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Molecular basis of TMPRSS2 recognition by
Paeniclostridium sordellii hemorrhagic toxin

Ruoyu Zhou1,2,3,4,6, Liuqing He 2,3,4,5,6, Jiahao Zhang2,3,4,6,
Xiaofeng Zhang 2,3,4, Yanyan Li2,3,4, Xiechao Zhan 2,3,4 &
Liang Tao 1,2,3,4,5

Hemorrhagic toxin (TcsH) is a major virulence factor produced by Paeniclos-
tridium sordellii, which is a non-negligible threat to women undergoing
childbirth or abortions. Recently, Transmembrane Serine Protease 2
(TMPRSS2) was identified as a host receptor of TcsH. Here, we show the cryo-
EM structures of the TcsH-TMPRSS2 complex and uncover that TcsH binds to
the serine protease domain (SPD) of TMPRSS2 through the CROP unit-VI. This
receptor binding mode is unique among LCTs. Five top surface loops of
TMPRSS2SPD, which also determine the protease substrate specificity, con-
stitute the structural determinants recognized by TcsH. The binding of TcsH
inhibits the proteolytic activity of TMPRSS2, whereas its implication in disease
manifestations remains unclear. We further show that mutations selectively
disrupting TMPRSS2-binding reduce TcsH toxicity in the intestinal epithelium
of the female mice. These findings together shed light on the distinct mole-
cular basis of TcsH-TMPRSS2 interactions, which expands our knowledge of
host recognition mechanisms employed by LCTs and provides novel targets
for developing therapeutics against P. sordellii infections.

Paeniclostridium sordellii (also known as Clostridium sordellii), is an
anaerobic, spore-forming, and gram-positive bacterium commonly
found in the soil and the gastrointestinal tracts of animals1. In humans,
the bacterium opportunistically colonizes the gastrointestinal and
genital tracts and releases devastating toxins, resulting in acute
symptoms including peritonitis, myonecrosis, gangrene, sepsis, toxic
shock syndrome, and fatality1–3. Approximately 3–4% of women carry
P. sordellii and thus are particularly vulnerable to acute infections after
gynecologic procedures4. It is reported that unsafe abortion leads to
septicemia complicated by toxic shock with a mortality of 100%2.

Hemorrhagic toxin (TcsH, ~300 kDa) and lethal toxin (TcsL,
~270 kDa), which were first described in 1969, are two major virulence
factors of P. sordellii5,6. Both toxins belong to the large clostridial toxin
(LCT) family, which is a group of potent exotoxins secreted by

clostridial species with large protein sizes. Among major LCT family
members, including Clostridioides difficile toxin A (TcdA) and toxin B
(TcdB), P. sordellii TcsL and TcsH, Clostridium novyi alpha-toxin
(Tcnα), and Clostridium perfringens large cytotoxin (TpeL), TcsH
shares the highest homology with TcdA, with a sequence identity
of ~77%7.

Similar to other LCTs, TcsH comprises four structural
domains: an N-terminal glucosyltransferase domain (GTD), a
cysteine protease domain (CPD), a combined transmembrane
delivery and receptor-binding domain (DRBD), and a C-terminal
combined repetitive oligopeptides (CROPs) domain (Fig. 1a)8,9.
These domains together contribute to a multi-step intoxication
process: the toxin initially recognizes the receptor(s) of target
cells and undergoes endocytosis; low pH inside the endosome
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triggers a yet unclear conformational change of the DRBD, which
allows the GTD and CPD across the membrane10,11, followed by a
CPD-mediated and Inositol hexakisphosphate (InsP6)-induced
autocleavage in the cytosol12–15; the released GTD then glucosy-
lates and inactivates Rho GTPases, leading to cytopathic and
cytotoxic effects7,16,17. The CROPs are special elements exclusively
found in the LCT family, which may have carbohydrate-binding
capacity18,19. For TcsH, the CROPs domain consists of twenty-nine
20 to 24-amino acid short repeats (SRs) interspersed with six 31-
amino acid long repeats (LRs).

Researchers have made encouraging progress in resolving the
full-length or near-complete structures of LCTs including TcdA20,21,
TcdB22–25, and TcsL26. At neutral pH, TcdA displays in a “closed” con-
formation that the CROPs domain curves downward alongside the
DRBD,while TcdB andTcsLpresent in an “open” conformation that the
CROPs domain curves upward around the GTD-CPD head. Under the
low-pH condition, the structures of TcdB andTcsLwould convert from

the open to closed conformation22,26. Little is known about the full-
length structure of TcsH.

Following the recent progress in defining LCT receptors, struc-
tures of some LCT-receptor complexes have been resolved, including
TcdB1-FZD227, TcsL-SEMA6A28, TcdB1-CSPG429, and TcdB4-TFPI25. On
the other hand, the structural basis of toxin recognition for other
receptors, including low-density lipoprotein receptor (LDLR) family
proteins for TcdA and Tcnα30–33, low-density lipoprotein receptor-
related protein 1 (LRP1) for TpeL34, and poliovirus receptor-like 3
(PVRL3) for TcdB35, remain to be investigated.

