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Evolving copy number gains promote tumor
expansion and bolster mutational
diversification

ZichengWang1,2,3,7, YunongXia1,2, LaurenMills4, Athanasios N. Nikolakopoulos1,2,
NicoleMaeser1,2, ScottM.Dehm 1,2,5, JasonM.Sheltzer 6&RupingSun 1,2,7

The timing and fitness effect of somatic copy number alterations (SCNA) in
cancer evolution remains poorly understood. Here we present a framework to
determine the timing of a clonal SCNA that encompasses multiple gains. This
involves calculating the proportion of time from its last gain to the onset of
population expansion (lead time) as well as the proportion of time prior to its
first gain (initiation time). Our method capitalizes on the observation that a
genomic segment, while in a specific copy number (CN) state, accumulates
point mutations proportionally to its CN. Analyzing 184 whole genome
sequenced samples from 75 patients across five tumor types, we commonly
observe late gains following early initiating events, occurring just before the
clonal expansion relevant to the sampling. These include gains acquired after
genome doubling inmore than 60% of cases. Notably, mathematical modeling
suggests that late clonal gains may contain final-expansion drivers. Lastly,
SCNAs bolster mutational diversification between subpopulations, exacer-
bating the circle of proliferation and increasing heterogeneity.

Underlying themaintained genomic diversity within a patient tumor is
the uncontrolled proliferation, a core hallmark of cancer1, coupled
with somatic alterations occurring over time2. To prevent the disease,
uncovering the somatic aberrations responsible for the malignant
growth is the primary goal of precision oncology. At the genomic level,
somatic alterations exist on a spectrum, ranging from small changes
such as somatic single nucleotide variants (SSNV)3 to large somatic
copy number alterations (SCNA). Frequent chromosomal mis-
segregation (chromosomal instability or CIN) leads to abnormal
chromosome numbers (aneuploidy)4 and unbalanced structural var-
iations (SV) cause segmental SCNAs5. These two genomic errors are
intertwined in many solid tumors, leading to extensive SCNAs, espe-
cially in advanced diseases4 with poor clinical outcomes6.

The inextricable relation of SCNAs to cancer initiation7,8 and
progression9 has become widely recognized in cancer genomics. It

remains little known, however, to what extent a specific SCNA
accounts for the malignant growth and how it affects the intra-tumor-
heterogeneity (ITH)4. Indeed, chaotic karyotype and widespread high
copy number (CN) states in aneuploid tumors10 pose a significant
challenge in identifying oncogenic SCNAs, limiting the precision of
using SCNA patterns for diagnostic and treatment purposes. For
example, the treatment strategy for osteosarcoma, the most common
bone tumor affecting teenagers with one of the most chaotic aneu-
ploid genomes, has stagnated for decades11. From an evolutionary
perspective, discovering the tempo of SCNA during somatic evolution
is key to gaining knowledge of SCNA drivers12. Here, we hypothesize
that the timing of SCNAs can be systematically measured from whole
genome sequencing (WGS) data of patient tumors, and the temporal
axis contains tangible information in isolating the effect of specific
SCNAs on tumorigenesis.
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We should pause to clarify how bulk sequencing data capture
somatic evolution timeline. The tumor founder cell arose from the
succession of clonal expansions in the pre-cancerous context where
beneficial alterations endow progenitor cells with the ability to crowd
out less advantageous populations13 (Fig. 1A). The growth of the pri-
mary lesion gives rise to genomically diverging lineages14, some of
which, after acquiring a more malignant potential, can initiate the re-
growth of a secondary tumor, such as metastasis15. Bulk sequencing
data provide us with the opportunity to anchor the roots of expansion
(the most recent common ancestor, or MRCA). Clonal variants in a
single sample refer to the root of the observed sample. In multi-region
sequencing, truncal variants from multiple samples could trace back

asymptotically to the founder of the tumor16. For longitudinal sam-
pling, e.g., of paired primary and metastatic tumors, truncal variants
could point to the MRCA of the branched tumor progression17. Multi-
samples reflect the population expansion at a broader scale, i.e., they
coalesce to an earlier progenitor cell than a single sample does. Col-
lectively, truncal variants revealed by a particular sampling strategy
mustmap to the somatic evolution timelineprior to the corresponding
sampling-relevant expansion (SRE).

The timing of a truncal SCNA on the evolution toward the MRCA
could shed light on the impact of this variant on promoting the SRE.
However, our knowledge about the SCNA timing remains fragmentary
as the existing methods are restricted to simple (single or double)

Fig. 1 | Measuring the arrival and initiation time of SCNAs. A drawing at the top
marks the concept of cancer somatic evolution, which leads to the birth of themost
recent common ancestor (MRCA) of the primary tumor, as well as the roots of
secondary tumors. Tx: treatment. A For an SCNA present within the MRCA of a
sampling-relevant tumor expansion, we aim to characterize the time when the last
gain and first gain appeared (referred to as arrival and initiation time, respectively)
for the corresponding genomic region. BWe further aim to address the question if
the late truncal gains are neutral or beneficial to tumor evolution. C The solid black

line shows that the burden of SSNVs of a given genomic locus correlates with its CN
state in tumors sequenced by ICGC (n: the number of independent samples with
whole genome doubling). Two dashed lines assume the two extreme scenarios of
SCNA arrival time. D The proportion of SSNVs at different allele states depends on
the SCNA history matrix and the relative time span of each CN stage. Two possible
history matrices are shown with the SCNA at 5:1. A 2D density plot in grayscale
shows the burden of single-copy SSNVs against the lead time (tK) simulated using
the two matrices. Source data are provided as a Source Data file.
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gains16,18,19. Single-sample based pan-cancer analysis from ICGC19 have
revealed the molecular time of these simple gains. Relative to aneu-
ploid tumors, these low CN gains may not be sufficient to induce the
final tumor expansion. For example, single chromosome gains have
shown limited capability in driving proliferation in vitro20. As such, it
would be crucial to know when a genomic segment further evolves
beyond the simple gains, which can often culminate at a state greater
than four copies10. This requires a timing method applicable to com-
plex gains with high CN states.

In SCNA timing analysis, the following assumption is made: the
site frequency spectrum (SFS) of SSNVs in a genomic region affec-
ted by SCNA depends on the trajectory (the order) and time span on
each CN state that the segment had ever rested on21. For a single
gain, the ratio between early (duplicated) and late (non-duplicated)
SSNVs can be used to estimate the relative timing of the gain12. For a
clonal SCNA involving multiple gains resulting in high CN (>4), one
can divide its evolution timeline between germline to the founder of
SRE into three fractions (Fig. 1A). The first time fraction (t0) is the
initiation time when the first gain occurs. The third fraction (tK) is
the lead time which measures the delay from the last gain to the
onset of population expansion. We then define 1 − tK as the arrival
time. While the detailed trajectory is not identifiable from the SFS18,
we can still learn the upper bounds of these time fractions from the
SSNV data. In particular, once a segment arrives at the final CN state,
it can only accumulate single-copy SSNVs. The longer the segment
persists in the observed CN state, the more overwhelming the
single-copy SSNVs (Fig. 1D).

A significant question is how the timing of an SCNA reflects its
impact on fitness (Fig. 1B). Whereas early gains could initiate and
increase the risk of disease, propelling the initial proliferation of can-
cer cells, we suggest that late-appearing SCNAs close to MRCA could
promote the population expansion more directly. If a clonal lineage
persists over many generations and accumulates a significant number
ofmutations following the acquisitionof anSCNA, it is improbable that
the SCNA alone can drive the tumor’s ultimate growth. Conversely, if
an SCNA instigates the final expansion of a tumor, it is conceivable that
the progenitor cell undergoes robust proliferation immediately upon
acquiring the specific SCNA, resulting in few subsequent alterations
attaining clonality. Punctuated acquisition of polyploidy (e.g., through
genome doubling or GD) is prevalent in aneuploid tumors22 but it
remains unclear how close the occurrence of GD is to tumor trans-
formation. Evidence exists that GD itself doesn’t confer a strong fitness
advantage23; instead, it can enhance the plasticity of the genome that
permits further CN evolution, such that aneuploid cells adapt to
overcome possible fitness penalties incurred by GD24. Therefore,
SCNAs that arrive after GD could contain driver events. Moreover,
depending on the precise location of biopsied tissue, single-sample
analysesmay differ in the corresponding time scale; subsequently, it is
particularly essential to focus on the timeline toward the malignant
growth - the somatic evolution in collecting truncal SSNVs of multiple
samples of a tumor (e.g., multi-region samples or paired primary and
metastatic samples).

