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A coarse-grained bacterial cell model for
resource-aware analysis and design of
synthetic gene circuits

Kirill Sechkar 1, Harrison Steel 1, Giansimone Perrino 2,3 &
Guy-Bart Stan 2,3

Within a cell, synthetic and native genes compete for expression machinery,
influencing cellular process dynamics through resource couplings. Models
that simplify competitive resource binding kinetics can guide the design of
strategies for countering these couplings. However, in bacteria resource
availability and cell growth rate are interlinked, which complicates resource-
aware biocircuit design. Capturing this interdependence requires coarse-
grained bacterial cell models that balance accurate representation of meta-
bolic regulation against simplicity and interpretability. We propose a coarse-
grained E. coli cell model that combines the ease of simplified resource cou-
pling analysis with appreciation of bacterial growth regulation mechanisms
and the processes relevant for biocircuit design. Reliably capturing known
growth phenomena, it provides a unifying explanation to disparate empirical
relations between growth and synthetic gene expression. Considering a bio-
molecular controller that makes cell-wide ribosome availability robust to
perturbations, we showcase our model’s usefulness in numerically prototyp-
ing biocircuits and deriving analytical relations for design guidance.

The engineering of novel biological systems with useful applications,
known as synthetic biology, promises to address global challenges by
revolutionizing healthcare, agriculture, andmanufacturing1. While any
engineered system’s behavior must be predictable, its forecasting for
synthetic biology designs is complicated by the interconnectedness of
biological processes in living cells2–4. Indeed, even the gene circuit
components that do not engage in direct biological interactions may
exhibit interdependence caused by indirect couplings via shared cel-
lular resources. Specifically, resource competition couplings arise
when heterologous genes introduced into a host cell compete among
themselves andwith native genes for the samefinite poolsof resources
that enable gene expression. Due to this competition, a synthetic gene
circuit’s performance may not be reliably predicted based on the
characterization of its constituent modules in isolation5,6. Moreover,
the redirection of resources from native gene expression, known as

gene expression burden, hinders cell growth and biomass
accumulation3,4. Resource couplings therefore present a key challenge
in the engineering of bacterial, fungal, and mammalian cells7–9.

Tomitigate resource couplings, synthetic gene expression can be
kept lowenough to have no significant effect oncellular homeostasis10.
Alternatively, feedback loops can improve a circuit’s robustness to
perturbations such as resource couplings7. Moreover, synthetic genes
can be expressed via orthogonalmolecularmachinerywhich is unused
in native gene expression and forms a separate resource pool, thereby
reducing crosstalk between engineered circuits and native processes11.
Nonetheless, the low-expression strategy is unsuitable for applications
requiring high protein production, while the synthesis of orthogonal
machinery or regulator proteins enabling feedback control can
itself burden the cells10. Mathematical modeling of resource compe-
tition represents a promising approach to resource-aware design of
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biocircuits and the development of more sophisticated strategies for
countering resource couplings.

One can explicitly model all stages of a substrate binding and
unbinding the shared resource for which it competes with other sub-
strate species.However, gene expressionmodels can alsobe simplified
to ensure better interpretability and lower computational complexity.
The entire resource-dependent process can be described with an
effective rate constant that reflects the concentrations of all compet-
ing substrates (Fig. 1a), assuming that very fast association and dis-
sociation make a resource-substrate complex’s concentration change
very little on the time scale of other reactions in the cell9,12,13. Such
simplified models allow to easily determine a genetic module’s sensi-
tivity to resource couplings6 and to optimize design parameters like
gene dosage and ribosome-binding site (RBS) strength, achieving
desired outputs despite unwanted couplings12,14. Modeling insights can
also help design circuits that efficiently mitigate unwanted
couplings7,13 or even leverage resource competition as a gene regula-
tion mechanism to achieve other objectives, such as plasmid copy
number-independent synthetic gene expression in mammalian cells15.

The analysis of resource couplings in bacteria is further compli-
cated by the interplay between synthetic gene expression and cell
growth rate. Bacterial cells are fast-growing, so dilution due to cell
division significantly influences gene expression dynamics16. Accord-
ingly, changes in the cell’s growth rate caused by gene expression
burden can qualitatively alter a gene circuit’s behavior16–18. Moreover,
the size of a bacterial cell’s pool of gene expression machinery—spe-
cifically, ribosomes—is also related to its growth rate19,20. This inter-
dependence, described by the experimentally observed “bacterial
growth laws”21 (Fig. 1b), arises because cells optimize their gene
expression to maximize the steady-state growth rate in given envir-
onmental conditions22–25. These phenomena limit the predictive power
of simple resource competition models, which assume constant
growth rate and resource availability6,9,10. The development of bacterial
resource-aware biocircuits thus calls for resource-aware models that
consider synthetic circuits within the context of the host cell and
account for the impact of burden on cell growth.

Since allocating resources between different genes to achieve
maximum growth rate can be considered an optimization problem,
solving it allows to approximately predict gene expression in certain
conditions23,26,27. However, in reality living cells do not behave as ideal
growth rate optimizers, but rather implement near-optimal gene reg-
ulation strategies via biological reactions23. Although some past stu-
dies have reproduced the bacterial growth laws by assuming

constitutive ribosome expression28,29, evidence increasingly suggests
that near-optimal bacterial resource allocation is powered by the
regulation of ribosomal genes’ transcription by guanosine tetrapho-
sphate (ppGpp), an alarmone molecule whose concentration lets the
cell perceive its growth rate30,31.

Understanding how biochemical signals reflect cell growth rate
and enable the optimization of gene expression requires mechanistic
cell models, which incorporate the trade-offs faced by living cells, such
as the finiteness of the cell’s mass and its pool of gene expression
machinery, energy, protein synthesis precursors, and other
resources28,32. A range of such models with different levels of granu-
larity exists, from whole-cell models33 considering all known cellular
processes to low-dimensional models, which consider the cell as a
simple self-replicating machine that produces protein biomass in a
single-step reaction. In the latter case, the cell’s proteins with similar
function and expression dynamics are grouped into several coarse-
grained classes, and resource allocation modeling amounts to con-
sidering the ratios of different protein classes’ mass fractions in the
overall biomass22,23,26,34–37. Modeling frameworks that lie between these
two extremes explicitly consider some aspects of gene expression and
metabolic regulation—typically those believed most relevant for the
phenomena they aim to explain—and adopt a simplified view of the
others27–29,38–40.

The investigation of a host cell’s interactions with synthetic gene
circuits requires a balance between model realism and minimum
complexity. Indeed, abstracting somegene expression steps or cellular
signaling pathways carries the risk of neglecting important ways in
which a synthetic device can influence the cell. Conversely, a finer view
of gene expression and metabolic regulation, as well as the incor-
poration of biochemical interactions that are only significant in certain
culture environments, may yield an overly detailed model with many
unknown or unidentifiable parameters41. Excessive model complexity
can also hinder informative biocircuit analysis and complicate the
understandingof corebiochemical processes defining the cell’s state28.

In this study, we aimed to enable easy yet reliable resource- and
cellular context-aware design of synthetic circuits by developing a
coarse-grained mechanistic model that would:
(1) Based on physiologically meaningful parameters, allow to model

the expression of a biocircuit’s genes, considering their interac-
tions via both indirect resource couplings and direct mechanisms
commonly employed in synthetic biology.

(2) Account for the context of the host cell and its interaction with
synthetic genes, incorporating the key regulatory pathways
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Fig. 1 | Models and empirical laws for cellular resource availability. a Instead of
explicitly modeling the binding and unbinding of all competing substrates to the
free resource (left), one can define the rate of a compound’s synthesis as a product
of the total abundance of the resource R, which can be free (r) or bound to a
substrate molecule (bi), and the effective rate constant keff

i (right). The effective
rate constant depends on all competing species’ concentrations, affinities to the

resource, and product synthesis rates9.b First (dashed line) and second (solid lines)
bacterial growth laws relate growth rate to ribosome content in different condi-
tions. Formulated by Scott et al.21, they postulate that the cell’s ribosome content
increases linearly with the growth rate as the culture medium’s nutrient quality
improves, but this relationship becomes inverse when translation is inhibited by an
antibiotic.
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presently understood to underlie cellular resource allocation and
growth control, particularly ppGpp signaling.

