algorithms
were particularly fast and robust solutions being more than 6x faster
than the Trust Region Reflective algorithm (trf) from the default least-
squares solver. More remarkably, they were able to optimize much

a b

c d

Fig. 6 | Processing 200 HeLa proteomes with AlphaPept. A total of 200 DDA
HeLa cell proteomes – the ten-cycle long-term performance test from Kuster and
coworkers (181 Gbyte from PXD015087)59– was analyzed by AlphaPept.
a Identification performance at the protein group level. b Identification

performance at the precursor level. c Quantification performance with or without
MaxLFQ optimization. d Timing of the AlphaPept computational pipeline for the
entire 200 HeLa proteome run. Search through scoring are highly optimized and
contributes little to overall computation time.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 8

better to our known ground truth. Of all four tested optimizers, the
mean absolute percentage error of trf was, on average twice as high.
Being able to readily switch between different solvers provided by SciPy
allows us to fall back on other solvers if the default solver fails, i.e.,
AlphaPept will switch from L-BFGS-B to Powell if the solution does not
converge.

We compared our method to MaxLFQ in a quantitative two-
species benchmarking dataset, in which E. coli proteins change their
abundance by a factor of six between conditions, while human pro-
teins do not change58. To specifically assess the benefits of the opti-
mization strategy, we first tested the algorithm directly on the
MaxQuant output (see companion Notebook for Fig. 5). Before LFQ
optimization the distributions are already distinguishable (Fig. 5b).

After LFQ optimization, the separation of human and E. coli proteins
clearly improved for both the MaxQuant LFQ optimization (Fig. 5c) as
well as the AlphaPept LFQ optimization (Fig. 5d); furthermore, the
standard deviation was smaller (0.36 vs. 0.30 for Human and 1.05 vs.
0.54 for E. coli) when applying the AlphaPept optimization algorithm,
which also has fewer outlier quantifications, supporting the analysis of
the in silico test set. Additionally, AlphaPept retained more proteins
(4081 vs. 3925 from 4135). The total computation time for this opti-
mization was 143 s.

Match-between-runs (MBR) and dataset alignment
We implemented functionality to transfer the identifications of MS1
features to unidentified MS1 features of other runs (match-between-

Thermo Brukera

b c

d

e f

4,400
 (0.73)

254
(1.22)

1,979
(0.96)

1,751
(0.83) 248

(1.07)

Yeast
Human
E. coli

3,568
(0.68)

176
(1.13)

1,438
(0.85)

3,422
(0.25)

170
(0.90)

1,284
(0.44)

3,914
(0.41)

221
(0.65)

1,712
(0.50)

3,810
(0.25)

221
(0.51)

1,648
(0.34)

5,658
 (0.47)

329
(0,96)

2,764
(0.70) 2,608

 (0.46)
311

(0.61)

4,217
 (0.96)

171
(1.22)

1,616
(1.09)

2,618
 (0.42)

62
(0.50)

695
(0.50)

4,786
 (0.37)

243
(0.79)

2,144
(0.56)

4,749
 (0.30)

238
(0.61)

2,127
(0.44)

FragPipe Intensity FragPipe MaxLFQ
Intensity FragPipe Intensity FragPipe MaxLFQ

Intensity
4,242
(0.59) 5,512

(0.34)

Fig. 7 | Benchmarking AlphaPept on Thermo and Bruker mixed-species data-
sets. a Mixed-Species analysis from PXD028735, with six Thermo files. The left
columns show protein intensity ratios before LFQ optimization, Right columns
show intensity ratios after LFQ optimization. Ratios and summed intensity are in

logarithmic scale (log2). b Venn Diagram of all quantified proteins shows good
agreement across all search engines. c Computation time. dMixed-species analysis
from PXD028735 with six Bruker files. e Venn Diagram of all quantified proteins
shows good agreement across all search engines. f Computation time.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 9

runs).MBR is a popular functionality inMaxQuant, but the code for the
implementation of the underlying algorithm has not been made pub-
lic. First, we align multiple datasets on top of each other by applying a
global offset in retention time, mass, and—where applicable—ion
mobility. Todetermine offsets for all runs,wefirst compare all possible
pairs of runs and calculate the median offset from one dataset to
another based on the precursors that were identified in both. As these
offsets are linear combinations of each other, i.e., the offset from
dataset A to dataset C should be the offset fromdataset A to B and B to
C; this becomes an overdetermined equation system, which we solve
by a weighted linear regression model with the number of shared
precursors as weights.

After dataset alignment, we group precursors of multiple runs,
determine their expected properties as well as their probability density,
and create a library of precursors. Next, we take the unidentified MS1
features fromeach run and extract the closestmatch from the library of
precursors. Finally, as we know the probability density of each feature,
we can calculate the Mahalanobis distance from each identification
transfer and use this as a probability estimate to assess the likelihood
that a match is correct. Further Information about the alignment and
matching algorithm can be found in the Matching notebook.