In this study, aiming to broaden the “timeable” genomic regions
for SCNAs, we develop Butte (BoUnds of Time Till Expansion), a
computational framework to estimate the upper bounds of SCNA
arrival and initiation time from WGS data. By applying Butte onto
multi-sampled WGS data of five cancer types with widespread SCNAs,
includingosteosarcoma,we systematically chart the temporal patterns
of CN evolution in vivo. To see if late-appearing SCNAs may confer
fitness benefits, we construct mathematical models to examine the
evolutionary mechanisms that give rise to these late truncal events.
Furthermore, we also interrogate potential ways the late culminating
SCNAs could add to the fitness and reveal its impact on mutational
diversification during tumor expansion. The terminology employed in
this manuscript is detailed in Supplementary Table S1.

Results
A computational framework to estimate the arrival time of
SCNA gains
From the WGS data, one can characterize with high certainty the
dominant SCNAs, inferring the integer allelic CN of a genomic region
and the cellular prevalence of the corresponding SCNA, i.e., the per-
centage of cells sharing the dominant SCNA state25. We refer to a
unique version of a genomic region (or segment) as an “allele”. We
term the total CN asNt and the CN for theminor allele asNb ("b” stands
for b-allele determined by germline SNPs) for a dominant SCNA. The
“allele” state (a) of an SSNV is the amount out of the total Nt copies of
the region that carry the corresponding variant. We found that in the
aneuploid tumors sequenced by ICGC (International Cancer Genome
Consortium)26, the SSNV burden increases with the dominant SCNA
states of the corresponding genomic region (Fig. 1C). The pattern can
be attributed to an inherent correlation between SCNAs and SSNVs: a
genomic segment resting on a CN state accumulates SSNVs at a rate
proportional to the corresponding CN. Thereby, the burden and
multiplicity of SSNVs are actively shaped by SCNAs.

The observed SCNA of a genomic segment (with a configuration
Nt:Nb different from 2: 1) is the result of a series of CN events. For an
SCNA involving at least K gain events, the total time of somatic evo-
lution can be divided into K + 1 stages. The segment begins with the
2: 1 setting in thefirst stage and keeps “climbing up”by duplicating one
of its existing copies in each subsequent stage, respectively, until it
arrives at the observed SCNA state in the last stage (Fig. 1D). Accord-
ingly, each stage is associated with certain time proportion (tk ≥0) andPK

0 tk = 1, the total time for the somatic evolution. SSNVs occurring at
stage k on a segment copy that experiences duplication(s) in later
stageswill remainpresent on the duplicated copieswith the allele state
a ≥ 2/Nt. By contrast, SSNVs acquired at stage k on a copy without
further duplications remain at the single allele state (a = 1/Nt). One can
define a history matrix A with entry Ajk representing the number of
segment copies in stage k that produce the final allele state (i.e., fre-
quency)aj = j/Nt

18,21. It can be seen that the abundanceof SSNVs at allele
state aj depends on ∑Ajktk. From the site frequency spectrum (SFS) of
SSNVs in a region affected by SCNA, one can estimate the relative
abundance of SSNVs at each allele state, and in turn, solve for each tk.
There has been much effort to infer t0, i.e., the timing of the first copy
number event18,19. These efforts focused on single gain (2: 0 and 3: 1)
and at most double gains (3: 0 and 4: 1), where the history matrix A is
invertible. By contrast, for other SCNA states, multiple possible tra-
jectories can exist and the underlying linear system is under-
determined, i.e., there are more time stages (unknown variables) than
the possible allele states (equations). We note that, however, regard-
less of the underlying history, multi-allele SSNVs (≥ 2/Nt) can only
occur before the last stage (K) of CN evolution; once the genomic
region arrives at the observed clonal SCNA state, all the copies (Nt)
would accumulate SSNVs at single allele state (1/Nt). Therefore, the
longer the last stage of CN evolution (from the emergenceof the SCNA
to the onset of population expansion), the more overwhelmingly the
single allele SSNVs dominate the SFS (Fig. 1D). The monotonicity
property enables the examination of the proportion of time of stage K.

To investigate how various SCNAs unfold during somatic evolu-
tion, we developed Butte (BoUnds of Time Till Expansion), which
adopts linear programming to infer the upper bounds of lead (tK) and
initiation time (t0) of SCNAs (Fig. 2). Butte extends the full maximum-
likelihood estimation procedure implemented in cancerTiming18.
Notably, Butte does not restrict the analysis to single and double
gains, but in addition allows the calculation of the upper bounds of tK
and t0 for SCNAs up to seven total copies, broadening the “timeable”
SCNA regions. The estimated timing systematically correlate with the
actual ones of SCNA initiation and culmination (Supplementary
Fig. S1). To see the effect of SCNA history, read depth (D), number of
SSNVs (M) and tumor purity (P) on the timing inference, we simulated
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different histories for SCNAs at 6:1 and 6:2, respectively and obtained
virtual SSNV data (see Methods, Supplementary Figs. S2, S3, S4, S5).M
have a higher impact on timing accuracy than D and P. While the
overestimation of tK and underestimation of t0 is prominent whenM is
less than 20, the timing results are robust forM above 50, especially for
SCNA 6:1. As SCNA 6:2 involves gains for both alleles, the resulting
SSNVs have a smaller set of possible allele states thanSCNA6:1. For 6:2,
Butte tends to overestimate tK when it is small (≤0.3). Conversely, t0
can be underestimated if the intermediate stages are brief (e.g., t0≥0.5

and tK = 0.3), owing to the penalty for infeasible models implemented
in Butte.

To test the performance of Butte on real tumors, we first
evaluated the timing predictions by analyzing multi-region WGS
data of colorectal adenocarcinomas (COAD)16,27. Similar to the
simulation results, a higher number of SSNVs leads to increased
precision in timing estimation (Supplementary Fig. S6). With 50
SSNVs, the median confidence interval falls below 0.2. Butte suc-
cessfully identified early CN gain of chromosome (chr) 5q (Sup-
plementary Fig. S7), corresponding to the SCNA state of 2: 0 (copy
neutral loss of heterozygosity), a known early step in COAD initia-
tion involving gene APC28. Additionally, Butte’s event timing on the
ICGC BRCA dataset29 aligns with a method employing graph theory
to predict genome rearrangement history using both SSNVs and SVs
(Supplementary Fig. S8). The timing of low copy number gains
estimated by Butte corresponds with predictions made by the
method emphasizing joint likelihood of copy number timing16

(Supplementary Fig. S9). As a reference for late-appearing events,
private (sample-specific) SCNAs should contain events that arise in
the descendent lineage of the MRCA of multi-samples. Using all the
multi-sampled WGS data listed in Table 1, Butte predicted their
arrival time to be later than the public SCNAs on the timeline leading
to the MRCA. This underscores its ability to uncover SCNAs that
occur at a later stage. (Supplementary Fig. S10).

Table 1 | WGS data included in this study

Tumor Refs. Accession Code Samplinga #Samplesb #Patients

OS 30 EGAD00001004482 MTS 17 9

31 EGAS00001000263 Single,MTS 24 22

COAD 16 EGAD00001004966 MRS 43 7

27 phs001722.v1.p1 MRS,MTS 7 2

BRCA 32 EGAD00001002696 MTS 26 12

33 JGAD000095 Single 10 10

PRAD 35 EGAD00001000891 MRS,MTS 47 9

ESCA 34 EGAD00001001394 MRS 11 4
aMRSmulti-region sampling,MTS multi-tumor sampling.
bSamples passed our quality assessment (Supplementary Figs. S23, 24 and 25).

