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Thunder-DDA-PASEF enables high-coverage
immunopeptidomics and is boosted by
MS2Rescore with MS2PIP timsTOF
fragmentation prediction model

David Gomez-Zepeda 1,2,3 , Danielle Arnold-Schild1, Julian Beyrle 1,2,3,
Arthur Declercq4,5, Ralf Gabriels 4,5, Elena Kumm1, Annica Preikschat 1,
Mateusz Krzysztof Łącki1, Aurélie Hirschler 6, Jeewan Babu Rijal 6,
Christine Carapito 6, Lennart Martens 4,5, Ute Distler 1,7, Hansjörg Schild1,7 &
Stefan Tenzer 1,2,3,7

Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key tar-
gets for developing vaccines and immunotherapies against infectious patho-
gens or cancer cells. Identifying HLAIps is challenging due to their high
diversity, low abundance, and patient individuality. Here, we develop a highly
sensitive method for identifying HLAIps using liquid chromatography-ion
mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a
timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic
peptides and implement it inMS2Rescore (v3) together with the CCS predictor
from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively
fragments singly and multiply charged HLAIps based on their IMS and m/z.
Moreover, the method employs the high sensitivity mode and extended IMS
resolution with fewer MS/MS frames (300ms TIMS ramp, 3 MS/MS frames),
doubling the coverage of immunopeptidomics analyses, compared to the
proteomics-tailored DDA-PASEF (100ms TIMS ramp, 10 MS/MS frames).
Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%,
resulting in 5738 HLAIps from as little as one million JY cell equivalents, and
14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from
diverse human cell lines and human plasma. Finally, profiling JY and Raji
cells transfected to express the SARS-CoV-2 spike protein results in 16 spike
HLAIps, thirteen of which have been reported to elicit immune responses in
human patients.

Identifying ligands of the major histocompatibility complex (MHC) or
human leukocyte antigen (HLA), also called immunopeptides, is key
for developing vaccines and immunotherapies (extensively reviewed
in refs. 1–3). Human HLA class-I complexes bind peptides (HLAIps) of

typically 9–12 amino acids generated by a multi-step process called
antigen processing, which involves multiple proteolytic events by the
proteasome and aminopeptidases4–8. Loaded HLA complexes are then
displayed on the cell surface, where CD8+ T-cells scrutinize them.
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Detectionof a non-self antigen, e.g.,HLAIps derived fromviral proteins
ormutated cancer-relatedproteins, leads to the efficient eliminationof
the presenting cell by cytotoxic T lymphocytes. Thus, non-self HLAIps
constitute key targets for developing peptide or mRNA vaccines in the
context of personalized immunotherapies, or diagnostic tools. Various
in silico tools have been developed to predict HLA-binding peptides
from genomic, transcriptomic, or riboSeq data. Still, most predictors
are primarily based on HLA binding affinity, thus not fully considering
the antigen processing and presentation mechanisms, resulting in
discrepancies between predicted and presented HLAIps9, 10. Therefore,
liquid chromatography mass spectrometry (LC-MS)-based immuno-
peptidomics is essential for directly identifying HLA class I presented
peptides from cells, tissues, and biofluids9, 11.

However, LC-MS immunopeptidomics faces different chal-
lenges than bottom-up proteomics, where proteins are usually
digested using trypsin (reviewed in refs. 3, 12). HLAIps are gen-
erated by a complex multi-step process, including various pro-
teolytic events13,14. This results in peptides with restricted size and
sequence patterns imprinted by the specificities of TAP transport
and HLA binding. While these motifs differ between individual
HLA alleles, they restrict the length and sequence space pre-
sented by a single allele. Thus, immunopeptidomics samples are
more likely to contain isobaric peptides, potentially co-eluting
from the LC, than enzyme-digested samples2. Since tryptic pep-
tides are usually multi-charged, typical bottom-up proteomics
workflows often omit the fragmentation and identification of
singly-charged ions, which are more challenging to identify. In
addition, singly-charged peptides are often masked by chemical
noise, and their fragmentation generates many uncharged seg-
ments not detected by the MS2. Moreover, individual HLAIps are
low abundant, and the sample preparation recovery yields are low
(~0.5–3%15). These factors demand tailored and high-sensitivity
LC-MS methods and have major implications in database sear-
ches. The unspecific cleavage of HLAIps increases the search
space by up to 2 orders of magnitude compared to tryptic
digests. This impairs the discrimination of false positive from true
positive peptide-spectrum matches (PSMs), negatively impacting
peptide identification yield and confidence16.

Coupling ion mobility separation (IMS) to LC-MS provides an
extra dimension of separation, resolving ions in the gas phase by their
collisional cross section (CCS),which is definedby their size and shape.
As a result, the signal-to-noise ratio increases and isobaric ions may be
resolved, thus increasing the sensitivity, number, and confidence of
peptide identifications. Field asymmetric waveform ion mobility
spectrometry (FAIMS) has been combined with LC-MS to increase
peptide coverage in immunopeptidomics experiments17. However,
FAIMS acts as a gas-phase fractionation device, filtering ions in func-
tion of their mobility in the electric field. Since only a population of
ions can be analyzed simultaneously, profiling peptides with different
mobilities such as multiply and singly-charged peptides requires
dividing the cycle time within an LC-MS run between different popu-
lations of ions or performing multiple injections per sample17. In con-
trast, the timsTOF Pro instruments use a dual trapped ion mobility
spectrometry (TIMS) analyzer to perform a parallel accumulation-
serial fragmentation (PASEF) of ions. In brief, a package of ions is
trapped in the first analyzer while the previous ion package is sepa-
rated across the IMS range before ions are fragmented and detected.
This allows for a high duty cycle and low ion losses, resulting in higher
sensitivity for data-dependent acquisition (DDA-PASEF)18,19.

During the Covid-19 pandemic, there have been significant efforts
to identify SARS-CoV-2 HLAIps, mainly focusing on characterizing the
immunogenicity in vitro or in vivo of large libraries of synthetic pep-
tides of in silico predictedHLA-binders (25 studies reviewed in ref. 20).
This has provided important insights into possible immunodominant
regions in the viral proteome, HLA allele-dependent responses to

SARS-CoV-2, and the protection capabilities of vaccines (reviewed in
refs. 20–22). More than 2000 putative HLA-binding peptides have
been predicted from the SARS-CoV-2 genome23. However, only a few
SARS-CoV-2 HLAIps have been detected by LC-MS until now24–26,
including less than ten HLAIps for the spike glycoprotein refs. 24–26,
the main target of vaccines and diagnostic tests. This emphasizes the
challenges of LC-MS immunopeptidomics and the need for more
sensitive and robust methods.

Here, we present Thunder-DDA-PASEF, an optimized LC-IMS-MS
method for immunopeptidomics, and its application in discovering
SARS-CoV-2 spike HLAIps. The optimized method uses an extended
TIMS separation time (300ms) to improve IMS resolution and
sensitivity18,27. To include singly charged peptides while efficiently
using instrument cycle time, precursors are selected using a tailored
isolation polygon for semi-selectively fragmenting potential HLAIps.
Compared to the Standardmethod, Thunder-DDA-PASEF doubled (on
average) the HLAIps identifications across samples with diverse HLA
alleles. In addition, to increase the number and confidence of peptides
identified, we trained a specialized MS2PIP model28 to predict peptide
fragmentation in timsTOF instruments. Using thismodel to rescore the
results with MS2Rescore (v3)16,29 boosted HLAIp identifications by
41.7% to 33%, resulting in 5738 HLAIps detected from as little as one
million JY cell equivalents, and 14,516 HLAIps from 20 million. Subse-
quently, we employed Thunder-DDA-PASEF to study the HLA-I ligan-
dome repertoire of two cell lines recombinantly expressing the
segments of the spike protein of SARS-CoV-2. This resulted in 16
HLAIps derived from the SARS-COV-2 spike protein. Notably, 13 of
these peptides have been previously reported to elicit immune
responses in human patients, confirming the potential of our
improved method for efficient epitope discovery. In conclusion, the
optimized Thunder-DDA-PASEF boosted by MS2Rescore achieved
deep profiling of the HLA class I ligandome even from low sample
inputs.

Results
General workflow for LC-IMS-MS immunopeptidomics
For our immunopeptidomics experiments, we followed the procedure
shown in Fig. 1 and described in Material and Methods. The LC-MS
methods and data processing settings are detailed in Supplementary
Data S1. The ready-to-use MS method for timsTOF Pro instruments is
included in Supplementary Data S2. Briefly, we enriched HLAIps from
JY cells by immunoprecipitation using W6/32 antibody, and analyzed
them by nanoLC-IMS-MS on a nanoElute coupled to timsTOF-Pro-2 in
DDA-PASEF mode, using PEAKS XPro for subsequent peptide identifi-
cation. After training an MS2PIP model28 to predict peptide fragmen-
tation for timsTOF data, we used it in an updated version of
MS2Rescore16,29 (v3.0.0b4) to improve the identifications for the
dataset exploring the SARS-Cov-2 spike immunopeptidome. To eval-
uate the identification of possible HLA class I ligands, we predicted the
peptide binding to the respective HLA alleles of each sample using
NetMHCpan-4.130 via MhcVizPipe31. Here, we refer to the predicted
HLAI peptide binders (rank ≤ 2%) as HLAIps to distinguish them from
the total peptides identified, and both terms indicate the stripped
sequences unless otherwise specified.We performed several iterations
to optimize our LC-IMS-MSmethod for identifying HLA class I ligands,
as described in the following sections.

An HLAIp-tailored DDA-PASEF fragmentation scheme including
singly-charged ions efficiently identified possible HLAIps
Contrarily to tryptic peptides, HLAIps originate from a large diversity
of antigen processing events13,14 and do not necessarily contain basic
amino acid residues2. Thus, many HLAIps can only be detected as
singly-charged ions in LC-MS since only their N-terminal residue can
carry a positive charge (H+). For this reason, HLAIp-
immunopeptidomics workflows have recently incorporated the
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fragmentation of singly-charged ions (with 2+ and 3+) within the m/z
range of possible HLAIps17,32–36. In addition, HLAIps have a restricted
size range of typically 9–12 amino acids (AAs)2, but between 8 to 13 AAs
in some instances37,38. Therefore, LC-MS immunopeptidomicsmethods
require instrument-specific adaptations that differ to standard pro-
teomics methods. Since this had not been fully studied in timsTOF
instruments, we aimed to specifically optimize a DDA-PASEF method
for immunopeptidomics.