(3) Be minimally complex, enabling the derivation of informative
analytical relations which can guide the choice of a biocircuit’s
design parameters to achieve a desired behavior.

Defining such a model and parameterizing it for E. coli, we
show that it reproduces experimentally observed bacterial growth
phenomena, as well as empirical relations between the burden-
dependent reduction in growth rate and different quantities
characterizing heterologous gene expression in the cell. We also use
our model to numerically reproduce the experimentally observed
effects of resource competition on the behavior of self-activating gene
circuits. Finally, we showcase our model’s usefulness for the develop-
ment of resource-aware biocircuits by leveraging it to propose and
analyze a biomolecular controller for mitigating gene expression
burden. By maintaining near-constant ribosome availability at a cell-
wide level, it reduces the effect of indirect couplings via the shared
ribosome pool.

Results
A resource-aware cell model predicts growth phenomena
Our model, depicted in Fig. 2, distinguishes three bacterial gene clas-
ses, respectively labeled r, a, and q: ribosomal, metabolic, and house-
keeping. The metabolic gene class enables tRNA aminoacylation
and includes both aminoacyl-tRNA synthetases themselves and
the enzymes enabling import and conversion of the culture
medium’s nutrients into protein precursors. Other non-ribosomal
genes belong to the housekeeping class,whose expression is regulated
to be independent of culturing conditions19,20,26. Following a coarse-
grained approach, all metabolic genes are treated as a single
lumped gene; the same strategy is applied to ribosomal genes.
Meanwhile, the abundance of housekeeping proteins in the cell is
assumed constant—under a wide range of conditions, their share in
the cell’s proteinmass isfixed atϕq ≈0:59

20. Hence,we avoidmodeling
their expression explicitly (Supplementary Note S1.5). Besides
mRNA and protein expression, we model the concentrations
of uncharged and charged (i.e., aminoacylated) tRNA molecules in
the cell, since they play a key role in determining translation rates
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Fig. 2 | Schematic and definition of the proposed coarse-grained resource-
aware cellmodel. a Schematic of our host cellmodel.mRNAs are transcribed from
genomic DNA and translated to make proteins. Competitive ribosome binding is
not modeled explicitly—instead, effective rate constants relate each gene’s trans-
lation rate to the concentrations of protein precursors, ribosomes and allmRNAs in
the cell. Ribosomes enable translation, whereas metabolic proteins catalyze nutri-
ent import and tRNA aminoacylation. Native homeostatic regulation maintains
housekeeping protein expression levels constant. The synthesis of tRNAs and

ribosomal mRNAs is repressed by ppGpp, whose concentration reflects the reci-
procal of the ratio of concentrations of charged and uncharged tRNA concentra-
tions. The overall rate of protein synthesis defines the growth rate, since dilution
due to growth must keep the cell’s total protein mass constant. b The model’s
ordinary differential equations (ODEs) and the physiological meaning of their
terms. To avoid clutter, parameters and terms for different genes butwith the same
meaning are annotated only once.
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and resource allocation between gene classes31. Our modeling
choices and derivations are detailed in “Methods” and Supplementary
Note S1.

To validate model predictions against experimental data, we
parameterized it for E. coli, the most studied bacterial model
organism19,26,31,42 and one of the most popular host organisms in syn-
thetic biology43. Most parameter values, displayed in Supplementary
Table 1, were taken from literature. The rest were fitted to experi-
mentalmeasurements of growth rate and ribosomalmass fraction of E.
coli subjected to different concentrations of the translation-inhibiting
antibiotic chloramphenicol in various growthmedia19,26 as described in
“Methods” and Supplementary Note S2.

As demonstrated by Fig. 3a, our model’s steady-state predictions
for different culture conditions are generally consistent with empirical
bacterial growth laws illustrated in Fig. 1b19,21. Indeed, when nutrient
quality improves and chloramphenicol levels remain unchanged, the
cell’s ribosome content increases linearly with the growth rate, obey-
ing the first bacterial growth law. Moreover, augmenting translation
elongation inhibition for the samenutrient quality produces an inverse
proportionality between the ribosome content and growth rate for
chloramphenicol levels of up to 4μM. We also confirmed the con-
sistency of our model predictions for the cell’s ribosome content,
translation elongation rate, and ppGpp level with experimental results.
To this end, we varied the nutrient quality factor σ without inhibiting
translation and compared our model’s steady-state predictions with

experimental data from the 37 different experimental studies com-
piled by Chure and Cremer26 (Fig. 3b–d). As for the cell’s dynamic
behavior, in SupplementaryNote S1.6 we compared experimental data
with the predictions of our model’s extension that allows to simulate
nutrient upshift scenarios34,36.

Figure 3b supports the linear-like bacterial growth law depen-
dence between ribosome content and growth rate, although for
growth rates below λ ≈0.3 h−1 our model predictions take a nonlinear
downturn, diverging from experimentalmeasurements. Moreover, for
E.coli subjected to 8μM of chloramphenicol, predictions do not
strictly follow the linear trends. Notably, these discordances arise in
highly unfavorable conditions—that is, strong inhibition of translation
or very poor nutrient quality of the medium. Hence, to some extent
they may be attributed to experimental errors, since it is difficult to
ensure thatmeasurements in such conditions pertain to cells in steady
state26. Hostile environments can also trigger the cell’s stress response
mechanisms unconsidered by our model, such as ribosome inactiva-
tion, preserving the bacterium’s ability to synthesize proteins in
adverse conditions42. Furthermore, since mRNA synthesis rate
depends on the cell’s growth rate44, low-nutrient culturemedia reduce
the overall concentration of transcripts in the cell. This leads tomRNA
scarcity, rather than translational resource allocation that our model
focuses on, becoming the key determinant of the growth rate27.
Together, these factors limit our model’s predictive power in unfa-
vorable conditions.
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Fig. 3 | Growth phenomena predicted by our model. a Experimental measure-
ments by Scott et al.19 used in parameter fitting (circles) and model predictions
(crosses) for steady-state ribosomal mass fractions and growth rates. The first and
the second growth laws are illustrated by varying culture media and extents of
translation inhibition, respectively. Second growth law fits do not include the two
predicted points for translation inhibition with 8μM of chloramphenicol due to
them diverging from the linear growth law trend. Chloramphenicol action was
modeled as outlined in Supplementary Note S2.1. b–d Comparison of model pre-
dictions (obtained by simulating Eqs. (15)–(20)) for the cell in steady state with
experimental data from previous studies26. In (b), the dotted vertical line denotes
the λ=0:3 threshold, left of which model predictions for ϕr significantly diverge

from the experimental data. In (d), the ppGpp levels are normalized to the refer-
ence value forwhich λ≈ 1 h�1. eRatio of the steady-state growth rate λ predicted by
our model to the optimal growth rate λ

opt
for σ varied from 0.05 to 1. For each

medium nutrient quality σ considered, we did the following. First, we recorded the
steady-state cell growth rate λ (here, the bar notation indicates a variable’s steady-
state value) predicted by our model. According to it, T, the inverse of ppGpp
concentration, reflects the charged and uncharged tRNA levels as detailed by Eq.
(28). Then, we assumed that ppGpp concentration in the cell is instead constant,
ran simulations for different fixed values of T and identified the maximum steady-
state cell growth rate λ

opt
across all considered values. Source data are provided as

a Source Data file.
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Finally, in Fig. 3e we confirmed whether ppGpp regulation in our
model reproduces near-optimal control of steady-state growth rates in
a wide range of culturing conditions in line with prior modeling and
experimental studies23,24,26. As shown in Fig. 3e, for 0.05 ≤ σ ≤ 1 the
growth rate forecast by our ppGpp regulation model was always very
close (within 2.3%) to the optimal value, which supports the notion of
near-optimal control of resource allocation.