Fig. 2 | An exampleworkflowofButte.Tumor ESCA_R_8 has a clonal SCNA (at 6:1)
on chr13, as indicated on the top left. LogR is the Log2 copy number ratio between
the tumor and matched normal sample and the B-Allele Frequency quantifies the
allelic imbalances. Butte takes the read counts (total depth and the depth of the
mutant allele) for SSNVs on chr13, the SCNA state and tumor purity as the input.
Butte then works out the allele state distribution by using Expectation

Maximization. By adopting linear programming with all possible history matrices,
Butte returns the upper bounds of initiation and lead time of the SCNA, respec-
tively (CI: confidence interval). The variant allele frequency distribution of SSNVs is
shown on the bottom left to illuminate the relationship between allele states and
SCNA timing. Note that the VAF is affected by tumor purity.
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To guarantee accuracy in identifying late and early gains using a
predefined time threshold, we evaluated the precision, false positive,
and true positive rates for predicting t0 and tK, respectively (see
Methods for details). Overall, these evaluations showed an increase in
performance metrics with the threshold values (Supplementary
Figs. S11–S12). To strike a balance between precision and false positive
rate, we defined late gains as those occurring in the last 20% of the
truncal time measured by clonal SSNVs, and early gains as those
occurring in the first 20%.

Evolving SCNAgains define the tumor transformation leading to
the most recent clonal expansion
To evaluate the tempo of SCNAs in solid tumors, we applied Butte on
five tumor types by analyzing eight published WGS datasets: osteo-
sarcoma (OS)30,31, breast invasive carcinoma (BRCA)32,33, colorectal
adenocarcinomas (COAD)16,27, esophageal carcinoma (ESCA)34, and
prostate adenocarcinoma (PRAD)35, six of which comprise multi-
sampling of patient tumors (Fig. 3, Table 1). 70% of the analyzed gen-
omes (corresponding to 87% of the patients) were near triploid, with
themedian fraction (IQR) of the high amplitude CN regions (≥4) being
0.37 (0.23 to 0.49). Loss of heterozygosity (LOH) is prevalent but
mostly is at copy neutral or amplified states in the triploid tumors.
High amplitude gains can be recurrent across cancer types (e.g., chr
8q) or within a specific tumor type (e.g., chr 1q for BRCA, chr 17p for
OS, and chr 7 for COAD). These recurrent gains presumably contain
driver events36, yet their tempo in somatic evolution remains unchar-
ted. Notably, karyotypes largely remain stable across different samples
of the same tumor, despite the presence of continued subclonal CN
diversification in a relatively minor fraction of the genome.

We note that 74 out 75 patient tumors acquired late-appearing
gains close to MRCA regardless of the overall ploidy or tumor type
(Fig. 4A, B), with the only exception of COAD_C_4, which shows high
microsatellite instability. Punctuated copy number bursts were
observed in the triploid samples, reflecting the ability of the gen-
ome to leapfrog over intermediate states to reach moderately high
CN states through whole or partial genome doubling (GD)22,37. Most
of them could derive from whole genome doubling, but we could
not exclude the possibility that individual tumors had duplications
of multiple chromosomes instead of the whole genome. Here we
refer to these synchronized gains as GD. Whereas GD occurs late
(close to the MRCA) in some adult cancers (18 out of 34 patients), it
appears to be an earlier event in many other tumors. This is parti-
cularly evident in OS where 28 of 30 patients had GD at the mid-
stage of somatic evolution toward SRE (Fig. 4B). The contrasting
tempo of GD suggests that it probably has a context-dependent
function. In tumors with early GD, Butte can characterize the post-
GD CN evolution, whereby progenitor cells continue to sample the
aneuploid fitness landscape24. Notably, the rate of gains is higher
post-GD than the rate pre-GD (paired Wilcoxon test, two-sided, V
value = 630, sample size = 35, p = 5.8e-11, effect size Cohen’s d = 1.13,
95% Confidence Intervals of the effect size ranges from 0.62 to 1.65,
Supplementary Fig. S13). Such an SCNA evolution involves sto-
chastic chromosomal or structural abnormalities; however, certain
genomic regions preferentially exhibit late gains across different
patients in a particular tumor type, which, includes those recurrent
high amplitude gains, such as chr 8q in OS (Fig. 4C) and chr 7 in
COAD (Supplementary Fig. S7). On the other hand, recurrent SCNAs
appear to initiate early, e.g., chr 1q in BRCA, chr 8q and chr 17p

Fig. 3 | CN profiles across five tumor types from the re-analysis of published
WGS data. Vertical bars represent the segmental CN states along the autosomal
chromosomes characterizedby theWGS data of tumor samples. For each sample, a
color-coded thick bar shows the total CN state of each genomic locus and a thin
gray bar to the right indicates that regionhas loss of heterozygosity (LOH). Samples
belonging to the same patient are boxed. The top panel highlights the fraction of

high CN states in each sample’s genome. The lower panel exhibits the sample
phylogenetic trees constructed from SSNVs. Sample IDs, the reference where the
WGS data was published, and tumor types are tabulated at the bottom. Presence of
GD are indicated. In this manuscript, a tumor sample is named after the con-
catenation of the tumor type, the first character of the author’s surname and the
patient ID. Source data are provided as a Source Data file.
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Fig. 4 | The timing patterns of SCNAs across five tumor types. A SCNA timing of
three exemplified tumors. CNstates along the genomeare shownon the leftof each
panel. The right panel visualizes the time fraction of somatic evolution from
germline to the MRCA of the patient tumor. For each SCNA segment, the inferred
time points for its initiation and arrival are shown as either rectangles (exactly
solved timing) or arrows (upper bounds of timing when the solutions are not
unique) with the same color-coding as its CN. Confidence interval of the inferred

timing is drawn by lines. The top panel shows the cumulative distribution (CDF) of
SCNA arrival time. B The CDF curve of SCNA arrival time is shown for each patient
categorized by the tumor type. C The figure displays normalized rank sums of
timing across patients for each genomic bin, representing initiation time for BRCA
and arrival time for OS (see Methods). Color-highlighted bins indicate recurrent
early-initiating gains forBRCAand recurrent gains established late forOS (with 90%
confidence level). Source data are provided as a Source Data file.
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(TP53) in OS and chr 5q (APC) in COAD (Fig. 4C and Supplementary
Fig. S7). Recent experiments have highlighted a significant fitness
advantage linked to chr1q gains38. It is noteworthy that while these
recurrent SCNAs tended to emerge either earlier or establish later in
comparison to less common SCNAs, the correlation between copy
number and timing was not consistent across all genomic regions

(Supplementary Fig. S14). These additional gains pre- and/or post-
GD could result from either high evolvability of the corresponding
region, or persistent selection upon driver genes within.

The earlier the timing of GD, the more post-GD CN gains
(Fig. 5A, where OS and other adult tumor types exhibit R2 values of
0.31 and 0.27, F statistics of 11 and 5.2, degrees of freedom of 25 and

Fig. 5 | Mathematical modeling suggests that final-expansion driver gains
should occur late. A Scatter plots colored by density illustrate the number of post
GD gains (in log2 scale) against the time fraction of post-GD evolution towards
MRCA for OS and other adult cancer types, respectively. The green center line
represents the fitted regression line (for tumors with post-GD gains) and the the
green error bands represent the 95% confidence interval limits (withR2 and p values
as noted). B The schema shows the setup of the two contrasting mathematical
models: (1) GD is followed by neutral evolution where additional gains do not
confer a fitness advantage and (2) post-GD gains increase the growth rate. C 2D
density plots of the twometrics as in panel 5Acharacterized by the selectionmodel.
We studied the effects of the growth rate of GD (with a fixed growth rate of the

