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Precise atom-to-atom mapping for organic
reactions via human-in-the-loop machine
learning

Shuan Chen 1,2, Sunggi An1,2, Ramil Babazade 3 & Yousung Jung 1,2,4,5

Atom-to-atom mapping (AAM) is a task of identifying the position of each
atom in themolecules before and after a chemical reaction, which is important
for understanding the reaction mechanism. As more machine learning (ML)
models were developed for retrosynthesis and reaction outcome prediction
recently, the quality of these models is highly dependent on the quality of the
AAM in reaction datasets. Although there are algorithms using graph theory or
unsupervised learning to label theAAM for reactiondatasets, existingmethods
map the atoms based on substructure alignments instead of chemistry
knowledge. Here, we present LocalMapper, an ML model that learns correct
AAM from chemist-labeled reactions via human-in-the-loop machine learning.
We show that LocalMapper can predict the AAM for 50K reactions with 98.5%
calibrated accuracy by learning from only 2% of the human-labeled reactions
from the entire dataset. More importantly, the confident predictions given by
LocalMapper, which cover 97% of 50K reactions, show 100% accuracy for
3,000 randomly sampled reactions. In an out-of-distribution experiment,
LocalMapper shows favorable performance over other existing methods. We
expect LocalMapper can be used to generate more precise reaction AAM and
improve the quality of future ML-based reaction prediction models.

Atom-to-atom mapping (AAM) plays a crucial role in preparing reac-
tion data by identifying the one-to-one mapping between reactant
atoms and product atoms. High-quality AAM allows fast recognition of
the reaction center of a given chemical reaction, which is essential for
manyof thedevelopedmethodsworking on chemical reaction analysis
and prediction.

One of the widely used applications of AAM is the construction
of a condensed graph of reaction (CGR)1,2, which combines the
reactant and product graphs into a single representation and has
shown promise in various reaction tasks, including reaction condi-
tion prediction3,4, reaction similarity search5, and even predicting
advanced reaction quantities such as activation energy or reaction
yield6,7. Additionally, AAM enables the automatic identification of
reaction centers and extraction of reaction templates from

databases, which are utilized in predicting reaction outcomes8–10 and
single-step retrosynthesis11–15 machine learning (ML) models. Since
these applications are highly dependent on the AAMof reaction data,
the quality of AAM greatly impacts the performance of machine
learning models. For instance, the incorrect mapping on an alkene
epoxidation would generate an invalid retrosynthesis reaction tem-
plate and unclear reaction mechanism (Fig. 1), turning valuable
reaction data into noisy reaction data. Unfortunately, the commonly
used USPTO reaction dataset has been reported to contain issues like
incorrect AAM or missing reactants, which directly affect down-
stream ML models10,16–18. Incorrect AAM can lead to the learning of
incorrect chemistry, resulting in unrealistic prediction models and
retrosynthesis pathways. With the growing number of downstream
models being developed, the curation of high-quality AAM for
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reaction datasets becomes an urgent task to ensure the quality of
reaction prediction models.

Existing methods for AAM identification can be generally cate-
gorized into rule-based17,19–25 and ML-based methods18,26. Most of the
rule-basedmethods identify AAMbased onminimal chemical distance
(MCD)27 or maximum common subgraph (MCS) isomorphism
algorithms28. Solving the AAM problem by rule-based approaches is
challenging because such a subgraph isomorphism problem has been
known be be an NP-hard problem since the 1970s, and there is no
efficient algorithm to find the exact solutions29–31. Recently, machine
learning models have been developed to bypass the time-consuming
subgraph matching process and map the atoms in the reactions
directly by the information extracted from the model’s learned fea-
tures. Schwaller et al.18 proposed an unsupervised-learning-based
model called RXNMapper to link the grammar dependency of each
atom between reactants and products. By focusing on specific atten-
tion weights of the language model, RXNMapper not only achieved a
promising prediction accuracy that outperformed existing rule-based
methods but also largely reduced the computational time of per-
forming AAM on large reaction datasets. More recently, Nugmanov
et al.26 developed GraphomerMapper using a similar unsupervised
learning strategy with RXNMapper based on a graph-based Transfor-
mer and trained the model on a much larger reaction dataset.

Although the above-mentioned approaches have shown improving
accuracy over previous methods, a perfect 100% accuracy of AAM is
required since the flaw in the reaction data will be amplified in the
downstream reaction prediction models. Yet, currently, existing meth-
ods have not shown a reliable approach to detect potentially incorrectly
predicted AAM, which makes the error in the predictions hard to iden-
tify. Furthermore, although existing ML-based unsupervised methods
are found tobemuch faster than rule-basedmethods and applicable to a
wider range of reactions, training a model without knowing the correct
AAM may lead to unexpected errors even for simple reactions. As later
shown in this paper, previousmethodshave incorrectlymappedover 5%
of reactions in the widely used US patent dataset.