Including heterologous gene expression in the cell model
Our cell model can be extended to consider heterologous
gene expression and simulate gene circuit dynamics while accounting
for resource couplings and the effects of heterologous gene expres-
sion on the host’s metabolism that can influence the biocircuit’s per-
formance, such as growth rate changes. Besides native genes, let there
be a set of L heterologous genes X = {x1,…, xL}. To model their
expression, we add to Eqs. (15)–(20) a pair of Ordinary Differential
Equations (ODEs) for each heterologous gene, which describes
its transcription and translation (Supplementary Note S3.1). For a
synthetic gene xl, they are:

_mxl
= Fxl

cxlαxl
λðϵ,BÞ � ðβxl

+ λðϵ,BÞÞmxl ð1Þ

_pxl
=
ϵðtcÞ
nxl

� mxl
=kxl

1 + 1
1�ϕq

P
j2fa,rg∪Xmj=kj

R� λðϵ,BÞ � pxl ð2Þ

where all parameters have a similar definition to those of the para-
meters describing the native genes, while the transcription regulation
function Fxl

is circuit- and gene-specific. Likewise to the original host
cell model, we assume that transcriptional resource couplings are
insignificant, as are the toxicity and active degradationofheterologous
proteins, although the latter assumption can be lifted bymakingminor
modifications as outlined in Supplementary Note S3.2. Meanwhile, the
constant housekeeping protein mass fraction ϕq ≈0:59 remains the
samedespite synthetic gene expression19–21. Consequently, themodel’s
original ODEs for native mRNA and tRNA levels are not altered by the
addition of synthetic genes. Conversely, Eqs. (17) and (18) describe
protein concentrations and thus include terms for translation. There-
fore, they must be amended to consider additional synthetic mRNAs
competing for ribosomes:

_pa =
ϵðtcÞ
na

� ma=ka

1 + 1
1�ϕq

P
j2fa,rg∪Xmj=kj

R� λðϵ,BÞ � pa ð3Þ

_R=
ϵðtcÞ
nr

� mr=kr

1 + 1
1�ϕq

P
j2fa,rg∪Xmj=kj

R� λðϵ,BÞ � R ð4Þ

Combined, all extensions yield Model VI in Supplementary
Note S3.1, which describes the cell and the synthetic circuitry it hosts.
All synthetic genes’ expression in this work was modeled using these
ODEs, with the generic Supplementary Eqs. (75) and (76) for synthetic
gene expression substituted by the specific ODEs for each circuit,
which we explicitly provide in Supplementary Note S4.

To demonstrate how our modeling framework captures the
implications of resource competition for synthetic gene expression,
we recreated two experimentally documented cases of self-activating
gene circuits’ behavior being qualitatively altered by resource com-
petition and the dependence of host cell growth on synthetic gene
expression. First, we considered the “winner-takes-all” phenomenon5,
the ODEs for which are provided in Supplementary Note S4.2.1. Alone
in the host cell, a self-activating synthetic gene can act as a bistable
switch with a high- and a low-expression stable steady states45. In the
winner-takes-all scenario, two such switches in the same cell
interact via the shared resource pool (Fig. 4a). Hence, if one switch

("the winner”) reaches its high-expression equilibrium first, increased
resource competition can prevent the other switch from ever reaching
the corresponding high-expression steady state (Fig. 4b and Supple-
mentary Fig. 4b–d).

Second, we reproduced the emergence of bistability due to host-
circuit interactions46,47 using the equations in Supplementary
Note S4.3.1. Typically, self-activating genes act as bistable switches
only if positive feedback is cooperative, i.e., a protein activates gene
expression more efficiently if multiple copies of it are present. A het-
erologous T7 RNA polymerase (RNAP) transcribing its own gene
exhibits non-cooperative self-activation (Fig. 4c), so its expression is
expected tobemonostable. However, by slowing thehost cell’s growth
rate and thus protein and mRNA dilution, burden introduces an
additional feedback loop which can confer bistability to this circuit
despite its non-cooperativity as shown in Fig. 4d, e.

Nonetheless, simulations and bifurcation analysis48 reveal that the
winner-takes-all effect fades as the self-activating genes’ resource
demand is reduced (Supplementary Fig. 4e), whereas changing T7
RNAP’s toxicity can render the non-cooperative self-activator mono-
stable (Supplementary Fig. 5). Our model can therefore be used to
determine whether given circuit design parameters can give rise to
resource competition phenomena of interest.

Analytical predictions reveal how burden affects the cell
Besides enabling numerical prediction of circuit behavior, with
some simplifying assumptions our model allows to derive analytical
relations capturing the effect of different parameters on different
variables’ steady-state values. Namely, we assume that heterologous
gene expression burden has very little effect on the cell’s steady-state
translation elongation rate and ribosomal gene transcription regula-
tion function. While no experimental studies to date have directly
evaluated these values’ burden-dependence, in Supplementary
Note S3.4we show that this assertiondirectly follows fromourmodel’s
definition, as well as confirm it numerically. This allows to postulate,
regardless of which synthetic genes are present, that Fr ≈ F

NB
r

and ϵ≈ ϵNB, as well as ki ≈ k
NB
i because the mRNA-ribosome dissocia-

tion constants are defined as functions of ϵNB. The NB (“no burden”)
index denotes steady-state values in absence of any synthetic gene
expression, i.e., X =+. While the formulae derived in this section
require knowing the values of ϵNB, F

NB
r , and k

NB
i , they can easily be

retrieved by simulating the host cellmodel without synthetic genes for
a given σ. Additionally, we assume that all mRNA molecules in the
system decay at roughly the same rate, i.e., βi ≈ βj,∀ i, j∈ {a, j}∪ X.
Importantly, while the transcripts of individual native E. coli genesmay
have very different degradation rates49, the coarse-grained nature of
our model means that this assumption only concerns the average
degradation rates across the native gene classes, each of them span-
ning many genes.

Resource coupling analysis is commonly facilitated by lumping a
gene’s parameters into a coefficient which quantifies the gene’s ability
to seize expression resources and its own susceptibility to competition
from other genes6,12,29. For a synthetic gene xl∈ X, we define it as the
“translational burden” ξxl

shown in Eq. (5), where Fxl
is the steady-state

value of gene xl’s transcription regulation function:

ξxl =
Fxl

cxlαxl

k
NB
xl

ð5Þ

As revealed by the derivations in Supplementary Note S3.5, our
translational burden factor combines the advantages of several exist-
ing lumped resource competition quantifiers. By considering the host
cell’s context, similarly to the “resource recruitment strengths” J
defined by Santos-Navarro et al.29, we can use ξxl values to capture the
competition between synthetic and native genes. Namely, the steady-
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statemass fraction of heterologous protein in the cell as a function of ξ
can be estimated as:

ϕX ðξÞ≈
ξ

ξ +
P

j2fa,rgF
NB
j cjαj=k

NB
j

� � where ξ =
X
xl2X

ξxl ð6Þ

However, unlike resource recruitment strengths and similarly to the
“resource demand coefficients” Q used by McBride and Del Vecchio6,
ξxl is independent of the cell growth rate. Hence, the growth rate itself
can be analytically estimated from synthetic gene parameters
according to Eq. (7):

λðξÞ≈ ϵNBð1� ϕqÞ
M

� F
NB
r crαr=k

NB
r

ξ + F
NB
r crαr=k

NB
r + caαa=k

NB
a

� � ð7Þ

A Hill relationship akin to Eq. (7) is sometimes used in resource-aware
models that abstract the host’s native gene expression yet aim to
capture cell growth rate’s burden-dependence17,18. However, these
relations involve scaling factors defined arbitrarily for each synthetic
circuit, such as the “metabolic burden threshold” in ref. 18. Conversely,
our expression only involves the physiological parameters of native
and synthetic genes.