MRCA, the left panel) and the rate of beneficial post-GD driver gains (the right
panel), respectively. We simulated 10,000 cases for each parameter setting. The
density is produced from smoothed data points with each point referring to an
average of 50 cases. To convert the post-GD evolution time in the simulation into
fractions as in (A), we assume that GD occurs at 120 time units (roughly corre-
sponds to aGD rate of 7 × 10−5 82 during pre-GDevolutionwith a birth and death rate
at 1.1 and 1, respectively). Note that the modeling is not intended to infer the
parameters from patient data. Left panel: b0 = 1, a1 = 1.5, b1 = 1, u0 =0.245, and
u1 = 0.00001; right panel: a0 = 1.05, b0 = 1, a1 = 1.5, b1 = 1, and u0 = 0.2. Source data
are provided as a Source Data file.
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14, and p values of 0.002 and 0.039, respectively). The late evolving
gains are shorter in segment length than those associated with GD
(Supplementary Fig. S15). This suggests that the post-GD CN evo-
lution is driven by SVs, which occur at a higher rate than chromo-
somal mis-segregation. Indeed, the breakpoints of structural
variants almost locate at the boundary of SCNA segments (Supple-
mentary Fig. S16). As SVs continued to occur, regions containing
driver genes could become focally amplified due to selective
advantages. These genes would thus appear more often in the late
gains, e.g., MYC39 and RUNX240 in OS (Fig. 4C). Given the same total
copy number, amplified LOH (Nb = 0 and Nt ≥ 3) tend to culminate
later than other types of amplifications, such as allele specific gains
(Nb = 1 and Nt ≥ 3). For example, at Nt = 5, amplified LOH (53 events)
exhibits a longer arrival time than allele specific gains (106 events).
The one-sided Wilcoxon test yielded a W statistic of 3656, a p-value
of 0.001, and an effect size Cohen’s d of 0.57. The 95% Confidence
Intervals for the effect size range from 0.23 to 0.9. This contrast
cannot be explained by the overestimation of Butte (Supplemen-
tary Figs. S17 and S1). Whereas truncal LOH were supposedly
acquired before GD15 causing the complete loss of tumor-
suppressor activity, the late appearing gains of the only remaining
allele may indicate that these regions potentially acquire dosage-
dependent gain-of-functions41.

Mathematicalmodeling suggests the role of late truncal gains in
promoting final expansion
While early genomic alterations garner significant attention for
their functional implications, our understanding of the significance
of late truncal alterations that emerge in proximity to the MRCA
remains limited. Employingmathematical models, we constructed a
rationalementioned in the Introduction: a truncal alteration leading
to the final expansion might be situated near the MRCA if the pro-
genitor cell undergoes rapid proliferation upon acquiring this spe-
cific alteration. Using GD as an example, as it can occur early or late,
we reason that early GD and prior alterations alone are insufficient
to drive the final tumor expansion. However, if GD occurs closer to
the MRCA, it, along with other late aberrations, can propel the
tumor’s ultimate growth.

We utilized a multi-type branching process model42 to simu-
late tumor somatic evolution, focusing on two simplified models
for key insights applicable to complex contexts. In the base model
(neutral model), initiated with a single tumor-initiating cell
acquiring the first driver mutation (GD, Fig. 5B), cells reproduce at
a rate of a0 and die at a rate of b0, resulting in net growth rate
λ0 = a0 − b0 > 0. Post-GD, daughter cells acquire passenger muta-
tions at a rate of u0 without altering the net growth rate. In this
context, tumor expansion is solely driven by GD, and all post-GD
gains are passengers. Cells lacking beneficial post-GD gains are
type 0 cells. In the selection model, cells with GD can acquire
beneficial post-GD gains at a rate of u1 < u0, enhancing fitness
(λ1 = a1 − b1 > λ0, detailed in Methods). Our goal is to characterize
post-GD gains reaching fixation or dominance in tumors under
two scenarios: without and with beneficial post-GD gains. Notably,
in both models, post-GD gains are proportional to the mutation
rate and time between GD and MRCA, validated partially
in (Fig. 5A).

We first analyze the base model. Conditioned on the non-
extinction of the population, we can obtain that the number of post-
GD gains reaching fixation follows a geometric distribution with
parameter λ0

λ0 +u0
and mean u0

λ0
(see Methods). The mode of this dis-

tribution is at zero, similar to the cases where GD appears late and
post-GD CN gains are rare. To tolerate the inclusion of subclonal but
dominant SCNAs as the clonal variants, we further evaluated the
dominant post-GD gains shared by themajority (≥90%) of cancer cells.
Building on the results of43, we derived the expected number of

dominant post-GD gains in a tumor with size N as

~S=
N

d0:9Ne �
u0

λ0
≈1:11

u0

λ0
, ð1Þ

which is only slightly larger than the clonal ones. Assuming that u0 and
λ0 are comparable (based on experimentally measured u0 for SCNA
around0.2 and the cancer cell death rate not significantly approaching
the birth rate44,45), ~S would be no more than just a few. Moreover,
numerical simulations show that the number of dominant post-GD
gains continues to follow a geometrical-like distributionwith themode
at zero (Supplementary Fig. S18). Thus, if post-GDgains do not provide
growth benefits, GD would be one of the last events before the MRCA
as few of post-GD gains can become dominant in the observed tumor.

However, if cells withGDcan acquire anadditional beneficial post-
GDgain (meaningGD alone is not enough to drive the final expansion),
the situation drastically changes. To emphasize how this happens, let
us denote cells with the beneficial post-GD gain by type 1 cells and
consider the first type 1 cell that grows into an infinite number of
descendants. We assume that the descendants of the first type 1 cell
dominate the cell population when the sampling is performed (see
Methods for details). The expected number of passenger post-GD
gains (�S) carried by a type 1 cell at the moment of its introduction is
proportional to the time of occurrence of the type 1 cell (the birth time
of the tumor-initiating cell is set to be 0). InMethods we show that the
distribution of the birth time of the first non-extinct type 1 cell,
P σ1 > tjΩ1
� �

, where σ1 represents the birth time andΩ∞ represents the
event that the population does not go extinct, can be characterized as
a function of the rate of beneficial gains u1 and growth parameters of
type 1 and type 0 cells, respectively (Lemma 1). �S is thus

�S=
Z 1

0
P σ1 > tjΩ1
� �

u0dt, ð2Þ

where we utilized the formula (see Section V.6 of46) to calculate the
expected birth time of the first non-extinct type 1 cell. This calculation
involved utilizing the tail probability (P σ1 > tjΩ1

� �
) and multiplying

the expected birth time by the passenger mutation rate u0.
We explored various choices of growth parameters that capture

the fitness differencebetween type0 (without beneficial post-GDgain)
and type 1 cells (with beneficial post-GDgain). As compared to the base
model, the selection model results in a much higher abundance of
post-GD gains across a large parameter space (Supplementary
Fig. S19). Notably, lowering the fitness level of type 0 cells delays the
birth of the type 1 cell (Fig. 5C), conditioned on a fixed net growth rate
of the type 1 cell. The prolonged period of post-GD evolution
(accompanied by a higher abundance of post-GD gains) could also be
attributable to a lower rate of beneficial post-GD gains (Fig. 5C).

If the identified SCNAs in patient data represent the dominant
clone of the entire tumor (a scenario more likely in multi-sampling
than single-sampling), our model implies that late clonal gains may
harbor drivers for final expansion. The presence of early GD in many
patient tumors suggests that post-GD gains might offer added
advantages for promoting the final expansion. It’s worth noting that
ourmathematicalmodel doesn’t rule out the possibility of late somatic
alterations of other types, beyond copy number gains, driving the final
expansion. Thus, investigating late alterations in various forms of
somatic changes is an area of interest.

In the context of multiple drivers, previous research28 indicates
that the driver conferring the highest fitness advantage is likely to
emerge early in random occurrences. Our simulations, shown in Sup-
plementary Fig. S20, support this idea. When two drivers occur at
equal rates, the one with the greater fitness increase is more likely to
emerge first in the initial cell acquiring both drivers. Additionally, the
probability of this early appearance increases with the magnitude of
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the fitness advantage provided by the more beneficial driver. These
findings suggest that early gains may involve drivers with significant
fitness effects, while late truncal gains near the MRCA are particularly
relevant for the fitness increase driving the final expansion.