First, we tested the Standard-DDA-PASEFmethod forproteomics18

to analyze JY HLAIps samples (Fig. 2a, d, g). DDA-PASEF takes advan-
tage of the charge-state-dependent mobility separation to selectively
fragment ions detected within an isolation polygon on the inverse
reduced ion mobility (1/K0) vs. m/z space. Since it was designed for
tryptic peptides, the Standard isolation polygon covers the multiply-
charged ion cloud, which is clearly separated from singly-charged ions
(Fig. 2a). This resulted in almost 5000 unique peptides from three
injection replicates of JY HLAIps, mainly comprising doubly-charged
ions (89%, Fig. 2d, g) and almost 77% of 8–13-mers (Fig. 2g, j). As
expected, most singly-charged ions were excluded from fragmenta-
tion, and only a few were identified due to IMS peak tailing into the
isolation polygon. This was similar to the results of a previous study
whereDDA-PASEFwith the Standard polygonwasused to profile the JY
immunopeptidome39 and the TIMS range was limited to 0.6–1.3 1/K0,
effectively excluding the singly charged peptides (Supplementary
Fig. S1 and Supplementary Notes).

To enable the identification of singly charged peptides, our next
stepwas to remove the isolation polygon (Fig. 2b) and extend theTIMS
range to 1.75 1/K0. This resulted in the fragmentation of singly-charged
peptides, representing more than half (54.5%) of all the peptides
identified and 59.6% of the 8-13-mers (Fig. 2e, h). Furthermore, the
proportion of peptides with 8 to 13 AAs was 12.4% higher than in the

Standard-polygon (Fig. 2k, j), corresponding to 72% more 8-13-mers
identified on average (p = 8.1 × 10−5, Fig. 2m). However, without an
isolation polygon, many low m/z singly-charged ions and high mass
multiply-charged ions were fragmented (Fig. 2b, e).

Therefore, we designed fragmentation isolation polygons cover-
ing the singly-charged andmultiply-charged8-13-merpeptides (Fig. 2c,
f, i; Supplementary Data S1, tab isolation_polygon_thunder). Since the
resulting isolation polygon resembles a lightning or thunder icon, we
termed it the “Thunder" polygon. This HLAIp-tailored scheme identi-
fied peptides within the isolation polygon (Fig. 2c, f, i), roughly main-
taining the charge distribution of peptides identified, and marginally
increasing the proportion of 8-13-mers compared to no-polygon (by
2.6%) (Fig. 2l, k, respectively). As a result, the Thunder polygon
increased the identification of 8–13-mers on average by 70.6% relative
to the Standard (p = 7.7 × 10−5, Fig. 2m)). Compared to no-polygon, the
Thunder polygon resulted in 24% fewer MS2 scans (p = 5.9 × 10−4,
Fig. 2n), but a similar yield of 8-13-mers identified (Fig. 2m). This 18%
increase in the identification rate shows that the Thunder polygon
used the cycle timemore efficiently to fragment 8-13-mers. In contrast,
without an isolation polygon, a large proportion of the cycle time was
used inefficiently to fragment ions that are not of interest for HLAIp
profiling. Thesemay include non-peptidic small ions or larger peptides
(Fig. 2b and Supplementary Fig. S2a, b) originating from the degra-
dation of HLA proteins, the antibody, or other co-enriched proteins
(Supplementary Fig. S2c). Results Section 3 will provide additional
insight into the specifics of the thunder-shaped region.

Optimizing TIMS and MS settings further enhanced the identi-
fication of 8-13-mers
Once having established the capabilities of DDA-PASEF with the
Thunder isolation scheme for immunopeptidomics, we thoroughly
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Fig. 1 | Immunopeptidomics workflow using Thunder-DDA-PASEF. a Sample
preparation: 100 or 500million cells of diverse cell lineswere harvested, then lysed
by sonication in 1%CHAPS in PBSbuffer (m/v).Alternatively, 4mLof unfractionated
plasma were processed. b HLA-ligand peptide enrichment: was performed by
immunoaffinity using the W6/32 anti-HLA-A, B, C antibody coupled to CNBr-
activated agarose beads; after overnight incubation and several washes, peptides
were eluted with 0.2% trifluoro-acetic acid (v/v), ultrafiltered on molecular weight
cutoff filters (MWCO, 10 kDa cutoff) and desalted in HLB plates (Waters Corp.).

cNanoLC-MS: analysis was performed using a nanoElute coupled to timsTOF-Pro-2
in DDA-PASEF18 with different parameters to optimize the MS acquisition. d Data
analysis: Database search was performed in PEAKS XPro using unspecific cleavage.
After training a MS2PIP28 timsTOF fragmentation prediction model, peptide iden-
tification was rescored using MS2Rescore (MS2R, v3.0.0b4)16,29. Data analysis was
performed in R and predicted MHC-binding affinity was evaluated using
NetMHCpan-4.130 and GibbsCluster-2.064 through MhcVizPipe (v0.7.9)31.
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optimized other parameters of theMSmethod aiming to increase both
the number of peptides identified and the reproducibility. In PASEF,
each analysis cycle comprises several frames where the trapping TIMS
tunnel accumulates a package of ions. Simultaneously, the second
TIMS resolves the previous package of ions by ramping down the
elution voltage. Increasing TIMS times enhances IMS resolution and
accommodates more fragmentation events per MS2 frame while pre-
serving the sensitivity18. Raising the TIMS time from 100 to 300ms
resulted in an significant increase of 80% in peptide identification,
while no substantial increase was observed between 400 ms and 300
ms (< 5% increase, non-significant) (Fig. 3a). The data completeness
also increased slightly between 100ms (50.2%) and 300ms (55.6%)
(Fig. 3b). However, the longer cycle times resulted in five-fold fewer

MS1 frames and doubled the median coefficient of variation (CV) at
400ms compared to 100ms (Fig. 3c–e). To compensate for this and to
make the method compatible with 1 h LC gradients, we decreased the
number of MS2 frames per cycle from 10 to 3, and the MS2 cycle
overlap from4 to 1 (Fig. 3f–j). This resulted in a 1.2 s cycle time, without
significantly impacting the number of peptides identified but
improved data completeness by 5% and reduced themedian peak area
CV from 19.3% to 10.3% associated with an increase in MS1 frames
(Fig. 3j, f–i, respectively), thus improving the reproducibility overall.
We selected the configuration with 300msTIMS and 3MS2 frames for
further analyses since it provided the optimalbalance betweenpeptide
identification and reproducibility in terms of data completeness and
peak area.
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The timsTOF Pro-2 has a high-sensitivitymode (HS), in which the
detector voltages are optimized for low sample amounts. To evaluate
its effect on immunopeptidomics samples, we activated theHSmode
in the method with 300ms TIMS and 3 MS2 frames. As a result,
peptide identification significantly increased by 33% (Fig. 3i). From
the 12,769 peptides identified in total in this experiment, 49% were
shared between HS on or off, only 9.7% were exclusive to HS off, and
31.3% were exclusively identified with HS on (Fig. 3j). The distribution
and median of the area of the additional identifications were half an
order of magnitude lower than for the shared peptides (Fig. 3k).
Thus, peptides with low intensity benefited the most from the HS
mode, but it also resulted in more identifications in the upper
intensity range.

In summary, the optimized method resolves ions using a 300-ms
TIMS ramp, fragmentingmainly ions with 1+, 2+, and 3+ charges in 3MS2
frames per MS1 frame within a 1.2 s cycle time and takes advantage
of the high-sensitivity mode. In contrast, the Standard-DDA-PASEF
designed for proteomics samples uses 100ms ramps and selectively

fragmentsmultiply-charged ions in 10MS2 framesperMS1 framewithin
a 1.2 s cycle time. For simplicity, in the following sections we refer to the
methods with the Standard and optimized settings as 100ms and
300ms, respectively, and to the fully optimized method including the
HLAIp-tailored isolation polygon as Thunder-DDA-PASEF.

The optimized Thunder-DDA-PASEF doubled the identification
of HLA class I ligands across diverse cell lines and humanplasma
The high polymorphism of HLA across the population results in a large
variety of diverse peptide sequencemotifs with distinct anchor amino
acids required to bind the protein complexes depending on the HLA
allotypes. To better understand the effects of the HLAIp-tailored
Thunder isolation polygon and the DDA-PASEF optimization across
distinctHLA-binding peptidemotifs, we analyzed sampleswith diverse
alleles using methods without and with the HLAIp-tailored isolation
polygon (Thunder), combined with the Standard (100ms_None and
100ms_Thunder) and optimized DDA-PASEF settings (300ms_None
and 300ms_Thunder) (Fig. 4 and Supplementary Data S3 and S4). We
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used HLAIps enriched from cell lines covering 17 distinct HLA binding
motifs, JY (HLA-A0201, B0702, C0702), HeLa (HLA-A68:02, A03:19,
B15:03, C12:03), and SK-MEL-37 (HLA-A0201, A1101, B1501, B5601,
C0102), and commercial human plasma (predicted as HLA-B0702,
B1501, A0101, A2601 using MHCMotifDecon (ref. 40).

First, we focused on the effect of the isolation polygon on peptide
and, more specifically, HLAIp identification, as shown in Fig. 4a for the
combineddatasets, and in SupplementaryFigs. S3 (all peptides) and S4
(HLAIps only) for each sample. As expected, the Thunder isolation
polygon limited the fragmentation and identification of peptides to
the area within its boundaries, while no polygon resulted in a more
extensive distribution of peptides across the 1/K0 vs. m/z dimensions.
However, even in the acquisitions without polygon, 99.9% of the pre-
dicted HLAI binders (HLAIps) were detected within the defined
boundaries of the Thunder polygon, showing that it does not exclude
peptides from any of the HLA motifs screened.