Recently, we reported that Transmembrane Serine Protease 2
(TMPRSS2) is a gastrointestinal epithelial receptor for TcsH36.
TMPRSS2 is a type II transmembrane protein that contains an extra-
cellular domain consisting of a low-density lipoprotein receptor class A
(LDLRA) domain, a scavenger receptor cysteine-rich (SRCR) domain,
and a serine protease domain (SPD)37. TcsH recognizes the SPD of
TMPRSS2 (TMPRSS2SPD) in a CROPs-dependent manner, but the exact
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Fig. 1 | TMPRSS2 binds to the C-terminus of TcsH. a The schematic diagram
showing the domain structures of TcsH and TMPRSS2, as well as the domain
boundaries for TcsH2236-2618 and TMPRSS2ECD used for cryo-EM studies. GTD gluco-
syltransferase domain,CPDcysteineprotease domain, DRBDdeliveryand receptor-
binding domain, CROPs combined repetitive oligopeptides domain. The CROP
unit-I to VI were marked in the enlarged CROPs domain; blue and pink bars
represent SRs (short repeats) and LRs (long repeats) respectively. TM transmem-
brane domain, LDLRA low-density lipoprotein receptor class A domain, SRCR
scavenger receptor cysteine-rich domain, SPD serine protease domain. b The EM

mapof the full-length TcsH in complexwith TMPRSS2ECD is composed of two parts:
a 3.2 Å map for the core region of TcsH holotoxin and colored as shown in Fig. 1a,
and a 6.0 Å map for the C-terminal region of TcsH is colored in gray.
c Superposition of the structure of TcsH2-2387 (blue) onto a cryo-EM structure of
TcdA (gray; PDB: 7POG). d Cartoon representation of the core region of TcsH
holotoxin. e CROP unit-IV bridges to DRBD in the full-length TcsH. LRs are high-
lighted in pink. f The pull-down experiment showed that His-tagged TcsH2210-2618,
but not TcsH1832-2209, binds to immobilizedFc-TMPRSS2ECD. Sourcedata are provided
as a Source Data file.

Article https://doi.org/10.1038/s41467-024-46394-6

Nature Communications |         (2024) 15:1976 2



molecular mechanism is unknown. TcsH also binds to fucosylated
glycans on the cell surface, as knocking out key genes for fucosylation,
such as GMDS, FUT, or SLC35C138, results in drastically reduced TcsH
binding/entry in the MCF-7 cells36.

Here, we determined the cryo-electron microscopy (cryo-EM)
structure of the full-length TcsH in complex with its protein receptor
TMPRSS2. We also demonstrate that TcsH binding potently inhibits
the proteolytic activity of TMPRSS2, which may lead to potential
applications in related biological studies on cancer signaling and anti-
viral therapies.

Results
Cryo-EM structure of the full-length TcsH
To understand how TcsH recognizes TMPRSS2, we set out to deter-
mine the structure of full-length TcsH in complexwith the ectodomain
of TMPRSS2. For ease of description, wedefine each LR surrounded by
several adjacent SRs as a “CROP unit” (Fig. 1a, Supplementary Fig. 1).
Because TMPRSS2 simultaneously undergoes autoproteolysis39, we
introduced an R255Q mutation that prevents the self-cleavage and
generated an extracellular domain fragment of TMPRSS2 namely
TMPRSS2106-492/R255Q or TMPRSS2ECD (Fig. 1a). TMPRSS2ECD was used for
forming the complex with TcsH at neutral pH (Supplementary Fig. 2).
The cryo-EM analysis reconstituted a complex map: 3.2 Å for residues
1-2387 including the “core” domains (GTD, CPD, and DRBD) and 6.0 Å
for the rest part (Fig. 1b, Supplementary Fig. 3). Notably, an extra lobe
of EM density was observed at the C-terminal tip of the CROPs domain
and inferred as the bound TMPRSS2ECD (Fig. 1b).

The structure of the TcsH part presents a TcdA-like “closed”
conformation20, of which the CROPs domain curves downward
alongside the DRBDdomain. This structure exhibits an RMSD of about
7.0 ÅwithTcdA (PDB:7POG)between 2,365pruned atompairs (Fig. 1c).
The CROPs domain is bridged to the DRBD domain through the CROP
unit-IV (Fig. 1d, e), which likely forms a relatively stableconfigurationof
the “core” domains and the CROP unit-I to IV. However, the CROP unit-
V and VI along with the presumable TMPRSS2ECD were in low resolu-
tion, possibly due to the flexibility of these regions in the full-
length toxin.

Structure of the TcsH2236-2618-TMPRSS2ECD complex
To acquire accurate information regarding the TcsH-TMPRSS2 binding
interface, we managed to recruit smaller CROPs fragments for the
cryo-EM study. We generated three CROPs constructs: TcsH1832-2209,
TcsH2210-2618, and TcsH2236-2618. The first two are His-tagged proteins and
the latter one is fused with an MBP tag. As expected, the pull-down
assay showed that TcsH2210-2618 but not TcsH1832-2209 robustly binds to Fc-
fused TMPRSS2ECD (Fig. 1f), supporting the structural observation that
TMPRSS2 binds to the C-terminus of the CROPs domain. Using the BLI
assay, we confirmed that both TcsH2210-2618 andTcsH2236-2618 bound to Fc-
TMPRSS2ECD with similar affinity (KD of 0.37 and 0.75 nM, respectively,
Supplementary Fig. 4). MBP-fused TcsH2236-2618 was selected as a sub-
stitutive TcsH fragment to form a complex with TMPRSS2ECD for the
cryo-EM study.