Processing 200 HeLa proteomes with AlphaPept
A prime goal of the AlphaPept effort is robustness and speed. To
showcase the usability of AlphaPept for large-scale studies, we re-
analyzed 200 HeLa proteomes from a recently published long-term
performance test59 on a processing workstation (Intel i9, 3.5GHZ, 12
cores with 128GB RAM). This dataset is available under Proteo-
meXchange accession number PXD015087. To confirm comparable
identification performance in the initial analysis, which was done with
MaxQuant, we evaluated the number of uniquely identified protein
groups and PSMs per group. This yielded a mean of 4126 unique
protein groups (Fig. 6a) and 47,082 unique precursors per experi-
mentally defined group with matching (Fig. 6b). Note that the drop in
identifications in Cycle 10 is also reported in the original study. For
reference, the average number of protein groups identified with
MaxQuant was (3849) but reported higher precursor numbers
(55,585). Part of this difference is due to the stringency in matching;
MaxQuantmatches, onaverage, 12,067precursors,whereasAlphaPept
matches 8716. Next, we investigated protein-level quantification. The
median coefficient of variation without our Python maxLFQ imple-
mentation was 24.5 and 7.6% after LFQ optimization. Investigation of
each computational task revealed that a large part is spent on feature
finding. During optimization, we noticed that disk speed is a highly
contributing factor for processing times, highlighting that the algo-
rithms are rather I/O bound than compute bound. Searching and
scoring arehighly optimized and contribute only a small fraction of the
overall computing time. Operations across files, such as LFQ alignment
and matching, again make up a larger part of computation time. In
total, the search took 413min, for an average of 2.07min per file. For
comparison purposes, we re-ran this dataset on various hardware
configurations, such as multiple cloud instances and our SLURM
cluster, resulting in total processing times from 280min (cluster with
preprocessed files, on average 1.4min per file) to 482min, further
confirming the I/O bounds, see Supplementary Table 1.

Benchmarking AlphaPept against other search engines
For an overview of how AlphaPept performs on an entire workflow, we
benchmarked against the latest versions of popular search engines
MaxQuant (2.1.4.0) and FragPipe (MSFragger 3.5 + Philosopher +
IonQuant)22,60–63 on a LFQ benchmark dataset with mixed species
(E. coli, Human, and Yeast), that was previously published64, available
under ProteomeXchange accession number PXD028735. We tested
conditions for ThermoOrbitrap and Bruker timsTOF with six files each.
The dataset contains two conditions, with Humans in equal amounts

and Yeast and E. coli spiked in defined ratios and with three replicates
for each condition. This allowed us to test the entire workflow and gave
robust insight into the overall quantification and identification perfor-
mance of each search engine. We used the default AlphaPept settings
without MBR and an LFQ minimum ratio of 1. We note that matching
settings between search engines is inherently difficult, and each search
engine could perform relatively better or worse with other settings;
therefore we chose to change the default settings as little as possible.

For the Thermo test set, FragPipe found the most quantifiable
proteins, whereas MaxQuant and AlphaPept showed more defined
distributions (smaller standard deviation for both species) and fewer
outlier proteins (Fig. 7a). We denote quantifiable proteins as proteins
detected in enough repeats so that a signal can be calculated with the
LFQ algorithm. Supplementary Fig. 4 shows the accuracy in compar-
ison to the expected ratio over the number of identified proteins,
where the performance of AlphaPept is between MaxQuant (worse)
and MSFragger (better). A Venn diagram of all quantified proteins
across all runs showed excellent agreement between all search engines
(Fig. 7b). Timingwise, FragPipe, and AlphaPept showed similar per-
formance, with FragPipe being slightly faster and both approximately
three times as fast asMaxQuant (Fig. 7c). For the Bruker test set, again
FragPipe found the most quantifiable proteins. AlphaPept and Frag-
Pipe showed similar distributions, and MaxQuant somewhat worse
ones (Fig. 7d). AlphaPept was 34% slower than FragPipe but took less
than half of the time ofMaxQuant (Fig. 7f). Supplementary Fig. 5 shows
the deviation to the expected ratio over the number of identified
proteins, where the performance of AlphaPept is between MaxQuant
and MSFragger. A Venn diagram of all quantified proteins across all
runs showed excellent agreement between all search engines (Fig. 7e).
This indicates that AlphaPept can produce comparable search results
when compared to other frequently used state-of-the-art software
under standard conditions.

Continuous validation of standard datasets
Our current continuous integration pipeline uses a range of datasets
typical for DDA (data-dependent acquisition) MS workflows. These
include standard single-shot runs, such as HeLa quality control (QC)
runs, as well as recently published studies. For every addition to the
main branch of the code base, AlphaPept reanalyzes these files fully
automatically, allowing extensive systems checks. Additionally, these
checks can be manually triggered at any time and therefore enable
swift validation of proposed code changes prior to submitting pull
requests. This makes comparing studies that were analyzed with dif-
ferent software versions much more transparent. To further increase
this idea of transparent performance tracking, we automatically
upload summary statistics, such as runtime, number of proteins, and
number of features for each run to a database and visualize these
metrics in a dashboard (Extended methods). Table 1 shows example
tracking metrics from the database.

AlphaPept user interface and server
A central element for any software tool is ease of use for the end user.
In the most basic setup, this is determined by the accessibility of the
GUI. Following recent trends, we decided on server-based technology
for AlphaPept. In a basic setup, the web interface is called by con-
necting to a local server instance on the user’s laptop or local work-
station (Fig. 8a) via a browser. For more demanding pipelines,
AlphaPept can be run on a powerful processing PC that is accessed
from multiple other devices. This makes access to AlphaPept inde-
pendent and it can even be used from mobile devices.

Adding server functionality typically comes at the cost of main-
taining a dedicated API and infrastructure. For AlphaPept wemake use
of a very recent but already very popular Python package called
streamlit (www.streamlit.com), which was developed to facilitate the
sharing of machine learning models. By only adding one additional

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 10

http://www.streamlit.com

Python package, we have access to a powerful and responsive server
infrastructure. Here, the web interface serves merely as an input
wrapper to gather the required settings and display results and starts
the AlphaPept processing in the background.

