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Deep model predictive control of gene
expression in thousands of single cells

Jean-Baptiste Lugagne 1,2 , Caroline M. Blassick 1,2 & Mary J. Dunlop 1,2

Gene expression is inherently dynamic, due to complex regulation and sto-
chastic biochemical events. However, the effects of these dynamics on cell
phenotypes can be difficult to determine. Researchers have historically been
limited to passive observations of natural dynamics, which can preclude stu-
dies of elusive and noisy cellular events where large amounts of data are
required to reveal statistically significant effects. Here, using recent advances
in the fields of machine learning and control theory, we train a deep neural
network to accurately predict the response of an optogenetic system in
Escherichia coli cells. We then use the network in a deep model predictive
control framework to impose arbitrary and cell-specific gene expression
dynamics on thousands of single cells in real time, applying the framework to
generate complex time-varying patterns. We also showcase the framework’s
ability to link expression patterns to dynamic functional outcomes by con-
trolling expression of the tetA antibiotic resistance gene. This study highlights
how deep learning-enabled feedback control can be used to tailor distribu-
tions of gene expression dynamicswith high accuracy and throughputwithout
expert knowledge of the biological system.

Differences in gene expression dynamics can generate diverse cell
phenotypes in genetically identical populations. These fluctuations
can encode signals, provide temporal organization, and diversify
communities, providing populations with the flexibility required to
respond and adapt to environmental changes and stresses. For
example, recent studies have demonstrated that the dynamics of entry
into stationary phase in bacteria influence the emergence of antibiotic-
tolerant persister cells1, fluctuations in transcription factors can
underliebet-hedging strategies2,3, and stochastic transcriptional bursts
impact plasticity and drug resistance of cancer cells4. These examples
highlight the critical role that single-cell gene expression dynamics can
play in cell function and survival.

Despite broad recognition of the prevalence and importance of
single-cell expression dynamics5,6, two issues preclude measurements
linking dynamics to function. First, gene expression is highly variable
between individual cells in a population and within single cells over
time7,8, making large amounts of dynamic data necessary to capture
the full range of behaviors within a given population and draw

statistically significant conclusions. Single-cell resolution studies
enabled by genomics, transcriptomics, and flow cytometry have
revealed awidediversity of cell states and canquantify expressiondata
with high throughput9–12. But these measurements tend to be “snap-
shots” disconnected from the cells’ temporal context. Thus, current
approaches typically specialize in either dynamic measurements or
throughput, whereas functional studies require both. Second, we lack
appropriate tools to generate arbitrary gene expression dynamics at
the single-cell level in order to establish the causal relationship
between expression and a cellular phenotype. Approaches such as
optogenetics can be used to drive gene expression in single cells and
have made headway into linking expression dynamics to function13–15.
However, stochasticity makes it difficult to generate precise dynamics
or subtle differences in gene expression that may be biologically
relevant, because cells can exhibit different expression patterns even
when exposed to identical optogenetic inputs.

Recently, studies have begun to circumvent this second issue by
imposing expression dynamics with single-cell feedback control
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platforms. With this approach, a gene of interest is made externally
inducible, for example by using an optogenetic system, and its
expression level is measured every few minutes via fluorescence
microscopy. These data are processed on-the-fly by a control algo-
rithm that decides whether to activate or repress expression of the
gene in order to drive it towards a desired dynamic objective. Then,
light is applied to stimulate single cells independently. This process is
repeated every few minutes in a real-time feedback loop.

Algorithms that have been used to control gene expression
dynamics include traditional proportional-integral strategies16,17 and
bespoke designs to test synthetic circuits18 or cell interactions19.
However, to date only approaches based on model predictive control
have been used to assign time-varying dynamics to single cells,
resulting in high levels of control accuracy20,21. In this type of con-
troller, several candidate optogenetic stimulation strategies are con-
sidered and amodel, often based on ordinary differential equations, is
used to predict how the cell will respond to each strategy. Based on
thesepredictions, the stimulation strategy that is expected tobring the
expression level closest to a desired objective is applied to the cell.

However, building the mathematical models requires expert
knowledge of the system, such as values for reaction rates and insight
into which model structure is well-suited to the system, which can
defeat the purpose of the approach. More importantly, the underlying

predictionmodels canbe computationally expensive, especially if they
integrate the complex dynamics that are a hallmark of stochastic gene
expression. Because of this, studies using model predictive control
have been limited to driving the dynamics of a few dozen cells in
parallel, fundamentally hindering researchers’ ability to identify intri-
cate statistical relationships. Consequently, the potential of model
predictive control in advancing our understanding of complex biolo-
gical systems remains largely unrealized.

Recently, major milestones in control engineering outside of the
field of biology have been achieved by algorithms that couple tradi-
tional control theory with machine learning22. One such recent
approach is deepmodel predictive control23,24, which uses deep neural
networks to predict system responses to potential control strategies
based on training data. Thesemodels have shown impressive accuracy
at predicting the behavior of nonlinear and chaotic systems25,26. They
can also incorporate high-dimensional data25, and because neural
network computations can be massively parallelized, they are orders
of magnitude faster than traditional prediction models such as those
based on ordinary differential equations27. Finally, developing the
predictionmodel requires no expert knowledge of the system,making
the approach transferrable to entirely different systems.

In this study, we use deep model predictive control to break the
current limitations of throughput and dynamic control for single-cell
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Fig. 1 | Customized optogenetic stimulations can be applied to single E. coli
cells in parallel. A Schematic of the CcaSR optogenetic system. When exposed to
green light, CcaS changes conformation and phosphorylates CcaR which then
activates expression downstreamof the PcpcG2 promoter. Red light reverts the CcaS
conformation, and CcaR unbinds from PcpcG2. B Schematic of the mother machine
microfluidic device. The mother cell is trapped at the end of the chamber while its
progeny are pushed out into the channel where growth media flows. C Phase
contrast and GFPmicroscopy images of cells growing in themothermachine. Scale

bar, 4μm. D DeLTA segmentation masks on images from (C). Segmentation is
performed on phase contrast images, and morphological features as well as
fluorescence are extracted based on thesemasks. E Schematic of our experimental
platform. Every 5min, automated microscopy and data analysis of cells growing in
the mother machine are performed, and single-cell data are fed into a deep model
predictive control algorithm. The algorithm decides which optogenetic stimula-
tions to apply to each cell. Customized, chamber-specific light is applied accord-
ingly via a Digital Micromirror Device.