We then determined the cryo-EM structure of the TcsH2236-2618-
TMPRSS2ECD complex, resulting in a density map of intermediate
resolution. To represent a more detailed interface, we masked out the
marginal parts of the EM-map, and the local resolution of the TcsH-
TMPRSS2 interface (residues 2460-2616 for TcsH and residues 142-492
for TMPRSS2) was further improved to 3.0 Å (Supplementary Fig. 5).
This structure exactly shows that the SPD of TMPRSS2 binds to the
CROP unit-VI of TcsH (Fig. 2a, b and Supplementary Table 1).

Structure of the TcsH-TMPRSS2ECD complex
The newlydetermined TcsH2236-2618-TMPRSS2ECD complexmap together
with the earlier 3.2 Å EM map for TcsH allows us to reconstitute the
atomic model of the TcsH-TMPRSS2 complex (Fig. 2c, Supplementary

Fig. 6). This practice also generates a complete TcsH CROPs domain
from unit-I to VI, exhibiting a long curved β-solenoid fold pinched at
LR4 with each LR/SR consisting of a single β-hairpin followed by a
loop (Fig. 2d).

TcsH recognizes TMPRSS2 through interactive networks
The TMPRSS2ECD adopts a conserved chymotrypsin/trypsin fold with
two six-strand β barrels and a catalytic center containing the canonical
Ser441-His296-Asp345 catalytic triad. This structure is almost identical
to the previously reported one40 (PDB: 7MEQ) with an RMSD of 1.025Å
between 322 pruned atom pairs (Supplementary Fig. 7a). The top
surface of TMPRSS2SPD contains eight surface loops, namely LA, LB, LC,
LD, LE, L1, L2, and L3 (Supplementary Fig. 7b), which determine the
substrate specificity of the protease41. In the TcsH-TMPRSS2ECD com-
plex, LA, LB, LE, L2, and L3 from TMPRSS2 together hold the CROP
unit-VI of TcsH (Fig. 3a), like a big hand grabbing a guinea pig from the
top-view (Fig. 3b). Interactive networks are observed predominantly
through hydrophobic interactions and a few hydrogen bonds with a
buried interface at about 1130 Å2 (Fig. 3c–e). Particularly, side chains of
H2489 from SR25, E2544 from LR6, and Q2520 from SR26 form three
hydrogen bonds with Y322 from LE and Q276 from LA (Fig. 3c). L2558
from SR27 and F2605/I2608 from SR29, together with V280 from LA,
L302 from LB, L419 from L3, andW461 from L2 contribute to extensive
hydrophobic interactions (Fig. 3d, e). In addition, the backbone amino
groups of G2559 from SR27 and F2596 from SR29 form two hydrogen
bonds with E299 from LB and S463 from L2 of TMPRSS2, respectively
(Fig. 3d, e).

Validation of TcsH-TMPRSS2 interactions by site-specific
mutagenesis
To confirm the TcsH-TMPRSS2 interface, we performed structure-
guided mutagenesis on TMPRSS2ECD. Site-directed point muta-
tions on different loops, including V275R and Q276 A at LA, L302R
and H307A at LB, and D417A and L419R at L3, all attenuate the
TcsH-TMPRSS2 interaction, as demonstrated by the pull-down
assay (Fig. 4a). We also generated several mutations on
TcsH2210-2618 according to the structure. Some of them, such as
Q2520A/F2521A, Q2520F/F2521R, E2544R, and F2557N/L2558N,
substantially impair the binding capability of TcsH2210-2618, as
demonstrated by the pull-down assay (Fig. 4b). Consistently,
these TcsH2210-2618 mutants also showed reduced binding to the
surface of MCF7 GMDS‒/‒ cells (Fig. 4c), which expresses TMPRSS2
but not fucosylated glycans. We further introduced mutations,
including Q2520A/F2521A, E2544R, F2557N/L2558N, and Q2520A/
F2521A/E2544R into the full-length TcsH. The circular dichroism
(CD) spectra analysis showed that all these mutant toxins,
including TcsHQ2520A/F2521A, TcsHE2544R, TcsHF2557N/L2558N, and
TcsHQ2520A/F2521A/E2544R (referred to as TcsHAAR thereafter), were
properly folded (Supplementary Fig. 8). When applied to MCF7
cells, all the mutants were less toxic than TcsH (~8 to 50-fold) to
the WT cells (Fig. 4d) but equally potent to the TMPRSS2‒/‒ cells
(Fig. 4e), indicating that these designed mutations specifically
impair the TMPRSS2 recognition.

Albeit the TcsH CROP unit-VI and its homologous fragment in
TcdA (CROP unit-VII) are sequentially and structurally close42

(Supplementary Fig. 9), it was reported that the TcdA CROPs
domain does not bind to TMPRSS236. By interrogating the dif-
ferent residues between the TcsH CROP unit-VI and TcdA CROP
unit-VII, we identified that F2521I, a single-point substitution in
TcsH, is capable of abolishing the TMPRSS2 binding of TcsH2210-2618

where some other mutations also partly affect the interaction
(Supplementary Fig. 10a). On the other hand, reversely mutating
the according residue in TcdA (residue position 2613) from I to F
did not render the TcdA CROPs overt binding to TMPRSS2
(Supplementary Fig. 10b).
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TcsH binding inhibits the proteolytic activity of TMPRSS2
The proteolytic activity of TMPRSS2was achieved by the catalytic triad
composed of S441-H296-D34543 (Fig. 5a). Based on the structure of
TcsH-TMPRSS2ECD complex, the TcsHCROP unit-VI largely covered the
flattop surface of TMPRSS2SPD, with the β-hairpin of SR27 and the loop
of SR29 stretching into the catalytic pocket (Fig. 5b, Supplementary
Fig. 11a).