For all the samples, themethods employing the Thunder polygon
resulted in higher identification of total peptides than the analogous
methods without polygon, and a similar effect was observed for
HLAIps (Fig. 4b, c). At 100ms, using the isolation polygon increased
the HLAIp identification by 7.3% for JY, 6.3% for HeLa, and 8.8% for SK-
MEL-37 but did not affect numbers in plasma. At 300ms, the method
with the isolation polygon increased the identifications by 16.5, 13.1,
9.4, and 5.1% for JY, plasma, HeLa, and SK-MEL-37, respectively. For
each sample type, the peptide charge distribution across all peptides
(Fig. 4d), the proportion of 8–13-mers (Fig. 4e), and the proportion of
8-13-mers predicted to bind the corresponding HLA alleles (Fig. 4f)
were roughly similar without and with the polygon. The differences
were below 1.5% in most cases. Similarly, the dynamic range of pep-
tides identified was not altered (Supplementary Fig. S5). These results
show that the Thunder polygon increases peptide identification with-
out introducing a bias in the type of peptides identified, and its
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bottom) identified across the 1/K0 vs m/z dimensions; the left panels show all the
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beneficial effects aremore pronounced for the 300msmethod. This is
likely due to the enhanced IMS separation andMS sensitivity provided
by the longer TIMS time and the HS mode. As a result, more frag-
mentationevents can be includedper cycle, and low-abundant ions are
more likely to be fragmented. To use instrument time most efficiently
on ions representing putative HLAIps, the thunder polygon minimizes
the fragmentation of chemical noise and other peptides.

Subsequently, we evaluated the effect of the DDA-PASEF optimi-
zation. Compared to their 100ms counterpart, the 300 ms methods
resulted in 64.2 to 120% more peptides (Fig. 4b). The charge dis-
tribution shifted towardsmore singly charged ions at 300ms (Fig. 4d),
and the proportion of 8-13-mers marginally decreased in the cell lines
but not in plasma (Fig. 4e). From the 100ms to 300ms methods, the
proportion of singly charged ions almost doubled for JY (from 19 to
35%), increased considerably for HeLa (from 25 to 32%) and SK-MEL-37
(from 28.5 to 35.5%), and onlymarginally for plasma (from 5.5 to 6.5%).
The proportion of predicted non-HLA binders among the 8-13-mers
increased slightly (by 0.5 to 5%) but did not change the proportion of
predicted binders for each HLA allele (Fig. 4f). Although the improved
peptide coverage comes at the cost of marginally increasing the
detection of non-specific co-enriched peptides, the 300ms methods
still increased the number of HLAIps identified by 61.1 to 105% com-
pared to the corresponding 100ms methods (Fig. 4c. Moreover,
the 300ms_Thunder method resulted in most HLAIps across all
methods and samples types. When compared to 100ms_None, the
300ms_Thunder provided a total increase of 87.4 to 125% in HLAIps
depending on the sample, thus in average doubling the immuno-
peptidome coverage.

The resulting combined dataset contains peptides covering thir-
teen HLA alleles with diverse sequence motifs, as shown in Supple-
mentary Fig. S6 for the 9-mers. The number of peptides covering each
allele varies from 59 for HLA-A11:01, found in the plasma sample only,
to 5622 for HLA02:01, from JY and SK-MEL-37, (Fig. 4g), providing
valuable information to evaluate their IMS vs. m/z distributions (Sup-
plementary Fig. S7). HLAIps with motifs dominated by hydrophobic
amino acids resulted in a large proportion of peptides at the top sec-
tion of the polygon and thus a higher proportion of singly charged
peptides. On the contrary, motifs dominated by basic residues showed
fewer peptides at the top section due to a lower proportion of singly
charged peptides. For instance A68:02 and HLA02:01 included 47.7%
and47.3% singly chargedpeptides, respectively, while B15:03, included
only 13.8% (Supplementary Fig. S8).

In summary, these results show that the enhanced coverage of
Thunder-DDA-PASEF is primarily due to the optimized DDA-PASEF
settings. Still, the Thunder isolation polygon provides a further boost
without sacrificing the identification of diverse HLAIps regardless of
their allele-specific sequencemotifs. Combining these two factors, the
optimized (300ms) Thunder-DDA-PASEF doubled the immunopepti-
dome coverage across a large diversity of HLA alleles, compared to the
Standard (100ms) DDA-PASEF with extended 1/K0 range and also
including singly charged peptides.

Thunder-DDA-PASEF outperforms state-of-the-art MS immuno-
peptidomics methods
To compare the performance of Thunder against other state-of-the-art
methods for immunopeptidomics making use of the singly-charged
ions, we analyzed aliquots of a JY HLAIps sample using Thunder-DDA-
PASEF in a timsTOF Pro-2 and using DDA in an Orbitrap Exploris 480.
Although the LC and columns differed between the instruments
(“Methods” section), the gradient duration (47min) and total LC time
were similar (1 h). In the Exploris, we acquired data without FAIMS (wo-
FAIMS) or using gas phase fractionation (GPF) with FAIMS either
switching between three compensation voltages (CVs, −20, −50, −70)
during the acquisition (FAIMS-3CVs) or using single CVs per acquisi-
tion from −10 to −80 in steps of 10 (FAIMS-8CVs), as described in ref.

17. We acquired triplicate injections of 10 million cell equivalents in
each method but only in a single replicate for each CV of the FAIMS-
8CVs experiment. In addition, we compared our results to recent
reports profiling the JY HLAI-ligandome (Fig. 5). Demmers41. used DDA
on an Orbitrap Fusion Lumos Tribrid with electron-transfer/higher-
energy collision dissociation (EThcD) fragmentation, and a 90min LC
gradient. They excluded singly charged ions since EThcD is only sui-
table for charge states >+1. We reprocessed the results of three injec-
tion replicates in PEAKS XPro. Pak et al. employed a data-independent
acquisition (DIA) method in an Orbitrap Q-Exactive MS and a 110min
gradient. We downloaded the results of JY HLAIps identified using a
multi-sample DDA-derived spectral library (“BigLib”) compiled from
190 measurements (DIA BigLib)33.

Thunder-DDA-PASEF resulted in the most identified peptides
(12,639 HLAIps in total; Fig. 5a); thus higher than the Exploris wo-
FAIMS (3.7-fold), FAIMS-3CVs (5.6-fold), FAIMS-8CVs (1.8-fold), Dem-
mers (1.5-fold), and Pak (2.4-fold). The low performance of the FAIMS-
3CVs may be due to the high cycle time (>3 s), resulting in a low duty
cycle. Notably, the FAIMS-8CVs required almost three times more
instrument time and sample consumption than Thunder but provided
only half the number of HLAIps. Moreover, Thunder covered 60% of
the identifications resulting from combining all the results (19,397
HLAIps; Fig. 5a) and provided the highest proportion of exclusively-
identified HLAIps (24.5%; Fig. 5b). Demmers obtained the most similar
coverage compared to Thunder-DDA-PASEF42 and provided 18.7%
exclusive identifications, confirming the complementarity of EThcD
for immunopeptidomics experiments42.

To evaluate the performance of the methods for identifying
singly charged HLAIps, we plotted their charge distribution (Fig. 5c).
The FAIMS-3CVs resulted in the highest proportion of HLAIps
exclusively identified as singly-charged (36.9%), followed by Thunder
(30.0%), the Exploris wo-FAIMS (27.0%), and Pak (24.8%). In the
combined dataset, 24.8% of all the JY HLAIps identified were only
detected as singly charged (Fig. 5c). Notably, in only three injections,
Thunder-DDA-PASEF detected 91.9% of all the singly charged pep-
tides in the data set, and 67.7%were exclusive (Fig. 5d). This indicates
that the ion mobility separation is not essential to identify singly
charged peptides. However, Thunder-DDA-PASEF contributed the
most to singly charged peptides in the full dataset combining the
timsTOF and Orbitrap results, due to the enhanced overall coverage
achieved by the method.

In summary, these results indicate that Thunder-DDA-PASEF
outperforms all the Orbitrap-based methods tested. In addition,
Thunder-DDA-PASEF does not require a spectral library or many
injections, resulting in a more straightforward approach and requiring
less sample than library-based DIA and GPF DDA workflows.

Aworkflow includinganupdatedMS2Rescorewithnewly trained
timsTOFMS2PIPmodel identifiesmore than 5700HLAIps from 1
million JY cell equivalents
Several post-processing tools have shown improvements in immuno-
peptide identification by rescoring peptide spectrum matches (PSMs)
based on characteristics disregarded in the initial search16,34,43,44. To
improve the peptide identification, we implemented MS2Rescore
(MS2R, v3.0.0b4)16,29 into our workflow. Since peak intensity predic-
tions rely heavily on the fragmentationmethod, instrument or labeling
method28,45, we trained a timsTOF-specific peak intensity model using
in-house timsTOF data. In addition, it has been shown that prediction
models trained on datasets including both, tryptic and non-tryptic
peptides, can perform equally well for predicting the fragmentation of
both types of peptides16,34. Therefore, we trained a MS2PIP28 timsTOF
fragmentation prediction model using data acquired at two different
labs from immunopeptidomics (HLA class I), tryptic peptides, and
elastase digest samples. In total, 241,104 peptides (including mod-
ifications) were used to train the model and a distinct set of 10,045
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peptides to test it. Retention times were predicted with DeepLC46. In
addition, to take advantage of the ion mobility separation, we added
the peptide CCS predicted using the ionmob GRU predictor as a
rescoring feature, as recently described47.