Article https://doi.org/10.1038/s41467-024-46361-1

Nature Communications |         (2024) 15:2148 2



gene expression. We first develop a high-throughput experimental
platform to grow, observe, and optogenetically stimulate E. coli bac-
teria at the single-cell level. We demonstrate that it is possible to
predict gene expression in single cells with deep learning models with
high accuracy. We then use these models to control dynamic gene
expression in thousands of cells in parallel with a high degree of

precision, both at the population level and in single cells. Finally, we
apply single-cell control to expression of an antibiotic resistance gene,
producing high resolution data about the relationships between
expression levels, growth rate, and survival. Overall, these findings
demonstrate the power of deep model predictive control for driving
single-cell gene expression dynamics in a range of experimental
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Fig. 2 | An encoder-decoder deep neural network predicts single-cell responses
to optogenetic inputs. A Kymograph of a representative single cell subjected to a
random stimulation sequence for training set generation. The red-green bar at the
top shows the sequenceof randomoptogenetic stimulations the cell was subjected
to. White outline shows segmentation mask for the mother cell. Scale bar, 4μm.
B Timeseries of eight extracted features for the cell shown in (A). For timeseries
forecasting, a randomly selected time point splits the timeseries into past and
future, as indicated with a vertical gray line. C Schematic of the timeseries fore-
casting model. All past features of the timeseries are fed into a long short-term
memory (LSTM) encoder, which encodes relevant information about the cell’s past
into a single 32-dimensional vector. This vector is then concatenated with a binary
vector of the future optogenetic stimulations the cell was subjected to. The multi-
layer perceptron (MLP) decoder then predicts the response of the cell to the future
light sequence, which is compared to the ground truth of the known future fluor-
escence trajectory. D Histogram of RMSEtimeðnÞ for 100,000 samples from the

validation dataset for the 2 h horizonmodel. The 25th percentile, median, and 75th
percentile are marked with light gray lines. E Trained model predictions for the 2 h
horizonmodel on the validation dataset. The red-green background represents the
optogenetic stimulations that were applied to cells in the validation experiment.
The black curve represents actual single-cell fluorescence. The vertical gray line
shows the arbitrary partition of the validation timeseries into past and future. For
illustration purposes we only show the past 3 h, but past timeseries can be longer.
The blue curve represents themodel’s prediction of the cell’s response. Sub-panels
illustrate results in the 25th percentile, median, and 75th percentile prediction
error.FRMSEtime nð Þ for different lengths of past timeseries data.GRMSEcellsðtÞ over
validation dataset for different prediction horizon lengths. H Median RMSEtimeðnÞ
for predictions from linear regression model, ODE-based model, and our deep
learning model. I Computation time per sample for linear regression model, ODE
model predictions, and our MLP decoder.
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contexts, including enacting arbitrary gene expression patterns, or
tightly controlling expression levels in single cells.

Results
Experimental setup
Optogenetic systems can regulate gene expression via light, a signal
that is easy to integrate with computational control. Here, we used the
well-characterized CcaSR optogenetic system in E. coli28,29 (Fig. 1A).
When exposed to 535 nm green light, CcaS changes conformation to
phosphorylate the CcaR transcription factor, which then binds to the
PcpcG2 promoter and activates the expression of downstream genes.
670 nm red light reverts CcaS back to a low-kinase conformation,
effectively turning off gene expression. In our system, we put a gene
encoding green fluorescent protein (gfp) downstream of PcpcG2. In this
way, green light stimulations activate green fluorescence expression in
our cells, and red light stimulations repress it. To enable simultaneous
control of thousands of cells in parallel, we grew E. coli in the mother
machine microfluidic device30, where cells are constrained to grow in
single-file lines within thousands of short (25 µm), parallel chambers
(Fig. 1B). Trapped “mother” cells at the dead end of each chamber can
be observed for hours to days. As a mother cell grows and divides, it
produces “daughter” cells, which arepusheddown the chamber. In our
experiments, we acquired phase contrast and green fluorescence
images (Fig. 1C) every 5minutes for ~150 different positions, where
eachfieldof view contains 27–28mothermachine chambers, for a total
of ~4000 mother cells. We analyzed microscopy images in real time
with the deep learning enabled time-lapse analysis software DeLTA31,32,
extracting cell features such as fluorescence levels on-the-fly, while the
experiment was running (Fig. 1D).

In order to activate the optogenetic system, we exposed cells to
green light pulses. Conversely, red light pulses were used to repress
gene expression. To selectively illuminate individual chambers within
themicrofluidic chip we used a digital micromirror device (DMD). The
DMD projects a user-defined image onto a sample, and we designed
these illumination patterns to selectively stimulate specific chambers
within the chip (Fig. 1E). The DMD thus forms the final component of
our computer-based feedback loop. Automated measurements are
acquired via time-lapse microscopy, processed with an image analysis
pipeline, and fed into a deep model predictive control algorithm,
which decides the customized optogenetic stimulations that the DMD
will apply in order to drive each mother cell’s fluorescence towards a
desired objective.