AlphaPept workflow management system
Importantly, the server-based user interface extends the processing
functionality of AlphaPept from only processing individual

experiments to a continuous processing and monitoring
framework. The core processing function of AlphaPept accepts a
dictionary-type document to process an experiment, with defined
parameters per setting. To store these settings, we chose YAML, a
standard human-readable data-serialization language, resulting in
files of only a few kilobytes in size. This ensures that they can be
modified programmatically and easily checked with common
editors.

Table 1 | Example performance tracking metrics for different AlphaPept versions extracted from the database

Version Test file Processing time (min) Number of features Number of peptides

0.2.8 HeLa Orbitrap 19 218,792 41,777

0.2.8 HeLa timsTOF 102 231,545 54,058

0.2.9 HeLa Orbitrap 19 218,780 41,939

0.2.9 HeLa timsTOF 113 231,545 66,776

0.2.10 HeLa Orbitrap 19 218,779 41,949

… … … … …

0.3.25 HeLa timsTOF 105 664,992 76,217

0.3.26 HeLa Orbitrap 18 260,709 53,522

0.3.26 HeLa timsTOF 88 664,992 77,464

0.3.27 HeLa Orbitrap 21 260,622 54,283

0.3.27 HeLa timsTOF 89 664,992 77,162

User folder (.alphapept)

a b
Local

Server

Queue Failed Finished

yaml Core

New
Experiment

Continous
Processing

GUI:
Monitor

Core

c HistoryResults

Fig. 8 | Alphapept user interface, workflowmanagement, deploying, and
integrating. a The AlphaPept GUI is based on a server architecture that can be
installed on a workstation and used locally. Additionally, it can be installed on a
server and accessed remotely from multiple workstations in the network.
b AlphePept processing pipeline. The AlphaPept GUI creates three folders for its
processing system. New experiments are defined within the interface and saved as

YAML files in the Queue folder with automatically triggered processing. c Example
plots from the History and Results Tab in AlphaPept: Overview of the number of
features, peptides, and protein groups per injected sample (left panel). Graphing
retention time tailing as a function of acquisition date, as an illustration of using
AlphaPept for quality assurance.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 11

The settings structure is used by the AlphaPept GUI to build a
folder-based workflow management system. It creates three folders
in the user folder (“Queue”, “Failed”, and “Finished”) and monitors
them for new data. When defining a new experiment within the GUI, a
settings YAML file is created in the Queue folder, and the core
function starts processing. This allows for defining multiple experi-
ments, which will then be processed one after another. YAML files of
processed runs will be moved to the “Finished” or “Failed”
folder (Fig. 8b).

We chose this folder-based processing queue as this allows man-
ual inspection of the processing queue by simply checking the files in
the folders. Furthermore, computational alterations of the processing
queue are straightforward by writing custom scripts that copy settings
files generated elsewhere to the queue folder. AlphaPept has a file
watcher module that can monitor folders for new raw files and auto-
matically add them to the processing queue immediately after the
acquisition is finished. Its modular structure can easily be extended
with custom code for integration into larger processing environments
with database-based queuing systems. The interface notebook
demonstrates the calls to the wrapper function and allows customi-
zation of the pipeline.

Visualization of results and continuous processing
For visualization of tabular or summary statistics results, our streamlit
application utilizes the “Finished” folder structure, where it stores
readily accessible summary information of previously processed
files (Fig. 8c). AlphaPept has a History tab that compiles these pre-
vious results to show performance over time or across analyzed MS
runs (Fig. 8d). Here, the user can choose to plot various summary
statistics such as identified proteins or peptides as well as chromato-
graphic information such as peak width or peak tailing. As a particular
use case, this provides a standard interfacewhichallows instantQC run
evaluation in combination with the file watcher.

To inspect an individual experiment, AlphaPept’s browser inter-
face can also plot identification and quantification summary informa-
tion. Furthermore, basic data analysis functions such as volcano or
scatter plots and Principal Component Analysis (PCA) are provided.
This is based on streamlit and scikit-learn functionality and can
therefore be readily extended. AlphaPept exports the analysis results
(quantified proteins and peptides) in tabular format to the specified
results path so that it can be readily used for other downstream pro-
cessing tools such as Perseus16 or our recently introduced CKG15.

AlphaPept deployment and integration
The utility of a computational tool critically depends on howwell it can
be integrated into existing workflows. To enable maximum flexibility
and to address all major use cases, AlphaPept offers multiple ways to
install and integrate it.

First, we provide a one-click installer solution that is packaged for
a standard Windows system obviating additional installation routines.
It provides a straightforward interface to theweb-basedGUI.We chose
Windows for the one-click solution as it is the base OS for the vendor-
provided acquisition and analysis software and most users. The one-
click installation also has a command-line interface (CLI) for integra-
tion into data pipelines.

Next, AlphaPept can be used as amodule in the sameway as other
Pythonpackages. This requires settingup a Python environment to run
the tool, which also contains all the functionality of the previously
described CLI and GUI. Compared to the Windows one-click installer,
the Python module extends the compatibility to other operating sys-
tems. While Python code is, in principle, cross-platform, some third-
party packages can be platform-bound, such as the Bruker feature
finder or DLLs required to read proprietary file types. The modular
nature of the AlphaPept file system allows us to preprocess files and
continue the analysis on adifferent system (e.g., featurefinding andfile

conversion on a Windows acquisition PC and processing on a Mac
system).

Finally, the Python module makes the individual functions avail-
able to any Pythonprogram.This is particularly useful to integrate only
parts of a workflow in a script or to optimize an individual workflow
step. Besides the nbdev notebooks that contain the AlphaPept core
code, we provide several sandboxing Jupyter Notebooks that show
how individual workflow steps can be called andmodified. In this way,
AlphaPept allows the creation of completely customized workflows.