Overall, compared to theHCDpredictionmodel the results greatly
improved using the timsTOFmodel (Supplementary Fig. S9), especially
for the JY Ramp_20-59eV run and the HL60 immunopeptides, which
utilized the IMS-dependent CE ramp. Here, median prediction perfor-
mance increased, respectively for the JY and HL60 datasets, from
0.5453 and 0.5109 Pearson correlation coefficient (PCC) for the Orbi-
trap HCD model to 0.8651 and 0.8706 PCC for the timsTOF model

To assess the sensitivity of Thunder-DDA-PASEF and how it is
affected by rescoring, we analyzed diverse injection amounts of JY
HLAIps. We prepared aliquots of a JY-HLAIp pool at 20 and 2 million
cell equivalents (Mce) and analyzed triplicate injections of 1, 2, 5, 10,
20, and 40 Mce in column using the 1 h gradient and optimized
Thunder-DDA-PASEF. Then, we analyzed the data without (PEAKS) or
with rescoring (+MS2R). We processed the files belonging to distinct
injection amounts independently to avoid introducing a bias due to
identification transfer from higher to lower cell inputs. The respective
results were filtered at FDR ≤0.01.

First, to better understand the overall effect of rescoring, we
evaluated diverse peptide characteristics by combining the results of
all the injection amounts (Fig. 6a–d). In total, PEAKS identified 28,725
peptides, and rescoring boosted the identifications by 35.4%, resulting
in 38,901 peptides (Fig. 6a). Rescored results shared 27,990 peptides
with PEAKS, gained 10,911, and lost 735 (Fig. 6a). Although themajority

of lost peptides were singly charged (68.8%), this only accounted for
508 peptides. In contrast, rescoring gained 3,112 (28.5%) and retained
8420 (30.1%) singly charged peptides (Fig. 6b). The proportion of 8-13-
mers was similar across the peptides shared (78%), gained (81%), and
lost (70%) (Fig. 6c). Thus, 21,801, 8856, and 514 8–13-merswere shared,
gained, and lost, respectively (Fig. 6d). Most of the lost peptides were
not predicted to bind HLAI (59.1%) while most of the shared (84.6%)
and gained (58.6%) peptides were predicted binders (Fig. 6d). These
results show substantial overall improvement in peptide identification
and indicate thatMS2R did not introduce a bias towards a specific type
of peptide.

Then, to evaluate the sensitivity of Thunder-DDA-PASEF without
and with rescoring, we focused on the impact of injecting decreasing
cell equivalents (Fig. 6e). PEAKS identified 4, 749 ± 862 on average
per injection of 1 Mce, increasing up to 16, 169 ± 164 peptides at 40
MCe. MS2Rescore boosted peptide identification by more than 31%
across all the cell inputs. Rescoring resulted in a statistically sig-
nificant increase starting from 2 Mce. The identifications went from
6, 581 ± 1, 022 to 21, 485 ± 135 for 1 Mce and 40 Mce, respectively. In
addition, the median area of gained peptides was lower than for the
shared and lost peptides (Fig. 6f), indicating that peptides with low
intensity benefited the most from rescoring. Besides, rescoring
improved the data completeness even for lower inputs, reaching
60.5% of peptides identified across all three replicates for 1 Mce
and up to 70.9% for 40 Mce, compared to 46.5% and 58.8%
without rescoring, respectively (Fig. 6g). Finally, we focused on the
netMHCpan-predicted binders (HLAIps) (Fig. 6h). PEAKS without
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rescoring identified 4049 ± 443 HLAIps from only 1 Mce and up to
10, 920 ± 200 from 20 Mce, where the number of HLAIps plateaued.
Using MS2Rescore resulted in 5738 ± 525 HLAIps from 1 Mce, and
14,516 ± 272 from 20 Mce. Thus, rescoring boosted the HLAIps
identification by 41.7% to 33%, respectively, significantly increasing
the number of HLAIps across all sample inputs. Rescoring also sig-
nificantly increased the number of protein groups covered byHLAIps
(Fig. 6i). Using MS2Rescore resulted in 3225 ± 191 HLAIps from 1 Mce
and 5765 ± 48 from 20 Mce. Thus, rescoring also boosted the
immunopeptidome protein coverage, providing HLAIps for proteins
that would have been missed otherwise.

Altogether, these results confirmprevious observations showing
that data-driven rescoring improves the coverage of immunopep-
tides with a higher gain for low sample inputs and low-intensity
peptides (refs. 16,34). In addition, data-driven rescoring also
improved the data completeness. In summary, our workflow using
Thunder-DDA-PASEF and PEAKS+MS2R provides an in-depth char-
acterization of the HLA class I immunopeptidome, obtaining more
than 5700 predicted HLAIps per injection of 1 million JY cell
equivalents.

Thunder-DDA-PASEF identified 16 spike HLAIps in JY and Raji
spike-transfected cells
To show an application of our workflow for identifying disease-related
immunopeptides,wecharacterized theHLAclass-I immunopeptidome
of B-lymphoblastoid JY, and Raji cell lines transfected with a segment
of the SARS-CoV-2 spike protein (Supplementary Material and Meth-
ods S1). Although SARS-CoV-2 has not been reported to infect B-cells,
they commonly express HLAI complexes at high levels. In addition, the
peptide binding motifs of JY and Raji HLA alleles broadly differ. Thus,
we selected these cell lines to maximize the coverage and HLA diver-
sity of spike immunopeptides.

Thunder-DDA-PASEF using PEAKS+MS2R identified in total 22,501
peptides from JY and 28,429 peptides from Raji, comprising 78% of
8–13-mers, with a median length of 9 AAs (Fig. 7a and Supplementary
Data S5), as expected for HLAIps. The reproducibility between biolo-
gical replicates rangedbetween36.4% and63.1%8-13-mers identified in
all the samples of the same genotype and 58.9% to 82% regarding the
proteins covered (Supplementary Fig. S10). The 8–13-mers included
79.5% binders for JY and 78.1% for Raji (Fig. 7b)). The specificity of
HLAIp enrichment in this experiment was lower than in the samples
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Fig. 6 | Evaluation of the sensitivity of Thunder-DDA-PASEF and the effect of
rescoring using the retrained MS2Rescore timsTOF immunopeptidomics model.
Injections of 1, 2, 5, 10, 20, and40million cell equivalents (Mce) of JYHLAIp samples
were analyzed in triplicate using Thunder-DDA-PASEF. a–d Peptide characteristics
of the whole dataset. a Peptides identified by PEAKS XPro alone (PEAKS) or by
rescoring with MS2Rescore (+MS2R), colored in function of the rescoring result/
impact. b Charge state distribution of peptides shared, gained or lost by rescoring.
c Length distribution of peptides shared, gained or lost by rescoring. d Number of
8-13-mer peptides and the proportion predicted as HLA binders (HLAIp, rank ≤ 2%)
or non-binders (NB, rank > 2%) to the respective JY HLA types. e–h Peptide char-
acteristics in function of sample input. e Total number of peptides identified by

PEAKS alone or with rescoring (+MS2R). f Peptide area (mean of three replicates)
distribution in function of rescoring result represented as violin and boxplots
(center line, median; box limits, upper and lower quartiles; whiskers, 1.5x inter-
quartile range). g Data completeness shown as the proportion of peptides identi-
fied in one, two, or all the three replicates. hNumber of HLAIps identified by PEAKS
alone or with rescoring (+MS2R); showing similar statistics as e. i Protein groups
covered by the HLAIps identified. In e, h, i points represent individual injections;
bars and error bars show mean± sd, percentages in blue correspond to the total
rescoring gain (Totalgainpercentage = 100×Rescore/PEAKS); black values indicate
p values from a two-sided t-test, and asterisks indicate statistical significance, ns:
p >0.05 (label not shown), *p ≤0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001.
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used for method optimization (>90%), primarily due to the higher
contamination with larger peptides (22 and 22.5% vs. < 10%). Thus, we
continued the downstream analysis on predicted HLA binders (Sup-
plementary Data S6). A lower proportion of HLAIps was exclusively
detected as singly-charged ions in Raji, compared to JY (33.5% vs.
46.1%, Fig. 7c). 9 This was due to the presence of basic amino acids at
the anchor positions for Raji HLA allele HLA-B15 (Fig. 7d, right),
including lysine or arginine at the C-terminus, resulting in a low pro-
portion of singly charged peptides (Supplementary Fig. S11). In con-
trast, the anchor residues binding JY HLA alleles are dominated by
apolar amino acids (Fig. 7d, left), resulting in higher proportion of
singly charged ions in the most represented HLA allele, HLA-A02:01
(Supplementary Fig. S11).

In total, 13,997 and 17,365 HLAIps were detected in JY and Raji,
respectively, summing up to 30,827 peptides (Fig. 7e). The HLAIps ori-
ginated from a large variety of proteins, corresponding to 5,612 protein
groups in JY, 6132 in Raji, and 8152 in total (Fig. 7f). Each protein group
was crepresented by amedian of twoHLAIps and 75%protein groups by
one to threeHLAIps for both cell lines (Fig. 7g). As expected considering
their HLA allotype differences, the JY and Raji immunopeptidomeswere

highly complementary, with only 1.7% of the peptides detected in both
cell lines (Fig. 7h, left). Interestingly, the overlap of parent proteins was
much higher since 44.1% of all the protein groups were covered by
the ligandomes of the two cell lines (Fig. 7h, right). A gene ontology
(GO) enrichment analysis using GOrilla48 indicated a significant over-
representation (FDR≤0.001) of proteins involved in essential processes,
such as themetabolism of nucleic acids (GO:0090304), macromolecule
biosynthesis (GO:0034645),macromolecule localization (GO:0033036),
and regulation of the cell cycle (GO:0022402) (Supplementary Fig. S12
a–c and Supplementary Data S7). Thus, the cell lines presented com-
plementary peptides for these same crucial proteins.

Then, we focused on the transfected SARS-CoV-2 spike protein
and the GFP reporter included in the construct (Fig. 8a–d). Impor-
tantly, peptides from these proteins were only detected in the trans-
fected cells and not in the wild-type cells. Three GFP-derived HLAIps
were identified in JY and six in Raji cells (Fig. 8b), serving as a control
for successful antigen processing of the transfected constructs. Five
spike HLAIps were identified in JY and twelve in Raji (Fig. 8a) across a
large dynamic range corresponding to four orders of magnitude
(Fig. 8c).While the Raji spike HLAIps were distributed across thewhole
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dynamic range, they weremainly in themiddle to low range for JY. The
sequence and characteristics of the spike HLAIps are shown in Fig. 8d
and detailed in the Supplementary Data S8. The nomenclature in
Fig. 8c, d denotes identified spike HLAIps (e.g., SIIAYTMSLs0691-0699)
both by peptide sequence and position (N- to C-terminus) in the full-
length spike protein.