Gene expression forecasting
A crucial part of the deep model predictive control framework is the
ability to accurately forecast the effect of light stimulation on future
gene expression, such that the appropriate perturbation can be
selected to produce the desired gene expression dynamics. To this
end, we first asked whether it was possible to predict single-cell
optogenetic responses using a deep learning model. We conducted
experiments without feedback control to acquire four training and
three validation sets, in total containing 15,898 (training) and 13,811
(validation) single-cell timeseries. In these experiments, wemonitored
the response of mother cells to randomized sequences of optogenetic
stimulations for 16+ hours (Fig. 2A). We applied optogenetic stimula-
tions, acquired phase contrast and fluorescence microscopy images,
and extracted data in real-time every five minutes, corresponding to
192+ time points per cell. For each mother cell at each time point we
recorded eight features (light stimulations, fluorescence, and cell area
of the mother; mean and standard deviation of fluorescence for all
cells in the chamber; number of cells in the chamber; stimulations
applied to the neighboring chambers; and image sharpness) (Fig. 2B).
It was not clear, a priori, which of these features would be relevant for
predicting the response of the mother cell to optogenetic stimula-
tions, but a key advantage of using deep learning models over

traditional biochemical models is their flexibility in handling multi-
dimensional data, allowing the model to discern which features are
most informative.

To predict cell responses, we built an encoder-decoder deep
learning model (Fig. 2C). The encoder consists of two cascading long
short-term memory (LSTM) networks33 that encode the entire past
trajectory of a single cell into a small latent space. The resulting 32-
dimensional vector in this latent space is thus a fixed-size repre-
sentation of the cell’s entire past. The decoder is a multi-layer per-
ceptron (MLP) that uses this encoded vector to predict the cell’s
fluorescence response for a candidate series of future optogenetic
stimulations. Training samples were generated by randomly selecting
cells in the training set and separating their timeseries into arbitrary
past and future timepoints. The entire past timeseries together with
the future optogenetic stimulations were compiled as training inputs,
while the measured future fluorescence levels of the cell were used as
ground truth for training. We trained the model over 500 epochs of
200 batches, with each batch comprising 100 training samples. Mean
squared error between prediction and ground truth was used as
training loss. We minimized this loss during training with the Adam
algorithm34 for gradient descent. Overall, the goal of our encoder-
decoder model is to rapidly and accurately predict the response of a
cell to a candidate set of light stimulations based on its past.

Following training, we evaluated the ability of our model to pre-
dict single-cell responses over a 2 h prediction horizon. Because in
experiments we generate data both over time and over many cells, we
use two main metrics to evaluate error: root mean square error com-
puted across time as a function of cells or samples, RMSEtime nð Þ and
rootmean square error computed across cells or samples as a function
of time, RMSEcellsðtÞ (Methods). These metrics differ in which axis is
used to compute the error and provide alternative views of perfor-
mance, where RMSEtimeðnÞ is used to view a distribution of errors while
RMSEcellsðtÞ provides a view of how error evolves with time. We com-
pared 100,000 single cell predictions from the validation dataset to
the corresponding ground truths and computed RMSEtimeðnÞ between
them (Fig. 2D). We illustrate what these values represent in terms of
single-cell predictions for 25th percentile, median, and 75th percentile
of the error distribution in Fig. 2E. We also evaluated the impact of
different hyperparameters for our deep learning model, such as the
number of layers and the number of units per layer, onboth prediction
accuracy and inference time (Fig. S1). Unsurprisingly, we found that
very small networks provide faster inference but poorer accuracy.
However, we also found that after a certain size, larger networks also
experience a decline in accuracy, likely due to over-fitting. The model
hyperparameters we used for subsequent experiments balance this
tradeoff and produce results with low errors. In this model, the
encoder uses LSTM networks with 64 and 16 units and the decoder
uses an MLP network with 5 layers of 32 units. Additionally, we eval-
uated how sensitive our approach is to changes in the training data by
fitting the same network against different combinations of the same
experimental datasets and found that prediction accuracy was similar
regardless of the datasets used, indicating the robustness of our
approach (Fig. S2). Overall, the ability of the deep learning model to
predict GFP dynamics over a 2 h horizon is excellent, with the vast
majority of model predictions showing good agreement with the
ground truth. The most erroneous predictions (95th percentile) tend
to be caused by hard to predict events, for example where the cell
suddenly stops responding or there are glitches in image analysis
(Fig. S3).

The speed of the deep learning model predictions is a critical
factor for our deep model predictive control use case. Under experi-
mental conditions, the encoder processes past timeseries in
800–2200 µs depending on timeseries duration, and the decoder
takes 20 µs to predict fluorescence when samples are processed in
parallel. In a single instance of the feedback loop, the encoder runs
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once per cell while the decoder runs 1000 times per cell to test can-
didate stimulation strategies. This process is parallelized for ~4000
cells, typically totaling under 90 s to computemodel predictions for all
cells, which is well under the 5min acquisition interval of the experi-
ments. The trained model can predict expression trajectories with
impressive accuracy and speed, even against non-trivial optogenetic
sequences where activation and repression alternate frequently, a
notable achievement given the stochastic nature of single-cell gene
expression.

Next, we evaluated how gene expression prediction accuracy was
impacted by the length of the past timeseries or the prediction hor-
izon. Themodel is fed data from the past in order to predict the future
over a defined horizon. Both values—the past timeseries length and the
prediction horizon length—are likely to impact model performance.
For past timeseries, the LSTM encoder can handle any amount of data,
but we investigated the minimum amount needed for accurate pre-
dictions. The answer to this has implications for experiment durations
and can indicate the extent to which “memory” of past events impacts
future expression patterns. To test the impact of timeseries length, we
fed artificially truncated past timeseries of varying length into the
encoder (Fig. 2F). We found that after 1.5 h of past data the error pla-
teaus, indicating that model performance is highly dependent on data
from the recent past.

Next, we asked howprediction horizon length impacts prediction
accuracy. While the horizon needs to be long enough to predict the
long-term consequences of control actions and account for inherent
delays due to transcription and translation, predictions typically
become less accurate over longer timescales. We conducted inde-
pendent trainings of themodel to predict single-cell fluorescence over
horizons of 1, 2, 3, and 4 h (Fig. 2G, Fig. S4). We evaluated RMSEcellsðtÞ
of themodel predictions against the ground truth of the validation set.
As expected, in all cases the error increases for time points further into
the future. But interestingly, we found that when comparing across
horizon lengths the error between the same time points in each hor-
izon was indistinguishable, suggesting that horizon length is flexible
and can easily be adapted to different use cases. For model predictive
control, genetic systems with long delays or strong nonlinearities
might benefit from longer prediction horizons, while shorter horizons
mean fewer control strategies to evaluate and therefore lower com-
putation requirements.