Furthermore, the change in the cell growth rate relative to λ
NB

—

that is, λðξ =0Þ—can be related to the total mass fraction of all het-
erologous proteins in the cell ϕX (Supplementary Note S3.6):

λ

λ
NB ≈ 1� ϕX

1� ϕq
ð8Þ

Several different empirical relations, such as Hill or linear depen-
dencies, have been suggested to link gene expression burden to the
reduction in cell growth rate6,19. Therefore, previous works have con-
sidered different formulae as part of their gene expression models in
order to ensure that the modeling outcomes stay valid regardless of the
assumed burden-growth dependency50. However, Eqs. (7) and (8) hint
that these relations may not be mutually exclusive, but rather apply to
different quantities describing heterologous gene expression. Namely,
Eq. (7) relates growth rate to the translational burden—that is, a measure
of the synthetic genes’ resource demand, determined by the circuit’s
design parameters—giving rise to a Hill relation akin to that used in the
work of McBride et al.6. If growth rate is linked to the heterologous
protein yield, which is affected by resource couplings, a linear depen-
dency given by Eq. (8) emerges, matching the observations of Scott
et al.19. Our model therefore provides a possible unifying framework to
explain different empirical laws describing the dependence of cell
growth rates on synthetic gene expression.
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cell hosts two bistable switches, each consisting of a protein that, upon being
allosterically modulated by an inducer molecule, cooperatively acts as a tran-
scription factor activating its own expression. Adding the corresponding inducer to
the medium causes a switch to move toward a high-expression equilibrium. For
higher inducer levels, this happens on a shorter timescale (Supplementary Fig. 4a)5.
b Phase plane diagram showing the two-switch system’s behavior upon simulta-
neous addition of inducer 1 and inducer 2 to the culture medium. Thin lines with
arrowheads: the system trajectories for different concentrations of inducer 1 being
added. Circles joined by a line: system’s final steady states as the concentration of
inducer 1 increases from 4nM to 800nM with a step of 4 nM. In all cases, the
concentration of inducer 2 being added is 20 nM. In line with winner-takes-all

behavior, the switch with a lower inducer concentration (slower activation) is
prevented from reaching a high-expression equilibrium. Co-activation is achieved
when the timescales of activation are identical for both switches, i.e.,
f1 = f2 = 20 nM5. c A heterologous T7 RNAP transcribing its own gene exhibits non-
cooperative self-activation. However, bistability arises due to the host cell growth
rate’s susceptibility to resource competition and synthetic protein toxicity. Note
that here the gene transcription rate does not scale with cell growth due to tran-
scription being enabled by heterologous machinery46. d, eDepending on the initial
condition, RNA polymerase concentration and cell growth rate converge to dif-
ferent steady-state values, indicatively of bistability. For both trajectories shown,
the initial condition for heterologous mRNA levels ismt7(0h) = 0. The parameters
and ODEs used in simulations are given in Supplementary Notes S4.2.1 and S4.3.1
for (b) and (d, e), respectively. Source data are provided as a Source Data file.
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To compare our analytical estimates with the model’s numerical
predictions for different extents of translational burden, we simulated
the expression of a constitutive heterologous gene by an E. coli cell
(parameterized in Supplementary Table 4). The burden ξ exerted on
the host by the synthetic gene was varied by sweeping through dif-
ferent values of the gene’s DNA concentration from 1 nM to 1100 nM,
producing the results plotted in Fig. 5a–c. Our approximate analytical
predictions of Eqs. (6)–(8) closely follow the steady-state values
obtained by numerical simulation (Fig. 5a–c, respectively), vindicating
the assumptions made in the course of our analytical derivations. In
Fig. 5c, both the analytical and numerical predictions are largely con-
cordant with experimental data compiled by Chure and Cremer26,
although the real and predicted measurements diverge when the
heterologous protein overexpression stress is very high (ϕX >0:25).
The reasons for this are likely similar to the general reasons why our
model’s predictions do not match experimental data in highly unfa-
vorable conditions—namely, measurement errors26, ribosome
inactivation42, and the dependence of slowly dividing cells’ growth rate
on their mRNA content27.

Analytical relations derived using our model and simplifying
assumptions can facilitate the design of heterologous gene expression
systems. For example, consider a population of N E. coli cells expres-
sing a constitutive heterologous protein of interest ppoi and dying at a
constant rate δ, modeled by Eq. (9):

_N = λN � δN ð9Þ

We can analytically find the optimal translational burden ξmax that
maximizes the production rate μ of the protein of interest by the cell
population (Supplementary Note S3.7). This yields an analytical
optimality condition based on the gene of interest’s design para-
meters, namely its DNA copy number cpoi, promoter strength αpoi, and
apparent mRNA-ribosome dissociation constant k

NB
poi (reflecting the

RBS strength):

cpoiαpoi

k
NB
poi

= ξmax =
1� δ=λ

NB

1 + δ=λ
NB �

X
j2fa,rg

Fjcjαj

k
NB
j

ð10Þ

In Fig. 5d, we plot the total protein production rate (calculated
according to SupplementaryEq. (107) in SupplementaryNote S3.7) as a
function of the gene expression burden ξ, assuming that δ = 0.25 h−1.
Notably, ξmax yielded by Eq. (10) lies within 0.93% of the numerically
found optimal value.

Mitigating cell-wide resource couplings by integral feedback
To demonstrate how our model can facilitate resource-aware circuit
development, we used it to design and analyze a biomolecular con-
troller thatmitigates resource couplings via the shared ribosomepool,
reducing the impact of gene expression burden. Usually, robustness to
couplings is achieved for a single variable or a limited set of synthetic
genes that draw resources from an orthogonal pool, whose size is
regulated by a biomolecular controller7. Conversely, our design redu-
ces fluctuations in resource availability at the whole-cell level. Our cell
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model is particularly suited for studying such controllers: by con-
sidering the expression of not just synthetic but all genes in the cell, it
captures cell-wide resource couplings that our controller seeks to
minimize. The analysis of these couplings is facilitated by the cell
model’s effective rate constant framework.

The proposed circuit, illustrated in Fig. 6 and modeled by Sup-
plementary Eqs. (121)–(127), employs the Antithetic Integral Feed-
back (AIF) motif, which can maintain a physiological variable of
interest at a desired setpoint value51,52. It comprises an annihilator
and an actuator species, where the annihilator’s synthesis rate
depends on the controlled variable and the actuator species is pro-
duced at a constant rate, which sets the desired reference value.
Since one annihilator and one actuator molecule can react to disable
each other, the concentration of remaining non-annihilated actuator
molecules reflects the integral of the error between the controlled
variable and the reference. By influencing the rest of the system, the
actuator molecules ensure robust perfect adaptation (RPA) to
disturbances51,52. To control ribosome availability in the cell, we
implement this motif using RNA logic, where the actuator is a
protein-encoding mRNA and the annihilator is a small RNA (sRNA)
that binds it to form a rapidly degraded complex53,54. As it does not
involve protein synthesis, this RNA-based implementation is neither
affected nor disrupted by translational resource couplings that we
seek to mitigate, whereas transcriptional couplings in bacteria are
largely insignificant6,14,55.

Besides the AIF motif’s “actuator” and “annihilator” genes act and
anti, the circuit comprises two more genes: the “sensor” sens and the
“amplifier” amp. Ribosomal competition affects the level of the con-
stitutively expressed transcription factor that is encoded by the sensor
gene and regulates the annihilator sRNA’s transcription. Actuation
happens by changing concentrations of the transcripts competing for
ribosomes. While the actuator mRNA sequesters some ribosomes, the
protein encoded by it also regulates the transcription of an additional
amplifier gene. This amplification is needed because heterologous
mRNA concentration can significantly affect the ribosomal competi-
tion landscape only if it is large enough to be comparable to the

abundance of native transcripts. However, a substantial amount of
actuator mRNAs is sequestered by the annihilator. Hence, achieving
such a large concentration of heterologous transcripts by only
expressing the actuator would require very high transcription rates.
We therefore task another mRNA, which is not annihilated by any
sRNA, with the bulk of the control action.