In addition to showing a FDR <0.6% (mokapot q value) and a
posterior error probability (PEP) or localFDR < 6%, the spike HLAIps
were assessed based on the number of identifications across biological
and technical replicates (n BR, n TR; Fig. 8d, yellow to green scales),
and by comparing their fragmentation spectral angle (SA) similarity49

and indexed retention times (iRT) against synthetic peptides (Fig. 8d,
blue scales). The mirrored spectra comparisons are shown in Supple-
mentary Fig. S13. To maximize the identification confidence, we only
report spike HLAIps detected in at least three injection replicates or
with an SA ≥0.8. Only three of the 16 peptides did not fulfill both
criteria, but all thepeptides reported showedan iRT ratio endogenous/
synthetic ≥0.99. Among these three peptides, GVLTESNKKs0550-0558

from Raji and RLQSLQTYVs1000-1008 from JY were identified in only one

injection replicate, but their SA were 0.92 and 0.85, respectively.
Besides, although peptide TLKSFTVEKs0302-0310 showed a low SA (0.71),
it was identified in three injection replicates. The low SAmaybe due to
low-quality fragmentation spectra resulting from low abundant ions
since it was near the lowest end of the dynamic range (Fig. 8c). The
peptide NSASFSTFKs0370-0378 was detected in Raji and predicted to
weaklybindHLA-A03:01 butwas not included in thefinal report since it
did not pass the selection criteria (SA =0.79, detected in 2 injections).

To further assess the potential translational relevance of these
peptides, we compared them to previously published spike HLAIps,
and we evaluated their immune response frequency (RF) in patient-
derived samples using published data downloaded from the IEDB. The
RF is defined as the proportion of subjects with positive immune
response in B-cell or T-cell assays (Fig. 8d, dots and bars with blue
scale). Twelve of the spike HLAIps have been reported in the IEDB50

(October 17, 2023) and seven of them showed a RF of at least 10% and
up to 100%, indicating they are possibly immunogenic (Fig. 8d, dot
range plot). Potential challenges of LC-MS immunopeptidomics are
also exemplified here, since only one of the 16 spike HLAIps had been
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previously reported by MS (SIIAYTMSLs0691-0699)44. In addition, four of
the peptides were not reported in the IEDB (AIHVSGTNGTKs0067-0077,
YGVSPTKLs0380-0387, RVYSTGSNVFQTRs0634-0646, NRALTGIAVs0764-0772).
Interestingly, some spike HLAIps were predicted to bind to the HLA
alleles of both cell lines, but only SIIAYTMSLs0691-0699 was identified in
both cell JY and Raji (Fig. 8d, orange scale). Once more, this highlights
the need for direct validation of in silico-predicted HLA class I binders.

In summary, we report 16 spike peptides identified with high
stringency and confidence, which are predicted to bind HLA class I in
two cell lines expressing different HLA alleles. Accordingly, this ana-
lysis confirms the HLA presentation of many peptides previously
reported to be capable of eliciting a T-cell response but also provides
more potential spike HLAIps. While the presentation and immuno-
genicity of thepeptides in a clinical setting remains to bevalidated, this
shows the capabilities of Thunder-DDA-PASEF for identifying potential
HLA class I-restricted immunogenic targets.

Discussion
Here, we present Thunder-DDA-PASEF, an optimized LC-MS method
for HLAIp immunopeptidomics compatible with 47min gradients. We
took advantage of the IMS separation in the timsTOF Pro-2MS to semi-
selectively fragment singly ormultiply charged ions with the expected
IMS vs m/z distribution for HLA class I peptide ligands (8-13 amino
acids long). Then, we further optimized the resulting HLAIp-tailored
method for enhancedTIMS resolution andMSsensitivity. Adapting the
DDA-PASEF settings contributed the most to the improvements in
peptide coverage (64.2–120%), and the HLAIp-tailored Thunder isola-
tion polygon provided a further increase of 5–15%. Altogether, com-
pared to the 100ms method without polygon this doubled the
identification of HLAIps across samples with diverse HLA alleles. In
addition, rescoring the results with ourMS2PIP timsTOF fragmentation
predictionmodel further improvedHLAIp identification by 33 to 41.7%
and improved data completeness by 10%. Since fragmentation pre-
diction was similarly accurate for non-tryptic and tryptic peptides, we
expect similar improvements for proteomics experiments, but thiswas
out of the scope of this project. Collectively, Thunder with PEAKS
+MS2R resulted in 5738 ± 525 HLAIps from only one million JY cell
equivalents and reached up to 14,516 ± 272 from 20 million.

Compared to other immunopeptidomics methods in Orbitrap
instruments, Thunder-DDA-PASEF in the timsTOF Pro-2 provided the
highest number of JY HLAIps (Fig. 5), followed by Demmers, which
showed complementarity, probably due to the EThcD fragmentation41.
However, Demmers et al. identified 10,039 HLAIps by analyzing three
injections of 167million cell equivalents each, using a 90min gradient.
In contrast, our method resulted in 12,639 HLAIps from three injec-
tions of only 10 million cell equivalents each, using a 47-min gradient.
Sincebiological and samplepreparationdifferencesmayalso influence
these results, we also analyzed the same sample in an Exploris 480
based on methods published by Klaeger et al.17. The method using
extensive FAIMS-assisted gas phase fractionation (GPF) including sin-
gly charged peptides required eight injections (FAIMS 8CVs) but only
identified 6889 HLAIps. In comparison, Thunder-DDA-PASEF provided
twice the number of peptides in only three injections. Although FAIMS
GPF can also be programmed to screen more than one CV per run,
FAIMS 3CVs yielded even fewer peptides than the analysis without
FAIMS (2511 vs. 3755 HLAIps, respectively). Moreover, unlike FAIMS
GPF, whereoptimal CVsmust be selected for eachHLA allele, Thunder-
DDA-PASEF can readily screen a large diversity of HLAIp types without
further adaptation (Fig. 4). Therefore, Thunder-DDA-PASEF outper-
forms the methods tested regarding immunopeptidome coverage,
analysis time, sample input requirements, and ease of deployment.

The importance of including singly charged peptides in HLAIp
immunopeptidomics experiments has been previously proven and is
becoming a common practice in the field17,32–35, but it requires
instrument-specific adaptations that are worth highlighting. An

example using timsTOF instruments for immunopeptidomics was
published by Feola et al.39. However, the method employed by the
authors included the standard isolation polygon and restricted the
TIMS range to 0.6–1.3 1/K0, effectively excluding the singly charged
ions since they are eluted at > 1.3 1/K0 (Supplementary Fig. S1). As a
result, the proportion of singly charged peptides detected in JY sam-
pleswas below 1%, whilewe detected up to 46% JYHLAIps (Fig. 7c). Our
study shows the importanceof extending theTIMS range and adapting
the isolation polygon to cover the large population of singly charged
HLAIps. Removing the polygon and allowing the fragmentation of
singly charged peptides already enables the identification of singly
charged HLAIps (Fig. 2). Nevertheless, using a tailored isolation poly-
gon improves duty cycle and peptide identification, as observed using
the HLAIp-tailored Thunder polygon in combination with the 300ms
method (Fig. 4a, c).

Additional adjustments could further improve the identification of
immunopeptides. Considering the high coverage obtained from only
one million cell equivalents (4049 HLAIps from JY), the sample pre-
parationmethod could be down-scaled to reduce sample requirements
and transferred to a high-throughput format to take advantage of the
short analysis time required (1 h), for instance, using microfluidics
systems39,51 or plate-based protocols52. Here, we aimed for a method
compatible with a wide range of HLA alleles but it could be refined for
exceptional cases where a specific HLA type with a distinct IMS vs. m/z
profile is analyzed. For instance, allele-specific polygons could be cre-
ated using the profiles shown in Supplementary data (Figs. S8 and S11d)
or from a preliminary analysis of their sample of interest without an
isolation polygon. In addition, adaptations may be needed to screen
modifiedHLAIps. For instance, phosphopeptides have lowerCCSvalues
and thus higher 1/K0 than their unmodified counterparts53. Until now,
few studies have analyzedmodified immunopeptides such as phospho-
immunopeptides due to the large amounts of sample required for the
double enrichment (up to 1 × 109 cells)51. However, this may become
possible with improved methods such as Thunder-DDA-PASEF.
Although our study is limited by not addressing these points here, they
could be the subject of future research by the growing international
immunopeptidomics community.

The onset of the ongoing SARS-CoV-2 pandemic has fueled the
discovery of antigen candidates for vaccination, employing in silico
prediction algorithms, genetic screens, or peptide library T-cell
response assays. Even though immunogenicity testing of hypothe-
sized vaccine candidates yielded some positive outcomes (reviewed in
refs. 20–22), direct evidence of HLApeptide presentation reliesmainly
on direct identification by LC-MS.

Here, we provide a list of 16 spike HLAIps identified with high
confidence (FDR < 0.6%) in HLAIp-enriched samples, validated against
synthetic peptides (SA >=0.8 and iRT ratio >= 99.9%) and predicted to
bind at least one of the 7 HLA alleles in JY or Raji (Fig. 8d). Since we
focused on optimizing theMSmethod and evaluating its performance,
a limitation of our study is that we did not study the antigen pre-
sentation on SARS-CoV-2 infected cells or patient samples. However,
the approach transfecting cells expressing high levels of HLA com-
bined with the high coverage of Thunder-DDA-PASEF resulted in the
most extensive MS-based panel of SARS-CoV-2 spike HLAIps so far,
since only ten peptides had been reported by MS before. In addition,
seven of those peptides have been reported in the IEDB50 with a
positive response in B-cell or T-cell assays in 10 to 100 % of the human
subjects tested, suggesting they could be immunogenic. Although
these peptides remain to be further evaluated for their diagnosis or
therapeutic value, this shows that Thunder-DDA-PASEF can confirm
predicted immunopeptides and also discover more potential targets.