Here, we present a precise graph-based AAM model, named
LocalMapper, via human-in-the-loop machine learning. Apart from
previous ML-based approaches, which learn the AAM without correct
answers, we manually label the AAM of reaction data to train the

model. While the manual labeling of a large amount of AAM in a large
dataset can be an exhaustive and expensive task, we design an active
learning framework tomanually label only a small fraction of reactions
diversely sampled from a large dataset. With these chemist-labeled
AAM, we train a graph neural network (GNN) to learn the correct AAM
of reaction using both localmessage passing and long-range attention.
For a publicly available USPTO-50K dataset, the model can predict the
AAM with 98.5% accuracy only by learning from 2% of the chemist-
labeled reactions. More importantly, the AAM of 97% of the reactions
in the dataset confidently predicted by LocalMapper shows a 100%
prediction accuracy. The same perfect accuracy is observed by testing
the model with a diverse out-domain reaction test set. We expect our
approach can be used to generate reliable AAM for reaction databases
and improve the quality of future ML models relying on AAM. We
summarize the important breakthroughsof thispaper in three aspects.
1. The proposed knowledge-based uncertainty identification allows

the fast chemical-aware verification of ML model predictions,
yielding 100% correct AAM for 3,000 randomly sampled
confident predictions.

2. The developed model, LocalMapper, achieves state-of-the-art
AAM prediction accuracy by learning the chemist-verified AAM
from high-quality training data curated by human-in-the-loop
machine learning. We show a better prediction accuracy
compared to the existing ML-based models, RXNMapper18 and
GraphormerMapper26 by only labeling 2% of the reactions.

3. In an out-of-distribution experiment, LocalMapper shows favor-
able prediction accuracy over two existing ML-based AAM
models, while maintaining 100% accuracy on the confident
predictions.

Results
The human-in-the-loop machine learning framework
In thiswork,wepropose a graph-basedmodel, LocalMapper, to learn the
correct AAM through human-in-the-loop machine learning. To train
LocalMapper, wemanually label the AAM for each reaction to guarantee
the correctness of AAMs in the reactions for training themodel. Because
manual labelingAAMfor chemical reactions is intensely time-consuming
(in general over oneminute per reaction), it is impractical to label a large
portionof the reactions in a largedataset. Therefore,we introduce active

Fig. 1 | The importance of accessing correct atom-to-atom-mapping (AAM) in
terms of generating retrosynthesis reaction templates and deriving reaction
mechanisms based on chemical knowledge. The upper AAM is generated by the

proposedAAMmodel LocalMapper, and the bottomAAM is recorded in theUSPTO
reaction dataset.
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learning to label only a small fraction of representative reactions. The
overall workflow can be decomposed into the following 5 steps (Fig. 1a),
andmore details about LocalMapper (Fig. 1b) and prediction confidence
(Fig. 1c) are described in the next two subsections.:
1. Random sampling: To initialize the active-learning process, we

randomly sample k reactions from the unmapped reaction
dataset., where k is an affordable small number for a human
expert to label the AAM at one time.

2. Label and train: Next, we manually label the AAM for the sampled
k reactions and use these reactions to train the proposed graph-
based model LocalMapper, structurally similar to the retrosynth-
esis model LocalRetro14 and reaction outcome prediction model
LocalTransform32. Reaction templates extracted from human-
mapped reactions are used to update a template library, which
will be used for later uncertainty identification.

3. AAM prediction: Next, we use LocalMapper to predict the atom-
atom correlation between reactants and products for all the
reactions in the dataset. According to the atom-atom correlation
predicted by LocalMapper, we generate the AAMs for each
reaction following the atom-mapping procedure introduced by
Schwaller et al. 18

4. Confidence identification: For each predicted reaction’s AAM, we
extract the reaction template to represent its pattern of reactivity.
If the extracted reaction template exists in the current template
library, the set of AAMs predicted at the reaction is considered a
confidence prediction, otherwise an uncertain prediction.

5. Active sampling: For each unique template extracted from
uncertain predictions, we sample one reaction starting from
the template sharing the most reactions, until k reactions
are sampled. These reactions are then labeled by human chemists
and used the train the model in the next iteration, repeat-
ing step 2.

From the second iteration, we train the model using semi-
supervised learning by sampling 100 reactions from the confident
predictions from each unique verified reaction template to increase
the model’s robustness. These sampled reactions are split into the
training and validation set by a 9:1 ratio to prevent overfitting.

LocalMapper
To predict the AAM between the reactant and product in the reaction,
we design a graph-based model, called LocalMapper, to learn the
probability of each atom in the reactant being repositioned to the
atom in the product pðatomr jatompÞ. Similar to our previous models
for retrosynthesis, LocalRetro14, and reaction outcome prediction,
LocalTransform32, we use the graph to represent molecules, with
atoms as nodes and bonds as edges, and learn the AAM by both local
and global features of the atoms in the reactions by message passing
neural networks33 and attention mechanism34 (Fig. 2b).

First, we encode the local chemical environment of each atom
using 3 message-passing layers33 and update the atom features in the
product by atom features from the reactants through 3 multi-head
cross-attention blocks34. After the features of each atom between
reactants and products are sufficiently communicated, we calculate
the AAM correlation between product and reactant by a single-head
attention block. After normalizing the attention scores with the Soft-
max function, the probability of each atom in the reactant being the
same atom of each atom in the product is estimated. Following
the atom-mapping procedure introduced in RXNMapper18, we use the
resulting probability to identify the AAM from product to reactant
from the highest probability to the lowest probability. In the example
shown inFig. 2b, oxygen from thewatermolecule at the reactant side is
identified as the source of the oxygen on ketone in the product
molecule. The mathematical details of each layer and pseudocode of
LocalMapper can be found in the Method Section.