The variable of interest, whose fluctuations our controller aims to
minimize, is the sensor protein’s concentration psens, since the cell’s
resource availability is known to be captured by constitutive gene
expression levels56. However, our model (with the simplifying
assumptions outlined in the previous section) also allows to analyti-
cally retrieve the values of cell-wide variables that affect the expression
of all genes in the cell. Namely, we can find the setpoint for the
“resource competition denominator”:

D= 1 +
1

1� ϕq

X
j2fa,rg∪X

mj=kj , ð11Þ

In Eqs. (2)–(4), this value is the denominator of the effective
protein synthesis rate constant, which adjusts the corresponding
translation rate in view of competition from other transcripts. In a
given culture medium and for a given steady-state value psens,
its setpoint value is given by Eq. (12). The meaning of the circuit’s
parameters found in this and other equations regarding our
integral controller is illustrated in Fig. 6 and explained in
Supplementary Tables 8 and 9.

D= 1 +
λζ

ðλ+βsensÞk
NB
sens

� nsens

M
� Ksens �

1� u
u

� ��1

ð12Þ

Likewise, the steady-state growth rate maintained by the controller is
given by:

λ≈
ϵNB

M
� FNB

r crαr �
nsensk

NB
sens

nrk
NB
r

� Ksens

csensαsens
� 1� u

u
ð13Þ
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Besides setpoints for different variables, we can analytically esti-
mate the controller’s operation range—that is, the range of disturbance
magnitudes which our design can negate to maintain a near-constant
ribosome availability (Supplementary Note S4.4.2). If the cell is
endowed with L synthetic genes {x1, x2,…xL} besides those of the
controller, the disturbance caused by expressing them is mitigable
only if:

X
xl2fx1 ,x2,...xLg

F
NB
xl

cxlαxl
λ

k
NB
xl

ðλ+ βxl
Þ
≤

csensαsensð1� ϕqÞMλ

Ksensnsensk
NB
sensðλ+βsensÞ

� 1� u
u

�
X

j2fa,r,sensg

F
NB
j cjαjλ

k
NB
j ðλ+βjÞ

ð14Þ

To test the proposed controller’s performance and the accuracy
of our estimates, we used our cell model to simulate how the integral
controller reacts to the appearance of an additional mRNA species
competing for the shared ribosome pool (Fig. 7a), plotting the out-
come in Fig. 7b–f. Figure 7b, c shows that the amplifiermRNA levels fall
in response to a step disturbance, restoring the original extent of
resource competition. Consequently, the adaptation error—that is, the
differencebetween the variables’ values before and after disturbance—
decreased almost twofold compared to the open-loop case where the
annihilator, the actuator, and the amplifier are not expressed. This
reduction of adaptation error is observed for various disturbing gene
concentrations within the calculated operation range (Fig. 7g) and
stays consistent in presence of parameter uncertainty, stochasticity of
gene expression, and time-variant disturbance (Supplementary
Figs. 6 and 7). Besides the abundance of transcripts competing for
ribosomes, resource availability depends on the culture medium’s
nutrient quality. As Fig. 8 shows, the controller successfully reduces
the adaptation error upon the induction of a disturbing gene in dif-
ferent media, as well as when nutrient quality and the competing
mRNA’s abundance are varied together.

Nevertheless, the observed adaptation errors in Fig. 7d–f are non-
zero, which can be explained by “leakiness”. This phenomenon arises
in AIF controllers when the actuator’s and the annihilator’s degrada-
tion and dilution rates are non-negligible compared to their rate of
mutual elimination, which prevents the controlled variable from
achieving RPA. Moreover, our derivations of the analytical estimates
for λ and D neglect leakiness (Supplementary Note S4.4.2). Alongside
the assumptions of constant ϵ and Fr that we made in our derivations,
this has likely contributed to the observed discrepancies between the
numerically obtained and analytically estimated values for these vari-
ables. However, although leakiness can arbitrarily deteriorate the
performance of AIF controllers, the observed adaptation errors remain
relatively low, while changing our circuit’s parameters can further
improve the controller’s performance. Figure 7g shows how increasing
the amplifier gain χ (i.e., the maximum amplifier mRNA production
rate) lowers the adaptation error even as the disturbance’s magnitude
rises. Increasing the actuator and the annihilator RNAs’ transcription
rate κ has been shown to reduce the adaptation error of the controlled
variable’s mean value53—although in some cases this can lead to
instability57 (Supplementary Fig. 8).

A promising application for our controller is enforcing the
assumption of modularity in synthetic biology, which is typically
invalidated by resource couplings12. For instance, the shape of a gene’s
induction curve can be altered if competing synthetic genes are
expressed in parallel6. However, our controller renders the induction
curve more robust to different disturbances (Fig. 9). Notably, the
inducible module, the disturbing gene, and the constitutive sensor
gene in this case interact only via the shared resource pool and not
directly. The inducible module’s improved robustness to perturba-
tions therefore demonstrates that our controlled variable—i.e., the

sensor gene’s expression—indeed reflects resource availability at the
level of the entire host cell, and that by keeping it constant our integral
controller mitigates fluctuations in burden. Besides maintaining
modularity, our controller could slow the loss of synthetic genes by
engineered cells. A loss of heterologous gene expression to mutation
normally means that the growth rate is less impaired by gene expres-
sion burden, so mutants outcompete the original engineered cells58.
Conversely, as long as our controller itself remains functional, it keeps
resource availability roughly constant regardless of whether any other
synthetic genes are expressed. Without the reduction of translational
burden, mutants lack the competitive advantage over the engi-
neered cells.

Notably, our controller produces many transcripts that sequester
ribosomes to release them when disturbances increase resource
demand (Fig. 6), which burdens the cells expressing it. This reduction
of resource availability and cell growth in exchange for control over
cellular variables and robustness to perturbations is a common trade-
off of growth rate controllers59,60 and feedback circuits that mitigate
fluctuations in resource demand11,61. Meanwhile, non-burdensome
mitigation of cell-wide resource availability changes is currently
restricted to feedforward architectures where the disturbing and the
controller gene must be co-regulated62. Conversely, by sensing ribo-
some availability itself via the sensor gene’s expression level, our
feedbackcontroller hasno such requirement,mitigatingperturbations
irrespective of their cause.

Discussion
The influence of resource competition on synthetic circuit perfor-
mance, both through indirect interactions between different synthetic
genes and through the burden imposed on the host cell, can be seen
from several perspectives. One approach exclusively considers syn-
thetic genes, applying effective rate frameworks to obtain a simple,
easily interpretable model that predicts a circuit’s behavior and the
impact of changing its design parameters6,9,12. In this case, the interplay
between heterologous gene expression and the host cell’s state is
either neglected12 or abstracted and captured by simple phenomen-
ological relations, which involve circuit-specific parameters without
clear physiological meaning and do not mechanistically explain the
effects of burden18. On the other hand, models of the entire bacterial
cell reveal how resources are allocated between the host’s own genes
and those of the synthetic circuit28,38. However, highly complex cell
models involving many variables and parameters obscure the key
underlying processes anddonot allow analytical derivations, requiring
extensive numerical simulations to understand the effect of a given
design choice.Meanwhile, excessive coarse-grainingmay leave out the
interactions that are crucial for understanding bacterial resource
allocation and designing gene circuits.

Our modeling framework combines the strengths of simplified
resource competition analysis frameworks and cell models, balancing
coarse-graining with accurate representation of gene expression and
regulation. To this end, we apply an established resource-aware
modeling framework, based on effective reaction rate constants9,12, to
a coarse-grained model which relates protein synthesis to cell growth
via the finite proteome trade-off28 and captures the dynamics of near-
optimal resource allocation in bacteria by incorporating the principles
of flux-parity regulation of gene expression26. The host cell model,
spanning only six variables, can be easily augmented with ODEs mir-
roring Eqs. (1) and (2) for each heterologous gene to describe an
arbitrary synthetic gene circuit. Resource- and host-aware simulations
of a circuit’s behavior can then be performed using our Matlab
implementation of the model found at https://github.com/KSechkar/
rc_e_coli63, enabling rapid and cheap prototyping of resource-aware
biomolecular controllers in silico64. Besides numerical analyses, our
framework’s simplicity allows to obtain a range of analytical relations
between a synthetic circuit’s design parameters and the host cell’s

Article https://doi.org/10.1038/s41467-024-46410-9

Nature Communications |         (2024) 15:1981 9

https://github.com/KSechkar/rc_e_coli
https://github.com/KSechkar/rc_e_coli


growth rate, reproducing the empirical relations commonly used to
capture burden in synthetic gene expression models6,17–19. Conse-
quently, our model not only yields the forms of these relations which
are rooted in physiological parameters, but also provides them with a
unifying framework.