The list of spike HLAIps detected in our study complements
previous reports. For instance,Weingarten-Gabbayet al.24 analyzed the
HLA class I immunopeptidome of SARS-CoV-2-infected human
HEK293T cells and lung A549 cells transfected to express the virus

Article https://doi.org/10.1038/s41467-024-46380-y

Nature Communications |         (2024) 15:2288 12



entry factors ACE2 and TMPRSS2. After fractionating the HLAIp-
enriched peptides by high pH RP, they analyzed the samples in an
Orbitrap Exploris 480 with CV −50 and −70, and identified 36 SARS-
CoV-2 HLAIps. They reported seven spike peptides, including four
detected inHEK293T cells, which are predicted to bindHLA alleles also
present in JY (HLA02:01 and B07:02). Three of those peptides
(GLITLSYHL, GPMVLRGLIT, MLLGSMLYM) could not be detected in
our transfectant system since they originate from variants in the 2019-
nCoV/USA-WA1/2020 isolate (NCBI accession number: MN985325.1)
used by Weingarten-Gabbay et al., which are not present in the
plasmid we used (Wuhan-Hu-1 isolate, GenBank accession number
QHD43416.1,54,55). The remaining peptide (NLNESLIDL) is shared
betweenboth sequences, butwecouldnot detect it in JY. This couldbe
due to differences in the antigen processing machinery or deviations
between the transgenic and viral expression of the protein.

In addition, our results confirm SIIAYTMSLs0691-0699 as a multiallelic
spike antigen. This peptide was present in the data from Weingarten-
Gabbay24, but it was only identified when Xin et al. 2022 reanalyzed the
data using a deep learning algorithm44. This peptide is particularly
interesting since it is predicted to bind multiple HLA alleles in JY (HLA-
A02:01, B07:02, and C:0702) and Raji (HLA-C03:04, C04:01), but also
other HLA supertype representatives (HLA-A26:01, B08:01, HLA-
B39:01). In addition, the IEDB reports an RF of 0.39 to 0.5350. Collec-
tively, this information indicates that SIIAYTMSLs0691-0699 is amulti-allelic
HLAI-presented peptide and suggests that it could be immunogenic.

In summary, Thunder-DDA-PASEF using PEAKS+MS2Rescore
enables an in-depth coverage of HLAIps, outperforming state-of-the-
art methods for antigen discovery and direct validation of immuno-
peptides hypothesized by non-MS methods. This opens opportunities
to dig deeper into the immunopeptidome in our search to discover
specific antigens to target infectious diseases and cancer.

Methods
Ethics statement
We confirm that this study complied with all relevant ethical reg-
ulations regarding the use of human study participants and was
conducted according to the criteria set by the Declaration of Hel-
sinki. Human plasma was purchased from Zen-Bio (USA, SER-SPL).
According to the provider, Human Source Plasma was collected via
plasmapheresis on a Fenwal Aurora from a consented adult volunteer
donor in the United States. The donor signed a US Food and Drug
Administration (FDA) validated donor consent form. The consent
form explicitly listed the intended use for non-clinical research and
waived any rights generated from these research and commercial
applications. Institutional Review Board (IRB) approval was obtained
from Pearl Pathways, LLC. Additionally, the study adhered to guide-
lines for the responsible conduct of research and the protection of
human subjects.

Materials and substances
Analytical grade substances and reagents were used for sample pre-
paration, and were acquired from Sigma Aldrich (Merck), unless
otherwise stated. Water, acetonitrile, and formic acid were LC-MS
grade products acquired from Carl Roth. LoBind tubes (Eppendorf)
were employed to minimize sample loss.

Cell culture and human plasma sample
Both suspension and adherent cell cultures were used to increase
analyzed samples containing different HLA alleles. HeLa (CVCL_0030)
whole-cell pellets were purchased from Ipracell (Belgium, CC-01-10-
50). Human plasma was purchased from Zen-Bio (USA, SER-SPL, fresh
frozen, in 4% sodium citrate (m/v)). JY (CVCL_0108) and SK-MEL-37
(CVCL_3878) cells were cultured in-house and both, suspension and
adherent cell cultures,were harvested at 220xg for 10min andwashed
three times with 1x PBS prior counting and freezing at −80 °C until

further use. However, culture conditions and preparation for harvest
were slightly different.

The human B lymphoblastoid cell line JY was purchased from
ATCC and the human Burkitt lymphoma cell line Raji was obtained
from the DSMZ-German Collection of Microorganisms and Cell Cul-
tures. Both cell lines were maintained in RPMI1640 medium supple-
mented with 10 % FCS (Gibco (v/v)), 2mM glutamine, 1mM sodium
pyruvate, 100 units/ml penicillin, and 100μg/ml streptomycin.

The human melanoma cell line SK-MEL-37 was purchased from
sigma-aldrich (SCC262). SK-MEL-37 cells were maintained in DMEM
medium supplemented with 10% FCS (Gibco (v/v)), 2mM glutamine,
1mM sodium pyruvate, 100 units/ml penicillin, and 100μg/ml strep-
tomycin. For passaging and prior harvest, cells were dis-attached from
the culture flasks incubating 10min with 10 mM EDTA in PBS under
gentle rocking.

HL60 cells (CCL-240) purchased from the American Type Culture
Collection (ATCC) were cultured in-house in RPMI medium supple-
mented by 10% FBS (v/v) and 5% penicillin/ streptomycin (v/v). The cell
suspension was harvested at 1500 rpm at 4 °C for 5min prior counting
and freezing at -80∘C overnight and -150∘C until further use.

Cell transfection
The pcDNA3.1-SARS2-spike vector containing the full-length cDNA
encoding for the SARS-CoV2 spike protein (GenBank accession num-
ber QHD43416.1) was obtained from Fang Li (Addgene plasmid
#145032 ; https://www.addgene.org/145032/)55. The spike S cDNA was
split into S1 (2016 bp) and S2 (1761 bp) subunits for cloning by PCR into
theNheI and XhoI restriction sites from themultiple cloning site of the
pcDNA3.1+P2AeGFP vector (Genscript). The following oligonucleo-
tides (all purchased by Sigma) were used : GCAT GCT AGC ATG TCT
CAG TGC GTG AAC CTG ACT ACT AGA ACC and GCAT CTC GAG ACG
GCGAGCCCT CCT TGGGGAGTT GGTCTGGGT CTG for the S1 cDNA
and GCAT GCT AGC ATG AGC GTG GCC AGC CAG TCC ATC ATC GCC
TAC and GCAT CTC GAG AGC GGG AGCGAC CTGGGA TGT CTC GGT
GGA G for the S2 cDNA cloning. To generate stable JY and Raji trans-
fectants expressing either the S1 or the S2 protein fragments (Sup-
plementary Material S1, Material and Methods), 2 million cells were
exposed to 230 V and 500μF in the presence of 10μg plasmid DNA
using the Bio-Rad Gene Pulser II. After electroporation, cells were
cultured 24 h before starting G418 (Gibco) selection at a concentration
of 400μg/ml for JY cells and 800μg/ml for Raji cells. G418-resistant
and eGFP-expressing cells were selected by three rounds of screening
using a FACS Aria (BD Biosciences) at the Core Facility of the Research
Center for Immunotherapy (University Medical Center, Johannes
Gutenberg University Mainz).

Immuno-affinity purification of HLA peptide ligands
Sample preparation in Tenzer lab. HLA class I ligands were enriched by
immunoprecipitation asdescribedby56 withmodifications57. Briefly, in-
house cultured JY, Raji or SK-MEL-37 cells were washed three times
with PBS, harvested, flash-frozen, and stored at −80 °C until further
preparation. For the HeLa pellet and Plasma commercial sources were
used. For method optimization and SARS-CoV-2 spike HLAIp analysis
500 x 106 cells, for analysis of diverse allelic cell lines and plasma
100x106 and 5mLwereused, respectively. The cell pellets were thawed
and lysed in a non-denaturant buffer (1% CHAPS in PBS (m/v)) aided by
sonication. Immunoprecipitation was performed using the W6/32
antibody immobilized on CNBr-activated beads (Cytivia). The anti-
panHLA Class I monoclonal antibody W6/32 (anti-HLA-A, -B, -C) was
purchased from Hoelzel-biotech, and produced by Leinco Technolo-
gies (ref. H263). After overnight incubation, the beads were washed
once with PBS and once with water before peptide ligands were eluted
under acidic conditions (0.2% TFA (v/v)). Next, peptides were ultra-
filtered using 10 kDa molecular weight cutoff (MWCO) filters (Vivacon
500, 10,000 MWCO Hydrosart) and then desalted by SPE on a
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Hydrophilic-Lipophilic-Balanced sorbent (Oasis HLB 96-wellμElution
Plate, 2 mg Sorbent per Well, 30μm,Waters Corp.), applying 35% ACN
(v/v), 0.1% TFA (v/v) for elution. Finally, dried peptides were dissolved
in 15μL of water with 0.1% FA (v/v) for subsequent LC-MS/MS analyses.