Knowledge-based prediction confidence
Accessing the prediction confidence is one of the most important fea-
tures of ML models, which informs the use of whether the model’s
prediction is reliable or not. Sampling and labeling uncertain predictions
to train the model is usually referred to as active learning, which can
efficiently explore the necessary data to label for the model to further
learn. Popularmethodsof quantifying the prediction confidence include
Monte Carlo dropout35, bootstrapping36, and multiplying the prediction
probabilities18,37. Despite a positive correlation between accuracy and
uncertainty using these approaches, none of these approaches use in-
domain knowledge but solely depend on the model parameters.

Fig. 2 | The overall scheme of the human-in-the-loop machine learning for
atom-to-atom mapping (AAM) with the proposed model LocalMapper. a The
workflow of the proposed active-learning approach. First, we sample k reactions
from the entire reaction dataset. After manually labeling the AAM of the sampled
reactions, we train the LocalMapper model to learn the correct AAMs. Next, we
used the trained LocalMapper to predict the rest of the data and classify the pre-
dictions into confident and uncertain predictions via previously verified reaction
templates. Then we sample another k reactions from uncertain predictions and
label them to train the next generation of models. This cycle is repeated for n

iteration until a criterion is reached. b The model architecture of LocalMapper.
First, both features of reactant and product molecules are updated through
message-passing layers. Next, all atoms are free to communicate the information
through reaction attention blocks. Finally, a classifier is trained to identify which
atom in the reactant corresponds to a specific atom in the product. c Knowledge-
based confidence identification. After predicting the AAMs of each reaction in the
dataset, we determine the prediction confidence by checking whether the reaction
template extracted from the mapped reaction has been verified by a human che-
mist during the manual labeling phase (orange AAM) or not (purple AAM).
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Here, we introduce a knowledge-based approach to identify pre-
diction confidence by examining the presence of a reaction template
derived from thepredictedAAM in the chemist-verified template library.
Since the reaction mechanism of a chemical reaction is determined by
itself, we assume there exists only one correct chemically reasonable
reaction template that can be derived from the correctly predicted
reaction AAM. On the other hand, reactions with incorrectly predicted
AAMs would not give chemically reasonable templates. Therefore, we
define the prediction as confident if the reaction template derived from
the predicted AAM has already been identified and verified by a human
expert during themanual reaction labeling process, otherwise classified
as uncertain predictions. Hence, the uncertain predictions are either
wrong or correct but have not been validated by human experts yet.
These uncertain predictions can be sampled and confirmed by human
experts in the active learning process. The example illustrated in Fig. 1c
shows that only when the AAM of the given reaction is correctly pre-
dicted would it yield a chemically reasonable reaction template (tem-
plate A) and be identified as a confident prediction, otherwise uncertain
(template B).We use an extended version of the local reaction template,
extended-local reaction template (ELRT), to represent the reactions in
this work. See the “Methods” section and Supplementary Section 1 for
more details about ELRT.

Results of active-learning
In our experiments, we perform active-learning to train LocalMapper
on the USPTO-50K dataset, containing 49,996 reactions curated by
Schneider et al. 38, by sampling 200 reactions at each active-learning
iteration and repeating for 5 iterations (k = 200, n = 5). The number of
reaction templates and the prediction coverage, the percentage of
predicted AAM yielding reaction templates existing in the template
library, are shown in Fig. 3a. At the first iteration, 200 reactions were
randomly sampled from all the reactions. The AAMs of these reactions
yield 90 unique reaction templates and cover 59.7% of the total reac-
tions. As the iteration increases, the number of unique reaction tem-
plates steadily increases (209, 348, 467, 555 for n = 2, 3, 4, 5), while the
increment of prediction coverage delays over iterations (88.1%, 92.9%,
93.9%, 95.0% for n = 2, 3, 4, 5), meaning the less popular reaction
templates were sampled in later iterations. This is a great example of
how active-learning was used to prioritize the sampled reactions to
maximize the sample efficiency.

Next, we show examples of sampled reactions during active-
learning at n = 1, 3, 5 in Fig. 3b–d. At n = 1, the simple and popular

reactions such as substitution reactions and redox reactions were
sampled. The reaction shown in Fig. 3b is one of the nucleophilic acyl
substitution reactions, accounting for 11.0%of the total reactions in the
dataset. At n = 3, more organometallic reactions such as Gridnard
reactions and Stille coupling were sampled. The reaction shown in
Fig. 3c is a nucleophilic methylation with methyllithium as the
methylating reagent. At n = 5, several ring-forming intramolecular
reactions were sampled. The reaction shown in Fig. 3d is a thiazole
synthesis reaction from imine and primary thioamides.