Comprising only a few variables, our model nonetheless escapes
the major limitations of using very low-dimensional biomass-centric
frameworks, such as the original flux-parity regulation model26, in
resource-aware circuit analysis. Namely, rather than considering
molecules’ fractions in the bacterial population’s total biomass, our

model predicts their cellular concentrations, which are the quantities
governing the biological interactions commonly leveraged in synthetic
biology (e.g., transcription factor binding to DNA). Furthermore, as
demonstrated by the different curve shapes in Fig. 5b, c, circuit design
parameters’ effect on the host cell is not directly reflected by the
relationship between the cell growth rate and the synthetic protein
mass fraction, but can be captured by our model. Unlike models that
treat protein production as a single step23,26,29, our framework also
allows to model RNA-based regulation, which, by avoiding the most
burdensome and resource competition-dependent step of
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translation56, can be particularly useful in resource-aware circuit
development.

We showcase our approach’s advantages by designing and ana-
lyzing an integral controller that leverages RNA-based logic tomitigate
fluctuations of the host cell’s ribosome availability. The proposed
controller acts at a cell-wide level, making our host-aware modeling
framework more suited for its analysis than simpler resource compe-
tition models that neglect the cellular context. Our model enables
numerical simulations of the controller. Furthermore, while the circuit
infers resource availability via the proxy of the sensor gene’s expres-
sion, the cell growth rate and extent of resource competition corre-
sponding to the controller’ setpoint, as well as our design’s operation
range, can be readily estimated using analytical relations.

Our model’s reliability is supported by the concordance of its
predictions with published experimental data. Although our model

describes E. coli cells, the finite proteome trade-off is believed to be
common for most growing bacterial cells28, while several other bac-
teria, such as S. coelicolor, exhibit behavior consistent with flux-parity
regulation of gene expression26,65. This makes our framework poten-
tially applicable to other species upon re-parameterization. Themodel
can also be extended to account for the aspects of cell physiology
which are currently omitted but may be particularly relevant for cer-
tain applications. For instance, transcriptional resource couplingsmay
become important in the cases of very high heterologous mRNA pro-
duction. They can be captured by adopting the effective rate constant
approach to simplify competitive RNA polymerase binding dynamics
similarly to how we considered ribosome pool couplings12.

In conclusion, ourwork presents a case for combining the insights
from resource competition analysis with the appreciation of resource
allocation in bacterial cells, which makes it an important step toward
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Fig. 8 | Dependence of the controller’s performance on the culture medium.
a Resource availability in the cell can be perturbed both by introducing additional
genes competing for ribosomes and changing the culture medium’s nutrient
quality, both of which our controller is designed to counteract. b, cDependence of
the steady-state value of psens in an open- and closed-loop system, relative to that
for an undisturbed cell in the default medium (i.e., cdist = 0,σ =0.5), on the dis-
turbing gene’s concentration and the change in the medium’s nutrient quality.
The dashed white lines mark the nutrient qualities considered in (d) and (e).
d, e Dependence of the steady-state value of psens, relative to that for an

undisturbed cell, on the disturbing gene’s concentration for media with low
(σ =0.25, standing for λ ≈0.566 h−1 in the closed-loop case) and high (σ =0.75,
standing for λ ≈ 1.462 h−1 in the closed-loop case) nutrient qualities. Note that the
undisturbed sensor protein concentration p0

sens is calculated for cdist = 0 and the
current nutrient quality—that is, σ =0.25 or σ =0.75, as opposed to (b, c), where it
was defined for σ =0.5 in all cases. Unless specified otherwise, the simulation
parameters for all panels are given in Supplementary Table 9, and theODEs used to
simulate the controller are Supplementary Eqs.(121)–(129) in Supplementary
Note S4.4.1. Source data are provided as a Source Data file.
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easy design of reliable resource coupling-based controllers. Our
model’s predictive power can be further enhanced by considering
more types of couplings viadifferent resourcepools and incorporating
the results of future experiments characterizing cell physiology. By
providing numerical and analytical tools for developing resource-
aware circuits with an appreciation for their interactions with the host,
we hope to encourage further exploration of bacterial resource-aware
controller designs and open up avenues for holistic analysis of bio-
circuit performance in the context of the host cell.

Methods
Model definition
Ourmechanistic cell model is given by Eqs. (15)–(20), wherema andmr

are respectively the concentrations of metabolic and ribosomal
mRNAs, pa is the metabolic protein concentration, R is the cell’s total
ribosome count, and tc and tu are the concentrations of aminoacylated

and uncharged tRNAs. The modeling assumptions giving rise to these
equations are summarized in Table 1 and explained below:

_ma = Facaαaλðϵ,BÞ � ðβa + λðϵ,BÞÞma ð15Þ

_mr = FrðTÞ � crαrλðϵ,BÞ � ðβr + λðϵ,BÞÞmr ð16Þ

_pa =
ϵðtcÞ
na

� ma=ka

1 + 1
1�ϕq

P
j2fa,rgmj=kj

R� λðϵ,BÞ � pa ð17Þ

_R=
ϵðtcÞ
nr

� mr=kr

1 + 1
1�ϕq

P
j2fa,rgmj=kj

R� λðϵ,BÞ � R ð18Þ
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Fig. 9 | The enforcement ofmodularity byour integral controller. aOur integral
controller mitigates the effect of competing synthetic genes and changes of the
culture medium on the performance of an inducible genetic module, which con-
sists of a transcription activation factor ta and the output gene x regulated by it.
b, c The module of interest’s induction curve (steady-state output protein con-
centrations plotted against inducer levels in themedium) in open- and closed-loop
setups with and without different disturbances. d, eOpen- and closed-loop steady-

state concentrations of the output protein px relative to their values for a given
inducer concentration f in the default culturemedium andwithout disturbing gene
expression. Unless specified otherwise, simulation parameters for all panels are
given in Supplementary Table 9, and the ODEs used to simulate the controller are
Supplementary Eqs. (121)–(134) in Supplementary Note S4.4.1. Source data are
provided as a Source Data file.
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_tc = νðtu,σÞ � pa � ϵðtcÞ � B� λðϵ,BÞ � tc ð19Þ

_tu =ψðTÞ � λðϵ,BÞ � νðtu,σÞ � pa + ϵðtcÞ � B� λðϵ,BÞ � tu ð20Þ

mRNA synthesis. Gene expression and growth in bacteria are pri-
marily affected by translational, rather than transcriptional, resource
availability6,14,55. For simplicity, we therefore do not consider compe-
tition for transcriptional resources (e.g., RNA polymerases), so the rate
of mRNA synthesis in Eqs. (15) and (16) is given by:

Fi � ci � αi � λ ð21Þ

where αi is the corresponding gene’s promoter strength and ci is its
DNA’s concentration, which for the cell’s native genes is assumed to be
1 nMas a convention (since the volumeof an E. coli cell is around 1μm3,
this is equivalent to one gene copy per cell12). Fi is the dimensionless
transcription regulation function. For the ribosomal genes, Fr captures
the effects of ppGpp regulation andwill be defined later in this section.
The metabolic gene class as a whole is commonly treated as

constitutively expressed19,21,22. Likewise, the expression of aminoacyl-
tRNA synthetases—which we assume to be part of the metabolic gene
class, despite them sometimes not belonging to it in some other
models19,28,38—exhibits little to no dependence on ppGpp levels66.
Hence, we use Fa ≡ 1 across all culturing conditions. Finally, Eq. (21)
includes the cell’s growth rate λ, as RNA production rates across the
bacterial genome increase linearly with the growth rate, presumably
due to changes in the availability of the σ70 factor, which is responsible
for the transcription of most genes in exponentially growing
bacteria44,67. Consequently, since the transcription rate is measured
in nM of mRNA synthesized per hour, while the units of ci and λ are
respectively nM and h−1, the promoter strength αi is dimensionless. In
Supplementary Note S2.3, we also discuss how the value of αi captures
the possibility of a single mRNA molecule being simultaneously
translated by multiple ribosomes12,68.