We also evaluated how thedifferentmeasured features impact the
ability of the network to predict future cell fluorescence. Although we
measured eight features for eachmother cell at each time point, it was
not clear which of these features would be most informative for pre-
dicting a cell’s future response. Thus, for each single-cell feature, we
masked out that feature’s data, retrained the network, and then eval-
uated prediction accuracy (Fig. S5). The past mother cell fluorescence
stood out for its role in improving prediction accuracy, although
ultimately we found the best accuracy overall when using a model
trained on all features. For completeness we also evaluated a model
where both mother cell fluorescence and mean fluorescence in the
whole chamber were removed, which made the system completely
blind to past fluorescence levels and led to a large decrease in accu-
racy, as well as a model where all cell features were removed (i.e. no
past data was fed to the prediction model), which unsurprisingly
caused prediction accuracy to collapse. For subsequent experiments,
we continued to use the full range of all eight measured features to
maximize prediction accuracy.

In addition, we investigated how past timeseries were encoded
into latent space representation by looking at 2D embeddings of our
validation dataset after it was processed by the encoder (Fig. S6). Since
our data is not fundamentally categorical, there are no obvious clus-
ters in those embedded spaces. However, manual inspection of points
in these spaces reveals a general structure as well as co-localization of
similar traces based on noisiness, errors, or response strength,

indicating that the latent space is an intricate encoding of not only cell
behavior but sources of uncertainty and noise. For instance, traces
from filamenting cells tend to appear together in the same region of
the space.

Finally, we compared the accuracy and computation time of our
deep learning approach to other classes of predictivemodels. First, we
implemented a simple linear regression model to infer the fluores-
cence level at each future timepoint from past timeseries data (Sup-
plementary Text). Prediction accuracy of the linear regression model
was inferior to results with the deep learning model (Fig. 1H), produ-
cing a median error comparable to that of our deep learning model
with the mother cell fluorescence feature masked out (Fig. S5). How-
ever, the linearmodel predictionswerenot unreasonable, dramatically
outperforming the case where all features were masked out, suggest-
ing that this simplemodelmay produce tolerable predictions for some
applications. Toassess computation time,we compared theprediction
time of the linear regression to the decoder part of the deep learning
model. In a typical feedback loop iteration, the encoder is run once per
cell while the decoder is run 1000 times, thus the decoder speed has a
much higher impact on throughput than the encoder in our model
predictive control framework. We found that the decoder slightly
outperformed the linear regression model (Fig. 1I). The reason for this
is that the input to the decoder is a small (32-dimensional) vector
representation of the cell’s entire past, whereas the input to the linear
regression includes all timepoints and all features. The computation
timeassociatedwith the encoder is slower than linear regression, but is
run much less frequently (Fig. S7). To compare our deep learning
model to the previous state of the art in single-cell control of gene
expression, we re-implemented the approach described by Chait
et al.20 based on ordinary differential equations and hybrid Kalman
filtering, and fitted model parameters to our data (Supplementary
Text).We found that this approach outperformed the linear regression
model on prediction accuracy, but did not reach the levels of accuracy
achieved by our deep learning model (Fig. 2H). We suspect this is
because of the underlying assumption in Kalman filters that noise is
Gaussian, which is generally not the case for gene expression and leads
to sub-optimal state estimation35. Critically, the differential equation
approach was several orders of magnitude slower (more than 4000
times slower) than our deep learning approach (Fig. 2I). To make sure
that our implementation was not artificially limiting the performance
of the differential equation and Kalman filter based approach due to
improper combinations of parameters, we also evaluated a broad
range of technical parameters and analyzed performance in more
detail for the three best combinations of parameters (Fig. S7, S8,
Supplementary Text), finding consistent results for performance
across all three. Taken together, these results demonstrate that our
deep learning model not only allows us to make predictions that are
highly accurate, but that rapid computation times alsomake itpossible
to drastically increase prediction throughput over the current state of
the art. These benefits in accuracy and computation time join other
advantages. For example, the deep learning model does not require
mechanistic knowledge of the system’s behavior, which is necessary to
construct an ordinary differential equation model. For these reasons
our deep learningmodel is particularly well suited to the task of single-
cell model predictive control of gene expression, and offers the
potential for capitalizing on the throughput permitted by automated
single-cell microscopy.

High-throughput single-cell control
Model predictive control algorithms use forecastingmodels to predict
the response of the controlled system to a range of potential input
strategies. The model prediction for each strategy is compared to the
control objective, and the best strategy is identified and applied
(Fig. 3A) and reevaluated regularly. In our case, real-time measure-
ments of cell fluorescence and other features were used as inputs to
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the gene expression forecasting model at every time point. These
input data are combined with many potential control strategies, i.e.,
optogenetic stimulation sequences that could be applied over the
prediction horizon, to produce cell response predictions. The stimu-
lation strategy that is predicted to minimize the RMSEtimeðnÞ between
the cell’s fluorescence and a predetermined objective is selected,
which is then implemented via the DMD. This entire process is repe-
ated every five minutes, incorporating real-time information to
improve control fidelity.

