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Cell type signatures in cell-free DNA
fragmentationprofiles reveal diseasebiology

Kate E. Stanley1,2, Tatjana Jatsenko1, Stefania Tuveri 1, Dhanya Sudhakaran1,
Lore Lannoo 3, Kristel Van Calsteren3, Marie de Borre4, Ilse Van Parijs5,
Leen Van Coillie5, Kris Van Den Bogaert5, Rodrigo De Almeida Toledo 6,
Liesbeth Lenaerts 7, Sabine Tejpar 8, Kevin Punie 9, Laura Y. Rengifo 10,
Peter Vandenberghe10,11, Bernard Thienpont 4 & Joris Robert Vermeesch 1

Circulating cell-free DNA (cfDNA) fragments have characteristics that are
specific to the cell types that release them. Current methods for cfDNA
deconvolution typically use disease tailored marker selection in a limited
number of bulk tissues or cell lines. Here, we utilize single cell transcriptome
data as a comprehensive cellular reference set for disease-agnostic cfDNA cell-
of-origin analysis. We correlate cfDNA-inferred nucleosome spacing with gene
expression to rank the relative contribution of over 490 cell types to plasma
cfDNA. In 744 healthy individuals and patients, we uncover cell type signatures
in support of emerging disease paradigms in oncology and prenatal care. We
train predictive models that can differentiate patients with colorectal cancer
(84.7%), early-stage breast cancer (90.1%),multiplemyeloma (AUC95.0%), and
preeclampsia (88.3%) from matched controls. Importantly, our approach
performs well in ultra-low coverage cfDNA datasets and can be readily trans-
ferred to diverse clinical settings for the expansion of liquid biopsy.

Many cell types release cell-free DNA (cfDNA) into plasma, urine, and
other extracellular fluids1 upon apoptosis, necrosis, or active secretion.
CfDNA fragments are derived from nuclease-processed nucleosome
arrays which consist of 147 base pairs (bp) of DNA wrapped around a
histone octamer core with approximately 20–40 bp of unbound linker
DNA interspersed2. Nucleases preferentially cleave genomic DNA at
accessible linker regions resulting in a large portion of mono-
nucleosomal cfDNA fragments that span sites that are protected in
vivo3,4. CfDNA fragmentation is therefore highly correlated with
nucleosome organization, and can be used to infer nucleosome
positioning5,6, transcription factor binding7, gene expression8, and
DNA methylation status9 in the tissues-of-origin.

In plasma, cfDNA is largely hematopoietic in origin10, but its
composition alters under many (patho)physiological conditions. In
pregnancy, 2–20% of cfDNAoriginates from the placenta, which allows
for non-invasive prenatal screening (NIPS) of fetal aneuploidy11. In
cancer, tumor-derived cfDNA is leveraged to screen, diagnose, and
monitor the treatment of patients with various cancer types12. Altered
cfDNA profiles have also been noted in transplant rejection13, auto-
immune disease14, infection15,16, myocardial infarction17, and stroke18,
whichmay be the result of aberrant contributions from affected tissue
types. To date, many strategies to trace cfDNA tissues-of-origin are
limited by the need for genetic differences between the contributing
tissue types (e.g., the fetal versusmaternal genome, or mutated tumor
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DNA versus healthy tissue DNA). To overcome this limitation, non-
genetic means of tracing the origins of cfDNA molecules have been
explored as an alternative.

Non-genetic approaches are typically either methylation-
based19,20 or fragmentation-based21. Most methods require pre-
selecting differentially methylated or accessible regions from epige-
netic reference databases in specific tissues or diseases of interest.
Although specific, these tailored approaches are not broadly applic-
able and not well-suited for the discovery of disease biology. Among
the fragmentation-based approaches, Snyder et al. (2016) conducted a
search for potential contributors to cfDNA in healthy and malignant
states using bulk transcriptome data in 76 tissues and cell lines5. Our
work builds on this approach but is substantially more complete.

The rapid advancement of single-cell technologies has provided a
near-saturated reference set of cell type transcriptomes in the human
body22 and developing fetus23. We developed an approach that utilizes
newly available single-cell transcriptome atlases to de novo scan
cfDNA fragmentation profiles for a comprehensive set of potential cell
type contributors in health and disease (Fig. 1). We demonstrate the
broad applicability of this approach in multiple cancer types and
pregnancy complications for disease biology exploration, biomarker
discovery, and patient classification. Importantly, we show that cell
type signatures can be inferred from ultra-low coverage cfDNA data,
making the approach compatible with existing clinical datasets. We
expect the approachwill broaden the clinical utility of standard-of-care

genome-wide NIPS and liquid biopsy data in various pathologies,
including cancer.

Results
Global and local nucleosome dynamics are recapitulated across
different cfDNA sequencing depths
We first tested if nucleosome positioning could be reliably captured
using a sliding window protection score (WPS) in our genome-wide
cfDNA paired-end sequencing data. The WPS provides a continuous
score that quantifies the periodic nucleosome protection of DNA from
nuclease digestion in vivo (Fig. 2A). As previously described5, the per-
base WPS is the number of fragments that span a 120 base pair (bp)
window centered at a given genomic coordinate minus the number of
fragments with an endpoint in the same window. We applied a peak
calling algorithm (see “Methods” section) on theWPS curve to identify
the position of individual nucleosomes in each sample.

In 230 healthy control cfDNA samples sequenced at 35-fold cov-
erage (n = 1), 10-fold coverage (n = 139), or <0.3-fold coverage (n = 90),
an average of approximately 10M, 3M, and 5 K nucleosome peaks
were called, respectively. The position of nucleosome calls was con-
cordant with the location of nucleosomes mapped by Snyder et al.
(2016) using the same method in a sample sequenced at 231-fold
coverage (“CH01”, 12.9 million peak calls) (Fig. 2B) and nucleosomes
mapped using an in silico method by Kaplan et al. (2009) (Supple-
mentary Fig. 1). In each sample, the mode distance between adjacent
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Fig. 1 | Schematic of study approach. Cell-free DNA (cfDNA) is fragmented and
released by many different cell types into bodily fluids, including plasma. CfDNA
fragment coverage (cov) reflects nucleosome positioning in the cell types of origin
and canbequantifiedusing awindowprotection score (WPS).We integratepublicly
available single-cell RNA sequencing (seq) data from the Tabula Sapiens database
(adult), Fetal Cell Atlas database (fetal), and Vento-Tormo et al. (2018) (placenta) to
deconvolute over 450 potential cell type contributions to plasma cfDNA. Average

gene expression per annotated cell type is correlated with fast Fourier transformed
(FFT) cfDNAWPS in ~20 thousand (k) gene bodies. Cell types are then ranked based
on the strength of this correlation. We compare cell type ranks between diverse
cohorts of health and disease to identify cell types that are relatively more or less
represented in plasma cfDNA. The disease status of new cases can be predicted by
building classifiers that use cell type ranks as input.
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nucleosome calls was 187 bp reflecting the known nucleosome repeat
length inmammals (Fig. 2C). At regulatory regionswhere nucleosomes
have more defined positions (e.g., promotors), we were also able to
recapitulate known dynamics across sequencing depths (Supplemen-
tary Fig. 2)24. Together, these findings indicate thatmono-nucleosomal
signals are preserved in cfDNA fragmentation profiles even at ultra-low
sequencing coverage.