Ways evolving CN gains contribute to fitness increase and
mutational diversification
As SCNAs have a global impact on gene expression in cancer47, the
evolving CN gains potentially affect dosage-sensitive genes whose
gains have a functional impact. In the OS and BRCA tumors, as the
CN evolves, we can see an enrichment of putative dosage-sensitive
genes that are in pathogenic CNV peak regions derived from
dbVar48,49 (Fig. 6A). Moreover, we observed a similar enrichment for
genes involved in sustaining proliferative signaling: one of the most
fundamental capabilities of cancer cells1. No such enrichment is
observed when utilizing copy number (CN) data alone

(Supplementary Fig. S21), underscoring the valuable additional
insights provided by incorporating timing information. MYC, EGFR
and KIT are among such genes with late gains in both OS and BRCA,
emphasizing their ability in stimulating cell multiplication in mul-
tiple tumor types. In addition, post-GD late gains tend to affect
genes whose inactivation (upon CRISPR knockout) alters cell pro-
liferation dynamics50 according to the DepMap database (Supple-
mentary Fig. S22).

The evolving gains could amplify the impact of early functional
variants by increasing their multiplicity (Fig. 6B). Such a mechanism
potentially affects SV breakpoints in known oncogenes (e.g.,MAP3K13,
MECOM and PREX2), breakpoints in genes known to be involved in
oncogenic fusions (e.g., AFF3, LPP and ERG), and simple mutations in
oncogenes (e.g., SSNVs in SMARCA4 and CACNA1A), see Fig. 6C, D.
MAP3K13 had been shown to promote tumor growth in high MYC-
expressing cells51,52, a similar context as in the OS39.

Fig. 6 | Ways the late CN gains contribute to the fitness of cancer
progenitor cell. A The gene set enrichment analysis (GSEA) was performed on the
gene list ranked by the averaged CN arrival time for BRCA and OS tumors,
respectively. The scatter plot on the left shows the normalized enrichment scores
(NES) for each set of cancer census genes belonging to the predefined cancer
hallmarks by COSMIC database. Red-colored highlighted pathways have a false
discovery rate less than 0.15. The vertical bars on the right panels visualize the
timing-ranks of genes that belong to the highlighted gene sets. The height of each
bar corresponds to the arrival time. B A cartoon illustrates themultiplicity increase
of an early sequence variant due to the inclusion of that variant by a late CN gain,
with annotations indicating the type of variants (symbol shapes), level of

multiplicity (color hues) and the variants' association with a late gain (right arrow)
or anearly gain (vertical bar). BP: breakpoint.CTheSCNA timing plot of anexample
OS tumor similarly arranged as in Fig. 4, with additional links and symbols high-
lighting the SV breakpoints in known cancer genes that are amplified by late gains.
D The matrix plot demonstrates genes with recurrent somatic variants and their
multiplicity across the five tumor types. Note that a high multiplicity indicates that
an early somatic variants gained more copies of the mutant. Names for known
cancer genes are in bold. Genes with variants showing higher multiplicity levels
than gene TTN are also included. Symbol annotations are the same as in (B). Source
data are provided as a Source Data file.
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We note that highlymutated tumor suppressor genes (TSG), such
as TP53, RB1 and APC, also have their early mutants duplicated or
amplified (Fig. 6D). Whereas these are presumably inactivation var-
iants, the retaining of multiple copies of the variants could suggest
different roles that remain unclear, such as a potential gain-of-function
of APC mutants in COAD53. The fact that SRE requires the amplifica-
tions of some early variants, rather than starting immediately upon
acquiring a single copy of these variants, suggests that late-appearing
gains could cooperate with the early variants to promote tumor
expansion. On the other hand, late SV breakpoints (at single copy
state) coupling evolving gains are prominent in genes located in
common fragile sites, e.g., FHIT and MACROD2. Late alterations of
these genome “caretakers” could facilitate further genome evolution
and expedite clonal expansion54,55.

Lastly, the quantitative relation between SCNA evolution and
SSNV accumulation, the rationale behind our timing method, implies
that SCNA gains bolster mutational diversification between sub-
populations during tumor growth. In principle, the higher the trun-
cal CN state of a genomic segment, the higher the mutational diver-
gence between subclones for the corresponding locus. As tumor
expands, genomic regions at distinct SCNA states would accumulate
SSNVs at different rates, leading to the heterogeneity of the SSNV
burden along the genome. For example, when comparing two samples
of a tumor, the sample-specific SSNVs are more abundant for regions
with higher CN states (Fig. 7A, B). Notably, the overall CN state affects
the structure of phylogenetic trees, i.e., it explains more than 50% of

the variance of the relative branching distance measured by SSNVs in
COAD and PRAD patients, where extensive multi-region sampling is
available (Fig. 7C). Furthermore, continued evolution of SCNAs
between subpopulations would also alter the SSNV divergence. For
example, the SSNVs divergence is particularly enlarged for regions
showing different CN states between the two samples (Fig. 7B). As
such, increased SSNV diversity in regions with CN gains providesmore
materials for further selection within the expanding cell populations.

Discussion
Despite the well-established link between a chaotic genome in tumors
with the CIN phenotype and poor clinical outcomes6, the mechanisms
by which specific aberrations contribute to tumor growth remains
poorly understood38. In this study, we have created a computational
framework for measuring the arrival and initiation time of SCNAs
during the somatic evolution of the MRCA of tumor sample(s),
including complex gains with high CN states. By applying this method
onmulti-sampledWGS data of patient tumors, we have found that late
truncal CN gains close to the most recent clonal expansion leading to
the tumor sample(s) are common across multiple tumor types.
Mathematical modeling predicts that these late evolving gains could
contain final-expansion driver events, promoting the tumor growth. As
CN gains increase the gene dosage and early somatic variants, we
further demonstrated that incorporating the SCNA timing into an
integrated genomic analysis has a strong potential for isolating the
functional effect of specific aberrations.

Fig. 7 | The effect of SCNA on SSNV diversification during tumor expansion.
A The rate of sample-private SSNVs when comparing two samples of a COAD
patient tumor. The segmental CN states (total and minor CN) along the autosomal
chromosomes for the two tumor samples are shown as gray rectangles above and
below the x axis. The rate of sample private SSNVs (permillion base pairs, blue line)
fluctuates with the CN states, supporting the assumption that point mutations
accumulate at a rate proportional to their CN. Genomic regions with different CN
states between the two samples are in light red background.B The box plots on the
left panel illustrate the rate of private SSNVs in sample P1 detected in regions at a
given total CN state. The box represents the interquartile range, covering the
central 50% of the data. The line inside the box indicates the median. Whiskers

extend to the minimum and maximum values within a specified range, excluding
outliers. The half-violin plots on the right panel demonstrate such a rate for regions
showing stable or diverging CN states between the two samples with p value of
Wilcoxon rank sum test (two-sided, W value = 136214 and 95% confidence interval
ranges from 0.7 to 1) and effect size indicated.C The branching distance relative to
truncal distance in a tumor’s phylogenetic tree was calculated for each of the
COAD, ESCA and PRAD tumors to evaluate the correlation with the averaged CN of
the corresponding tumor samples. Annotations show the percentage of variance
explained by a linear regression model (with p values of the model fitting shown).
Source data are provided as a Source Data file.
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Early genomic changes are presumably beneficial for tumor
initiation28, but it is unclear the effect of late truncal events. Here we
have provided evidence that gains occurring late in the somatic evo-
lution, i.e., close to MRCA, can also be beneficial. The simplified two-
event cancer development model posits that the cancer-initiating
event is followed by the promoting event56. We reason that the evol-
ving CN gains might render the progenitor cell capable of “self-pro-
moting,” as they act similarly as a tumor “promoter” by (a) increasing
the dosage of genes causing sustained proliferative signaling, (b)
amplifying themutant allelewith early initiating driver variants, and (c)
accelerating the accumulation of further genomic alterations. As both
the early and late CN alterations could confer fitness advantages,
chromosomal regions with SCNAs initiated early and arrived late, i.e.,
showing repetitive gains accompanying the entire course of the
somatic evolution, could function as copy number “addictions.” These
underscore the value of Butte in identifying complex SCNAs with
early initiation and late arrival.