Sample preparation in Carapito lab (HL60 samples). HLA
class I ligands were enriched by immunoprecipitation as previously
described16. The HB-95 hybridoma producing anti-panHLA Class I
antibody W6/32 was purchased from ATCC and cultured in Panserin
401 serum-freemedium (PanBiotech). The purification of the antibody
was done with the NGC Chromatography System (Biorad) using a
HiTrap Protein G HP 1 mL column (Amersham Pharmacia). A total of
600 x 106 in house cultured HL60 cells were lysed with 20mM Tris-
HCl, 150mMNaCl, 0.25% sodiumdeoxycholate (m/v), 1mMEDTA pH8,
0.2mM iodoacetamide, 1mM PMSF, Roche Complete Protease Inhi-
bitorCocktail, 0.5%NP40 (v/v), PBS, pH7,4. The lysatewas centrifuged
at 21,000×g for 30min at 4∘C. HLA-peptide-complexes were captured
on CNBr-activated sepharose 4B beads (Cytivia) linked to W6/32
antibody. Following binding, beads were washed several times with
3 buffers (150mMNaCl, 20mMTris-HCl, pH7.4; 400mMNaCl, 20mM
Tris-HCl, pH 7.4; and 20 mM TrisHCl, pH 8.0) and bound complexes
were eluted in 0.1M acetic acid. Eluted HLA peptides and the subunits
of the HLA complexes were desalted using a C18 Macro Spin column
(Harvard Apparatus) according to themanufacturer’s protocol. Finally,
HLA peptides were purified from the HLA-I complex after the elution
with 25% ACN (v/v), 0.1% TFA (v/v). Samples were evaporated under
vacuum and resuspended in water with 0.1% FA (v/v).

Proteomics sample preparation
Whole cell lysates were also used to train the timsTOF MS2PIP model.
For protein extraction, HeLa cells were lysed using a urea-based lysis
buffer (7 M urea, 2 M thiourea, 5 mM dithiothreitol (DTT), 2% CHAPS
(m/v)). JY cell pellets were thawed and lysed in 1% CHAPS in PBS (m/v)
as mentioned for the HLA peptide enrichment. Lysis was further pro-
moted by sonication at 4∘C for 15min (30 s on/30 s off) using a Bior-
uptor device (Diagenode, Liège, Belgium). After cell lysis, protein
concentration was determined using the Pierce 660 nm (for HeLa) or
Pierce BCA protein assays (for JY, due to the CHAPS) according to the
manufacturer’s protocols (Thermo Fisher Scientific).

Protein digestion forwhole-proteomesamples.HeLa, and JY, were
processed using filter-aided sample preparation (FASP) as detailed
before (refs. 58, 59). In brief, lysates were loaded onto spin filter col-
umns (Nanosep centrifugal devices with Omega membrane, 30 kDa
MWCO; Pall, PortWashington, NY) and washed three times with buffer
containing 8 M urea. Afterward, proteins were reduced and alkylated
using DTT and iodoacetamide (IAA), respectively. After alkylation,
excess IAA was quenched by the addition of DTT. Then, the buffer was
exchanged by washing the membrane three times with 50 mM
NH4HCO3 (pH 7.8) for trypsin, or TRIS Base (pH 8.5) for elastase. The
proteins were digested overnight at 37∘C using trypsin (Trypsin Gold,
Promega,Madison,WI) or elastase (Elastase, Promega,Madison,WI) at
an enzyme-to-protein ratio of 1:50 (m/m). After proteolytic digestion,
peptides were recovered by centrifugation and two additional washes
with 50 mM NH4HCO3. After combining peptide flow-throughs, sam-
ples were acidified with trifluoroacetic acid (TFA) to a final con-
centration of 1% trifluoroacetic acid (TFA (v/v)) and lyophilized.
Lyophilized peptideswere reconstituted inwaterwith 0.1% formic acid
(FA (v/v)) for LC-MS analysis.

LC-MS/MS timsTOF Pro-2 (Tenzer lab)
NanoLC-MS analysis was performed using a nanoElute coupled to a
timsTOF-Pro-2mass spectrometer. Datawas acquiredusingCompass
Hystar (Bruker) versions between 4 and 5.1, and timsControl versions
between 3 and 4.0.5 (Bruker). The desalted peptides were directly
injected in a C18Reversed-phase (RP) Aurora 25 cmanalytical column
(25 cm× 75 μm ID, 120 Åpore size, 1.7μm particle size, IonOpticks,

Australia) and separated using gradients increasing the proportion of
phase B (ACNwith0.1% FA (v/v)) to phase A (waterwith 0.1% FA (v/v)).
A 47min gradient was used for the method development analyses,
and a 110min gradient for the analysis of spike-transfected cells and
the synthetic peptides, as detailed in Supplementary Data S1. A
Captive Spray source was used for ionization, with a capillary voltage
of 1600 V, dry gas at 3.0 L/min, dry temperature at 180 °C, and TIMS-
in pressure of 2.7 mBar. MS data were acquired in DDA-PASEF mode.
Different MS parameters were evaluated during method develop-
ment, as detailed in Supplementary Data S1. The JY and Raji spike-
transfected data set was acquired using the optimized conditions
described in the following lines. HLAIp IP-enriched, ultrafiltered, and
desalted peptides were analyzed in three injection replicates each,
using a volume of 1.5μL/injection, equivalent to 33 million cells from
the original sample. Peptides were separated in a 110min. gradient
from 2% to 37% of ACN with 0.1% FA (v/v). The MS was configured
with the optimized Thunder-DDA-PASEF method, employing an
HLAIp-tailored isolation polygon (Fig. 2), a 300ms TIMS ramp, three
MS2 frames/cycle, one cycle overlap, using the high-sensitivity mode
(optimized detector voltages). The settings used for LC-MS are
detailed in Supplementary Data S1 and the timsTOF Pro method is
included as Supplementary Data S2.

LC-MS/MS timsTOF Pro, for collision energy tests (Carapito lab)
Proteomics onHela tryptic digests. Hela Pierceprotein digest (Thermo
Fisher Scientific, Rockford, US) was diluted in an aqueous solvent with
2% ACN (v/v) and 0.1% FA (v/v) to 100 ng/μL and 2μL were injected for
each run. A nanoElute LC system (Bruker, Billerica, US) coupled to a
timsTOF Promass spectrometer (Bruker Daltonics) was used for DDA-
PASEF data acquisition. Peptide extracts were separated using an
Aurora 25 cm packed emitter column (Ionopticks) with a linear gra-
dient of 2–37%B (2%ACNwith0.1% FA (v/v)) over 100min at a flowrate
of 0.2 nL/min. The dual TIMS configuration utilized a ramp time and
accumulation time of 100ms, resulting in a total cycle time of 1.17s.
DDA-PASEFmodewith 10 PASEF scans covered amass range from 100
m/z to 1700 m/z with charge states set from 0 to 5+. The capillary
voltage was set at 1500 V. Different ion mobility ranges, and corre-
sponding collision energy ramps were used. Four different collision
energy ramps were used for peptide fragmentation: linear ramps from
52-20, 59-20, and 32–60 eV were used with an ion mobility range from
1.6to0.6Vs/cm2, while the fourth ramp used a linear collision energy
ramp from 59-20 eV and an ionmobility range from 1.3 to 0.85 Vs/cm2.

Immunopeptidomics on HL60 samples. A nanoElute LC system
(Bruker, Billerica, US) coupled to a timsTOF Pro mass spectrometer
(Bruker Daltonics) was used for DDA-PASEF data acquisition. Data was
acquired using Compass Hystar (Bruker) versions between 4 and 5.1,
and timsControl versions between 3 and 4.0.5 (Bruker). The peptide
extract equivalent to 60 × 106 cells was injected and separated using
anAurora 25 cmpacked emitter column (Ionopticks)with a gradient of
2–37% B (2% ACN with 0.1% FA (v/v)) over 100min at a flow rate of
0.2 nL/min. The dual TIMS configuration utilized a ramp time and
different accumulation times (100, 166, or 200ms). DDA-PASEF mode
with either 6 or 10 PASEF scans covered a mass range from 100m/z to
1700m/z with charge states set from0 to 5+. The capillary voltage was
set at 1500 V. Four ion mobility ranges (1.6–0.6, 1.7–0.6, 1.75–0.65 and
1.7–0.65 Vs/cm2), two collision energy ramps (59–20and55–10 eV) and
threshold intensity (2500 and 1500) were used.

LC-MS/MS Orbitrap Exploris 480
An aliquot of the same sample of JY HLAIps analyzed in the nanoElute -
timsTOF Pro-2 was also analyzed in anUltimate 3000 LC coupled to an
Orbitrap Exploris 480 (Thermo Fisher Scientific). Peptides were sepa-
rated on an Ultimate 3000 LC system at 300nL/min using a Waters
Analytical HSS-T3 column (75μm×25 cm, 1.8μm particle size) and a
linear gradient from4-35%Solvent B (90%ACNwith 0.1% FA (v/v)) over
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44min, from 35–90% under 1min and flushed at 90% with 400 nL/min
for 5min. Data was acquired without FAIMS (wo-FAIMS) or using
FAIMS-based gas phase fractionation (GPF) accordingly to methods
previously introduced by Klaeger et al.17 and described in the para-
graphs below. For all the experiments,MS1 spectrawere collectedover
a scan range of 350–1700m/z at a resolution of 60,000,monoisotopic
peak detection was set to peptide, and relax restrictions were enabled.
For data-dependent MS/MS, precursors were isolated using a 1.1 m/z
window and collected until either a normalized AGC target of 50% or a
maximum injection timeof 100ms (CV−10 and−20)or 120ms (CV−30
to −80) was reached. Fragmentation was achieved by applying 30%
HCD collision energy and recorded at 15,000 resolution.

For the FAIMS-8CVs experiment, the CV-based peptide screening
was performed in individual injections from CV −10 to −80 V, applying
steps of −10 V, keeping the CV constant during each acquisition
(hence, in 8 injections). FAIMS was set to standard resolution in all the
methods. For CV −10 and −20 V, MS1 spectra were collected for pre-
cursors, including charge states +1 to +4 until either 100% normalized
AGC target or 50ms maximum injection time was reached (scan-
basedmethod: 10 scans/duty cycle). The intensity thresholdwas set to
1 × 103 and the dynamic exclusion time to 10 s. From CV −30 to −80 V,
MS1 spectra were collected on precursors with charge states +2 to +4
until either 100% normalized AGC target or 25ms maximum injection
time was reached (cycle time-based method: 1.5 s cycle time/duty
cycle). A precursor fit filter was set to a 50% fit threshold and 1.4m/z fit
window with an intensity threshold of 1x104, with a dynamic exclusion
time of 10 s.