Because we apply a new light stimulation every five minutes (i.e.,
12 per hour) and the model can choose between two options (red or

green light), exhaustively testing all possible stimulation patterns for a
horizon of length L hours requires 212L model runs per cell. For a L = 1 h
horizon, this results in 4096 possible light application patterns to
consider. For L = 4 h, exhaustively testing all options requires ~3 × 1014

predictions for eachcell. Brute force evaluationof all control strategies
therefore rapidlybecomes computationally intractable. Tocircumvent
this issue, we used a binary particle swarm optimizer36. We ran 40
particles, with each particle predicting the cell’s response to a random
optogenetic stimulation pattern and computing the error between the
prediction and control objective. The best predicted outcomes for
each particle, as well as the best outcome overall, were used to update
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the probability that eachbit in the optogenetic stimulationpatternwas
set to red or green. We then sampled and evaluated new random
optogenetic sequences, iterating the whole process 25 times. This
approach efficiently found optimal or near-optimal solutions with only
these 1000 model predictions, even for the 4-hour horizon case (Fig.
S9, Supplementary Text). Previous studies that have used traditional
model predictive control to drive gene expression using differential
equation and Kalman filter approaches have had shorter time horizons
of 8 and 4 timepoints20,21, corresponding to 256 and 16 total potential
strategies to evaluate, which they used to control a few dozen cells. In
comparison, our deep learning model can evaluate 1000 strategies
each for thousands of cells, corresponding to millions of predictions
every five minutes.

We next integrated the encoder-decoder deep learning model
into the full feedbackdesign to achieve real-time control of single cells.
First, as a small test case we evaluated the performance of our 2 h
horizon controller on ~500 single cells driven towards a sinewave
objective. We initially exposed cells to only red light stimulations for
3 h for equilibration. We then turned on the deep model predictive
control algorithm for t = 3 to t = 19 h. The median fluorescence of the
entire population follows the objective well (Fig. 3B). More impor-
tantly, individual cells also stay close to the objective. We computed
the single-cell RMSEtimeðnÞ between fluorescence and objective.
Example single-cell trajectories of cells at the 25th percentile, median,
and 75th percentile of error show the ability of the control system to
track a dynamic objective function (Fig. 3C, Movie S1). The controllers
adopt complex strategies, anticipating cell responses and adapting to
each cell based on its past behavior. This is visible by comparing the
light stimulation patterns across cells, which are customized to each
cell despite identical objective functions, indicating the necessity of
single-cell level control. During the same experiment, we also eval-
uated performance for the controllers with different horizon lengths
(Fig. S10). For all models, control performance was very similar across
horizons (Figs. S11, S12). This was slightly surprising, as we expected at
least some variability in performance between the different algo-
rithms, but can be explained by the fact that the genetic systemwe are
controlling is fairly straightforward, and responds rapidly enough for
the 1-hour control horizon to be sufficient. However, the ability to
predict over longer horizons is likely to be useful in systems with long
delays or complex dynamics. Overall, we found that all prediction
horizons ranging between 1 and 4h yielded extremely accurate single-
cell resolution tracking of a dynamic objective function.

A key advantage of computer-based feedback is that each single
cell can be assigned its own customized control objective, making it
possible to induce complex dynamic phenotypes that are visible at the
population level. To demonstrate the capabilities of our approach
both in terms of accuracy and throughput, we used our control algo-
rithm to produce movies where each pixel’s intensity was the control
objective for a single cell’s fluorescence. First, we generated the

objective functions associated with a 100 × 100 pixel movie of con-
centric sinewaves expanding outwards (Fig. 3D, S13A, B, Movie S2). In
practice, each cell was assigned a sinewave objective function like that
of the previous experiment but with a different phase delay depending
on its position in the 100 × 100pixel array.Weobtained these results in
a series of three experiments, each controlling 3000–4000 cells, for a
total of 10,000 cells. Hardware constraints prevented us from running
this as a single experimentwith 10,000 cells; however, we note that the
control algorithm would be capable of handling this throughput. The
reconstructed single-cell fluorescence movie is remarkably similar to
the original, and single-cell trajectories follow their own objectives
closely (Fig. 3E, F).We quantified control accuracy across all cells using
several metrics. As expected, error decreases sharply in the first two
hours as the system transitions from an equilibration period with red
light only to tracking the objective (Fig. 3G). After this initial decrease,
the error remains relatively constant. We found that the error corre-
lates with the objective value, where higher objectives tend to lead to
higher absolute error (Fig. S13C). Interestingly, this relationship is not
absolute: Error is smallest for phases of the sinewaves that follow
shortly after the minimum in objective value, and maximal for phases
that slightly precede the peak objective value (Fig. S13D), indicating
that the intrinsic dynamics of the circuit do not allow it to perfectly
follow the dynamics of the objective at higher and lower values of
fluorescence. The mean absolute error and RMSEcellsðtÞ were all low
following initial transients,with the proportion of cells receiving red or
green light also remaining relatively constant through t = 19 h (Fig. 3G).
Overall, this result demonstrates our ability to simultaneously control
thousands of individual cells with customized objective functions with
high accuracy.

Our algorithm is not limited to following sinewaves and can be
used to track arbitrary objectives. To demonstrate this on a challen-
ging objective function, we reproduced a scene fromStanley Kubrick’s
epic science fiction film 2001: A Space Odyssey (Fig. 4A, Movie S3). For
the scene, we used a resolution of 125 × 80pixels, where the 10,000
individual objective functions were assigned to cells partitioned into
three 32h long experiments. We selected this clip because it is a
complex scene with high dark-light contrast and contains both pixels
that rapidly transition from dark to light or the reverse, and those
where the objective function must hold a constant value for a long
duration. Both the scale of the scene, which requires thousands of
pixels, and the dynamic complexity of the movie clip, make this a
challenging test case.