Cell type signatures inferred from cfDNA fragmentation profiles
are mainly hematological
We then asked if the WPS could be used to infer the cell type com-
position of cfDNA in plasma from our healthy individuals. To do this,
we applied a fast Fourier transformation (FFT) on WPS curves in the
first 10 kilobase (kb) of 19,536 Ensembl genes and took the mean FFT
intensity at the 196–199 bp range (see “Methods” section). This range
corresponds to a wider inter-nucleosomal distance observed in the
bodyofweakly transcribedgenes. Intensities at thiswavelength should
therefore be negatively correlated with gene expression in cell types
that contribute to the cfDNA population. We correlated FFT-WPS with
average gene expression in 456 cell types from the Tabula Sapiens
database and ranked their relative contribution to cfDNA based on the
strength of correlation.

The strongest correlations for all cfDNA samples across all
sequencing depths were with immune cell types followed by endo-
thelial, stromal, and epithelial cell types as expected in plasma from
healthy individuals (Fig. 2D). Accordingly, when grouping by tissue,

those that primarily produce and circulate immune cells, including the
blood, thymus, lymph node, bone marrow, and spleen, were ranked
more highly than other primary tissues (Fig. 2E). We next stratified the
immune signal by cell type. In line with previous reports, monocytes
and lymphocytes contributed the most to cfDNA in the healthy
state25,26. In particular, the strongest correlations were made with
classical and intermediate monocytes, regulatory T cells, natural killer
T cells, CD8+ T cells, and naïve B cells in the healthy state compared to
less common immune cell types such as plasma cells, platelets, and
dendritic cells (Fig. 2F). As a negative control, we observed theweakest
correlation for all sampleswith erythrocyteswhichdonot containDNA
and are therefore not expected to contribute to cfDNA. The highest
and lowest correlations in the 35-fold coverage sample (“GC01”) are
robust to downsampling to 0.5% of sequencing reads (~4Mor 0.1-fold)
(Fig. 2G, Supplementary Figs. 3, 4).

The Tabula Sapiens database provides distinct transcriptional
profiles for the same immune cell type shared across multiple tissues.
When stratifying the same immune cell type by tissue residency, we
observed variable contributions to cfDNA (Supplementary Fig. 5)22.
This was particularly evident for tissue-resident macrophages which
are well known to differentiate to fulfill niche-specific functions
(Fig. 2H)22,27. Macrophages of the blood and bone marrow contributed
most to cfDNA in plasma consistent with our expectation, followed by
macrophages in other primary tissues. Importantly, we also compared
immune cells from sex-specific organs between males and females.
Interestingly, immune cells that were ranked significantly different

Fig. 2 | Cell type signatures inferred from cell-free DNA fragmentation are
preserved at ultra-low sequencingdepths.ATracks for sequencing coverage and
windowprotection scores (WPS) are shown for sample “GC01” sequencedat 35-fold
(35×) coverage and a randomly selected sample sequenced at 10-fold (10×) and
<0.3-fold (<0.3×) coverage for the first 5 kilobases (kb) of the FCN1 gene. Per-base
WPS was calculated by taking the number of fragments that span a 120 base pair
(bp) window minus the number of fragments that have an endpoint within that
samewindowcentered at a given genomiccoordinate.BThedistance (bp) between
the genomic coordinate of eachWPS peak call in the set of healthy control samples
and the closestWPS peak call in published sample “CH01” from Snyder et al. (2016)
is plotted. Distances are grouped by sequencing coverage of the healthy control
samples: 35-fold (n = 1), 10-fold (n = 139), and <0.3-fold (n = 90) coverage. The
published call set in sample “CH01” was sequenced at 231-fold coverage (12.9 mil-
lion peaks).CThedistance (bp) between adjacent peak calls (i.e., inter-nucleosomal
distance) is plotted genome-wide for all healthy control samples grouped by

sequencing coverage. Ranked correlation values between fast Fourier transformed
(FFT) WPS in the first 10 kb of 19,536 genes and the average expression of these
genes in 456 cell types from the Tabula Sapiens database are grouped by
D compartment and E tissue for samples sequenced at 35-fold (n = 1), 10-fold
(n = 139), and <0.3-fold (n = 90) coverage. Ranked correlation values are stratified
by cell type for the immune compartment F for all healthy control samples
(n = 230). Boxplots indicatemedian, interquartile range (IQR), andwhiskers for 1.5×
IQR. Cell types were annotated by the original publication with four compartments
(i.e., immune, epithelial, endothelial, or stromal) and originated from 24 different
tissue types biopsied by the Tabula Sapiens consortium G Ranks for the highest
(type I NK T cell) and lowest (erythrocyte) correlations are plotted for sample
“GC01” when down-sampled H The macrophage rank distribution grouped by
tissue-residency is plotted for all healthy control samples (n = 230). NK natural
killer, Eff. effector, DC dendritic cell, β beta, α alpha. Source data are provided as a
Source Data file.
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between males and females, were ranked higher in females when they
were uterus-derived, and higher in males when they were prostate-
derived (Fig. 3B). This substantiates our ability to stratify signals from
immune cells based on their tissue residency.

Sex-specific cell types contribute to cfDNA in the healthy state
Non-hematopoietic contributions to cfDNA are also expected in heal-
thy individuals25,26. When stratifying endothelial cells by tissue, a

striking correlation was observed for those of the liver compared to
other tissues as supported by the literature25 (Fig. 3A; Supplementary
Fig. 6). A strong correlation with endothelial cells of the liver was
robust to downsampling of a 35-fold coverage control sample
(“GC02”) to 0.5%of reads (~4Mor0.1X) (Fig. 3D). To test if ourmethod
was sensitive to non-hematopoietic contributions from other tissues,
we again compared cell type contributions to cfDNA from sex-specific
tissues between males and females (Fig. 3B). Among non-

Article https://doi.org/10.1038/s41467-024-46435-0

Nature Communications |         (2024) 15:2220 4



hematopoietic cell types of the uterus, all differentially ranked cell
types were ranked higher in females than males. This includes peri-
cytes, vascular smooth muscle cells, (ciliated) epithelial cells, and
endothelial cells (of the lymphatic vessel). We found no significant
difference for the remaining stromal cell types of the uterus (i.e.,
myometrial, fibroblast) between females and males, which may be
because they have a very low or absent contribution to cfDNA. Con-
versely, all differentially ranked cell types of the prostate were ranked
higher in males than females (Fig. 3B). Together, these findings sup-
port our ability to identify non-hematopoietic cell type contributions
in cfDNA data from tissues that are expected to have a minor
contribution.