AAM evaluation
To assess the prediction accuracy of LocalMapper, we conducted a
comparative analysis with two unsupervised learning-based models:
RXNMapper18 and GraphormerMapper26. To ensure a fair model
comparison, we evaluate thesemodels without the use of AAM fixer39,
which automatically fixes the known incorrect AAMs to correct AAMs
after predictions. We implemented these models using their publicly
available software on GitHub. Before evaluating the AAM models., we
filter out the reactions from the USPTO-50K dataset if they include
invalid product mapping and confusing reagents as previously repor-
ted by Schwaller et al.18. The former criteria filters out reactions with a
product showing repeating atom-mapping or atoms without atom-
mapping, while the latter criteria filters out reactions having reactants
structurally similar (Tanimoto similarity ≥0.5) to the product but not
participating in the reaction. Following these criteria, 1166 reactions
were excluded, leaving 48,830 reactions for AAM evaluation. More
definitions and examples of problematic reactions can be found in
Supplementary Section 2.

Given that the USPTO-50K dataset was known to have potentially
incorrect AAMs10,16,18, we report three different accuracy metrics in this
article. The first metric assumes the AAM recorded in the dataset as
ground truth (referred to as “dataset accuracy” or Accuracydatasetoverall ). The
secondmetric involvedmanually checking the 3000 sampled confident
predictions generated by both RXNMapper or LocalMapper (referred to
as “manual checked accuracy”, Accuracymanual

conf: ). Lastly, we introduced
a “calibrated accuracy” metric (Accuracycalibratedoverall , Eq. 1) by combining
the results from the dataset accuracy and the manually checked accu-
racy.

Accuracycalibratedoverall = Accuracydatasetunconf: ×Ratiounconf: +Accuracy
manual
conf: ×Ratioconf:

ð1Þ

Fig. 3 | The results of active-learning for training LocalMapper in this work.
a The statistics of active learning from iteration n = 1 to 5. b A nucleophilic
methylation reaction sampled from active-learning at n = 1. c A nucleophilic acyl
substitution reaction sampled from active-learning at n = 3. d A thiazole synthesis

reaction was sampled from active-learning at n = 5. Molecules without AAMs are
removed in the depiction for reading clarity. Source data are provided as a Source
data file.
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where the accuracy of unconfident prediction is estimated by

Accuracydatasetunconf: =
Accuracydatasetoverall � Accuracydatasetconf: ×Ratioconf:

� �
Ratiounconf:

ð2Þ

Because RXNMapper also gives a confidence score for each pre-
diction, which shows a positive correlation with the prediction
accuracy18, we binarize the confident score of RXNMapper by its pre-
diction confidence score of 0.9 (according to the best performing
results shown in the SupplementaryMaterial of ref. 18) to facilitate the
comparisonwith the confident predictions generatedby LocalMapper.
Note that GraphomerMapper does not generate a confidence score
with its prediction; therefore, we did not assess the accuracy of the
confident predictionof thismodel. The accuracy of AAMpredictions is
calculated by comparing the condensed graph of reaction (CGR)
between the model’s prediction and the ground truth using CGRtools
toolkit2 following previous works26,39 to ensure that equivalent but
different AAMs between the ground truth and model predictions did
not lead to underestimations of prediction accuracy.

The results of AAM compared with RXNMapper and Gra-
phormerMapper on the USPTO-50K dataset are shown in Table 1.
Before we conducted manual checks to assess the correctness of the
dataset’s AAM, RXNMapper exhibited an impressive overall accuracy
of 98.1% on the 48,830 reactions in the USPTO-50K dataset. In com-
parison, GraphormerMapper demonstrated a commendable overall
accuracy of 92.8%, based on the dataset AAM. Moreover, within the
prediction generated by RXNMapper, 30.4% of the confident predic-
tions (i.e., with a confidence scoreexceeding0.9) showanearly perfect
accuracy at 99.7%. In contrast, LocalMapper yields a high ratio of
confident predictions at 97% but only exhibits a 91.5% overall predic-
tion accuracy, noticeably lower than RXNMapper’s accuracy and
slightly behind that of GraphormerMapper. For these confident pre-
dictions from LocalMapper, the calculated accuracy was 92.8% based
on the dataset AAM.

To investigate the incorrectly predicted confident predictions
from RXNMapper and LocalMapper, we randomly sampled 3000
reactions from a pool of 14,422 reactions confidently predicted by
both RXNMapper and LocalMapper. After manually checking these
predicted AAMs, we found all the confident predictions from Local-
Mapper are indeed correct, but they have been incorrectly mapped in
the original dataset. In particular, within 3000 randomly sampled
reactions, 6.6% of themwere ester hydrolysis reactions, and they were
all correctly predicted by LocalMapper but incorrectly predicted by
RXNMapper. It is worth highlighting that these reactions were initially
misaligned in the dataset’s AAM, matching RXNMapper’s AAM pre-
dictions, further indicating the potential for overestimating
RXNMapper’s prediction accuracy and underestimating LocalMap-
per’s performance based on the dataset’s AAM. To address this dis-
crepancy, we recomputed the calibrated accuracy using Eq. 2, which
aims to reflect the actual prediction accuracy more accurately. Con-
sequently, the calibrated accuracy showed LocalMapper achieving a
higher accuracy rate at 98.5% compared to RXNMapper’s 96.2%.
Moreover, it is essential to emphasize that 97% of confidently

predicted AAMs generated by LocalMapper are highly likely to exhibit
perfect accuracy.