Protein synthesis. To define protein synthesis rates in Eqs. (17) and
(18), we adopt an approach similar to that used in refs. 9, 12. Hence, in
Supplementary Notes S1.2 and S1.3 we derive the effective translation
rate constants:

keff
i =

ϵ
ni

� 1=ki

1 + 1
1�ϕq

�Pj2fa,rgmj=kj
ð22Þ

where

ki =
k�
i + ϵ=ni

k +
i

ð23Þ

is the apparent mRNA-ribosome dissociation constant, determined by
the binding and unbinding rates between the RBS and the ribosome
(k +

i and k�
i , respectively) and the rate at which the ribosome

completes translation to slide off the mRNA. The latter can be
obtained by dividing ϵ, the translation elongation rate in amino acids
per hour, by ni, the number of amino acid residues in the protein
encoded by the gene. Notably, owing to our assumption that the mass
fraction of housekeeping proteins in the cell ϕq ≈0:59 always remains
constant20,26, we avoid modeling the expression of housekeeping
genes explicitly. Hence, Eq. (22) captures the housekeeping mRNAs’
ribosome demand via the factor 1

1�ϕq
(Supplementary Note S1.5).

Dilution anddegradation of species. As for the removal ofmolecules,
all species are diluted at a rate λ due to the cell growing and dividing.
The overwhelming majority of proteins are not actively degraded in
the bacterial cell69. Hence, save for extremely unfavorable culture
conditions that our model does not aim to describe, the total rate of
protein breakdown in the cell is at most 0.02–0.025 h−1, at least an
order of magnitude smaller than the typical growth rates of 0.3–2 h−1

considered in our study70. Protein degradation is therefore negligible
compared to dilution. Conversely, mRNA degradation is widespread
and happens at a high rate49. Hence, we include additional constant
degradation terms βa and βr in Eqs. (15) and (16), which describemRNA
concentration dynamics. In contrast to mRNAs, the highly stable sec-
ondary and tertiary structure of tRNA molecules protect them from
degradationboth in and out of steady-state cell growth regimes, which
makes the degradation rate of tRNA vanishingly small on the timescale
of cell division71,72. Therefore, the species tc and tu in Eqs. (19) and (20)
are removed by dilution only.

Cell growth rate regulation. The growth rate λ is related to the rate of
protein synthesis in the cell by the finite proteome cellular trade-off,
identified by Weisse et al.28. While the shares of different protein
classes in the cell’s proteinmass canvary, the totalmassof proteins per
unit of cell volume has been observed to be constant in the expo-
nential growth phase73. Consequently, the overall rate of production of

Table 1 | Summary of modeling assumptions and equation
terms affected by them

Assumption Equations Relevant termsa,b

mRNA synthesis

Negligible transcriptional couplings (15), (16), (21) Fi ⋅ ci ⋅ αi ⋅ λ

Constitutive metabolic gene expression (15) Fa≡ 1

mRNA synthesis rate proportional to cell
growth rate

(15), (16), (21) Fi ⋅ ci ⋅ αi ⋅ λ

Protein synthesis

Translational couplings captured by
effective rate constants

(17), (18) ϵðtc Þ
ni

� mi=ki
1+ 1

1�ϕq
jfa,rgmj=kj

R

Housekeeping proteinmass fraction fixed (17), (18), (22) ϕq � ϕq � 0:59

Housekeeping gene expression not
modeled explicitly

(17), (18), (22) mi=ki
1 + 1

1�ϕq

P
j2fa,rgmj=kj

Degradation and dilution of species

mRNA degradation rate comparable to
cell growth rate

(15), (16) −(λ +βi)mi

Protein degradation rate negligible com-
pared to cell growth rate

(17), (18) −λpi

tRNA degradation rate negligible com-
pared to cell growth rate

(19), (20) −λtc, −λtu

Cell growth rate regulation

Cell growth rate maintains constant pro-
tein mass per unit of cell volume

(25) λðϵ,BÞ= ϵB
M

Translation elongation

Translation elongation rate governed by
Michaelis-Menten kinetics

(26) ϵðtcÞ= ϵmax
tc

tc +Kϵ

Protein precursor synthesis

tRNA aminoacylation rate governed by
Michaelis-Menten kinetics

(27) νðtu,σÞ= νmaxσ
tu

tu +Kν

Culture medium’s nutrient quality cap-
tured by the nutrient quality factor σ

(27) νðtu,σÞ= νmaxσ
tu

tu +Kν

Flux-parity resource allocation

ppGpp level reflects the ratio of charged
and uncharged tRNA concentrations

(28) T = tc
tu / 1

½ppGpp�

Ribosome synthesis regulated by ppGpp (29) FrðTÞ= T
T + τ

tRNA and ribosome synthesis co-
regulated

(30) ψ(T) =ψmax Fr(T)

aGeneric index i means that the term pertains to both a and r genes.
bWhere not all factors of a term reflect the assumption, the relevant part is given in bold.
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all proteins must equal the total rate of protein mass dilution due to
cell division. If M is defined as the mass of proteins (in amino acid
residues) in the average volume of the cell over the cell cycle and

B=

P
j2fa,rgmj=kj

1 + 1
1�ϕq

P
j2fa,rgmj=kj

R ð24Þ

is the total concentration of actively translating ribosomes (Supple-
mentary Note S1.4), Supplementary Eq. (8) in Supplementary Note S1
shows that λ can be found as the quotient of the overall protein
synthesis rate (i.e., abundance of translating ribosomes times the
rate of translation elongation) and the cell’s proteinmass, which yields
Eq. (25):

λðϵ,BÞ= ϵB
M

ð25Þ

Translation elongation. We now proceed to define the translation
elongation rate ϵ, which depends on tc, the size of the pool of protein
synthesis precursors (i.e., charged tRNAs)22. This relationship can be
described withMichaelis-Menten kinetics23 as shown in Eq. (26), where
ϵmax is themaximumpossible translation elongation rate74 andKϵ is the
half-saturation constant:

ϵðtcÞ = ϵmax
tc

tc +Kϵ
ð26Þ

Protein precursor synthesis. To replenish the protein precursors
consumed during translation, the uncharged tRNAs (tu) are
aminoacylated by metabolic proteins pa. In line with our coarse-
grained approach, we represent this process as a single reaction,
whose rate per molecule of metabolic protein, which acts as the
enzyme, is given by a Michaelis-Menten relation in Eq. (27)26. In this
relation, tu is the substrate, Kν is the corresponding half-saturation
constant, and νmax is the maximum tRNA aminoacylation rate per
enzyme. The nutrients are assumed to be present in excess—hence
their concentration having no effect on the reaction rate—and the
aminoacyl-tRNA yield per nutrient molecule (alias the medium’s
nutrient quality) is captured by a constant factor 0 ≤ σ ≤ 1. Notably,
some steps of converting the nutrients into protein precursors may in
fact be catalyzed by housekeeping proteins. However, these enzymes’
concentrations are unchanging across all culture conditions, so the
rates of the reactions catalyzed by them can be factored into the
constant parameters νmax and σ.