For the FAIMS-3CVs experiment, the FAIMSwas switchedbetween
three compensation voltages (CVs, −20, −50, −70) within each acqui-
sition.MSSettings detailed above forCV−20,−50, and−70wereadded
as individual experiments in a singlemethod. All other settings were as
described above. The analysis of samples without FAIMS included the
sameMSsettings asdescribed forCV−10 to−20Vbut removing FAIMS
from the method.

External datasets
The following publicly available JY HLAI-ligandome data sets
were downloaded for comparison against Thunder-DDA-PASEF.
Feola et al.39, timsTOF Pro raw data was downloaded (PRIDE ID:
https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=
PXD000394PXD000394) and processed with PEAKS XPro using the
same parameters as in our experiments (see following section). For
Pak et al.33 Q Exactive HF-X data, the list of peptides identified in JY
cells by the authors using the “BigLib" was used. Demmers et al.41,
raw Orbitrap Fusion Lumos Tribrid data of HLA class I ligandome
analyses of JY cells cultivated at 37 °C was downloaded (Proteo-
meXchange ID: https://proteomecentral.proteomexchange.org/cgi/
GetDataset?ID=PXD022930PXD022930) and processed with PEAKS
XPro with the settings described in the following section.

Peptidomics database search and rescoring
Data analysis was performed in PEAKS XPro (v10.6, build 20201221). A
complete description of the settings used is included in Supplementary
Data S1, tab PEAKS_XPro. The protein database was composed of the
UniProtKB (Swiss-Prot) referenceproteomesofHomo sapiens (Taxon ID
9606, downloaded 02/Feb/2020), Epstein-Barr virus (strain GD1, Taxon
ID 10376, downloaded 06/Feb./2022), GFP from Aequorea victoria
(P42212), and SARS-CoV-2 (Taxon ID 2697049, downloaded 10/March/
2021), as well as the SiORF1 reported by60,61, supplemented with a list of
172 possible contaminants. For database searches, protein in silico
digestion was configured to unspecific cleavage and no enzyme. Up to
two variable modifications per peptide were allowed, including
Methionine oxidation, cysteine cysteinylation, and Protein N-terminal
acetylation. The settings for timsTOFandOrbitrapdata are summarized
in the paragraphs below, and further detailed in SupplementaryData S1.

To avoid introducing a bias due to the transfer of peptide identifica-
tions,fileswereprocessed in independentprojects for each sample type
(cell line or plasma), LC-MS method, or cell equivalents injected.

For Orbitrap data, Raw LC-MS files were loaded with the config-
uration as Orbi-Orbi with CID fragmentation for Exploris 480 data, or
Orbi-Trap with EThcD for Lumos data (Demmers dataset), both as
DDA. Mass tolerance was set to 5 ppm for MS1 and 0.02 Da for MS2.

For timsTOF data, the option timstof_feature_min_charge (in file
PEAKSStudioXpro\algorithmpara\feature_detection_para.properties)
was set to 1 to allow the identification of singly-charged features. Raw
LC-MS files were loaded with the configuration for timsTOF DDA-
PASEF data with CID fragmentation. Mass tolerance was set to 15 ppm
for MS1 and 0.03 Da for MS2. Identification rescoring. Spectra were
exported in MGF format and identifications in mzIdentML format,
including decoys and without any score filter (−10lgP ≥0 for peptides
and proteins). Identifications were then rescored using an updated
version of MS2Rescore16,29 (v3.0.0b4) with the timsTOF model descri-
bed in the next subsection. The Spectrum ID regex pattern was set as
“(index=[0-9]*)", the MS2 mass accuracy tolerance was 0.03 Da,
DeepLCwas used for retention time prediction46, and the ionmobGRU
predictor47 was used for CCS prediction.

For downstream analyses, peptide identifications and the
respective protein coverage were evaluated using the -peptide.csv-
report exported fromPEAKS atpeptide FDR ≤0.01, or the combination
of this file with the output of MS2Rescore filtered at mokapotqvalue ≤
0.01 In these files, only one charge state is reported for each peptide.
Thus, the information regarding peptides identified atmultiple charge
stateswas extracted from the PSM resultsfiltered at similar thresholds.
A threshold of protein − 10lgP≥ 20 was used, but this does not affect
the peptide or PSM reports. Although PEAKS can provide de novo
peptide candidates, only peptides identified by database search were
reported across all the experiments.

timsTOF peptide fragmentation prediction model
MS2Rescore integrates the machine learning prediction of retention
and fragmentation peak intensity using DeepLC46 and MS2PIP28,62,
respectively, with the semi-supervised machine learning-based FDR
calculation of Mokapot63. As peak intensity predictions are heavily
reliant on the fragmentation method, instrument, or labeling method,
the predictions of theOrbitrapHCDmodel ofMS2PIP45 do not perform
very well on timsTOF data. Therefore, we trained a timsTOF-specific
peak intensity model using in-house timsTOF data from two different
labs. This included digested peptides of JY (trypsin and elastase) and
HeLa (trypsin), and HLA class I immunoprecipitation-enriched pep-
tides of JY, HeLa, SK-MEL-37 (all previous from Tenzer lab), and HeLa
(trypsin) and HL60 samples using multiple CE settings(Carapito lab).

To train the models, all identifications from both labs and with
different collision energy settings were combined whereafter for each
uniquepeptidoform in terms of sequence, charge, andmodification the
highest scoring PSMwas retained in the training data. All the remaining
251,149peptides (includingmodifications) were converted to anMS2PIP
feature vector and were used to train XGBoost(v1.6.2)(Chen &Guestrin,
n.d.) prediction models for both B and Y ions separately. Before train-
ing, 10,045 peptides (including modifications) were set aside to use as
evaluation set for the final model, ensuring that the datasets were
represented homogeneously. For the optimization of the hyperpara-
meters, the Hyperopt (v0.2.7)(Hyperopt Documentation, n.d.) python
package was used and combined with 6-fold cross-validation. Boosting
rounds were set to 300 max with an early stopping of 10 rounds. All
the hyperoptimization rounds were logged to weights and biases
(Supplementary Data S9, interactive version available in https://wandb.
ai/arthur_declercq/Final%20timstof%20model%20training/reports/MS-
PIP-timsTOF-prediction-models--Vmlldzo1NjQxNTMw). The optimal
hyperparameters were then used to train the final model on all the
training datawith the evaluation set as evaluation set. To test the overall
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performance of the trained models, a different dataset was used. As, in
immunopeptidomics, similar peptidoforms may occur for the same
HLA alleles, we performed an extra step to remove all peptidoforms
from the test set, even though these were different runs. The test
set also contained runs with distinct collision energies for evaluation
and were compared in performance to the 2021 Orbitrap HCD immu-
nopeptidomics MS2PIP model.

Experiment design
Formethod development, pooled samples of IP-enrichedHLAIps from
wild type cells or human plasma (as described above) were used. For
the final JY and Raji data set, the IP protocol was used to enrich the
HLAIps from three cultures of each WT cell line (JY_WT, and Raji_WT)
and two different cultures of each transfected cell line (JY_S1, JY_S2,
Raji_S1, and Raji_S2). In every experiment, each sample was analyzed in
three LC-MS injection replicates.

Data analysis and statistics
HLA alleles and binding prediction was performed using NetMHCpan-
4.130 and sequence clustering with GibbsCluster-2.064, both via
MhcVizPipe (v0.7.9)31. Since the human plasma sample was not HLA-
typed, we previously obtained the possible matching alleles across
twelve supertype representatives usingMHCMotifDecon (ref. 40), and
selected the top 4 for the binding prediction as mentioned above. The
allotypes used for prediction were as follows: JY (HLA-A0201, B0702,
C0702), HeLa (HLA-A68:02, A03:19, B15:03, C12:03), SK-MEL-37 (HLA-
A0201, A1101, B1501, B5601, C0102), and commercial human plasma
(predicted as HLA-B0702, B1501, A0101, A2601).

Data analysis, statistical analysis and visualization were done
mostly using in house R scripts65. The main R packages used were as
follows; the statistical differencewas assessedby two-sided t-test using
ggpubr (v. 0.4.0)66; plots were generated using ggplot2 (v. 3.4.0)67;
Venn plots with ggvenn (v. 0.1.9)68; upset plots with ggupset (v. 0.3.0)69;
and sequence logos were generated using ggseqlogo70.

Gene ontology (GO) enrichment analysis was performed using
GOrilla48. Spectral mirrored plots and calculations were obtained from
theUniversal SpectrumViewer (USE)49 by comparing the spike peptide
spectra acquired from transfected cells against spectra obtained from
synthetic peptides based on the similarity Spectral Angle (SA). Spectra
and respective transition lists were neither pre-filtered (e.g., selecting
transitions) nor modified prior USE submission.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry immunopeptidomics and proteomics
data have been deposited to the ProteomeXchange Consortium71

via the jPOSTrepo partner repository72 with the dataset identifiers
https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=
PXD040385PXD040385 for ProteomeXchange and https://repository.
jpostdb.org/entry/JPST002044JPST002044 for jPOSTrepo. Data from
JY immunopeptidomics used for training was previously published47

and can be accessed with the dataset identifiers https://
proteomecentral.proteomexchange.org/cgi/GetDataset?ID=
PXD043026PXD043026 for ProteomeXchange and https://repository.
jpostdb.org/entry/JPST002158JPST002158 for jPOSTrepo. Data
from Carapito lab have been deposited to the ProteomeXchange
repositories https://proteomecentral.proteomexchange.org/cgi/
GetDataset?ID=PXD046535PXD046535 for HL60 immunopepti-
domics, and https://proteomecentral.proteomexchange.org/cgi/
GetDataset?ID=PXD046543PXD046543 for HeLa tryptic proteomics
files. A list of datasets, main LC-MS parameters, and their repository
locations is included as Supplementary Data S10. Protein sequences

were downloaded from UniProtKB (Swiss-Prot), as detailed in the
Methods subsection Peptidomics database search and rescoring, and
the FASTA databases are also included in the corresponding
repositories.
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