Pregnancy-specific cell types contribute to cfDNA in the
healthy state
As a final validation, we tested for an expected placental contribution
to cfDNA during pregnancy. We obtained retrospective ultra-low
(0.1–0.3-fold) coverage cfDNA sequencing data in 301 healthy first-
trimester pregnancies that underwent routine non-invasive prenatal
screening (NIPS) and also prospectively sampled 30 healthy pregnan-
cies later in gestation (24–34 weeks). Unfortunately, the Tabula
Sapiens database does not include placental tissue, so we added
publicly available single-cell RNA sequencing data from first-trimester
placenta to our reference28. We compared cell type ranks in healthy
pregnancies to cell type ranks in the set of low-coverage non-pregnant
healthy individuals (n = 90). When grouping by tissue, the only dif-
ferentially ranked cell types between pregnant and non-pregnant
individuals were from the placenta (Fig. 3C).

When stratifying trophoblast cell types of the placenta among
healthy pregnant individuals, extravillous trophoblasts (EVT) were the
most highly ranked, followed by proliferative EVT, villous cyto-
trophoblasts (VCT), proliferative VCT, and syncytiotrophoblasts (SCT)
(Kruskal–Wallis, P = 5 × 10−86; Fig. 3E). This progression mirrors the
trophoblast differentiation trajectory as cells detach from the villous
tree and invade the maternal decidua where fetal cfDNA can enter the
maternal circulation28. A strong correlation with EVTs was robust to
downsampling of the 35-fold coverage pregnant control sample
(“GC02”) to0.5%of reads (~4Mor ~0.1-fold) (Fig. 3D).When comparing
across healthy pregnancies sampled between 10 and 34 weeks’ gesta-
tion, the rank of trophoblast cells increased with the gestational age of
our samples after 28weekswhich is in linewith previous genetic-based
estimates of the fetal cfDNA fraction across gestation29

(Kruskal–Wallis, P =0.023; Fig. 3F).

Cell types aberrantly contribute to cfDNA in cancer patients
We next asked if we could detect aberrant cell type contributions in
plasma cfDNA from cancer patients. We previously demonstrated that
large-scale cfDNA coverage patterns vary in different cancers com-
pared to the healthy state30, and we reasoned that those differences
may be driven by the contribution of affected cell types. To test this,
we ranked cell types in cfDNA data from individuals with colorectal
cancer (n = 16) and breast cancer (n = 52) sequenced at 10-fold cover-
age and compared the rankings to those generated in healthy

individuals sequenced at similar coverage and matched for sex (Sup-
plementary Table 1).

In the colorectal cancer cohort (n = 16, 63% ≥ stage III), we iden-
tified 122 overrepresented cell types and 134 underrepresented cell
types compared to 139 healthy individuals (Fig. 4A, Supplementary
Data 1). The majority of cell types with an increased rank were epi-
thelial cells (n = 48; 40%), followed by stromal (n = 28; 23%), endothe-
lial (n = 24; 20%), and immune cells (18%). Intestinal cells accounted for
33% of the significantly up ranked epithelial cells and included Paneth
cells, goblet cells, enterocytes, enteroendocrine cells, transit amplify-
ing cells, duodenumglandular cells, tuft cells, and intestinal crypt stem
cells. The most overrepresented cell type in colorectal cancer patients
compared to healthy individuals was intestinal CD4+ α/β T cells
(p < 10−6, fold change = 2.1). Moreover, the rank of intestinal CD4+ α/β
T cells was positively correlated (Pearson’s r =0.72, P = 0.0016) with an
independent measure of tumor fraction in cfDNA (ichorCNA31)
(Fig. 4B). The vast majority (93.3%) of the underrepresented cell types
in the colorectal cancer cohort versus controlswere immune cell types
that highly contribute to cfDNA in the healthy state, but that are down
ranked in colorectal cancer patients by the relative increase in intest-
inal T-lymphocytes and epithelial cells which do not typically
contribute.

In the breast cancer cohort (n = 52), we detected 73 over-
represented and 83 underrepresented cell types compared to 88
healthy female individuals (Fig. 4C, Supplementary Data 2). Unlike the
colorectal cancer cohort, we did not identify any epithelial cells from
the primary affected tissue (i.e., mammary) among the over-
represented cell types. This may be due to the overrepresentation of
cases with early stage breast cancer in our cohort (58% stage I and 19%
stage II), which is associated with a low fraction of circulating tumor-
derived cfDNA. Among the cell types ranked higher in breast cancer,
80%were immune cells, withmacrophages showing a particularly high
relative ranking. Macrophages are thought to facilitate early dis-
semination of cancer cells in pre-malignant breast cancer32, whichmay
explain their overrepresentation in our early-stage breast cancer
cohort. We also observed a significantly reduced contribution of cili-
ated cells in the breast cancer cohort compared to healthy individuals.
The rank of macrophages and ciliated cells were not correlated with
the ichorCNV tumor fractions we calculated, but as our cohort does
not span a range of cancer stages, we have a limited ability to correlate
cell types with disease progression (Fig. 4D).

We next tested if our method could detect cell type-specific dis-
ease signatures in ultra-low-coverage data by analyzing cfDNA samples
from a cohort of multiple myeloma patients sequenced at <0.3-fold
coverage (25% stage I, 54% stage II, and 21% stage III). FFT-WPS was
generated gene-by-gene in the sameway as the high-coverage samples
and correlated with gene expression in the same 456 cell types. We
compared the cell type ranks in the ultra-low-coverage multiple mye-
loma samples (n = 24) to cell type ranks generated in the set of ultra-
low-coverage healthy control samplesmatched for sex (n = 90; Fig. 4G,
Supplementary Table 1 and Supplementary Data 3). Multiple myeloma
is a hematological cancer characterized by the infiltration of plasma
cells in the bone marrow. In our analysis, plasmacytoid dendritic cells,