GD, a landmark event in CN evolution, has a context-dependent
fitness effect. The punctuatedCNgains successfully induced the SRE in
tumors that underwent a late GD. By contrast, for many other tumors,
especially osteosarcoma, GD was followed by additional CN gains that
produces the MRCA. GD could tolerate the occurrence of deleterious
passengers57. However, simply escaping purifying selection was not
sufficient to drive the ultimate outgrowth, at least not in the tumors
with post-GD gains, where some chromosomal regions can reach
higher CN states. Alternatively, GD may create an inflated genome
space, accelerating the accumulation of driver alterations (Supple-
mentary Fig. S13). Prolonged evolution following GD or arm-level
aneuploidy before theMRCA has recently been associated with a poor
prognosis in neuroblastoma58. As GD itself affectsmany genes, regions
with pre- and/or post-GD gains could serve as a reduced search space
for CN drivers.

Our method is applicable to a wide range of SCNAs, yet it is still
challenging to analyze exceptionally high CN states (i.e., above eight).
We note that regions with such a high CN likely evolve over time, such
as the unequal segregation of extra-chromosomal oncogene
amplifications59,60. As such, late changes are expected for these
amplified regions. Some focal high-level gains could involve small
segments where the number of SSNVs is inadequate for calculation.
This problem can bemitigated by borrowing information from nearby
segments with the identical CN state. This strategy is applicable to
synchronized SCNAs, such as chromothripsis61,62. In addition, our
analysis may have missed some late-appearing SCNAs due to over-
estimation of tK (Supplementary Figs. S1, S3). Based on benchmarking
simulations and the CIs observed in real data, we recommend utiliz-
ing > 20 SSNVs for a SCNA segment, coupled with a read coverage
depth > 50 and tumor purity > 0.5, to achieve a robust timing infer-
ence. Furthermore, deletion was not modeled as it is unidentifiable18;
by comparing CN profiles between subpopulations, however, it is
possible to study deletions during tumor expansion. Lastly, our fra-
mework relies on a constant SSNV rate per base per unit time within a
region under SCNA evolution. We focused on the timeline of clonal
SSNVs only as mutational signatures can differ in activity between
clonal and subclonal lineages63. Specializedpre-selectionof SSNVs that
faithfully possess a clock-like behavior19 is necessary for tumors whose
mutagenic processes varies drastically within the studied timeline.

In our initial endeavor to understand the evolving gains in tumor
development, our mathematical modeling focused on the timeline
from germline to the tumor founder (or at least the founder of the
dominant clone of the tumor). Our results suggest that if the MRCA
forms a dominant clone of the tumor, the presence of abundant post-
GD gains suggests that late gains may contain final-expansion drivers.
Readers should note that even though the timing method works for
any samples, the claim that late gains may contain final-expansion
drivers relies on the condition that the MRCA of the sample is the

founder of the dominant clone. In the analysis of individual samples,
certain SCNAsmay be associated with a subclone of considerable size,
causing them to be identified as clonal. Consequently, some late gains
couldoriginate fromsubclonal events, although their impact onfitness
has not been thoroughly investigated yet. Thus,we advocate the useof
multi-region WGS data for analyzing late evolving gains.

Our findings also illustrate the existence of a fundamental con-
nection between CN evolution and SSNV diversity, which can explain
the positive correlation between aneuploidy and mutational burden
when excluding hypermutated tumors64,65. Such a connection also
indicates that we need to account for the dynamic nature of ongoing
SCNAs when measuring subclonal evolution, which remains a
challenge66. Finally, our results suggest that much can be gained by
including the SCNA arrival time in studying tumor evolution, thereby
shifting focus on exclusively early drivers to the evolving genomic
events that affect the rate of tumor progression.

Methods
Somatic variant calling from WGS data
RawWGS data in bam or fastq formats were downloaded from public
databases provided by the original publications (Table 1) through the
utilization of specific tools: pyega3 (version 3.4.0) for the European
Genome-phenomeArchive, sftp (version 3) for the JapaneseGenotype-
phenotype Archive, and sratoolkit (version 2.10.8) for the Database of
Genotypes and Phenotypes. The cumulative read depth distribution
along the human genome (hg38) and the tumor purity and ploidy for
each sample are illustrated in Supplementary Figs. S23, S24, and S25.
We have extended our existing pipeline, which had achieved a balance
in sensitivity and specificity in detecting SSNVs by borrowing infor-
mation across multiple samples67,68, to allow the detection of clonal
SCNAs and the breakpoints of structural variants.

SSNVs and INDELs: Analysis-ready read alignment bam files
(against hg38) were generated according to the best practices,
including indel realignment, base recalibration and flagging of dupli-
cated reads. Raw candidate variants were produced by MuTect
(v1.1.7)3. To reduce the false-positive rate due to misalignments or
other technical artifacts and to salvage the variants thatmaybemissed
due to uneven read coverage between samples, the alignment features
surrounding each candidate variant were collected for each sample.
The heuristic-based criterion for the read alignment patterns was
adopted to refine and variant calls68. Small insertions and deletions
were called by using Strelka (v1.0.15)69.

SCNAs: Copy number and tumor purity were estimated by using
TitanCNA (v1.26.0)25. Germline heterozygous SNVs used as input to
TitanCNA were identified using Samtools (v1.5)70 and subject to the
same filtering strategy aswas applied to SSNVs. The one-clone solution
reported by TitanCNA (i.e., the sample is dominated by a clone with an
SCNA profile along the genome) globally fit the data of the read cov-
erage and allelic imbalance well, with a few exceptions for which the
two-clones solution are necessary to explain the data of specific
genomic regions. The ploidy baseline (CN= 2) is determined by the
model complexity in explaining the log read ratio and allelic imbalance
of heterozygous SNPs (see Supplementary Fig. S26 as an example).

SVs: We incorporated two distinct SV calling tools relying on
orthogonal approaches, i.e., DELLY (v0.7.8, abnormal read pair and
split-read analysis)71 and GRIDSS (v2.10.1, local assembly based
algorithm)72.We focused on the SVbreakpoints foundby both tools, as
these shared calls generally have higher quality (e.g., with higher
breakpoint confidence) than those unique to each tool (Supplemen-
tary Fig. S27). SV breakpoints were annotated with AnnotSV73.

Analysis of genomic divergence
SCNA divergence: When multi-samples are available for a patient, the
truncal and private SCNAswere identified as follows: (1) we partitioned
the genome into disjoint segments by considering all the SCNAs called
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from the samples of the patient; (2) for each segment, we calculated a
generalized likelihood ratio statistics for the comparison between two
samples. The statistics is the ratio of the values of the likelihood
function (the probability of observing the read depth ratio and B-allele
frequency for SNPs in the region) evaluated at themaximum likelihood
estimation in the sub-model (two samples have the same CN profile)
and at the maximum likelihood estimation in the full-model; and (3)
the statistics converges weakly to a random variable with chi-square
distribution and thus can be used to determine if a segment shows
significantly different SCNA states between the two samples. The term
“truncal SCNAs” refers to SCNAs that exhibit no difference in pairwise
comparisons.

Sample phylogeny: We applied Treeomics (v1.7.13)74 to construct
sample phylogenies from SSNVs that are clonal in at least one speci-
men. Treeomics takes into account the uncertainty due to purity dif-
ferences and variations of read depth on the SSNV loci to derive robust
sample phylogenies. We note that Treeomics assumes sample
homogeneity.

Clonality, multiplicity of SSNVs and SV breakpoints: SSNVs were
categorized as either public (present in all tumor cells) or private based
on their sharing patterns and allele frequencies in multi-sampling
data68. In individual samples, clonal SSNVs were identified as those
with the 95% confidence interval of cancer cell fraction (CCF) covering
1. We focused on the public SSNVs (multi-sampling) and clonal SSNVs
(single sampling) for the timing analysis. For SSNVs or SV breakpoints
existing in an SCNA region, we applied a binomial model to calculate
the maximum likelihood estimates of the number of segment copies
containing that variant21.