We found that the deep model predictive control algorithm was
able to reproduce the clipwith good accuracy,with themain subject of
the scene easily identifiable and details of the foreground and back-
ground also visible (Fig. 4A). Some movements are too fast, and the
cells cannot respond quickly enough to track sudden, sometimes
fleeting changes in their control objectives (Fig. S14A). Subtle nuances
in image contrast are also hard to reproduce perfectly, creating a

Fig. 3 | Deep model predictive control can accurately drive time-varying
expression dynamics in 10,000 independent cells. A Model predictive control
principles. The control algorithm predicts the cell’s response to several potential
control strategies, and selects the one closest to the control objective. Different
shades of blue represent the predictions for different potential strategies. Three
candidates are shown here for illustration, but 1000 are evaluated per cell and
timepoint. B Control performance at the population level. The dashed curve
represents the control objective. The solid green curve shows the median fluor-
escence of the population (n = 524 cells). The shaded area represents 25th to 75th
percentiles of the population fluorescence. C Control performance for repre-
sentative single cells. Colored solid curves represent single-cell fluorescence tra-
jectories in the 25th percentile,median, and 75thpercentile of control error. Below,
red and green timeseries represent the optogenetic stimulation sequences that
were applied by the controller for each single cell. D Expanding concentric sine-
waves movie. The top row shows the control objectives that were assigned to each

cell in a 100× 100 pixel movie. The bottom row shows measured fluorescence
values for single cells subjected to deepmodel predictive control in the experiment
(n = 10,000 cells). The orange and purple circles highlight the position of repre-
sentative cell “pixels” shown in panels (E,F).E Exampleof control performance for a
single cell at pixel coordinates (15, 15) in the expanding sinewaves movie. Fluor-
escence kymograph for the cell is shown at the top. Single cell response to control
inputs is plotted at the bottom, with control objective shown as a dashed gray line.
F Example for a single cell at pixel coordinates (75, 50). G Error metrics over time.
The dashed gray line represents the average objective across cells, over time. The
blue shaded area represents the 25th to 75th percentile of the absolute error, and
the solid blue line represents themedian absolute error. Dashed lines represent the
mean absolute error and RMSEcellsðtÞ. The red and green shaded regions at the
bottom represent the proportion of cells that were exposed to red or green
optogenetic stimulations.
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Fig. 4 | Control performance against arbitrary, complex objectives is limitedby
cell growth and death. A 2001: A Space Odyssey scene reproduction. The first
column shows the control objectives that were assigned to each cell. The second
column shows measured fluorescence values for single cells subjected to deep
model predictive control in the experiment (n = 10,000 cells). Image stills taken
from 2001: A SpaceOdyssey, reproducedwith permission fromWarner Brothers, all
rights reserved. B Error metrics over time. The dashed gray line represents the
average objective across cells, over time. The blue shaded area represents the 25th
to 75th percentile of the absolute error, and the solid blue line represents the
median absolute error. Dashed lines represent the mean absolute error and
RMSEcellsðtÞ. The red and green shaded regions at the bottom represent the pro-
portion of cells thatwere exposed to red or greenoptogenetic stimulations.C Error
metrics as a function of the time-derivative of the objective. To show performance

across a diverse range of time-derivatives, we use a log scale for objectives with
both positive and negative derivatives. D Median cell growth rate across all cells
over time (light blue). The fraction of cells larger than 6μm2 (orange) over time
indicates the presence of unhealthy filamented cells. E Histogram of growth rates,
over all cells and timepoints. Single-cell growth rate trajectories were smoothed
with a median filter sliding over a one-hour time window. Percentiles of the dis-
tribution are shown with vertical gray lines. F RMSEcells tð Þ per percentile of growth
rate. Error is computed for cells and timepoints belonging to each single percentile
from the growth rate distribution shown in (E). Light green corresponds to
objectives with a value below 800 arbitrary units of fluorescence, while dark green
represents objectives above 1600 units of fluorescence. Further error analysis is
provided in Fig. S14.
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“grainy” result. To quantify performance, we calculated various error
metrics over time. After the control starts at t = 3 h, each cell rapidly
catches up to its objective, and by t = 6 h the error reaches a minimum
(Fig. 4B, Fig. S14B). Following this, the error level increases over time.
This degradation in quality is visible in the reconstructedmovie, where
by t = 32 h most details are barely identifiable. The highest and lowest
objective values tend to lead to higher error (Fig. S14C). Rapid shifts in
objective value also lead to higher error (Fig. 4C). Interestingly, rapid
negative changes appear to be harder to track than rapid positive ones,
likely because of the intrinsic dynamics of our biomolecular system
where reductions inGFP signal are due to cell division anddilution and
not active degradation. In addition, over time a key contributor to the
deterioration in control quality appears to be cell aging, as mother
cells trapped at the dead end of the mother machine chamber accu-
mulate damage asymmetrically30,32,37,38. Indeed, as the experiment goes
on, the median growth rate of the population declines, and an
increasing number of cells appear to filament (Fig. 4D). The distribu-
tion of growth rates throughout the experiment shows that a portion
of the cells stop growing altogether (Fig. 4E), and these lower growth
rates are correlated with higher control error (Fig. 4F). We note that
curation to remove these dead or unhealthy cells would be straight-
forward given heuristics based on cell length or growth rate, however
we have elected to show the full results for all cells here for com-
pleteness. More surprisingly, cells in the top 5% of growth rates also
exhibit significantly worse control performance (Fig. 4F). To under-
stand the reasons behind this, we compared performance for low and
high fluorescence objectives. With low control objectives we observed

very little error even at the highest growth rates, while fast growing
cells struggled to achieve the high objectives. Higher objectives are
likely harder to reach and maintain for faster growing cells because of
higher protein dilution rates, and a complex interplay appears to exist
between growth rate and control performance.

Our approach using deepmodel prediction for single-cell control
can drive cells to a broad range of dynamic behaviors. Importantly, the
speed of the deep learning-enabled control strategy provides an
unprecedented level of throughput. Furthermore, this approach pro-
vides exquisite accuracy, allowing individual cells to track complex
dynamic signals. This opens the door for precise, high-throughput
studies of genetic systems.