To qualitatively compare and gain insights into the differences
between LocalMapper and the second-best performing model,
RXNMapper, we conducted a detailed analysis of AAMs between the
dataset, RXNMapper, and LocalMapper, as visually represented in
Fig. 4a through a Venn diagram. Among the reactions within the
dataset, 90.5% of reactions were found to have equivalent AAMs. For
the remaining 9.5% of reactions where the predicted AAMs differed,
RXNMapper shared 7.6% of equivalent AAMs with the dataset, while
LocalMapper exhibited lower overlap, sharing only 1% and 0.8% with
the dataset and RXNMapper, respectively. These statistics provide
insight into the “low accuracy” of LocalMapper when assuming the
dataset’s AAMsas ground truth. In Fig. 4b, c,we illustrate twoexamples
of unique AAM predictions generated by LocalMapper. These exam-
ples represent ester hydrolysis and acetal hydrolysis reactions,
respectively. In Fig. 4b, LocalMapper correctlymapped the highlighted
oxygen atom in the product (number 16) to water in ester hydrolysis
reactions, whereas RXNMapper and the dataset suggested that the
oxygen originated from the leaving group. In Fig. 4c, LocalMapper
accurately mapped the highlighted oxygen atom in the product
(number 16) to water, whereas RXNMapper and the dataset con-
sistently misattributed the oxygen atom to the acetal oxygen.

Further analysis of the reaction templates of the 3,308 confident
predictions generated by LocalMapper, which differed from the
dataset’s AAM, revealed interesting insights. Among these unique
predictions, 81.7%were ester hydrolysis reactions (as shown in Fig. 4b),
8.1% were esterification reactions (Fig. 4e), 3.5% were acetal hydrolysis
reactions (Fig. 4c), and 0.3% were Mitsunobu reactions (Fig. 4f). These
AAMs were all correctly predicted by LocalMapper but incorrectly
mapped in the original dataset.

Next, we examine the generalizability of LocalMapper on the
golden dataset compiled by Lin et al.39 including 1851 reactions after
standardizing (fixing invalid valences or radicals) and manually map-
ping the reactions collected from Jaworski et al.17 and popular reac-
tions from theUSPTO collections40.We found there are 90unbalanced
reactions, 2 repeated reactions, and 1 reaction without product in the
golden dataset. Consequently, we evaluated the models on the
remaining 1758 reactions. Examples of unbalanced reactions can be
found in Supplementary Section 3.

Since this datasetmixes the sources from the original literature, it
is hard to analyze the model performance on different reaction sour-
ces. Therefore, we compared the reactions recorded in the golden
dataset with the categorized reaction sets compiled by Jaworski et al.17

and extracted 491 reactions from the golden dataset, including 256
USPTO reactions38, 173 typical reactions from the Organic Synthesis
collection41, and 62 mechanistically complex reactions from various
literature sources42,43. To enhance LocalMapper’s ability to confidently
predict a wider spectrum of organic reactions, we conducted further
training of the model for 2 additional iterations on the USPTO-FULL
dataset18,44 (containing 1,065,119 reactions) with sampling 500 reac-
tions at each iteration (k = 500, n = 2). All the reactions in this test set
were excluded from the training set of LocalMapper.

Table 1 | Atom-to-atom mapping (AMM) results of RXNMapper, GraphormerMapper, and LocalMapper on the USPTO-50K
dataset before and after manually checking the reaction AAMs

Model Dataset accuracy Manual checked accuracy Calibrated accuracy

All predictions Conf. predictions Conf. predictions Conf. ratio All predictions

RXNMapper18 98.1% 99.7% 93.6%a 30.9% 96.2%

GraphormerMapper26 92.8% 94.6%* 94.8%a / /

LocalMapper (this work) 91.5% 92.8% 100%a 97.0% 98.5%

The best accuracy and ratio are highlighted in bold font.
aAccuracy evaluated on the 3000 reactions sampled from the reactions confidently predicted by both RXNMapper and LocalMapper.
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The results compared with RXNMapper18 and
GraphormerMapper26 are shown in Table 2. When evaluating the
models on the golden dataset, we found there are 8 reaction AAMs
confidently predicted from LocalMapper but different from ground
truth. We found these reactions are either wrongly mapped in the
golden dataset (7 reactions) or selective reactions (1 reaction), inwhich
multiple AAMs are acceptable. Therefore, we show the prediction
results after calibrating the accuracy after manual checking in Table 2.
The different AAMs and the original results following ground truth
AAMs can be found in Supplementary Section 4.