Allele state distribution of SSNVs in an SCNA. For SSNV i in an SCNA
region (with CN configuration of Nt :Nb andM ≥ 10 SSNVs in total), we
obtained from WGS the read counts carrying the mutant allele mi out
of the total number of reads di. Expectation Maximization algorithm
was used to estimate the proportion of SSNVs at each possible allele
fraction, i.e., a vector q that gives the probability of randomly acquired
SSNVs in this region having a purity-adjusted allele frequency (fi = aj)
for each possible allele state j

Nt
. Note that we used the same symbol a

for allele frequency, as it is intrinsically tied to the allele state. To
calculate the likelihood function of observing the particular SSNV data
in an SCNA region, we sum across all possible allele states the product
of qj and the probability that SSNV i at aj has the observed read counts.
Conditioned on the successful detection of the SSNV, the log-
likelihood is given by,

XM
i = 1

log Prðmijmi >0,qÞ=
XM
i = 1

log

PNt�Nb
j = 1 Prðmijf i =ajÞqj

1�PNt�Nb
j = 1 ð1� ajÞdiqj

0
@

1
A: ð3Þ

Estimating the upper bounds of SCNA timing
Assume that a clonal SCNA region (with Nt:Nb at 5:1, Fig. 1D) has
total M SSNVs. We disregard deletions and model the CN evolution
as 3 gain events, creating 4 stages of increasing CN states during the
somatic evolution timeline from the germline to the founder cell of
the tumor. Denote by the vector t = (t0,…, t3) the fraction of time in
each stage. We refer to t0 as the initiation time, and t3 (or tK where K
refers to the last stage) the lead time. Let aj represent a possible
allele state for a SSNV, i.e., the fraction of the allelic copies with the
SSNV. The possible values of aj in this case are {1/5,…, 4/5}. Let the
vector q = {q1,…, q4} represent the fraction of the M SSNVs having
allele state for each of the possible aj. Let A be a history matrix, with
the entry Ajk representing the number of copies in stage k that
would result in an allele state of j/5. In other words, all SSNVs ori-
ginating from stage k on those Ajk copies will lead to the same allele
state j/5.

Multiple paths or ordering of gain events could lead to the same
SCNA state. In Fig. 1D, we graphically demonstrate the two possible
histories of SCNA at 5:1. Our objective is to construct estimators of t0
and t3 using q and A. Denote by c the sum of the fraction of time
multiplied by the number of copies in each stage. We have

c=2t0 + 3t1 + 4t2 + 5t3:

Because the probability of a mutation occurring in stage k is propor-
tional to tk−1(k + 1) (the fraction of the lifespan spent in stage k multi-
plied by the number of copies in stage k), we have

qj ≈
X3
i=0

tiAjði+ 1Þ
c

: ð4Þ

We can write equation (4) in matrix form:

q≈At=c, ð5Þ

When the history matrix A is invertible, we have

t≈ cA�1q, ð6Þ

and thus the desired estimators can be obtained. Note that in Fig. 1D,
history A(a) induces an invertible history matrix, while the history
matrix for history A(b) is singular. Therefore, the method introduced
in ref. 18 cannot be directly applied.

For single and double gains (Nt:Nb at 3:1, 2:0, 4:1 or 3:0), t0 and tK
are directly solved becausematrixA is unique and invertible. For other
SCNA states, Butte uses linear programming to obtain the upper
bounds of timings across all possible history matrices for the corre-
sponding CN configuration (Supplementary Fig. S28). Let s denote the
vector of the column sum of matrix A. Let a denote the vector of
possible allele states. Abusing the notation, we now interpret q as the
vector with entry qj representing the probability of a randomly
acquired SSNV having allele frequency for each possible allele state aj.
Then the relation between A and t can be expressed as

At=ðsTtÞ=q: ð7Þ

From equation (7), we have

ðA� qsT Þt =0, ð8Þ

where 0 represents a vector with all 0’s. Since t denotes the time
fractions of different CN evolution stages, we have

1 � t= 1, ð9Þ

where 1 represents a vector with all 1’s. Butte solves the following
optimization problem by linear programming:

max
t

tK

s.t. ðA� qsT Þt =0
1 � t= 1,

where tK is the last element in vector t. The maximum value of tK gives
us an upper bound of the lead time given A. For upper bounds of
initiation times, we instead maximize t0 which is the first element in t.
To tolerate noise in the allele state distribution estimated from
sequencing data, we add a slack variable on each capacity
constraint, having a penalty cost of 100. The confidence intervals of
the estimated upper bounds were calculated through bootstrapping
the SSNV data.
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Benchmarking the timing method
To evaluate the robustness of Butte, we simulated SSNV data for a
SCNA region across different evolutionary histories, depth of coverage
(D), number of available mutations (M) and tumor purity (P). Given a
known evolutionary history of a SCNA and known timing for each time
stage, we generated the allele state distribution vectorq. Given the total
number of SSNVsM available for the SCNA region, the number of SSNVs
at distinct allele states were drawn from amultinomial distributionwith
probability for these allele states (q) for each iteration. Given the tumor
purity P, the true allele frequency f of a mutation at a known allele state
was calculated. The sequencing depth of mutations (D) follows a
negative binomial distribution D ~NB(uD, σD), with mean uD, and dis-
persion σD = uD/10. The resulting read counts of themutant allele having
a true allele frequency of f follows a binomial distributionm ~Bin(D, f).

To assess the precision, true positive rate (TPR), and false positive
rate (FPR) of both early and late event detection, we conducted
simulations for SCNA state (Nt:Nb) at 6:2 and 6:1 Supplementary
Figs. S11–S12. To evaluate late gains, we use a threshold value (T) and
set the initiation time (t0) at 0.1, 0.2, and 0.3, respectively. Subse-
quently, we simulated SSNV data using randomly generated lead time
tK values. True positives were identified when the predicted tKwas less
than T and the actual t0K was also less than T. False positives occurred
when the predicted tK was less than T but the actual t0K exceeded T.
Conversely, true negatives were cases where both the predicted and
actual t0K valueswere greater than T, and false negatives were instances
where the predicted tK exceeded T but the actual t0K was less than T.
Similar criteria were applied for early gains by comparing the pre-
dicted and actual t0 values with the threshold (T). The performance
metrics were evaluated across different threshold values (T).

To examine tumors from29 using Butte (Supplementary Fig. S8),
we acquired SSNV and SCNA predictions for the same samples from
the PCAWG (PanCancer Analysis of Whole Genomes) dataset26 via the
ICGC data portal. Subsequently, Butte was applied to the downloaded
dataset, comprising 15 tumor samples with event timing predictions
previously reported by ref. 29. These predictions included events such
as tetraploidy, trisomy, tandemduplication, andGD, determined using
the graph theory-based method21.

Determining the timing of genome doubling
We identified clustered gains by clustering the inferred timing via non-
parametric density estimation (R-package pdfCluster)75. We define
GD as the prominent and concentrated burst of gains, containing more
than 40% of all timed segments. A cutoff of 40% seems suitable for
identifying the prominent burst of gains, as depicted in Supplementary
Fig. S29. It’s important to emphasize that we do not assume duplica-
tions necessarily cover the entire genome during GD events. Gains in
these clusters have similar timing estimates (standard deviation σ ~ 0.1)
(Supplementary Fig. S30), suggesting that they occurred within a nar-
row timewindow. We regard the averaged timing of all the segments in
the corresponding cluster as the timing of GD. Post- and pre-GD events
were identified as those occurred ± 1.3σ away from theGD, respectively.

Detecting recurrent early or late gains
We partitioned the genome into bins of 1 million base pairs each and
ranked these bins in each sample based on their respective timing
values (t0 for BRCA and 1-tK for OS, respectively). To avoid ties, we
introduced jitter to the timing values. Subsequently, we calculated the
deviation from the middle rank of each sample for each bin. This
middle rank represented the expected value under the null hypothesis,
signifying no recurrent early (for BRCA) or late (for OS) gain regions
across patients. For each tumor type, we aggregated these rank
deviations across patients for each bin. Normalizing these rank sums
by their standard deviations produced standardized values, which
approximately followed a standard normal distribution if the null
hypothesis held true. A significantly negative standardized rank sum

indicated recurrent early initiating gains, while a markedly positive
value indicated recurrent late establishment gains. Simultaneously, to
assess the prevalence of gains in each genomic bin across patients, we
ranked the segment mean (which represented the read depth ratio
between tumor and normal samples) in a similar manner as the timing
values. Subsequently, we applied the same rank sum normalization
technique. A notably positive normalized rank sum for the segment
meanwould indicate frequent high copy number gains acrosspatients.