For a typical proteomics laboratory runningDDA experiments, we
envision AlphaPept running in continuous mode, to automatically
process all new files. This allows continuous feedback about experi-
ments while drastically speeding up computation when subsequently
combining multiple processed files into experiments and these
experiments into an overall study. This is because the computational
steps that do not change (e.g., raw conversion, database generation, or
feature finding) can be reused.

Being able to import AlphaPept as a Python package also lowers
the entry barrier of proteomics analysis workflows for individual
researchers and laboratories with little computational infrastructure, as
it makes it compatible with platforms like Google Colab, a free cloud-
based infrastructure built on top of Jupyter notebooks with GPUs. This
allows processing, subject to resource availability fromGoogle, without
having to set up software on specialized hardware and allows direct
modification of the underlying algorithms. We provide an explanatory
notebook for running a workflow on Google Colab, including a 120min
HeLa example file that has been converted on the Windows acquisition
computer. This also highlights how the modular HDF5 file format
allows us to move the MS data between operating systems. As another
showcase of AlphaPept’s portability, AlphaPept was integrated to the
reproducible data science platform Renku by the community65.

Discussion
Here we have introduced AlphaPept, a computational proteomics
framework where the relevant algorithms are written in Python itself,
rather than Python being used only as a scripting layer on top of
compiled code. This architectural choice allows the user to inspect
and even modify the code and enables seamless integration with the
tools of the increasingly powerful and popular Python scientific
ecosystem. The major drawback of such an approach would have
been the slow execution speed of pure Python; however, extensive
use of the Numba just-in-time compiler—onmultiple CPUs or a GPU—
makes AlphaPept exceptionally fast, as we have shown in this
manuscript. Together with the use of recently developed browser-
based deployment, AlphaPept covers the full range of potential
users, from novice users to systems administrators wishing to build
large cloud pipelines.

A related and important design objective of AlphaPept was to
enable a diverse user community and invite community participation
in its further development. To ensure quality, reproducibility, and
stability, we implemented a large suite of mechanisms from the unit
through end-to-end tests via automaticdeployment tools. This, in turn,
allows us to streamline the integration of community contributions
after rigorous assessment. Furthermore, GitHub provides state-of-the-
art tools and mechanisms to allow the effective collaboration of
diverse and dispersed developer communities.

Currently, AlphaPept provides functionality for DDA
proteomics, but we are in the process of enabling analysis of DIA data,
ultra-fast access to and visualization of ion mobility
data (AlphaTims26,https://github.com/MannLabs/alphatims), deep
learning for predicted peptide properties (AlphaPeptDeep50, https://
github.com/MannLabs/alphapeptdeep), Visualization of search
engine results (AlphaViz, https://github.com/MannLabs/alphaviz),
visual annotation of results (AlphaMap66,67, https://github.com/
MannLabs/alphamap), statistical downstream analysis (AlphaPept

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 12

https://github.com/MannLabs/alphatims
https://github.com/MannLabs/alphapeptdeep
https://github.com/MannLabs/alphapeptdeep
https://github.com/MannLabs/alphaviz
https://github.com/MannLabs/alphamap
https://github.com/MannLabs/alphamap

Stats68) and improved quantification, all made possible by its modular
design. While AlphaPept may not be best-in-class across all bench-
marks, it is on par with widely used proteomics tools but has the
benefit of being completely open and permissively licensed. This
makes it an excellent educational resource for future algorithmic
upgrades which can be modularly integrated.

Recent acquisition schemes allowprecisely assigning precursor to
fragmentation data, even fromDIA acquisition schemes. Thiswill allow
creating not only “pseudo” but also “pure spectra” which can be
searchedwith conventional DDA search engines (DIAUmpire)69–71. As a
result, we believe that DDA search engines will soon be a routine part
of DIA workflows as well. Notably, the speed of AlphaPept will be
crucial for these “DDA from DIA” approaches because they produce
many-fold larger datasets to search compared to DDA.

One of the large goals of AlphaPept is to “democratize” access to
computational proteomics. To this end, besides implementation in
Python, we adopted the ‘literate programming’ paradigm which inte-
grates documentation and code. We adopted the nbdev package,
providing both beginner and expert computational proteomics
researchers with an easy and interactive “on ramp”. In our case, this
takes the form of currently 12 Jupyter notebooks dealing with all the
major sub-tasks of the entire computational pipeline, from database
creation, raw data import all the way to the final report of the results.
We imagine that students and researchers with innovative algorithmic
ideas can use this paradigm to add their functionality in a transparent
and efficient manner, without having to re-create the entire pipeline.
This could especially enable increasingly powerful machine learning
and deep learning technologies to be integrated into computational
proteomics7,8,72,73.

Methods
MongoDB Dashboard The continuous integration pipeline has the
action “Performance test pyinstaller”. This action freezes the current
Python environment into an executable and runs the test files. The
results of these tests are uploaded to a noSQLdatabase (MongoDB) for
the tested version number. Key performance metrics are visualized in
charts here:

https://charts.mongodb.com/charts-alphapept-itfxv/public/
dashboards/5f671dcf-bcd6-4d90-8494-8c7f724b727b.