Whenpredictingon the full goldendataset, irrespective of reaction
sources, LocalMapper achieves an impressive 89.8% prediction accu-
racy, surpassing RXNMapper by 3.3% and GraphormerMapper by 7.1%.
Focusing on the 256 USPTO reactions, LocalMapper excels with a
remarkable 99.2% prediction accuracy, outperforming Gra-
phormerMapper by 5.4% andRXNMapper by9.7%. For typical reactions,
LocalMapper achieves a prediction accuracy of 93.6%, exceeding the
other two models by margins of 2.3% and 5.7%. In the case of complex
reactions, LocalMapper secures the second-highest prediction accuracy

at 69.4%, slightly surpassing GraphormerMapper (66.1%) and greatly
higher than RXNMapper (59.7%). Importantly, the ratio of confident
predictions across different datasets exhibits variations, yet the pre-
diction accuracy of these confident predictions consistently remains at
100% for all four examined datasets. In contrast, while RXNMapper
demonstrates over 90% confident prediction accuracy for the golden
dataset, USPTO reactions, and typical reactions, it only achieves a 50%
confidentprediction accuracy for complex reactionsdespite thedouble
ratio of confident predictions compared to LocalMapper.

It’s worth noting that the confident prediction ratio of Local-
Mapper tends to decrease when applied to reactions that differ more
significantly from the training reactions, i.e., USPTO reactions. This
trend is evident in the prediction accuracy of LocalMapper, which
decreases from 99.2% for USPTO reactions to 93.6% for typical reac-
tions, and further to 69.4% for complex reactions. These findings
underscore an essential insight from LocalMapper: not only are its
confident predictions highly reliable, but the overall prediction accu-
racy for a set of reactions can be estimated based on the ratio of
confident reactions.

Table 2 | Atom-to-atom mapping (AMM) results of RXNMapper, GraphormerMapper, and LocalMapper on manual-mapped
reactions examined on four different sources

Model Golden39 USPTO38 Typical41 Complex42,43

Accuracy of all predictions

RXNMapper18 86.5% 89.5% 91.3% 59.7%

GraphormerMapper26 82.7% 93.8% 87.9% 66.1%

LocalMapper (this work) 89.8% 99.2% 93.6% 69.4%

Accuracy (ratio) of confident predictions

RXNMapper18 95.1% (19.7%) 90.2% (23.8%) 95.7% (13.3%) 50.0% (12.9%)

LocalMapper (this work) 100% (53.3%) 100% (79.7%) 100% (42.8%) 100% (6.5%)

The highest accuracy and ratio are highlighted in bold font.

Fig. 4 | Overall results of LocalMapper predicting atom-to-atom mappings
(AAMs) on the USPTO-50K dataset. a The Venn diagram of AAMs in the dataset
and predicted by RXNMapper and LocalMapper. b, c Two examples of the AAMs
predicted by LocalMapper and other models for b ester hydrolysis and c acetal
hydrolysis reactions. The different AAMs predicted by LocalMapper and other
methods are highlighted in orange (LocalMapper) and blue (Dataset and
RXNMapper). d The ratio reaction types among the”incorrect confident

predictions” generated by LocalMapper on the USPTO-50K dataset. e, f Two
examples of the “incorrect confident predictions” by LocalMapper for
e esterification and f Mitsunobu reaction. The unchanged AAMs are annotated in
black, the wrong AAMs in the dataset and RXNMapper are highlighted in blue, and
the AAMs predicted by LocalMapper are highlighted in orange. Molecules without
AAMs are removed in the depiction for reading clarity. Source data are provided as
a Source data file.
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In Fig. 5a–c, we conduct a detailed analysis of the number of bond
changes derived from the AAMs (according to their CGRs) of reactions
that were inaccurately predicted by LocalMapper, RXNMapper, and
GraphormerMapper, respectively. Generally, the majority of incor-
rectly predicted AAMs across all three models and various reaction
sources result in an increased number of bond changes compared to
the corresponding ground truth AAMs. Notably, RXNMapper stands
out for producing a substantial number of incorrectly predicted AAMs
that result in a decreased number of bond changes in patent reactions,
primarily involving ester hydrolysis reactions. To illustrate the impact
of such predictions, we present an example in Fig. 5d, wherein even a
small number (4) of incorrectly predicted AAMs can result in a sig-
nificantly higher count (10) of bond changes compared to the correct
AAMs. However, the examples depicted in Fig. 5e, d underscore that
predicted AAMs, showing either the same or fewer bond changes, do
not consistently align with the ground truth AAMs, especially in the
context of complex reactions.

Discussions
The key distinction between LocalMapper and the other two existing
ML-based models lies in the use of chemist-labeled data during train-
ing. While training without manual mapping may offer computational
efficiency, it can lead to unforeseen systematic errors, such as those
seen in AAMpredictions for simple reactions in Fig. 4. This emphasizes
the importance of meticulous data labeling, despite its time and
expertise demands. Moreover, manual labeling yields valuable che-
mical rules that can be leveraged for robust knowledge-based pre-
diction confidence identification, which contributes to the 100%
confident prediction accuracy of LocalMapper.

It is vital to distinguish between LocalMapper’s knowledge-based
prediction confidence and the AAM fixer employed in
GraphormerMapper26. While both methods leverage the insights of
chemists to enhance prediction accuracy, they diverge significantly in
their operational mechanisms. The AAM fixer directly rectifies the
model’s AAM predictions but does not enhance the model itself. It
relies on manual heuristics to correct known inaccuracies, making it
challenging to scale up without extensive experimental adjustments.
In contrast, knowledge-basedprediction confidenceempowershuman
chemists to label uncertain predictions, thereby facilitating model

improvement through active learning. This approach is data-driven
and easily scalable by expanding active learning iterations. We have
also considered amodel-free approach involving the direct application
of all known reaction templates to the reactants for obtaining the
reaction AAM by matching the known product. While this method
enhances the robustness of AAM prediction, mapping on the USPTO-
50k dataset requires approximately 10 times longer, taking 6 h to
complete compared to the 35min required by LocalMapper.