Functionality of genes affected by late gains
To see which cancer hallmarks are associated with late gains, we per-
formed Gene Set Enrichment Analysis (GSEA)76 on the gene list ranked
by the averaged arrival time across patients of SCNAs affecting a cor-
responding gene. We used the gene sets representing hallmarks of
cancer1 from COSMIC database77. R-package fgsea78 was utilized to
perform the GSEA analysis with 50000 permutation.

To further evaluate the fitness effect of genes affected by late
gains, we analyzed the gene Chronos score50 (gene knockout fitness
effect) provided in the DepMap database. The Chronos score reflects
the change in cell proliferation upon the CRISPR knockout of the
respective gene in a particular cell line. A lower negativeChronos score
indicates that the gene is a denpendency in a cell line. For simplicity,
we took the average score for each gene across all the cell lines. For
each tumor, we calculated the fraction of genes affected by late gains
with a mean Chronos score < −0.5. We then obtained the normalized
ratio (NR) by dividing it to the ratio calculated from all the genes in the
database. To get a background of the NR of randomized genomic
regions, given a set of segments showing late gains, we randomly
sampled regions by keeping the same segment lengths by using
R-package regioneR79. We then compared the normalized ratio
betweenpatient data and the randomization (Supplementary Fig. S22).

Mathematical modeling of late evolving gains
Consider two contrasting models based on multi-type branching
processes with mutations. In both models, the tumor grows from a
single tumor-initiating cell which just acquired GD. During the tumor’s
progression, cancer cells accumulatemutations (post-GD gains). In the
base model (neutral model), all mutations are passenger mutations.
Therefore, all cancer cells give birth at a rate of a0 and die at a rate of
b0. The net growth rate is λ0 = a0 − b0 > 0. Neutral mutations occur at
rate u0 per unit time throughout the lifetime of a cell, and each
mutation is distinct following the infinite-sitesmodel80. Clonal post-GD
gains are those acquired prior to the cell division (or the onset of
expansion) leading to two surviving sublineages. Let this division event
(denoted by an effective birth) occur at a rate of λ0 (cf. page 10 of42)
conditioned on the non-extinction of the population. By the mem-
oryless property of the exponential distribution, counting the number
of post-GD gains prior to the first effective birth is analogous to
counting the number of tails until the first head in a sequence of coin
tosses, where the probability of a head (effective birth) is λ0

λ0 +u0
and the

probability of a tail (neutral mutation) is u0
λ0 +u0

. Therefore, the number
of gains before the first effective birth follows a geometric distribution
with parameter λ0

λ0 +u0
andmean u0

λ0
. We then investigated the number of

mutations which are shared by more than 90% of the total population
(we refer to them as dominant mutations). Gunnarsson and his co-
authors43 derived exact expressions for the expected SFS of a cell
population that evolves according to a branching process. We utilized
their results on the skeleton subpopulation (seeAppendixCof43)—cells
with an infinite line of descents which determines the high frequency
spectrum—to express the expected number of dominant mutations ~S
when the tumor reaches a fixed size N as

~S=
N

d0:9Ne �
u0

λ0
≈ 1:11

u0

λ0
: ð10Þ
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In the alternative model (selection model), the tumor-initiating
cell and its descendantswith only passengermutations formthe type0
population. Type 0 cells give birth at a rate of a0 and die at a rate of b0.
The net growth rate is λ0 = a0 − b0 > 0. Type 0 cells mutate to type
1 cells at a rate ofu1. Type 1 cells give birth at a rate ofa1 anddie at a rate
of b1. The net growth rate is λ1 = a1 − b1 > λ0. Both type 0 and type 1 cells
accumulate passenger mutations at a rate of u0. We assume that when
the tumor is sampled, the descendants of the first type 1 cell with
infinite lineage dominates the population. This is usually the case in
our simulations where the fitness advantage conferred by the bene-
ficial post-GD gain is large. We note that due to stochasticity, descen-
dants of a later-appearing type 1 cell (e.g., the second or the third one,
etc.) can also dominate the population. However, type 1 cells acquired
later would accrue more post-GD gains on average and thus our claim
stays valid. On the other hand, it is the equivalent of the base model if
no type 1 cells dominates the population upon sampling. In Lemma 1,
we obtained the distribution of the time to the first type 1 cell with
infinite lineage conditioned on the non-extinction of the tumor.

Lemma 1. Let σ1 denote the time of occurrence of the first type 1 cell
that gives rise to a family which does not die out, and letΩ∞ denote the
event of non-extinction of the tumor. Then

P σ1 > tjΩ1
� �

=
a0 1� q0

� �
+

u1 1�q1ð Þ
1�q0

a0 1� q0
� �

+
u1 1�q1ð Þ
1�q0

eζ t
,

where

q0 =
a0 + b0 + u1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 +b0 +u1

� �2 � 4a0 u1q1 +b0

� �q
2a0

,

q1 =
b1

a1
, and

ζ =
u1 1� q1
� �
1� q0

+a0 1� q0
� �

:

With Lemma 1, we can obtain the expected number of passenger
mutations accumulated in the first type 1 cell with infinite lineage,
denoted by �S:

�S=
Z 1

0
P σ1 > tjΩ1
� �

u0dt: ð11Þ

With (10) and (11), we can obtain that the expected number of domi-
nant post-GD gains in the subpopulation generated from the first type
1 cell with infinite lineage is 1:11 u0

λ1
+ �S+ 1,where the last 1 represents the

number of post-GD driver gains. Proof for Lemma 1 and details of (10)
can be found in Supplementary Methods.

Mathematical modeling in the context of multiple drivers. In our
multi-type branching process model, we examine two driver muta-
tions: mutation one and mutation two. We initiate with a single cell
devoidofmutations,whichpossesses a birth rate ofa0 and adeath rate
of b0. Mutation one, acquired at a rate of u1, adds δ1 to the birth rate
(a1 = a0 + δ1). Mutation two, acquired at a rate of u2, adds δ2 to the birth
rate (a2 = a0 + δ2). Cells with both mutations have a birth rate of
a3 = a0 + δ1 + δ2. Death rate remain the same as b0.We simulated tumor
growth from a mutation-free cell until the first cell acquired both dri-
vers without going extinct (100,000 for each parameter set). We cal-
culated the fraction of cases where mutation one occurred first.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The article, its Supplementary Information files, and source data files
contain all pertinent data supporting the main findings of this study.
The raw WGS data analyzed in this paper, previously published,
are sourced from the following datasets: EGAD00001004482,
EGAS00001000263, EGAD00001004966, phs001722.v1.p1, EGAD00
001002696, JGAD000095, EGAD00001000891, EGAD00001001394
and are detailed in Table 1. The raw data are subject to controlled
access in accordance with the specific data sharing policies mandated
by each data provider. Access can be acquired by submitting a request
to the respective data access committees and adhering to their spe-
cified sharing policies. Instructions for requesting access are provided
on the respective databases. The processed timing result are available
at https://sunpathlab.github.io/Datasets/. The datasets containing
Chronos scores or CRISPR gene effects in the DepMap database canbe
downloaded by visiting https://depmap.org/portal/download/all/(ver-
sion 22Q2). The dataset that are necessary to interpret, verify and
extend the research in the article are provided in the Supplementary
Information and Source Data file. Source data are provided with
this paper.

Code availability
All the original code for Butte (a computational framework for esti-
mating SCNA arrival and initiation time from WGS data) and the
associated mathematical modeling have been deposited in a GitHub
repository, publicly accessible through https://github.com/
SunPathLab/Butte/. The released version utilized in this paper is
accessible on Zenodo81. Code for whole genome sequencing analysis
can be found in package ith.Variant through https://github.com/
SunPathLab/ith.Variant.
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