Fig. 3 | Sex-specific and pregnancy-specific cell type contributions to cfDNA.
A Endothelial cell rank distribution grouped by tissue is plotted for healthy non-
pregnant control samples. B Cell type rank log2 fold change (FC) between healthy
males and healthy non-pregnant females is visualized for sex-specific tissues (i.e.,
prostate and uterus). Cell types were either significantly higher in males (green),
significantly higher in females (purple) or not significant (gray). P-values were
generated using a two-sided Wilcoxon rank-sum test and considered significant if
the corrected Benjamini & Hochberg (BH) p-value ≤0.05. C Rank log2 FC between
healthy non-pregnant and healthy pregnant individuals is plotted for each tissue.
Cell types per tissuewere either significantly higher in pregnant individuals (green),
significantly higher in non-pregnant individuals (purple) or exhibited no significant

difference (gray).D Rank correlations for healthy pregnant control sample “GC02”
are shown for liver endothelial cells and extravillous cytotrophoblasts (EVTs) when
down-sampled from 35-fold sequence coverage. E Trophoblast cell rank distribu-
tion grouped by sub-type is plotted for healthy pregnant control samples (n = 331).
Boxplots indicate median, interquartile range (IQR), and whiskers for 1.5× IQR.
F The mean EVT rank with a standard deviation error bar is shown across healthy
pregnant controls (n = 331) sampled at different gestational ages (wks weeks), VCT
villous cytotrophoblast, SCT syncytiotrophoblast, p proliferative, preg pregnant,
NK natural killer, EC endothelial cell, β beta, α alpha. Source data are provided as a
Source Data file.
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Fig. 4 | Aberrant cell type contributions to plasma cell-free DNA in cancer. Cell
types with differential ranking between cancer cases and controls (ctrls) are
visualized using a Volcano plot for A colorectal cancer C breast cancer, and
Emultiplemyeloma. P-valueswere generated using a two-sidedWilcoxon rank-sum
test and considered significant if the corrected Benjamini & Hochberg (BH) p-
value ≤0.05. Fold change (FC) was calculated for each cell type by taking the ratio
of the change between the mean rank of cases and the mean rank of controls over
the mean rank of cases. The green, purple, and gray dots indicate that cell types
were significantly higher ranked (Up), significantly lower ranked (Down) or did not
exhibit significant differential ranking (Not Sig) in cases compared to controls,
respectively. Labels for the top differentially ranked cell type(s) based on FC are
provided. The ranks of the top differentially ranked cell type against an indepen-
dent published measure of tumor fraction (TF) called ichorCNA are shown for

B colorectal cancer,D breast cancer, and Fmultiple myeloma. Lines represent the
linear regression line. P-values and Pearson correlation coefficient (PCC) by a two-
sided Pearson’s product-moment correlation test. IchorCNA uses large-scale copy
number variation in cfDNA sequencing data to estimate TF G Receiver operator
characteristic (ROC) curves for support vector machine classification of cancer vs.
healthy controls with leave-one-out cross-validation. Area under the ROC curve
(AUC) is noted for each cancer type. The 95% confidence intervals of the ROC
curves obtained from 2000 bootstrap iterations are shown H Performance of the
colorectal model trained on internal 10-fold (10×) coverage cases is shown when
applied on an external test set of colorectal cases sequenced at <0.3-fold (<0.3×)
coverage. The ROC curve is plotted and the positive predictive value (PPV), nega-
tive predictive value (NPV), sensitivity, and specificity are noted. β beta, α alpha.
Source data are provided as a Source Data file.
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plasma cells, plasmablasts, B cells, and myeloid progenitor cells were
among the top 20 up-ranked cell types in cases compared to controls.
Plasma cell rank correlated strongly with ichorCNA tumor fraction in
multiple myeloma cases (Pearson’s r =0.68, P =0.00047; Fig. 4H)
supporting the sensitivity of our approach at ultra-low sequencing
depths.

Cell type signatures predict cancer
Whereas the above case-control analyses identify disease signatures at
the cohort level and can inform disease biology, we also asked if
individual cancer patients could be distinguished from controls in a
predictive analysis. Given that the sample sizes are limited compared
to the number of features, we first applied unsupervised methods to
visualize the data structure (see “Methods” section). Using Walktrap
community detectionweobserved anunevendistribution of cases and
controls in the clusters for all cancer types (Supplementary Fig. 7).
These results were supported by an apparent separation between
cases and controls in the t-distributed Stochastic Neighbor Embedding
visualization (Supplementary Fig. 7).

We then trained a support vector machine with default hyper-
parameters and assessed performance of the supervised model using
leave-one-out cross-validation for each cancer type. Receiver operat-
ing characteristic (ROC) analysis yielded an average area under the
ROC curve (AUC) of 84.7% for colorectal cancer, 90.1% for breast
cancer, and 95.0% for multiple myeloma (Fig. 4I). We then sought to
validate our findings in an independent cohort. We obtained an addi-
tional set of 29 colorectal cancer cases sequenced at ultra-low (<0.3-
fold) coverage at an external site. We applied the colorectal model
trained on the internal 10-fold coverage data on the external <0.3-fold
coverage data and achieved a positive predictive value of 82.6 and a
negative predictive value of 89.6 (Fig. 4H). This demonstrated the
ability of our model to generalize across sequencing depths and
research centers for the classification of colorectal cancer.

We tested the added value of using single-cell transcriptomic
references compared to bulk tissue transcriptomic references for
cancer classification. For this analysis, we ranked the relative con-
tribution of 50 tissues using bulk transcriptomic data downloaded
from the Human Protein Atlas and GTEx (see “Methods” section).
These tissues largely correspond to the tissues from the Tabula
Sapiens database for which we have single-cell data. In our cohorts,
using cell type features compared to using bulk tissue features boos-
ted classification performance for all cancer types; the AUROC
decreased from 95.0% to 87.1%, 84.7% to 73.4%, and 90.1% to 84.6% for
multiple myeloma, colorectal cancer, and breast cancer, respectively
(Supplementary Fig. 8).

We then benchmarked our method against two additional low-
pass fragmentation-based cfDNA methods for cancer detection.
IchorCNA uses binned genome-wide cfDNA fragment coverage to
estimate tumor fraction in cancers with copy number alterations. In
our cohorts, using ichorCNA tumor fractions as a prediction value
resulted in an AUROC of 92.6 for multiple myeloma, 65.7 for breast
cancer, and 64.2 for colorectal cancer, highlighting the major advan-
tage of ourmethod in patients with low tumor burden or copy number
neutral cancer (Supplementary Fig. 9, SupplementaryData 4).We then
benchmarked against Griffin as it does not rely on copy number
alterations and has been demonstrated to perform well in early-stage
cancers sequenced at low-coverage33. Griffin uses normalized frag-
ment coverage at the binding sites of 270 transcription factors to
capture changes in gene regulation for cancer prediction. Griffin per-
formed better than our cell type features in the context of high-
coverage later-stage colorectal cancer (AUROC 90.9% compared to
84.7%) but worse for high-coverage early-stage breast cancer (AUROC
77.4% compared to 90.2%) and for low-coverage later-stage multiple
myeloma (AUROC 75.6% compared to 95.0%; Supplementary Fig. 10).