Control of antibiotic resistance with TetA
Our initial tests focused on dynamic control of GFP, however our
approach should in principle be generalizable to the control of any
gene paired with a fluorescent reporter, such that a wide variety of
physiological processes could be controlled. To investigate this idea,
we made the tetracycline resistance gene tetA light-responsive by
placing it downstream of the PcpcG2 promoter of the CcaSR system,
followed by an additional ribosome binding site and the gfp gene
(Fig. 5A).With TetA andGFP transcriptionally co-expressed,wewanted
to evaluate whether fluorescence could be used as a proxy to precisely
control TetA levels with our platform. TetA is well-suited as a test case
for precision control because it is an efflux pump specific to tetra-
cycline antibiotics39, and while efflux pumps are beneficial under
chemical stresses, they can otherwise be detrimental to cell health if
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Fig. 5 | Optogenetic control of the TetA efflux pump drives timing of tetra-
cycline killing in single cells. A The tetA efflux pump gene is placed under control
of the PcpcG2 promoter for the CcaSR optogenetic system, on an operon upstream
of gfp. The deep model predictive controller decides on red or green optogenetic
stimulations to activate or repress tetA-gfp expression based on measured fluor-
escence. As more TetA efflux pumps are produced, more tetracycline is exported
from the cell, preventing cell death. BMedian fluorescence levels over time for all
five control categories across three replicates. The red and green curves corre-
spond to cells exposed exclusively to constant red or green stimulations. The
orange, yellow, and yellow-green curves correspond to controlled cells that were
randomly assigned to objectives of 800, 1200, and 1800 arbitrary units of fluor-
escence. Each experiment was conducted with three replicates. For each category
and each replicate ~400 cells were controlled, for a total of n = ~1200 cells per

control category. The objective levels are indicated with dashed gray lines. At
t = 9 h, 40 µg/mL of tetracyclinewas added to themedia.CMedian growth rates for
single cells from (B). Each curve was smoothedwith a Savitzky-Golayfilter (length =
15, order = 2) to improve visualization.DGrowth rate violin plots for all five control
categories over time. Data from all replicates were merged for each category.
Single-cell growth rates were smoothedwith amedian filter sliding over a one-hour
time window. Horizontal gray line represents the 0.3 h−1 “growing” vs. “dying”
growth rate threshold. For visual clarity, the top andbottom0.1%of the growth rate
distributions were filtered out. E Percentage of cells in the “growing” sub-
population over the total population of cells over time for each control category.
Data from all replicates were merged. Single-cell growth rates were smoothed as
described in (D).
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over-expressed37,40. This trade-off can further complicate control, as
TetA impacts cell fluorescence levels by modulating growth and
therefore dilution rates. Thus, control of TetA provides a realistic test
case for linking gene expression in single cells to function.

To test how robust and adaptable our overall approach is, we
purposely did not adjust the control algorithm or optimize strain
designs. Retraining the timeseries forecasting neural network would
likely lead to better control accuracy, however wemade the deliberate
decision to evaluate the performance of our controller without
acquiring strain-specific training data. We also purposefully did not
engineer several different variants of this genetic circuit, for example
by using different ribosome binding sites. Indeed, with gfp in the
second position in the operon, we found that the fluorescence signal
wasweaker than in our experimentswith gfp control alone, butweonly
adapted our imaging and optogenetic stimulation parameters. These
changes had a small impact on throughput, limiting it to control of
~2,000 cells in parallel per experiment, but required minimal effort
with no genetic or model-based alterations.

We performed time-lapse experiments in which cells either
received constant stimulations with red or green light or were sub-
jected to deep model predictive control (Fig. 5B, Fig. S15). We ran-
domly assigned cells to five different populations across experiments:
In the two constant light populations, we continuously subjected the
cells to either redor green light stimulations only, thus showing the full
dynamic range of our strain. In the other three closed-loop popula-
tions, cells were dynamically controlled to intermediate fluorescence
set points at 800, 1200, or 1800 arbitrary units of fluorescence. As
before, we began applying deep model predictive control at t = 3 h. At
t = 9 h, we added 40 µg/mL tetracycline to the media, perturbing
growth and eventually leading to death in susceptible cells. After the
introduction of tetracycline, control quality for the entire population
progressively deteriorated, as expected given tetracycline’s effects on
cell health. Notably however, prior to tetracycline introduction,
closed-loop control resulted in tight distributions across replicates
near the pre-defined control objective, highlighting a major benefit of
deep model predictive control for probing subtle links between gene
expression and phenotypes. The ability to control this new strain
without retraining the timeseries forecasting model and within a tight
fluorescence range is also remarkable, and raises the possibility of a
modular controller where other genes of interest could be inserted
alongside gfp.

Next, we asked how set levels of TetA impacted cell growth and
survival before and after tetracycline introduction. Several recent
studies have revealed that the effect of antibiotic efflux pumps can be
heterogeneous at the single-cell level and fluctuate over time37,40,41, but
their effects on cellular physiology and single-cell antibiotic resistance
levels can be subtle and may be drowned out by biochemical noise.
Our ability to precisely set gene expression in more than 6000 cells
allowed us to compare growth rates across graded levels of TetA
(Fig. 5C). For all cases, themedian growth rate of each category of cells
was very similar across replicate experiments, especially for the three
closed-loop control cases. Median growth rate generally decayed over
time for cells in all populations, but this decay was faster for popula-
tions with higher fluorescence, which is consistent with the detri-
mental effect of TetA expression in the absence of antibiotic. After
tetracycline was added to the media however, the situation reversed:
while growth rates still decayed for all conditions, higher TetA
expression levels led to a slower decrease. Interestingly, not all median
growth rates decayed to the same level, indicating potential long-term
survival of a subset of the higher-expressing cells following tetra-
cycline treatment.

This led us to investigate single cell effects further, asking how
median growth rates relate to population distributions. A decay in
median growth rate could indicate that all cells progressively and
uniformly slow their growthunder tetracycline exposure; alternatively,

it could be the result of two sub-populations, consisting of either living
or dead cells, where living cells maintain a constant growth rate until
they die and suddenly cease growth. A faster decay in median growth
rate would thus be due to a higher number of cells transitioning from
the living to dead sub-populations. To investigate this, we looked at
single cell growth distributions for the five different experimental
categories at different timepoints (Fig. 5D). Up until tetracycline
addition, bimodal distributions slowly arose as a small, but increasing,
portion of the cells stopped growing. After antibiotic introduction
however, growth rapidly halted for nearly all cells thatwere exposed to
constant red light, while for other populations this bimodality was
maintained, with higher TetA expression leading to higher resilience
(Fig. 5D, Movie S4).