We then tested whether the binding of TcsH inhibits its
proteolytic activity of TMPRSS2. A fluorogenic peptide Boc-Gln-
Ala-Arg-7-amino-4-methylcoumarin (Boc-QAR-AMC) was used as a
reporting substrate for the proteolytic activity of TMPRSS244.
Active TMPRSS2 can cleave the peptide right after Arg thus the
fluorescent signals are emitted (Fig. 5c). We showed that the
proteolytic activity of TMPRSS2 could be well suppressed by the
addition of TcsH2210-2618 (Fig. 5d) but not TcsH2210-2618 mutants
lacking TMPRSS2-binding ability (Fig. 5e). These results suggest
that the TcsH CROPs-derived fragments may serve as potent
protease inhibitors specific for TMPRSS2.

We also tested three serine protease inhibitors of TMPRSS2,
including Bromhexine, Nafamostat, and Avoralstat. Nafamostat
modifies Ser441 on TMPRSS240, Bromhexine, and Avoralstat may also
target the catalytic triad of TMPRSS2 in the same way45. However, all
three chemicals failed to protect cells from TcsH (Supplementary

Fig. 11b), likely because the modification moiety in the catalytic triad
does not interfere with the toxin-receptor binding interface (Supple-
mentary Fig. 11c).

TcsH mutant with impaired TMPRSS2 binding causes less
epithelial damages
Lastly, we analyzed the toxicity of a TMPRSS2-binding defective
mutant (TcsHAAR) in comparison with the WT toxin by injecting them
into the ligated mouse colons. The dissected colon tissues were pro-
cessed and stained using hematoxylin and eosin (H&E) to examine the
toxin-induced damage in the intestinal epithelium. We observed that
the WT TcsH induced overt epithelial damage to the colon tissue,
resulting in inflammatory cell infiltration, epithelial disruption, and
hemorrhage. TcsHAAR showed attenuated potency and caused greatly
reduced epithelial disruption and hemorrhage to the colonic epithe-
lium (Fig. 6). These results further confirmed our TMPRSS2-TcsH
structure as well as the role of TMPRSS2 in TcsH-induced colonic
epithelial lesions.

Discussion
The host receptor is a primary determinant of the specificity and
efficacy of a toxin that further affects the manifestations of
related bacterial infection-associated diseases. Recently,
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TMPRSS2 and fucosylated glycans were identified as cellular
receptors for TcsH, a major toxin produced by P. sordellii36. Here,
we report the cryo-EM structures of the full-length TcsH and the
partial CROPs in complex with the ectodomain of TMPRSS2,
revealing the underlying mechanism of host recognition by this
notorious toxin (Supplementary Fig. 12).

We show that TcsH binds to TMPRSS2 through the end of the
CROPs domain, or more precisely the CROP unit-VI. Whereas the
CROPs domains of LCTs are generally thought to bind sugar moieties
on the cell surface, TMPRSS2 is the first protein receptor reported that
solely binds to the CROPs in this toxin family. Each LCT recognizes
distinct host receptors, while two types of protein receptor-binding
interfaces were well-characterized before. The first one is located at
the convex edge of the DRBD, which is thought to be evolutionarily
developed for receptor recognition46. Several LCT receptors bind to

this region, including Frizzledproteins (FZDs) for TcdB1 andTcdB327,47,
Semaphorin 6A and 6B (SEMA6A/6B) for TcsL28,48, and tissue factor
pathway inhibitor (TFPI) for TcdB2 and TcdB425,49. The second inter-
face lies in an area where CPD, DRBD, and CROPs converge; chon-
droitin sulfate proteoglycan 4 (CSPG4) for TcdB is the only reported
receptor that binds to this region29,50. Our finding of the C-terminus of
CROPs as a new protein receptor-binding region for LCTs is intriguing
but also puzzling: while a distinct receptor-binding domain can usually
be defined inmost toxins, LCTs seem to have various receptor-binding
interfaces/regions. Nevertheless, the presence of multiple receptor-
binding regions potentiates LCTs to explore a broader spectrum of
host recognition.

Recent studies have resolved the high-resolution structures of
full-length TcdB22,24,25, full-length TcsL26, and near-complete TcdA20,21.
Despite these important achievements, architectural insights into
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other LCTmembers are still lacking. Our current structure of the TcsH-
TMPRSS2 complex provides a snapshot of TcsH. Since the TMPRSS2
binding site in TcsH is far away from the core domains and would
unlikely cause conformational change to the toxin, we believe that it
could represent the structure of native TcsH at neutral pH. The overall
structure and conformation of TcsH resemble that of TcdA, indicating
the evolutionarily close relationship and homology between these two
toxins. TcdA and TcsH contain the longest CROPs among LCTs for
unknown reasons. Notably, the reported TcdA structures miss the
C-terminal part of the CROPs20,21, likely due to the high flexibility.
Hence, the structure of complete TcsH CROPsmay be helpful to study
the architecture and orientation of the TcdA CROPs domain. The

C-terminal regions beyond the CROP unit-IV hang freely in the full-
length structures of TcdA and TcsH, which seem to be functionally
mysterious. Our structural study now provides a rational explanation
for these extra-long CROPs: the extra CROP unitsmay serve as variable
platforms to explore host recognition. Besides, it would be interesting
to inspect whether TcdA also adopts these CROP units to bind
uncharacterized receptor(s).