timsTOF and Orbitrap HeLa samples
The test files comprise representative single-run analyses of complex
proteome samples. Human HeLa cancer cells were lysed in reduction
and alkylation buffer with chloroacetamide as previously described74,
and proteins were enzymatically digested with LysC and trypsin. The
resulting peptides were de-salted and purified on styrene-
divinylbenzene reversed-phase sulfonate (SDB-RPS) StageTips before
injection into an EASY nLC 1200 nanoflow chromatography system
(Thermo Scientific). The samples were loaded on a 50 cm× 75 µm col-
umn packed in-house with 1.9 µm C18 beads and fitted with a laser-
pulled emitter tip. Separation was performed for 120min with a binary
gradient at a flow rate of 300nL/min. The LC system was coupled
online to either a quadrupole Orbitrap (Thermo Scientific Orbitrap
Exploris 480) or a trapped ion mobility—quadrupole time-of-flight
(Bruker timsTOF Pro 2) mass spectrometer. Data were acquired with
standard data-dependent top15 (Orbitrap) and PASEF (Parallel
Accumulation–Serial Fragmentation) methods (timsTOF), respectively.

timsTOF and Orbitrap iRT samples
Eleven iRT peptides (https://biognosys.com/product/irt-kit/) were
separated via a 5.6min Evosep gradient (200 “samples per day”),
yielding test data with low complexity, that facilitated quick testing of
computational functionality. An Evosep One liquid chromatography
system (Evosep) was coupled online with a trapped ion mobility
spectrometry (TIMS) quadrupole time-of-flight (TOF) mass

spectrometer (timsTOF pro, Bruker Daltonics). iRT standards (Biog-
nosys) were loaded onto Evotips according to the manufacturers’
instructions and separated with a 4 cm× 150 µm reverse-phase column
with 3 µm C18-beads (Pepsep). The analytical column was connected
with a zero-dead volume emitter (10 µm)placed in a nano-electrospray
ion source (CaptiveSpray source, Bruker Daltonics). Mobil phase A
contained0.1 vol% formic acid andwater, andmobile phaseBof 0.1 vol
% formic acid and acetonitrile. The sample was acquired with the dda-
PASEF acquisitionmode. Each Top-N acquisitionmode contained four
PASEF MS/MS scans, and the accumulation and ramp time were both
100ms. Only multiply charged precursors over the intensity threshold
of 2500 arbitrary units (a.u.) andwithin am/z-range of 100 – 1700were
subjected to fragmentation. Peptides that reached the target intensity
of 20,000 a.u. were excluded for 0.4min. The quadrupole isolation
width was set to 2 Th belowm/z of 700 and 3 Th above a m/z value of
700. The ion mobility (IM) range was configured to 0.6–1.51 Vs cm−2

and calibrated with three Agilent ESI-L TuneMix Ions (m/z, IM: 622.02,
0.98 Vs cm−2; 922.01, 1.19 Vs cm−2; 1221.99, 1.38Vs cm−2). The collision
energy was decreased as a function of the ion mobility, starting at
1.6 Vs cm−2 with 59 eV and ending at 0.6Vs cm−2 with 20 eV.

The results in this manuscript were obtained with AlphaPept
version 0.5.0 if not otherwise indicated. Runtime is for CPU unless
indicated otherwise.

During the revisions of this work, the authors used ChatGPT-4 by
OpenAI in order to improve the readability and conciseness of the
manuscript. After using this tool/service, the authors reviewed and
edited the content as needed and take full responsibility for the con-
tent of the publication.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data for benchmarkingwas taken frompublic repositories PXD015087
(High-flow chromatography for reproducible and high-throughput
quantification of proteomes) and PXD028735 (A comprehensive LFQ
benchmark dataset to validate data analysis pipelines on modern-day
acquisition strategies in proteomics). Test files for continuous testing
were uploaded to the Max-Planck data share, accessible via links pre-
sent on test_ci.py in the GitHub repository at https://github.com/
MannLabs/alphapept/blob/master/test_ci.py. Additional benchmark-
ing results and data for SI Table 1 is available on Zenodo as https://doi.
org/10.5281/zenodo.10223453.

Code availability
AlphaPept is fully open-source and is freely available under an Apache
license at https://github.com/MannLabs/alphapept. All notebooks are
part of the repository in the “nbs” folder. The documentation created
based on the notebooks is available here: https://mannlabs.github.io/
alphapept/. Additional information about code not covered in the
Notebooks presented here can be found in the Documentation
(https://mannlabs.github.io/alphapept/additional_code.html).

A cloud-hosted Notebook with an example data file is provided at
the free Google Colab site:

https://colab.research.google.com/drive/163LTlyzBCDgyCkSJiikb
msnny_EiQ7SG?usp=sharing.

All code to reproduce the figures in themanuscript is available on
the GitHub repository.

References
1. Välikangas, T., Suomi, T. & Elo, L. L. A comprehensive evaluation of

popular proteomics software workflows for label-free proteome
quantification and imputation. Brief. Bioinform. https://doi.org/10.
1093/bib/bbx054. (2017).

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 13

https://charts.mongodb.com/charts-alphapept-itfxv/public/dashboards/5f671dcf-bcd6-4d90-8494-8c7f724b727b
https://charts.mongodb.com/charts-alphapept-itfxv/public/dashboards/5f671dcf-bcd6-4d90-8494-8c7f724b727b
https://biognosys.com/product/irt-kit/
https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD015087
https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD028735
https://github.com/MannLabs/alphapept/blob/master/test_ci.py
https://github.com/MannLabs/alphapept/blob/master/test_ci.py
https://doi.org/10.5281/zenodo.10223453
https://doi.org/10.5281/zenodo.10223453
https://github.com/MannLabs/alphapept
https://mannlabs.github.io/alphapept/
https://mannlabs.github.io/alphapept/
https://mannlabs.github.io/alphapept/additional_code.html
https://colab.research.google.com/drive/163LTlyzBCDgyCkSJiikbmsnny_EiQ7SG?usp=sharing
https://colab.research.google.com/drive/163LTlyzBCDgyCkSJiikbmsnny_EiQ7SG?usp=sharing
https://doi.org/10.1093/bib/bbx054
https://doi.org/10.1093/bib/bbx054

2. Chen, C., Hou, J., Tanner, J. J. & Cheng, J. Bioinformatics methods
for mass spectrometry-based proteomics data analysis. IJMS 21,
2873 (2020).