We then tested the classification performance of our cell type
signatures in a multi-class setting using a one-vs-all support vector
machine with default hyperparameters (see “Methods” section). We
limited this analysis to breast and colorectal cancer as these samples
were sequenced at the same depth along with matched controls. The
one-vs-all SVMwas able to correctly classify themajority of both breast
(44/52; 84.6%) and colorectal (6/16; 37.5%) cancer patients as their
respective classes with an overall accuracy of 71.0% (Supplementary
Data 5). These results suggest that there are enough distinct cell type
associations across cancer types for multi-class classification with
reasonable performance.

Cell type signatures are associated with pregnancy
complications
We then tested for aberrant cell type contributions to cfDNA in preg-
nancy complications compared to the healthy pregnant state. We
obtained first-trimester NIPS data in pregnancies with vanishing twin
syndrome (n = 102) andpregnancies thatwent on tohave amiscarriage
(n = 44; Supplementary Data 6). We prospectively sampled 18 preg-
nancies with preeclampsia at diagnosis (24–34 weeks’ gestation) and
also prospectively sampled 30 healthy control pregnancies that were
matched to our preeclampsia cases for gestational age at sampling,
maternal age at conception, body mass index (BMI), and ethnicity
(Supplementary Data 7, Supplementary Fig. 11). We expanded the
number of cell types we searched for by adding gene expression data
from the Fetal Cell Atlas which includes cell types from 15 different
fetal tissues23. The ranks of 496 adult and fetal cell types were then
compared between each pregnancy complication cohort and gesta-
tional age-matched healthy singleton pregnancies.

Preeclampsia is a multisystem pregnancy complication char-
acterized by severe hypertension, affecting 2–8% of pregnancies
worldwide34. Its etiology is poorly understood but thought to involve
deficient placentation. Increased placental shedding has been pre-
viously reported in second-trimester preeclamptic pregnancies using
genetic-basedmethods35,36. In 18 preeclamptic pregnancies sampled at
the time of diagnosis, we identified AFP+ ALB+ cytotrophoblasts,
neutrophils of the liver, and monocytes among the top 10 over-
represented cell types in cfDNA compared to matched control preg-
nancies (Fig. 5A, Supplementary Data 8). Liver damage is one of the
most common sequelae in preeclampsia and was reported in 39% of
our cases at diagnosis. The overrepresentation of liver-resident neu-
trophils may be a consequence of this liver damage. We also observed
an underrepresentation of CD8+ α/β T cells, CD4+ α/β T cells, and
naïve regulatory T cells in cfDNA from preeclamptic pregnancies
compared to gestational age-matched control pregnancies. Using a
support vector machine with leave-one-out cross-validation, we dis-
tinguished preeclamptic pregnancies at diagnosis from gestational
age-matched control pregnancies with an AUC of 88.3% (Fig. 5B).

Finally, we investigated vanishing twin syndrome,where one fetus
dies in utero and is absorbed partially or completely by the maternal
circulation. Vanishing twin pregnancies account for approximately
30%of false positiveNIPS results but often gounnoticedonultrasound
scans37,38, underscoring the need to identify them for improved NIPS
interpretation and clinical management. We compared 102 pregnan-
cies with vanishing twin syndrome to 301 healthy singleton pregnan-
cies sampled in the first trimester. Our hypothesis was that in
pregnancies with a vanishing twin, fetal DNA fragments from the pla-
centa as well as other fetal tissues might be absorbed and present in
the maternal circulation. Interestingly, we observed stronger correla-
tions with fetal endothelial cells in pregnancies with a vanishing twin
compared to those without (Fig. 5C, Supplementary Data 9). This links
cfDNA fragments in thematernal circulation to fetal tissues other than
the placenta. We expected this finding to be specific to vanishing twin
syndrome, and not more generally associated with fetal demise when
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the fetus is expelled from the uterus (i.e., miscarriage) and not
absorbed. Consistent with our expectation, we did not detect signals
from non-placental fetal cell types in 44 pregnancies that experienced
a miscarriage shortly (<10 weeks) after cfDNA sampling compared to
controls (Fig. 5D, Supplementary Data 6). In fact, there were no dif-
ferentially ranked cell types in first-trimester pregnancies that went on
to have a miscarriage compared to healthy control pregnancies (Sup-
plementary Data 10). This is not surprising considering the diverse
causes of fetal demise.

Although encouraging at the cohort level, our predictive analyses
were not able to distinguish between individual pregnancies with a
vanishing twin from controls with high performance (AUC <60%).
Given that a sub-group of cases appeared to be driving the observed
disease signatures, a clear margin could not be drawn between the

cases and controls during the classification task. This is likely related to
the time between fetal demise and blood sampling as well as the
degree of absorption by the mother (i.e., partial or complete).

Discussion
We integrate single-cell transcriptome atlases with cfDNA fragmenta-
tion patterns to perform a comprehensive characterization of plasma
cfDNA cell type contributors. Our work builds on previous efforts to
use bulk transcriptome data for cfDNA tissue-of-origin analysis5 but is
substantially more complete. Furthermore, current single-cell tran-
scriptome databases provide more exhaustive cellular reference maps
than single-cell methylation and chromatin databases used in other
cfDNA deconvolution approaches26,39,40. In robust case-control ana-
lyses, we perform an unbiased search for aberrant cell type

Fig. 5 | Aberrant cell type contributions to plasma cell-free DNA in pregnancy
complications. Cell types with differential ranking between pregnancy complica-
tion cases and healthy pregnant controls (ctrls) are visualized using a Volcano plot
for A preeclampsia C vanishing twin syndrome, and D miscarriage. P-values were
generated using a two-sided Wilcoxon rank-sum test and considered significant if
the corrected Benjamini & Hochberg (BH) p-value ≤0.05. Fold change (FC) was
calculated for each cell type by taking the ratio of the change between the mean
rank of cases and themean rank of controls over themean rank of cases. The green,
purple, and gray dots indicate that cell types were significantly higher ranked (Up),

significantly lower ranked (Down) or did not exhibit significant differential ranking
(Not Sig) in cases compared to controls, respectively B Receiver operator char-
acteristic (ROC) curve for support vectormachine classification of preeclampsia vs.
healthy pregnant controls with leave-one-out cross-validation is shown. Principal
component analysis was used in the preeclampsia classification task. Area under
the ROC curve (AUC) and the 95% confidence intervals of the ROC curve obtained
from 2000 bootstrap iterations are shown. β beta, α alpha, AFP alpha-fetoprotein,
ALB albumin. Source data are provided as a Source Data file.
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contributions in multiple cancer types and pregnancy complications,
providing evidence for established and emerging disease paradigms in
oncology and prenatal care. One of themajor benefits of capturing cell
type signatures in cfDNA data is that the features are highly inter-
pretable for clinical specialists and can be used to explore specific cell
types of interest, more so than other less biologically interpretable
fragmentation metrics.