TMPRSS2 recognizes TcsH via multiple loops on the top
surface of the SPD, which are also responsible for the recognition
of its intrinsic substrates. These loops, including LA, LB, LE, L2,
and L3, are highly variable among the TTSP family members51,
explaining why TMPRSS2 is specifically recognized by TcsH. On
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Fig. 4 | Characterization of the interactions between TcsH and TMPRSS2 by
structure-based mutagenesis. a Binding of the wild-type TcsH2210-2618 to Fc-His-
TMPRSS2ECD variants immobilized on Protein A resins was examined using pull-
down assays. b The binding of TcsH2210-2618 variants to Fc-His-TMPRSS2ECD immobi-
lized on Protein A resins was examined using pull-down assays. c Confocal fluor-
escence images show the binding of different GFP-fused TcsH2210-2618 variants to the
MCF-7 GMDS‒/‒ cells. Cell nuclei were stained by DAPI (blue). The blots and images

are representatives of three independent experiments. The scale bar represents
50μm.d, eThe sensitivities of theMCF-7GMDS‒/‒ andTMPRSS2‒/‒ cells to TcsHor its
mutants were tested using the cytopathic cell-rounding assays. The percentages of
the rounded cells were plotted over the toxin concentrations. Error bars (n = 5
biologically independent samples) indicatemean± SD. Source data are provided as
a Source Data file.
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the other hand, the CROPs of LCTs are also less conserved,
implying that this toxin-receptor recognition might still undergo
rapid evolutionary adaptation. TMPRSS2 is mainly expressed in
the epithelium of the prostate, gastrointestinal tracts, kidney, and
pancreas39,52. Dysregulated TMPRSS2 activity is related to the
proliferation, invasiveness, and metastasis of prostate tumor
cells53,54. TMPRSS2 is also well-known for facilitating the cellular
entry of several viruses, such as influenza viruses and cor-
onaviruses, through cleaving glycoproteins on the viral envelope
to activate membrane fusion55–58. We demonstrate that the TcsH
CROP unit-VI tightly binds to the SPD of TMPRSS2 with sub-
nanomolar affinity, masks the catalytic pocket in SPD, and inhibits
the enzymatic activity of TMPRSS2. Particularly, the CROP unit-VI
exhibits a straightforward and well-organized structural config-
uration, making it amenable to modifications and rational engi-
neering. Therefore, we also propose that the TcsH CROP unit-VI
could be a potential precursor to develop anti-cancer and anti-
viral mediations. Taken together, our study on the molecular
basis of recognition between TcsH and its receptor TMPRSS2
would help to understand the bacterial pathogenesis, portray the
host-pathogen coevolution, unveil the vulnerability of the
devastating toxin, and provide potential therapeutic avenues for
the related diseases.

Methods
Ethics statement
All animal procedures reported herein were performed following the
institutional guidelines and approved by the Institutional Animal Care

andUseCommittee atWestlakeUniversity (IACUCProtocol #22-018-2-
TL). To minimize the distress and pain, the mice injected with toxins
weremonitored every hour. Animalswith signs of pain or distress such
as labored breathing, inability to move after gentle stimulation, or
disorientation were euthanized immediately. This method was
approved by the IACUC and monitored by a qualified veterinarian.

Cell lines and antibodies
MCF-7 (HTB-22) cells were originally obtained from ATCC and
Expi293F cells were purchased from ThermoFisher Scientific (U.S.).
MCF-7 TMPRSS2‒/‒ and GMDS‒/‒ cells were previously generated
laboratory stocks36. Expi293F cells were cultured in SMM 293-T II
Expression Medium (Sino Biological, Beijing, China) under 95% air and
5% CO2 in a Multitron-Pro shaker (Infors) at 37 °C. MCF-7 cells were
cultured in DMEMmedia plus 10% fetal bovine serumand 1% penicillin-
streptomycin in a humidified atmosphere of 95% air and 5% CO2

at 37 °C.
The following antibodies were purchased from commercial ven-

dors: mousemonoclonal anti-6×His tag antibody (Proteintech, 66005-
1-Ig, 1:5000), goat monoclonal anti-human IgG-Fc antibody (Sino Bio-
logical, SSA001, 1:10000), and horseradish peroxidase-labeled goat
monoclonal anti-mouse IgG antibody (H + L, PI-1000, Vector Labs,
1:10000).

Mice
C57BL/6 mice were purchased from the Laboratory Animal Resources
Center at Westlake University (Hangzhou, China). Female, 6–8 weeks
C57BL/6 mice were used in this study. Mice were housed in specific-
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pathogen-free micro-isolator cages with free access to drinking water
and foodandmonitored under the care of full-time staff. Allmice hada
12-h cycle of light/darkness (7 a.m. to 7 p.m.), housed at 20–24 °C with
40-60% humidity.