3. Nesvizhskii, A. I., Vitek, O. & Aebersold, R. Analysis and validation of
proteomic data generated by tandem mass spectrometry. Nat.
Methods 4, 787–797 (2007).

4. Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Data‐independent
acquisition mass spectrometry‐based proteomics and software
tools: a glimpse in 2020. Proteomics 20, 1900276 (2020).

5. Vizcaíno, J. A. et al. ProteomeXchange provides globally coordi-
nated proteomics data submission and dissemination. Nat. Bio-
technol. 32, 223–226 (2014).

6. Deutsch, E. W. et al. The ProteomeXchange consortium in 2017:
supporting the cultural change in proteomics public data deposi-
tion. Nucleic Acids Res. 45, D1100–D1106 (2017).

7. Wen, B. et al. Deep learning in proteomics. Proteomics 20,
1900335 (2020).

8. Mann, M., Kumar, C., Zeng, W.-F. & Strauss, M. T. Artificial intelli-
gence for proteomics and biomarker discovery. Cell Syst. 12,
759–770 (2021).

9. Di Tommaso, P. et al. Nextflowenables reproducible computational
workflows. Nat. Biotechnol. 35, 316–319 (2017).

10. Ewels, P. A. et al. The nf-core framework for community-curated
bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

11. Perez-Riverol, Y. et al. nf-core/quantms: nfcore/quantms v1.2.0 -
Thimphu. Zenodo https://doi.org/10.5281/ZENODO.
7754148. (2023).

12. Knuth, D. E. Literate programming. Comput. J. 27, 97–111 (1984).
13. Kluyver, T. et al. in Positioning and Power in Academic Publishing:

Players, Agents and Agendas (eds. Loizides, F. & Scmidt, B.) 87–90
(IOS Press, 2016) https://wiki.lib.sun.ac.za/images/7/79/Elpub-
2016.pdf.

14. Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT
compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC - LLVM ’15 1–6 (ACM Press, 2015).

15. Santos, A. et al. A knowledge graph to interpret clinical proteomics
data. Nat. Biotechnol. 40, 692–702 (2022).

16. Tyanova, S. et al. The Perseus computational platform for com-
prehensive analysis of (prote)omics data. Nat. Methods 13,
731–740 (2016).

17. Harris, C. R. et al. Array programming with NumPy. Nature 585,
357–362 (2020).

18. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

19. Abadi, M. et al. TensorFlow: large-scale machine learning on het-
erogeneous systems. Preprint at arXiv:1603.04467 (2015).

20. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. In Advances in Neural Information Processing
Systems 32 (eds. Wallach, H. et al.) 8024–8035 (Curran Associates,
Inc., 2019).

21. Lazear, M. R. Sage: an open-source tool for fast proteomics
searching and quantification at scale. J. Proteome Res. 22,
3652–3659 (2023).

22. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. &
Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide
identification in mass spectrometry–based proteomics. Nat. Meth-
ods 14, 513–520 (2017).

23. McKinney, W. Data structures for statistical computing in Python.
https://doi.org/10.25080/Majora-92bf1922-00a. (2010)

24. Okuta, R., Unno, Y., Nishino, D., Hido, S. & Loomis, C. CuPy: A
NumPy-compatible library for NVIDIA GPU calculations. In Proc.
Workshop onMachine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing Systems
(NIPS, 2017).

25. Wen-Feng, Z. jalew188/pyRawDataReader: pyRawDataReader v0.1.
Zenodo https://doi.org/10.5281/ZENODO.5053708. (2021).

26. Willems, S., Voytik, E., Skowronek, P., Strauss, M. T. & Mann, M.
AlphaTims: indexing trapped ion mobility spectrometry–TOF data
for fast and easy accession andvisualization.Mol. Cell. Proteom.20,
100149 (2021).

27. Goloborodko, A. A., Levitsky, L. I., Ivanov, M. V. & Gorshkov, M. V.
Pyteomics—a Python framework for exploratory data analysis and
rapid software prototyping in proteomics. J. Am. Soc. Mass Spec-
trom. 24, 301–304 (2013).

28. Levitsky, L. I., Klein, J. A., Ivanov, M. V. & Gorshkov, M. V. Pyteomics
4.0: five years of development of a Python proteomics. Framew. J.
Proteome Res. 18, 709–714 (2019).

29. Adusumilli, R. &Mallick, P. in Proteomics (eds. Comai, L., Katz, J. E. &
Mallick, P.) Ch. 23 (Springer, 2017) https://link.springer.com/book/
10.1007/978-1-4939-6747-6.

30. Folk, M., Heber, G., Koziol, Q., Pourmal, E. & Robinson, D. An over-
view of the HDF5 technology suite and its applications. in Pro-
ceedings of the EDBT/ICDT 2011 Workshop on Array Databases - AD
’11 36–47 (ACM Press, 2011).

31. Wilhelm,M., Kirchner,M., Steen, J. A. J. & Steen, H.mz5: space- and
time-efficient storage of mass spectrometry data sets. Mol. Cell.
Proteom. 11, O111.011379 (2012).

32. Collette, A. Python and HDF5 (O’Reilly, 2013).
33. Cox, J. & Mann, M. MaxQuant enables high peptide identifi-

cation rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification. Nat. Biotechnol. 26,
1367–1372 (2008).