Our validation tests in the healthy state reveal sex-specific and
pregnancy-specific cell type contributions that substantiate our ability
to identify both hematological and non-hematological signatures in
cfDNA fragmentation profiles. Consistent with existing literature, we
observe the greatest contribution to cfDNA from monocytes and
lymphocytes and an absence of erythrocytes. Compared to fully dif-
ferentiated erythrocytes, erythroid progenitor cells show a relatively
stronger signal but appear to contribute to a lesser extent than was
previously suggested26,41. In the healthy state, we observe a strong
correlation with (DN4) thymocytes which supports recent reports of
an enrichment of bone marrow-derived fragments in circulating
nucleic acid populations42. Neutrophils were not among the top cor-
relations despite accounting for a large portion of whole blood cells.
We suspect that NETosis, a neutrophil-specific form of cell death that
involves the fusion of chromatin with antimicrobial proteins to form
extracellular mesh-like structures, may interfere with our ability to
quantify neutrophil-derived fragments. We find it interesting that B
lymphocytes appear among the top-ranked cell types along with T
lymphocytes despite there being a 4:1 ratio of B to T cells expected in
circulation42. This corroborates recent reports of a large discrepancy
between cell-derived cell-free DNA and the counts of these cells in
circulation43,44.

In oncology, our findings strengthen reports of an abundance of
intestinal CD4+ T cells in colorectal cancer patients45 and a critical role
for macrophages in the early dissemination of cancer cells in pre-
malignant breast cancer32. Additionally, we identified a loss of cilia in
early-stage breast cancer patients, supporting a recently proposed
mechanism for the promotion of tumor growth46,47. In multiple mye-
loma patients, primary affected cell types, including plasma cells,
plasmablasts, and plasmacytoid dendritic cells were among the top
associations. These associations correlated with tumor fraction for
colorectal cancer and multiple myeloma, but not early-stage breast
cancer given the low tumor burden across samples. Liquid biopsy has
revolutionized clinical oncology and is pushing past diagnosis to
screening, prognosis, and personalized therapy. Our method allows
for the future investigation of cell type-specific signals in pre-
malignant populations, and across disease progression and treat-
ment regimens for cancer cohorts with repeat sampling.

In the prenatal setting, we demonstrate that cfDNA-inferred cell
type signatures can provide insights into disease biology. In pre-
eclamptic pregnancies we identify placental signal coming specifically
from AFP+ ALB+ cytotrophoblasts which have been previously detec-
ted in early but not full-term placentas48. The reduction of maternal
serum alpha-fetoprotein (AFP) in the second trimester has been
associated with a reduced risk of preeclampsia, preterm birth, and
small forgestational age infants49. ThepresenceofAFP and its receptor
in the placenta has been associated with the transport of AFP between
fetal and maternal circulations48,49. The observed persistence of these
immature AFP+ cytotrophoblast cells in preeclamptic pregnancies
may explain the reported changes in AFP concentration in the mater-
nal blood. In addition, several studies suggest that AFP reduces pro-
liferation of T-lymphocytes50 which are underrepresented in our
analysis in preeclampsia pregnancies compared to control pregnan-
cies. The clinical utility of this approach for the pre-symptomatic
detection of preeclampsia in the first trimester remains to be
demonstrated. Currently our pregnancy cohorts provide proof-of-
principle in the prenatal setting and encourage large-scale efforts to
annotate NIPS data with clinically actionable pregnancy outcomes. We

suspect that the approach could potentially be used to detect and
explore the pathophysiology of a series of other adverse pregnancy
outcomes, such as fetal growth restriction, congenital infections, and
maternal autoimmune disease flares.

Importantly, our cfDNA-inferred cell type signatures are pre-
served at ultra-low sequencing depths. This is advantageous because
such data is routinely generated in the prenatal and some oncology
settings for clinical purposes, allowing for both disease mechanism
exploration in clinical datasets and the rapid implementation of clas-
sifiers for patient stratification. Although highly specific, methylation
and mutation-based methods require targeted capture and rese-
quencing of informative fragments, resulting in longer and costlier
processes in the clinic. A limitation of our approach is that the rank of a
cell typemay be spuriously elevated if it shares a transcriptomic profile
with a contributing cell type. This is a limitation for most deconvolu-
tion approaches as there is typically some overlap between informa-
tive sites for related tissues and cell types. Despite potential
collinearity between cell type features, our validation experiments
show that we can identify rank changes that reflect real biological
differences between males and females and pregnant and non-
pregnant individuals. Our predictive analysis demonstrated the abil-
ity to differentiate high-coverage colorectal cancer (AUC 84.7%) and
early-stage breast cancer (AUC 90.1%) from matched controls. Simi-
larly, we distinguished low-coverage multiple myeloma (AUC 95.0%),
and preeclamptic pregnancies (AUC 88.3%) from matched controls.
Furthermore, our colorectal model successfully generalized to an
external cohort of cfDNA samples sequenced at low-coverage (AUC
85.7%). Overall, the reported performance of existing classifiers varies
significantly even within the same disease entity depending on the
specific cfDNA metric used, the size and diversity of the study popu-
lation, and the algorithm employed12,51. Notably, our classifier for early-
stage breast cancer shows promise compared to existing
fragmentation-based classifiers that we benchmarked against (i.e.,
ichorCNA, Griffin) and other published classifiers30,52.

In summary, we utilize single-cell transcriptome atlases to rank a
comprehensive set of potential cell type contributors to plasma cfDNA
in health and disease. Changes in cfDNA contribution can indicate cell
type loss, damage, or proliferation under (patho)physiological condi-
tions. The approach’s sensitivity at ultra-low sequencing depths
enables cost-effective sequencing of large case-control cohorts for
disease signature discovery and classification models. Using the
approach, we see potential for the expanded clinical utility of
standard-of-care prenatal screening (NIPS) and liquid biopsy data in
cancer and diverse conditions.