Cloning of DNA constructs and site-directed mutagenesis
DNA encoding full-length of TcsH (reference sequence: P. sordellii
9048) was codon-optimized, synthesized by Genscript (Nanjing,
China), and inserted into pHT01 via the sites of PstI/XbaI with an
additional C-terminal His-tag. The DNA fragments encoding
TcsH1832-2246, TcsH2236-2618, TcsH1832-2209, and TcsH2210–2618 were PCR
amplified and inserted into pET28a with a His-tag at the
C-terminus. For cryo-EM sample preparation, TcsH2236-2618 was
cloned into a pET21a vector with a His-MBP tag introduced at the
N-terminus. The gene encoding the ectodomain of TMPRSS2
(amino acids 106-492) was PCR amplified from the cDNA library
and inserted into the AgeI/XhoI sites of a pHLsec vector with an
Fc-His, or His-tag fused to their N-terminus. The point mutations
of TMPRSS2 and TcsH were generated using QuickChange II Site-
Directed Mutagenesis Kit (Agilent Technologies, 200523) or Q5
Site-Directed Mutagenesis Kit (New England Biolabs, E0554S)
following the manufacturer’s protocol.

Expression and purification of recombinant proteins
The recombinant full-length TcsH was expressed in Bacillus subtilis
SL401 as described previously59. The fresh transformants were inocu-
lated into 5mL 2×YT medium supplemented with 50 µg/mL chlor-
amphenicol and allowed to grow overnight at 37 °C. The overnight
culture was transferred to one liter of 2×YTmedium containing 50 µg/
mL chloramphenicol. The culture was grown at 37 °C until anOD600 of
0.8, then the temperature was set up to 16 °C and the cell culture was
induced with 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for
36 h. Cells were thawed and resuspended in lysis buffer (50mM Tris-
HCl, pH 7.4, 300mM NaCl, 10% glycerol, 5mM imidazole) supple-
mented with 0.5mg/mL lysozyme (Macklin, L6051), 0.5% Triton X-100
(Sigma, T9284), 5 units/mL DNAse I (Biorigin, BN20219), and 1 µg/mL

RNAse A (ZF-50-0002, Multi Sciences). After rocking for 2 hours at
room temperature, the insoluble fraction was removed by cen-
trifugation at 20,000 g for 1 hour at 4 °C. The soluble fraction was
applied to TALON superflow metal affinity resin (Takara, 635507) and
washed with lysis buffer supplemented with 10mM imidazole (Vetec,
V900153). The protein was eluted with a buffer of 20mMTris-HCl, pH
7.4, 150mMNaCl (Buffer A), and 100mM imidazole. Then, the protein
was further purified by size-exclusion chromatography on a Superdex
200 increase 10/300 GL column (GE Healthcare) in Buffer A. Protein
fractions were confirmed by SDS-PAGE, concentrated, and stored
at −80 °C.

TcsH CROPs fragments were expressed in E. coli BL21(DE3) and
purified as His- or MBP-tagged proteins. E. coli was grown in the Luria-
Bertani medium containing 50 µg/mL kanamycin and the protein
expression was induced with 0.5mM IPTG at 16 °C for 16 hours. Bac-
terial cells were collected by centrifugation, resuspended in Buffer A
supplemented with protease inhibitors, and then lysed by passing
through an LM20microfluidizer (Microfluidics) once. Cell lysates were
subjected to high-speed centrifugation at 12,000 × g for 30minutes to
remove unbroken cells and debris. His-tagged TcsH1832-2246, TcsH2236-2618,
TcsH1832-2209, and TcsH2210–2618 were purified by Ni-affinity chromato-
graphy. MBP-tagged TcsH2236-2618 was purified using Amylose resin
(NEB, E8021L) followed by size-exclusion chromatography on a
Superdex 200 increase 10/300 GL column (GE Healthcare). Protein
fractions were confirmed by SDS-PAGE, concentrated, and stored
at −80 °C.

Recombinant TMPRSS2ECD and its variants were expressed in
Expi293F cells and purified as His-tagged proteins. Expi293F cells were
transfected with the plasmids when the cell density reached 2 × 106

cells/mL. Approximately 2mg of plasmid was preincubated with 4mg
of polyethyleneimine (Polysciences) in 50mL of fresh medium for
15minutes. The mixture was added to one liter of cell culture for
transfection. After 72 hours, the cell pellets were removed by cen-
trifugation at 4000× g for 10minutes at 4 °C. The supernatant was
collected and concentrated to approximately 200mL using 10 kDa
filters (Sartorius Stedim) and then loaded to a gravity flow column
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packed with TALON superflow metal affinity resin. The resin was
washed extensively with Buffer A supplementedwith 10mM imidazole
and the protein was eluted with Buffer A supplemented with 100mM
imidazole. The eluted proteinwas concentrated and further applied to
size-exclusion chromatography on a Superdex 200 increase 10/300GL
column (GE Healthcare) equilibrated with Buffer A supplemented with
10% glycerol. The target peak fractions were confirmed by SDS-PAGE,
then concentrated, and stored at −80 °C.

Biolayer interferometry (BLI) assay
The binding affinities between toxin fragments and TMPRSS2 proteins
were measured using the BLI assay with the Octet RED96e system and
analyzed with the Octet Data Analysis software (version 12.0.1.2, For-
teBio, Fremont, CA, USA). Briefly, Fc-tagged proteins were immobi-
lized onto the capture biosensors (AHC biosensor, ForteBio) and
balanced with binding buffer (20mM Tris-HCl pH 7.4, 150mM NaCl).
The biosensors were then exposed to the indicated concentrations of
MBP-TcsH2236-2618 or TcsH2210-2618, followedby dissociation in the binding
buffer.