Althoughwe labeled only47.3 K reactions (97%) in theUSPTO-50K
dataset after manually annotating 1000 reactions in this paper, it is
remarkable that the same model can confidently label 544.5 K reac-
tions (51.1%) in the full USPTO dataset. This represents a substantial
increase in the labeling efficiency achieved through manual annota-
tion. Furthermore, with two additional active learning iterations, this
number grows to 712.6 K reactions (66.9%). However, it is important to
note that LocalMapper tends to yield a significantly lower ratio of
confident predictions when applied to entirely distinct reaction data-
sets, such as quantum-mechanical reactions45 and enzymatic
reactions46. These reactions may follow entirely different reaction
mechanisms (unimolecular one-to-many reactions and enzyme-
catalyzed reactions, respectively) that were never encountered dur-
ing active learning on organic reaction datasets. For such cases, we
recommend engaging domain-specific chemists to undertake active
learning iterations to adapt the model effectively before using it for
large-scale AAM tasks.

In summary, we propose a graph-based ML model, LocalMapper,
to precisely identify the AAM for large reaction datasets via human-in-
the-loop machine learning. By manually labeling a small amount of
reaction data with expert knowledge, we train an human-in-the-loop
ML model to precisely and automatically label a large number of
reactions sharing similar reaction rules. The proposed knowledge-
based active sampling enables the human expert to only label the AAM
of 2% of reactions that include the reaction templates of 97.0% of
reactions in the entire dataset. We show an overall 98.5% AAM pre-
diction accuracy, with 100% accuracy for confident predictions on a
widely usedUSPTO-50K dataset, and a similar result is also observed in
a diverse out-of-distribution test set. We expect the proposed Local-
Mapper can be used to provide precise reaction AAMs for future
downstream reaction prediction models and benefit the chemistry

Fig. 5 | Comparative analysis of the number of bond changes in reaction AAMs.
The figure illustrates the number of bond changes derived from the atom-to-atom
mappings (AAMs) of a patent, b typical, and c complex reactions, incorrectly pre-
dicted by LocalMapper, RXNMapper, and GraphormerMapper (GraphMapper)
compared with the ground truth (GT) AAMs. Additionally, examples of complex
reactions with AAM predictions from LocalMapper are presented, showcasing

instanceswhere the predicted AAM yields dmore, e the same, or f fewer number of
bond changes compared to the ground truth AAMs. Ground truth AAMs and cor-
responding bond change counts for the example reactions are annotated in black,
while those generated by LocalMapper are highlighted in purple. Source data are
provided as a Source data file.
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community to learn more statistical insights into the reaction dataset.
The trained LocalMapper model and the generated AAMs on USPTO-
50K andUSPTO-FULL datasets introduced in this paper are available at
https://github.com/snu-micc/LocalMapper.

Methods
Extended-local reaction template (ELRT)
After the AAM is identified from LocalMapper, we extract the reaction
template from the mapped reaction to categorize the reaction type of
the given reaction. As a popular reaction template extraction tool,
RDChiral47 was developed to extract the reaction template considering
atom neighbors, special groups, and stereochemistry and has been
used inmany retrosynthesis predictionmodels. However, the reaction
template extracted by RDChiral was considered to be too specific,
leading to lowgeneralizability of reactions with the same reaction type
(four reactions per template on average, extracted from USPTO-50K).
Therefore, Chen and Jung14 modified the reaction template to only
focus on local changes, which significantly improved the template
generalizability to 76 reactions per template on average. Despite the
enhanced generalizability of the local reaction template, important
functional groups, such as acetal, carbonyl group, and nitrile, need to
be included to make the reaction template more chemically under-
standable for the present purpose of AAM. Therefore, we extend the
local reaction template by including important functional groups and
denote it as extended-local reaction template (ELRT). More examples
and the full set of functional groups included in the ELRT can be found
in Supplementary Section 1.

Due to the absence of essential reagent and catalyst information
in many reactions within the USPTO-50K dataset, we do not incorpo-
rate reagent and catalyst details into the reaction templates. For
instance, we observed that at least 1166 (49.4%) out of 2362 Suzuki
coupling reactions lack Pd catalyst, 520 (34.6%) out of 1500 nitro
reduction reactions do not feature a reduction agent, and 170 (39.4%)
out of 431 Mitsunobu reactions do not include diethyl azodicarbox-
ylate (DEAD) or diisopropyl azodicarboxylate (DIAD). As a result, we
make the simplifying assumption that common and necessary
reagents or catalysts are present in the reactions during template
extraction.