νðtu,σÞ= νmaxσ
tu

tu +Kν

ð27Þ

Flux-parity resource allocation. Finally, we consider how the cell
allocates resources between the expression of different genes, which is
captured by the ribosomal gene transcription regulation function Fr.
We implement the near-optimal regulation of bacterial gene expres-
sion by the ppGpp signaling pathway according to the recently pro-
posed Flux-Parity Regulation Theory. Yielding reliable predictions of
bacterial behaviors in both steady-state and dynamic scenarios, it
postulates that the cell equates and maximizes the protein synthesis
and tRNA aminoacylation fluxes, which allows it to achieve maximum
growth rate26. The cellular concentration of ppGpp ([ppGpp]) there-
fore reflects the ratio of the aminoacylated and uncharged tRNA
concentrations, although the exact mechanism enabling this is not yet
entirely clear31,75. Consequently, instead of explicitly modeling the
ppGpp concentration’s dynamics, we describe it with a variable T that
follows the biochemically motivated phenomenological relation26:

T =
tc

tu
/ 1

½ppGpp� ð28Þ

ppGpp represses ribosome synthesis30,76, which can be captured
by the Hill kinetics outlined in Eq. (29), where τ is the half-saturation
constant:

FrðTÞ=
T

T + τ
ð29Þ

Since tRNA genes are co-regulated with the ribosomal genes77, Fr(T) is
likewise included in Eq. (30) for the rate of tRNA transcription ψ. This
value is calculated per unit of growth rate because tRNA transcription
is enabled by the same σ70 factor as for most mRNAs78, whose
availability we assume to be growth-dependent44:

ψðTÞ=ψmax FrðTÞ=ψmax
T

T + τ
ð30Þ

Numerical simulations
Our Matlab model implementation, along with all other scripts and
data used to obtain the results described here, can be found at https://
github.com/KSechkar/rc_e_coli63. The deterministic simulations were
run using Matlab R2022a’s ode15s solver on a Dell OptiPlex 7000 PC
with a 2.10 GHz 12th Gen Intel(R) Core(TM) i7-12700 processor and 16
GB RAM, running on Windows 11.

To investigate the integral controller’s stochastic performance,
we used a hybrid tau-leaping simulation algorithm79. Our host cell
variables are coarse-grained, representing the average dynamics of
multiple variables whose fluctuations can be expected to average out,
so their dynamics were captured by the hybrid model’s deterministic
component.Meanwhile, heterologous gene expression dynamicswere
described by the stochastic model component38. The Matlab imple-
mentation of this simulation algorithm—the code for which can be
found together with the rest of our scripts in this manuscript’s GitHub
repository—was run on a PCwith a 3.20GHz Intel(R) Xeon(R)w5-2455X
processor and 125 GB RAM, running on Ubuntu 20.04.1. Matlab
R2023b’s ode15s solver was used to simulate the model’s determi-
nistic component, while the stochastic component was simulated
using a tau-leap algorithm with a time step of 10−6 h. The details of our
hybrid simulation method are provided in Supplementary Note S3.3.

All ODEs used in synthetic circuit simulations are provided in
Supplementary Notes S3.1, S4.2.1, S4.3.1 and S4.4.1. Synthetic circuit
parameters, displayed in Supplementary Tables 1, 4, 6, 7 and 9, were
picked from the feasible ranges based on published literature80–83 as
outlined inSupplementaryNote S4.1.Whenever a system’s steady state
was foundby numerical simulation, thismeant simulating theODEs for
72 h by default, 48 h when calculating the likelihood function during
parameter fitting (as a way of shortening the runtime of our code that
needed to evaluate it many consecutive times), and 480h when
sweeping through different synthetic gene concentrations in Fig. 5 and
Supplementary Fig. 4 due to the cell taking a long time to reach its
steady state in presence of very high burden. The simulation was ter-
minated prematurely if the changes in all variables over 12 h yielded
less than 10−6 when squared and summed together.

Parameter fitting
Parameter fitting was used to estimate the maximum tRNA aminoa-
cylation rate νmax and the ribosome-chloramphenicol binding rate kcm
(required to model chloramphenicol’s action on the cell as outlined in
Supplementary Note S2.1), as well as Kϵ and Kν, theMichaelis constants
determining the translation elongation and tRNA aminoacylation
rates.While themetabolic and ribosomal genes’promoter strengthsαa
andαr also had tobedetermined thisway,we found that the optimality
of the fits remained approximately unchanged over a wide range of
values as long as the αr: αa ratio was the same (Supplementary Fig. 2b).
Therefore, we defined αa using an order-of-magnitude estimate and
fitted this ratio’s value to experimental data. As we outline in
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SupplementaryNote S2.3, this then allowedus toobtainmore accurate
promoter strengths by matching our model’s predictions to experi-
mentally measured RNA production rates84. Moreover, since the
mutual maximization of tRNA charging and protein synthesis fluxes is
known to be achieved when Kϵ ≈Kν

26, we assumed them to be equal,
reducing the number of parameter values to be fitted down to
only four.

Experimental datapoints for fitting were taken from the study by
Scott et al.19, which measured steady-state growth rates and RNA:-
protein mass ratios of E. coli subjected to different concentrations of
the translation-inhibiting drug chloramphenicol in various culture
media. In order to convert RNA:protein mass ratios into ribosomal
mass fractions, theyweremultiplied by a conversion factor of 0.455826.
Due to our model’s lack of consideration of the cell’s metabolic reg-
ulationmechanisms at very low growth rates, only the datapoints with
λ >0.3 were used for parameter fitting.

Similarly to Weisse et al.28, who fitted their model’s parameters to
the same measurements and also used a constant scaling factor
between 0 and 1 to quantify the yield of translation rate-defining pre-
cursor molecules per nutrient molecule, we estimated different media’s
nutrient qualities as six points equally spaced on the logarithmic scale
between σ=0.08 and σ=0.5. The effect of chloramphenicol on the cell
wasmodeledby Supplementary Eqs. (59)–(64), derived and explained in
Supplementary Note S2.1. Briefly, the ODEs were obtained similarly to
the original cell model, first defining amodel that explicitly considers all
reactions involved in competitive ribosomebinding then simplifying the
translation dynamics. However, as chloramphenicol binds and disables
translating ribosomes, extra terms were introduced to the definitions of
apparent mRNA-ribosome dissociation constants {ki}, as well as to the
ODE for R, redefined as the concentration of the cell’s operational
ribosomes. As the cell’s measured ribosome content also includes
inactivated ribosomes, their levels had to be considered and were
denoted as a new variable Bcm, whose ODE was added to the model
(Supplementary Note S2.1).

Fitting was performed using the DiffeRential Evolution Adaptive
Metropolis (DREAM) algorithm, which is a variation of the Markov
Chain Monte Carlo scheme for inferring parameters’ probability dis-
tribution given a set of experimental observations. This involves fol-
lowing the trajectory of a Markov chain, whose states are sets of
possibleparameter values andwhose stationary distribution is equal to
the probability distribution of interest. Generally, such a chain is
simulated by choosing a potential next set of parameter values
according to some proposal distribution and then either accepting or
rejecting it based on the probability of observing a known outcome if
they are true. In the DREAMmodification, the simulation’s efficiency is
increasedby continuously adapting theproposal distributionbasedon
the states considered in the past, as well as tracking several (in our
case, 10) trajectories in parallel85.

Priors for all parameterswere defined as normaldistributions. The
mean was assumed to be 1 for αr: αa and taken from literature for the
other parameters26,28,37. The variances were assumed to comprise a
quarter of the mean. The admissible intervals for all parameters were
set between 1/50 and 50 times the prior’s mean (Supplementary
Table 3). The DREAM simulation was run for 20,000 steps, using
Matlab’s Parallel Computing Toolbox v7.6 and the DREAM v2.4Matlab
package, part of theHydroSight v1.3.1 toolbox86. Themodeof thefitted
probability distributions provided the parameter values for ourmodel.
The parameters’ starting values and other simulation details, as well as
the details of parameter sensitivity analysis based on the fitting’s
outcome87,88, canbe found in SupplementaryNote S2.2. Theparameter
fitting script is provided in this manuscript’s GitHub repository63.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the GitHub reposi-
tory https://github.com/KSechkar/rc_e_coli63 under https://doi.org/
10.5281/zenodo.10700011. The data used for parameter fitting and in
Fig. 3a and Supplementary Fig. 2a are from the study of ref. 19 and are
available as Supplementary Material at https://doi.org/10.1126/
science.1192588. The data used in Figs. 3b–d and 5c and Supple-
mentary Fig. 1 are from the study of ref. 26 and are available in the
GitHub repository https://github.com/cremerlab/flux_parity89 under
10.5281/zenodo.5893799. Source data are provided with this paper.

Code availability
All code used to implement the model and obtain the figures is pro-
vided in the GitHub repository https://github.com/KSechkar/rc_e_
coli63 under https://doi.org/10.5281/zenodo.10700011.
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