Pull-down assays
Pull-down assays were performed using Protein A agarose beads
(Thermo Fisher Scientific). Briefly, Fc-tagged TMPRSS2ECD (50 nM)
were mixed with TcsH2210-2618 or TcsH1832-2209 (10 nM) in 300μL of
binding buffer (20mM Tris-HCl pH 7.4, 150mM NaCl). The mixtures
were incubated at 4 °C for 2 hours and co-precipitated by Protein A
agarose beads. Beads were washed, pelleted, boiled in SDS sample
buffer, and subjected to SDS-PAGE or immunoblot analysis.

Assembly of the TcsH-TMPRSS2 complex
To assemble the TcsH-TMPRSS2ECD and TcsH2236-2618-TMPRSS2ECD com-
plexes, purified full-length TcsH or TcsH2236-2618 were incubated with
TMPRSS2ECD in the presence of 10% glycerol on ice for one hour in
molar ratios of 1:5 and 1:1, respectively. These protein complexes were
further purified by size-exclusion chromatography on a Superdex 200
increase 10/300 GL column (GE Healthcare) in a buffer containing
20mM Tris-HCl, pH 7.4, 150mM NaCl, and 2% glycerol. Protein frac-
tions were confirmed by SDS-PAGE. Peak fractions containing the
TcsH-TMPRSS2ECD complex and the TcsH2236-2618-TMPRSS2ECD complex
were pooled and concentrated to 5mg/mL and 1mg/mL for cryo-EM
analysis.

Cryo-EM specimen preparation and data acquisition
For cryo-EM sample preparation, three microliters of each protein
were placed on glow-discharged holey carbon grids (Quantifoil Au
R2.1/3.1, 300mesh). The grid was blotted with filter paper for 3.5 s in a
chamber set with 100% humidity at 8 °C to remove the excess sample
and then plunge-frozen in liquid ethane cooled by liquid nitrogen with
the Vitrobot Mark IV system (ThermoFisher Scientific). Cryo-EM spe-
cimens were imaged on a 300-kV Titan Krios electron microscope
(ThermoFisher Scientific) using a normalmagnification of 81,000 rpm.
Movies were recorded using a Gatan K3 detector equipped with a GIF
Quantum energy filter (slit width 20 eV) at the super-resolution mode,
with a physical pixel size of 1.087 Å. Each stack of 32 frames was
exposed for 2.56 s, with a dose rate of ∼23 counts/second/physical-
pixel (∼19.5 e-/second/Å2) for each frame using EPU (ThermoFisher
Scientific). All 32 frames in each stack were aligned and summed using
the whole-image motion correction program MotionCor260 and bin-
ned to a pixel size of 1.087 Å. The defocus value for each image varied
from −1.5 to −2.0μm and was determined by Gctf61.

Cryo-EM data processing
For the TcsH-TMPRSS2ECD complex, a total of 1300 micrographs
were collected, of which 1,118 micrographs were selected for
further processing. All the processing steps were carried out in

cryoSPARC62 except that especially mentioned. A total of 879,891
particles were extracted with 2× binning (pixel size: 2.174 Å)
(Round 1) and subjected to multiple two-dimensional (2D) clas-
sifications, resulting in 225,500 good particles. These particles
were further classified using Heterogeneous refinement. 148,184
particles from the good class were then re-extracted (pixel size:
1.087 Å) (Round 2) for further 2D classification and Non-uniform
refinement, resulting in a final EM reconstruction for the TcsH-
TMPRSS2ECD complex at 3.21 Å from 87,378 particles. The 3.21-Å
EM density map displays clear features for amino acid side chains
in the core region of TcsH. These particles were further locally
refined using a soft mask around the C-terminal TcsH and
TMPRSS2, which yielded a reconstruction at an average resolu-
tion of 5.95 Å.

For the TcsH2236-2618-TMPRSS2ECD complex, a total of 3,341 micro-
graphs were collected. A total of 2× binned 8,005,902 particles (pixel
size: 2.174 Å) were extracted and applied to multiple rounds of 2D
classifications, resulting in 1,975,699 good particles. Followed by
Heterogeneous refinement, 887,779 good particles were selected.
Further 2D classifications of re-extracted particles (pixel size: 1.087 Å)
yielded 760,140 particles. These particles further go through Non-
uniform refinement and Local refinement, which generated a recon-
struction of the TcsH2236-2618-TMPRSS2ECD complex at an average reso-
lution of 2.95 Å.

The reported resolutions were calculated based on the gold-
standard Fourier shell correlation (FSC) = 0.143 criteria. Local reso-
lution volumes were estimated using cryoSPARC. The angular dis-
tributions of the particles used for the final reconstructions are
reasonable. The workflows of cryo-EM data processing are illustrated
in Supplementary Fig. 3, 5.

Model building and refinement
The cryo-EM structure ofC. difficile toxin A (PDB code: 7POG)was used
as a template to generate a homology model for TcsH using
CHAINSAW63. The homology model was fitted into the cryo-EM map
for the TcsH-TMPRSS2ECD complex using UCSF Chimera64. Manual
adjustment of the model was performed in COOT65, followed by
iterative rounds of real-space refinement in PHENIX66 and manual
adjustment inCOOT. Similarly, the crystal structure of the ectodomain
of TMPRSS2 (PDB: 7MEQ) was fit into the cryo-EM map and manually
adjusted in COOT. The structures were further validated
through examination of the Molprobity scores and statistics of the
Ramachandran plots. Molprobity scores were calculated as
described67.