Methods
Cell-free plasma DNA extraction, sequencing, and data
preprocessing
The study was approved by the Ethical Committee of University Hos-
pitals Leuven (study protocols S62285, S66450, S57999, S67127) and
Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain (study
protocol PR(AG)321/2018). For the cfDNA samples prospectively col-
lected, written informed consent was obtained. Patients that were
retrospectively recruited were informed about their participation
through a message accompanied by an information letter in their
electronic health file application. Patients were excluded from the
study in case they opted out. Peripheral blood samples from pregnant
women, non-pregnant control samples, and cancer patients were col-
lected in cell-free DNA collection tubes (Roche Diagnostics, Switzer-
land or Streck, USA). Plasma was separated by the standard dual
centrifugation method. cfDNA was extracted using the QIAamp Cir-
culating Nucleic Acid Kit (Qiagen Benelux B.V., Venlo, Netherlands) or
automated Maxwell® HT ccfDNA Kit (Promega) according to the
manufacturer’s guidelines. Libraries for low-coverage sequencingwere
prepared using the KAPA HyperPrep kit (Roche Diagnostics) with IDT
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adaptor ligation. Ultra-low-coverage (0.1–0.3-fold) whole-genome
sequencing was carried out on the NovaSeq 6000 (Illumina, San
Diego, CA, USA) generating 2 × 51 paired-end reads. Sequencing data
was demultiplexed, quality checked, and adapters were trimmed using
fastp (v0.12.4). Raw reads were aligned to the human reference gen-
omehg38 using theBurrows-Wheeler aligner (v0.7.17). Duplicate reads
were marked and removed using Picard (v2.18.23). Bams were sorted
and indexed with samtools (v1.9). Libraries for breast and colorectal
cancer cfDNA samples, as well as the remaining non-pregnant control
samples were generated using the NEBNext Enzymatic Methyl-seq kit
(New England Biolabs, Ipswich, MA, USA) following manufacturer’s
instructions. Libraries were quantified using Qubit dsDNA high sensi-
tivity assay kit and Qubit 3.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) and sequenced at 10- to 35-fold coverage on the
NovaSeq 6000 (Illumina, San Diego, CA, USA) using S4 flowcell gen-
erating 2 × 150bp paired-end reads. Sequenced data was demulti-
plexed, quality checked and adapters were trimmed using fastp
(v0.20), and then aligned to human genome hg38 using bwa-
meth (v0.2.2).

Window protection scores and nucleosome positioning analysis
We calculated window protection scores and performed nucleo-
some peak calling exactly as specified by Snyder et al. (2016) using
source code from the shendurelab GitHub (https://github.com/
shendurelab/cfDNA). The only difference was that we used BAM
files aligned to reference genome hg38 instead of hg19. In brief, per-
base window protection scores (WPS) were generated genome-wide
using mono-nucleosomal fragments of cfDNA (120-180 base pairs).
The WPS is a sliding window metric defined as the number of
molecules spanning a 120 base pair window centered at a given
genomic coordinate minus the number of molecules with an end-
point within that same window. For nucleosome positioning ana-
lysis, a heuristic peak calling algorithm was applied to identify
contiguous regions of high WPS indicative of nucleosome occu-
pancy. UCSC liftOver was used to convert the Snyder et al. (2016)
peak calls from hg19 to hg38 coordinates for comparison with peak
calls from our data. We removed highly repetitive blacklisted
regions from UCSC (“genomicSupDups”) before calculating dis-
tances between peaks due to low mapping quality in these regions.

Cell-of-origin analysis
For the cell-of-origin analysis we applied a fast Fourier transformation
on smoothed WPS signals in the first 10 kilobase pairs (kb) of 19,536
genes with a consensus coding sequence (GRCh38) from Ensembl. The
meanFFT intensity at the 193–199 frequency rangewas then calculated
per gene. This was done using the shendurelab GitHub code without
any parameter modifications. Snyder et al. (2016) correlated per-gene
FFT-WPS with the bulk expression levels of those genes in 76 tissues
and cell lines. Instead, we used single-cell RNA sequencing expression
levels summarized per gene from the Tabula Sapiens database as a
reference dataset. Cell types were grouped by 24 biopsied organs and
4 compartments (i.e., immune, epithelial, endothelial, stromal) based
on annotations from the original publication. Cell types were ranked
based on the strength of correlation with negative correlations
receiving the highest rank.

Preparation of the single-cell transcriptomic reference datasets
Single-cell RNA sequencing data was downloaded fromTabula Sapiens
on CZ CELLxGENE Discover (https://cellxgene.cziscience.com/
collections/e5f58829-1a66-40b5-a624-9046778e74f5). We down-
loaded “Tabula Sapiens – All cells” as an RDS file for import into R
(v4.1.3) and then subset to data generated using the “10 × 3’” assay
(n = 412,848 cells) to minimize batch effects. We also excluded germ
cells (i.e., sperm). Data normalization had already been carried out and

stored in the object’s data slot (object@assay$RNA@data) using the
DataNormalization function. An additional metadata column “cell_ty-
pe_tissue” was created by concatenating the “cell type” and “tis-
sue_in_publication”metadata columns resulting in456unique cell type
identifiers across the 24 biopsied organs. The AverageExpression
function was used (group.by = “cell_type_tissue”, layer = “data”) to
generate a data matrix with the average expression of genes grouped
by the 456 cell type identifiers.

The Tabula Sapiens database does not include data from the
placenta. For placenta, raw read count data and metadata files
containing cell type annotations were downloaded from ArrayEx-
press for E-MTAB-6701. This included 8 unique cell types from the
placental compartment of the maternal-fetal interface: syncytio-
trophoblast, villous cytotrophoblasts, proliferative villous cyto-
trophoblasts, extravillous cytotrophoblasts, proliferative
extravillous cytotrophoblasts, Hoffbauer cells, and two separate
fetal fibroblast populations. The datamatrix was read into R (v4.1.3)
and a Seurat (v4.1.1) object was created using the Create-
SeuratObject function. Cell-type annotations from the original
publication were added as metadata to the Seurat object. Raw read
counts were normalized using the NormalizeData function. The
placenta data object was then integrated with the Tabula Sapiens
data object using the IntegrateData function. The AverageExpres-
sion function was then used to calculate the average expression of
the integrated data values per cell type across both datasets. The
resulting gene x cell type data matrix was used for correlation with
per-gene FFT-WPS in the healthy pregnancy cohorts. For the
pregnancy complication cohorts, additional cell types from 15
other fetal tissues were added to the reference set using gene
expression levels downloaded from the Fetal Cell Atlas (https://
descartes.brotmanbaty.org/bbi/human-gene-expression-during-
development/) using the same data normalization and integration
procedure. This was done because we were interested in testing for
non-placental fetal cell type signatures specifically in pregnancies
with a vanishing twin (absorbed) – such an extensive reference
dataset is not needed for most prenatal applications where non-
placental fetal tissue is not expected to enter the maternal
bloodstream.