34. Teleman, J., Chawade, A., Sandin, M., Levander, F. & Malmström, J.
Dinosaur: a refined open-source peptide MS feature detector. J.
Proteome Res. 15, 2143–2151 (2016).

35. Abdrakhimov, D. A. et al. Biosaur: an open‐source Python
software for liquid chromatography–mass spectrometry
peptide feature detection with ion mobility support. Rapid
Commun. Mass Spectrom. https://doi.org/10.1002/rcm.
9045. (2021).

36. Senko, M. W., Beu, S. C. & McLaffertycor, F. W. Determination of
monoisotopic masses and ion populations for large biomolecules
from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 6,
229–233 (1995).

37. Wenger, C. D. & Coon, J. J. A proteomics search algorithm specifi-
cally designed for high-resolution tandem mass. Spectra J. Pro-
teome Res. 12, 1377–1386 (2013).

38. Craig, R. & Beavis, R. C. Amethod for reducing the time required to
match protein sequences with tandem mass spectra. Rapid Com-
mun. Mass Spectrom. 17, 2310–2316 (2003).

39. de Godoy, L. M. F. et al. Comprehensive mass-spectrometry-based
proteome quantification of haploid versus diploid yeast. Nature
455, 1251–1254 (2008).

40. Muntel, J. et al. Surpassing 10 000 identified and quantified
proteins in a single run by optimizing current LC-MS instru-
mentation and data analysis strategy. Mol. Omics 15,
348–360 (2019).

41. Granholm, V., Navarro, J. F., Noble, W. S. & Käll, L. Determining
the calibration of confidence estimation procedures for unique
peptides in shotgun proteomics. J. Proteom. 80,
123–131 (2013).

42. Feng, X. et al. Using the entrapment sequence method as a stan-
dard to evaluate key steps of proteomics data analysis process.
BMC Genomics 18, 143 (2017).

43. Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical
statistical model to estimate the accuracy of peptide identifications
made by MS/MS and database search. Anal. Chem. 74,
5383–5392 (2002).

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 14

https://doi.org/10.5281/ZENODO.7754148
https://doi.org/10.5281/ZENODO.7754148
https://wiki.lib.sun.ac.za/images/7/79/Elpub-2016.pdf
https://wiki.lib.sun.ac.za/images/7/79/Elpub-2016.pdf
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/ZENODO.5053708
https://link.springer.com/book/10.1007/978-1-4939-6747-6
https://link.springer.com/book/10.1007/978-1-4939-6747-6
https://doi.org/10.1002/rcm.9045
https://doi.org/10.1002/rcm.9045

44. Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J.
Semi-supervised learning for peptide identification from shotgun
proteomics datasets. Nat. Methods 4, 923–925 (2007).

45. MacLean, B. et al. Skyline: an open source document editor for
creating and analyzing targeted proteomics experiments. Bioinfor-
matics 26, 966–968 (2010).

46. Röst, H. L. et al. OpenSWATH enables automated, targeted analysis
of data-independent acquisition MS data. Nat. Biotechnol. 32,
219–223 (2014).

47. Teleman, J. et al. DIANA—algorithmic improvements for analysis of
data-independent acquisition MS data. Bioinformatics 31,
555–562 (2015).

48. Fondrie, W. E. & Noble, W. S. mokapot: fast and flexible semi-
supervised learning for peptide detection. J. Proteome Res. https://
doi.org/10.1021/acs.jproteome.0c01010. (2021).

49. Rosenberger, G. et al. Statistical control of peptide and protein
error rates in large-scale targeted data-independent acquisition
analyses. Nat. Methods 14, 921–927 (2017).

50. Zeng, W.-F. et al. AlphaPeptDeep: a modular deep learning frame-
work to predict peptide properties for proteomics. Nat. Commun.
13, 7238 (2022).

51. Nesvizhskii, A. I. & Aebersold, R. Interpretation of shotgun pro-
teomic data. Mol. Cell. Proteom. 4, 1419–1440 (2005).

52. Nesvizhskii, A. I. A survey of computational methods and
error rate estimation procedures for peptide and protein
identification in shotgun proteomics. J. Proteom. 73,
2092–2123 (2010).

53. Savitski, M. M., Wilhelm,M., Hahne, H., Kuster, B. & Bantscheff, M. A
scalable approach for protein false discovery rate estimation in
large proteomic data sets. Mol. Cell. Proteom. 14,
2394–2404 (2015).

54. The, M., MacCoss, M. J., Noble, W. S. & Käll, L. Fast and accurate
protein false discovery rates on large-scale proteomics data sets
with percolator 3.0. J. Am. Soc.Mass Spectrom. 27, 1719–1727 (2016).

55. Gupta, N. & Pevzner, P. A. False discovery rates of protein identifi-
cations: a strike against the two-peptide rule. J. Proteome Res. 8,
4173–4181 (2009).

56. Cox, J. et al. Accurate proteome-wide label-free quantification by
delayed normalization and maximal peptide ratio extraction,
termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014).

57. SciPy 1.0 Contributors. et al. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat. Methods 17,
261–272 (2020).

58. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M.
BoxCar acquisition method enables single-shot proteomics at
a depth of 10,000 proteins in 100 minutes. Nat. Methods 15,
440–448 (2018).

59. Bian, Y. et al. Robust, reproducible and quantitative analysis of
thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun.
11, 157 (2020).

60. Teo, G. C., Polasky, D. A., Yu, F. & Nesvizhskii, A. I. Fast deisotoping
algorithm and its implementation in the MSFragger search engine.
J. Proteome Res. 20, 498–505 (2021).