Molecular graph
The inputs of LocalMapper are the graphs of reactants and products of
the target reactionWe represent the reactant graph asGr = ðVr ,ErÞ and
the product graph as Gp = ðVp,EpÞ, where V (vertices) denotes atoms
and E (edges) denotes bonds. The initial atom and bond features are
the same as the ones used in LocalRetro14 and LocalTransform32,
available in Supplementary Section 6. Both graphs are built using the
DGL-LifeSci48 Python package. The features of each atom in the reac-
tants are denoted as hr,u (for atom u) and the features of each bond in
the reactants are denoted as hr,uv (for the bond between atom u and
atom v). Similarly, the features of each atom and bond in the products
are denoted as hp,u and hp,uv.

Message massing neural network (MPNN)
To encode the surrounding environmental information for each
atom, we used a message-passing neural network (MPNN)33,49 to
update the atom features for 3 iterations. We denote the message
passing function by MPNN �ð Þ, which update the atomic features hu

of atom u by its neighbor atoms fvg and bonds uvf g in the molecule
(Eqs. 3 and 4).

ht + 1
r,u =MPNN hr,u, hv

� �
v2Vr

, huv

� �
uv2Er

� �
ð3Þ

ht + 1
p,u =MPNN hp,u, hv

� �
v2Vp

, huv

� �
uv2Ep

� �
ð4Þ

Reaction attention
After encoding the local chemical environment of each atom in
the individual molecule, we enable the atoms in the product to
refine their features by looking at the atoms in the reactants
through multi-head attention blocks34. In particular, we used
multi-head attention MultiHeadAttð�Þ between the atoms in the
products and reactants:

MultiHeadAtt hp,u, hv

� �
v2Gr

� �
=Concat head2 hp,u, hv

� �
v2Gr

� �
,

�
head2 hp,u, hv

� �
v2Gr

� �
, . . . ,headn hp,u, hv

� �
v2Gr

� �� ð5Þ

where Concatð�Þ is the concatenation operation between each
attention head.

The output of each attention head is the updated atoms features
according to attention score eu,v and value Vn,v

headn hu, hv

� �� �
=
X

Softmax eu,v
� �

Vn,v ð6Þ

whereattention score eu,v is computedby thequeryQ, keyK, and value
V of each atom features, which are calculated by the linear layers in
each attention head, and normalized by the hidden dimension d and
the number of attention head n:

Qu =wQhu ð7Þ

Kv =wKhv ð8Þ

Vv =wVhv ð9Þ

eu,v =
Qu Kv

� �Tffiffiffiffiffiffiffiffiffi
d=n

p ð10Þ

In our experiment, we used 3 reaction attention blocks with 8
attention heads in each attention block. The dropout rate in the
multi-head self-attention layer was set to 0.1. Gated transformation,
skipped-connection, and layer normalization were applied after the
attention mechanism and followed by standard feed-forward neural
networks

ht + 1
p,u =ht

p,u +wf Sigmoid wgm
t
p,u +bg

� �� �
+bf ð11Þ

where wf and bf are the weights and biases of feed-forward neural
networks, wf and bf are the weights and biases of gated transforma-
tion, andmt

p,u is themessage of atom u in the product t obtained from
the multi-head attention block at step t.

Atom-mapping classifier
Finally, the AAM scorebetween atomup in the products and atom ur in
reactants pður jupÞ was computed by another single-head attention
block as an atom-mapping classifier:

pður jupÞ=Classifierðhr,ujhp,uÞ=Softmax
Qr,uðKp,uÞTffiffiffi

d
p

 !
ð12Þ

Training objectives
The designed LocalMapper model is trained to optimize the AAM
score pður jupÞ between each pair of corresponding atoms in the
products and reactants through cross-entropy losses. Let ður,i,up,iÞ be
the pair of atoms in the products and reactants sharing the same
atom-number i, the objective of AAM to train the model parameter θ
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is

LAAM = max
θ

E logðpθður,ijup,iÞÞ
h i

ð13Þ

Training hyperparameters and pseudocode
All the chemical operations are done using the RDKit50 python pack-
age. We used Pytorch51 and DGL-LifeSci48 for neural network training
and testing. We train our model for 100 epochs with batch size 16 by
Adam optimizer52 with 10�6 weight decay and set the initial learning
rate to 10�3. The learning rate is reduced by a factor of 0.5 after when
the validation loss does not decrease after a training epoch. Model
gradients are clipped at amaximumnormof 20. Training LocalMapper
takes around 4 h for the USPTO-50K dataset (at fifth iteration) and 6 h
for the full USPTO dataset (at second iteration), while the inference
takes 35min for the former and 14 h for the latter datasets. The
pseudocode of training LocalMapper is given in algorithm 1.

Algorithm 1. The pseudocode of training LocalMapper.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The AAMs for 3000 sampled reactions on the USPTO-50K dataset and
out-of-distribution reactions predicted by the three evaluated ML
models can be found at https://github.com/snu-micc/LocalMapper53.
The USPTO-50K and USPTO-full datasets remapped by LocalMapper
generated in this study have been deposited in Figshare (https://doi.
org/10.6084/m9.figshare.25046471.v154). Source data are provided
with this paper.

Code availability
The code for LocalMapper described in this manuscript is publicly
available at https://github.com/snu-micc/LocalMapper.
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