Benchmarking analysis. For the bulk tissue transcriptomic reference
we downloaded the consensus transcript expression levels summar-
ized per gene in 50 tissues based on transcriptomics data fromHuman
Protein Atlas (HPA) and GTEx (https://www.proteinatlas.org/
download/rna_tissue_consensus.tsv.zip). We correlated per-gene FFT-
WPS with gene expression levels and ranked the relative contribution
of the 50 bulk tissues to cfDNA based on the strength of correlation.
This is the same procedurewe used for the cell-of-origin analysis using
single-cell transcriptomic references. Tissue ranks were used as input
features into a support vector machine with default hyperparameters
using the same leave-one-out cross-validation procedure as we used
for cancer prediction with cell type features.

For the ichorCNA analysis we cloned the git repository (https://
github.com/broadinstitute/ichorCNA) and followed the ichorCNAwiki
(https://github.com/broadinstitute/ichorCNA/wiki) for data proces-
sing. We used the readCounter function from HMMCopy to generate
wigfiles for all cases and controls. IchorCNA tumor fractionswere then
estimated using the runIchorCNA.R script for cases and controls using
the default panel of normal reference. For benchmarking against
“Griffin” (Doelbey et al. 2022), we cloned the git repository (https://
github.com/adoebley/Griffin_analyses) and followed the Griffin wiki
(https://github.com/adoebley/Griffin/wiki) for data processing. We
used the 30,000-sites files for 270 transcription factors as is suggested
by the authors for generic cancer classification. Griffin calculates three
metrics per transcription factor: central coverage,mean coverage, and
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amplitude across all binding sites. Griffin therefore outputs 810 fea-
tures per sample (3 × 270) which we used as a test dataset for their
published LUCAS-trained model made available for future users
(https://github.com/adoebley/Griffin_analyses/final_models/cancer_
detection).

Statistical analysis
For the case-control analysis, we used a two-sided Wilcox rank-sum
test to compare the distribution of ranks for each cell type in cases
versus controls using the rstatix package (v0.7.1). The Benjamini &
Hochberg (BH)methodwasused to adjustp-values formultiple testing
across 456 cell types (adult) in the cancer cohorts and 496 cell types
(adult + fetal) in the pregnancy complication cohorts. Foldchanges
were calculated for each cell type by taking the ratio of the changes
between themean rankof cases and themean rankof controls over the
mean rank of cases. We visualized the results using a Volcano plot
using the ggplot2 (v3.4.2), data.table (v1.14.8), tidyverse (v1.3.2),
ggrepel(0.9.3), and viridis (v0.6.2) packages in R (v4.1.3).

For the unsupervised analysis, principal component analysis
(PCA) was used for dimension reduction, and PCs with eigenvalue > 1
(Kaiser’s criterion) were extracted for distance matrix construction
using the Euclidean distance, followed by Walktrap community
detection to define clusters with fixed parameters (the nearest number
of nodes was 3 with a walk step of 2) using the igraph package (v1.3.0).
To visualize the dataset in lower dimensions, t-distributed stochastic
neighbor embedding (tSNE) was used with the same PCs using the
Rtsne package (v0.15). Clusters defined from theWalktrap community
detection were used for tSNE annotation. We performed clustering
and tSNE visualization for each disease cohort +matched controls
using all 456 and 496 features as input for the cancer and preeclampsia
cohorts, respectively.

For the classification task, cell type ranks were used as feature
inputs to a support vector machine (SVM). We used ranks for 456 cell
types (adult) and 496 cell types (adult + fetal) to classify cancer and
pregnancy disorders from controls, respectively. We trained a linear
kernel SVM with default hyperparameters (cost = 1) using the e1071
package (v1.7-12) in R (v4.1.3) and the pROC (v1.18) and viridis (v6.2)
packages for visualization. No dimensionality reduction was per-
formed for the cancer cohorts. Given the limited number of informa-
tive cell types for the pregnancy complication cohorts, principal
component analysis (PCA) was performed using all cell type ranks and
the top 10 PCswere used as input to the linear kernel SVM (cost = 1) for
classification. Leave-one-out cross-validation was used to assess the
performance of each model on the internal case-control cohorts.

For an external validation cohort of colorectal cancer patients,
cfDNA was sequenced at ultra-low-coverage (<0.3-fold). To test the
performance of our colorectal cancermodel on external data, we built
an SVM classifier using the entire internal dataset of colorectal cancer
patients and controls (all sequenced at 10-fold coverage) using the
e1071 package in R (v4.1.3). We used the predict function from the
e1071 package touse thismodel to distinguish the external cases (<0.3-
fold coverage) from internal <0.3-fold coverage controls. Using these
predictions, we calculated the positive predictive value (PPV), the
negative predictive value (NPV), the sensitivity, and the specificity of
our colorectal model on the external test set.

For the multi-class classifier, we limited this analysis to breast
and colorectal cancer as these samples were sequenced at the same
depth along with matched controls. We used a one-vs-all approach
by training two binary support vectormachine classifiers with leave-
one-out cross-validation and default hyperparameters. The first
classifier treated breast cancer as the positive class and colorectal
cancer + controls together as the negative class. The second clas-
sifier treated colorectal cancer as the positive class and breast
cancer + controls together as the negative class. The classifier with
the highest decision value was used to predict the final class label

while all samples with a decision value below the cutoff for both
classifiers were labeled as controls.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Whole-genome sequencing data generated in this study is under
controlled access because patients did not consent to data deposition
in public data repositories. Data is available through the European
Genome-Phenome Archive under study accession number
EGAS50000000178 upon request to the local UZ Leuven data access
committee (dac@uzleuven.be) which checks informed consent form
compliance and ensures that there are no legal impediments. Requests
will be handled within a month. Conflicts are handled by an indepen-
dent UZ Leuven data access committee advisory board. Publicly
available single-cell RNA sequencing data were downloaded from
Tabula Sapiens (https://tabula-sapiens-portal.ds.czbiohub.org/), Fetal
Cell Atlas (https://descartes.brotmanbaty.org/bbi/human-gene-
expression-during-development/), and first-trimester placenta (E-
MTAB-6701). Bulk RNA sequencing data was downloaded from the
Human Protein Atlas (HPA) and GTEx (https://www.proteinatlas.org/
download/rna_tissue_consensus.tsv.zip). The hg38 reference genome
was downloaded here http://hgdownload.soe.ucsc.edu/goldenPath/
hg38/bigZips/hg38.fa.gz. Source data are provided with this paper.

Code availability
Code for data processing is available at https://github.com/
shendurelab/cfDNA. Custom code for the case-control and pre-
dictive analyses can be accessed at https://github.com/
JorisVermeeschLab/cfDNA_cell_of_origin.
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