CD spectra analysis of full-length TcsH and mutants
For CD spectroscopy, the sample buffer of the toxin was changed
to 10mM potassium phosphate and 100mM (NH4)2SO4 (pH 7.4).
The protein sample was concentrated to a final concentration of
1 mg/ml for each measurement. CD spectra were recorded using a
Chirascan V100 (Applied Photophysics Inc.) in the wavelength
range of 190 to 260 nm, with a bandwidth of 1.0 nm and scan
step of 0.5 nm using a 0.05-cm path length quartz cuvette at
18 °C. In each case, three spectra were collected, averaged,
baseline-corrected, smoothed, and converted with the Chirascan
software.

Cell surface binding assay
MCF-7 GMDS‒/‒ cells were incubated with 10 nM WT or mutant GFP-
TcsH2210–2618 in the medium on ice for 20min. Cells were washed three
times with ice-cold PBS, fixed with 4% paraformaldehyde (PFA) for
15minutes at room temperature, and stained with DAPI, followed by
fluorescence microscopy. Fluorescent images were captured using an
Olympus FV3000-BX63 LSCM Confocal System with the software
FV31S-SW v2.3.2.169.
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The cytopathic cell-rounding assay
The cytopathic effect of the toxinwas analyzed using the cell-rounding
assay. Cells were exposed to toxins for 12 hours. The phase-contrast
images of the cells were captured by amicroscope (Olympus IX73; ×10
objectives) with the software Olympus CellsSens Standard 2.1. Six
zones of 200μm×200μm were selected randomly, with each zone
containing ~50–150 cells. Round-shaped and normal-shaped cells were
countedmanually. The percentage of round-shaped cells was analyzed
using GraphPad Prism (ver. 9.0.0, GraphPad Software, LLC).

TMPRSS2 enzymatic activity assay
Peptide substrate N-tert-butoxycarbonyl-Gln-Ala-Arg-7-amino-
methylcourarin (Boc-QAR-AMC, Bachem, catalog no. I-1550) was
diluted into assay buffer (20mMTris-HCl, 150mMNaCl, 0.1%Triton X-
100, pH8.0) to a final concentration of 10μM.TcsH2210-2618, TcsH1832-2209,
TcsH2210-2618/Q2520A/F2521A, TcsH2210-2618/E2544R, TcsH2210-2618/F2557N/L2558N, and/or
TMPRSS2ECD of indicated concentrations were added into the reaction
system with a final volume of 120μL. After incubation for 2 hours at
roomtemperature, 100μLof themixturesweredispensed into 96-well
plates (WHB Scientific) and read on a microplate reader (Thermo
Varioskan LUX) with fluorescence module at 340 nm excitation and
440nm emission.

Colon-loop ligation assay
Six- to eight-week-old female mice were anesthetized by intraper-
itoneal injection of 1% pentobarbital sodium. A midline-right lapar-
otomy was performed to locate the ascending colon and seal a ~ 2 cm
loop with 4–0 surgical suture ligatures. Six micrograms of TcsH or
TcsHAAR in 100μL of normal saline or 100μL of saline alone was
injected into the sealed colon segment using an insulin syringe, fol-
lowed by suturing of the skin incision. Mice were allowed to recover in
the 37 °C thermostatic plates. After 8 hours,micewere euthanized, and
the ligated colon segments were excised. The colon segments were
fixed, paraffin-embedded, sectioned, and subjected to either H&E
staining for histological scoring.

H&E staining and histopathological analysis
Mouse colon specimens were fixed with 4% formaldehyde for 12 hours
before dehydration with gradient alcohol. The samples were then
cleared with xylene, embedded in paraffin, and cut into 5μm thick
sections. The tissue sections were stained with H&E. The H&E stains
were scored blinded by a pathologist based on inflammatory cell
infiltration, hemorrhage, and epithelium disruption on a scale of 0 to 3
(mild to severe).

Statistics and reproducibility
Data are presented as mean± standard deviation (SD) for biochemical
experiments and mean ± standard error of the mean (SEM) for
pathological experiments. The number of the sample size (n) and
statistical hypothesis testing method are described in the legends of
the corresponding figures. Statistical analyses of data were performed
with GraphPad Prism v9.3 or OriginPro v8.5. Experiments in Fig. 1f,
Fig. 4a, b, Fig. 5d, e, and Supplementary Fig. 10a, b have been repeated
at least twice with similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The atomic coordinates for the TcsH-TMPRSS2ECD complex and
TcsH2236-2618-TMPRSS2ECD complex have been deposited in the Protein
Data Bank (PDB) under the accession code 8JHZ and 8JI0, respectively.
The EM maps of the TcsH-TMPRSS2ECD complex and TcsH2236-2618-
TMPRSS2ECD complex have been deposited in the ElectronMicroscopy

Data Bank (EMDB) with the accession codes EMD-36301, and EMD-
36303, respectively. The local EM map of the C-terminal part of the
TcsH-TMPRSS2ECD complex has been deposited in the EMDB with
accession code EMD-36302. All other data are available from the cor-
responding author upon reasonable request. Source data are provided
with this paper.
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