61. Da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for
shotgun proteomics data analysis. Nat. Methods 17,
869–870 (2020).

62. Yu, F. et al. Fast quantitative analysis of timsTOF PASEF data with
MSFragger and IonQuant. Mol. Cell. Proteom. 19,
1575–1585 (2020).

63. Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate
and sensitive label-free quantification with FDR-controlled match-
between-runs. Mol. Cell. Proteom. 20, 100077 (2021).

64. Van Puyvelde, B. et al. A comprehensive LFQbenchmark dataset on
modern day acquisition strategies in proteomics. Sci. Data 9,
126 (2022).

65. Spillner, J., Gkikopoulos, P., Delgado, P. & Choirat, C. Towards
reproducible software studies with MAO and Renku. SoftwareX 17,
100947 (2022).

66. Voytik, E. et al. AlphaMap: an open-source Python package for the
visual annotation of proteomics data with sequence-specific
knowledge. Bioinformatics 38, 849–852 (2022).

67. Bludau, I. et al. The structural context of posttranslational mod-
ifications at a proteome-wide scale. PLoS Biol. 20,
e3001636 (2022).

68. Krismer, E., Bludau, I., Strauss, M. T. & Mann, M. AlphaPept-
Stats: an open-source Python package for automated and
scalable statistical analysis of mass spectrometry-based pro-
teomics. Bioinformatics https://doi.org/10.1093/
bioinformatics/btad461 (2023).

69. Tsou, C.-C. et al. DIA-Umpire: comprehensive computational fra-
mework for data-independent acquisition proteomics. Nat. Meth-
ods 12, 258–264 (2015).

70. Messner, C. B. et al. Ultra-fast proteomics with scanning SWATH.
Nat. Biotechnol. 39, 846–854 (2021).

71. Skowronek, P. et al. Synchro-PASEF allows precursor-specific
fragment ion extraction and interference removal in data-
independent acquisition. Mol. Cell. Proteom. 22, 100489 (2023).

72. Meyer, J. G. Deep learning neural network tools for proteomics.Cell
Rep. Methods 1, 100003 (2021).

73. Torun, F. M. et al. Transparent exploration of machine learning
for biomarker discovery from proteomics and omics data. J.
Proteome Res. https://doi.org/10.1021/acs.jproteome.
2c00473 (2022).

74. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal,
encapsulated proteomic-sample processing applied to copy-
number estimation in eukaryotic cells. Nat. Methods 11,
319–324 (2014).

Acknowledgements
We thank Sven Brehmer, Wiebke Timm, Konstantin Schwarze, and
Sebastian Wehner from Bruker Daltonik for providing support with the
feature finder for Bruker data. Further, we thank Andreas Brunner, Igor
Paron, Patricia Skowronek, and Mario Oroshi for providing sample files
and descriptions and feedback on the QC pipeline. Xie-Xuan Zhou
contributed to discussions and testing. We are grateful for the feed-
back, testing, and support from our colleagues and contributors
from the open-source community. MTS is supported financially
by the Novo Nordisk Foundation (Grant agreement NNF14CC0001).
This study was supported by The Max-Planck Society for Advancement
of Science and by the Bavarian State Ministry of Health and Care
through the research project DigiMed Bayern (www.digimed-
bayern.de).

Author contributions
M.M. and M.T.S. conceived the core idea of the AlphaPept framework
and M.M. wrote the first iteration of the search algorithm. F.M. con-
tributed guidance for integrating Bruker support. M.T.S. wrote the
Thermo feature finder, quantification and downstream processing
modules, code structure, and user interface. E.V. contributed file
importing functionality. I.B. extended the scoring functionality with M.L.
and F.D.R. control. S.W. added HDF file handling, revised the general
code structure, and added performance functions. W.F.Z. and C.A.
contributed and improved quantification. J.S. critically reviewed testing
and documentation. R.I. and M.G. contributed to GPU support and code
acceleration. All authors contributed ideas, performed testing, and
wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 15

https://doi.org/10.1021/acs.jproteome.0c01010
https://doi.org/10.1021/acs.jproteome.0c01010
https://doi.org/10.1093/bioinformatics/btad461
https://doi.org/10.1093/bioinformatics/btad461
https://doi.org/10.1021/acs.jproteome.2c00473
https://doi.org/10.1021/acs.jproteome.2c00473
http://www.digimed-bayern.de
http://www.digimed-bayern.de

Competing interests
The authors declare the following competing interests: R.I. andM.G. are
employees of Nvidia Corporation. M.T.S. was an employee of OmicEra
Diagnostics GmbH.M.M. is an indirect investor in Evosep. The remaining
authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46485-4.

Correspondence and requests for materials should be addressed to
Maximilian T. Strauss or Matthias Mann.

Peer review information Nature Communications thanks the anon-
ymous, reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-46485-4

Nature Communications | (2024) 15:2168 16

https://doi.org/10.1038/s41467-024-46485-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	AlphaPept: a modern and open framework for MS-based proteomics
	Results
	Overview of AlphaPept architecture
	Highly efficient and platform-independent MS data�access
	Extracting isotope features
	Peptide-spectrum matching
	Machine learning-based scoring and FDR estimation
	Label-free quantification
	Match-between-runs (MBR) and dataset�alignment
	Processing 200 HeLa proteomes with AlphaPept
	Benchmarking AlphaPept against other search engines
	Continuous validation of standard datasets
	AlphaPept user interface and�server
	AlphaPept workflow management�system
	Visualization of results and continuous processing
	AlphaPept deployment and integration

	Discussion
	Methods
	timsTOF and Orbitrap HeLa samples
	timsTOF and Orbitrap iRT samples
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