We then partitioned the populations between healthy “growing”
and “dying” cells based on a heuristic threshold growth rate of 0.3 h−1

(Fig. S16, S17) and quantified the fraction of growing cells in each
population (Fig. 5E). For the two lowest TetA expression levels, cells
died rapidly and at the end of the experiment only ~8% of cells
remained in the healthy sub-population. In contrast, ~30% of cells for
the two highest expression levels were able to maintain relatively high
growth rates through the end of the experiment (Fig. S18). Taken
together, these results indicate thatwhenexposed to tetracycline, cells
expressing higher levels of TetA are able tomaintain a constant growth
rate for longer before they reach a breaking point and stop growing
altogether, potentially allowing for stress response pathways to be
activated or for beneficial mutations to arise in the interval40,42.

More broadly, these results demonstrate how deep model pre-
dictive control can be used to drive a gene of interest with high pre-
cision in single cells. The increase in throughput provided by this
approach allowed us to observe the impact on single-cell physiology
both temporally and as population distributions. The cell growth
burden imposed by TetA expression prior to tetracycline addition is
subtle, but our approach clearly illustrates the gradual relationship and
trade-off between expression levels and growth rates. Additionally, the
dynamic single-cell data reveal insights that cannot be observed from
thepopulation level alone, such as the gradualmovement of individual
cells from healthy to dying sub-populations over time.

Discussion
Computer-based feedback control of gene expression can be used to
study cell dynamics with unprecedented precision16–18,20,21,43–45. How-
ever, single-cell approaches have historically been limited to the con-
trol of a few dozen cells in parallel due to technical limitations
associated with cell imaging and the computation times required for
algorithms controlling stochastic processes. In this study we leverage
recent advances in the fields ofmachine learning and control theory to
improve this throughput by at least two orders of magnitude com-
pared to previous studies20,21, resulting in real-time control of thou-
sands of cells in parallel. We first showed that neural networks can be
trained to predict gene expression in single cells with high accuracy.
Then we showed that these prediction networks can be used in a
model predictive control framework to precisely drive gene expres-
sion dynamics over time-varying and arbitrary objectives without
using expert knowledge of the system. Finally, we demonstrated the
generality and usefulness of this system by controlling the expression
of the resistance gene tetA at physiological levels in thousands of cells,
without any changes to our hardware, forecasting models, or under-
lying control algorithm. This allowed us to acquire a large and detailed
dataset of cell growth and survival before and after introduction of
tetracycline, and to analyze the dynamics of expression burden and
stress survival. By imposing precise dynamics onto thousands of cells,
our experiments weremuchmore informative than if we had relied on
natural gene fluctuations or on crude actuation without feedback
control, revealing how subtle expression changes can have a critical
impact on cell fate.
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While our approach drastically improves throughput and accessi-
bility of real-time control of gene expression, there are limitations that
could be addressed with future studies. First, deep neural networks are
traditionally seen as “black box” models that are difficult to interpret.
However, recent studies in physics show that interpretable mathema-
tical models can be derived from trained networks46,47. Another limita-
tion is that training deep learning models requires large amounts of
diverse data. This is attainable with single-cell optogenetics, however
further work is needed to identify how adaptable our approach would
be to other setups, such as microfluidics-based chemical actuation or
control of cell populations in bioreactors. The mother machine micro-
fluidic setup itself, which traps a single aging cell for extendedperiods of
time and exposes it to cumulative damage from microscopy imaging,
limits how generalizable physiological conclusions can be. Luckily, the
increase in throughput permitted by our approach opens the door to
model predictive control in alternative experimental configurations
such as populations of thousands of cells growing as amonolayer17,18,32,48.
Another direction to explore regarding aging would be to re-train pre-
diction models on-the-fly, as data is acquired during control experi-
ments, to see if the controller can adapt to changes in system behavior.
Yet another limitation is that our predictivemodel also does not provide
any information about prediction uncertainty or noise, which could help
improve control accuracy, and may be critical for the control of multi-
stable genetic systems49,50. Finally, our use of a model predictive control
framework requires that hundreds or thousands ofmodel inferences are
made per cell and timepoint. Other data-driven approaches based on
imitation learning or reinforcement learning51 could further improve
throughput, as in such frameworks the model would directly infer the
optogenetic stimulation to apply to the cell.

Finally, many interesting extensions to our work are possible. A
straightforward example would be to apply the same methodology to
other genes and compare the impact of fluctuating expression dynam-
ics on phenotypic outcomes such as cell growth or survival. Further,
with an additional fluorescent reporter, we could also quantify signal
propagation between related genes, or even map out and model gene
regulation networks. Because our approach does not make any a priori
assumptions about the system to control, it should also be straightfor-
ward to apply it to different optogenetic systems besides CcaSR or
organisms besides E. coli. While the CcaSR system is a powerful and well
characterized tool for optogenetic actuation, its activation and inhibi-
tion spectra cover a wide range of the visible light spectrum, and its
dynamics can be slow compared to post-translational optogenetic
systems15,16,52,53. Adapting our methodology to other systems could fur-
ther pave the way towards orthogonal, multiple-input multiple-output
optogenetic control. Beyond investigating natural cell processes, our
platform could also be used for synthetic biology and metabolic engi-
neering applications54. Others have already used similar cell-machine
interfaces to simulate the impact of different genetic circuit
topologies18, as a test bench to characterize gene circuit responses29, or
to control methionine metabolism43. We envision that this control
approach can dramatically expand the scale of these types of studies.
The length and accuracy of control experiments may also be improved
by utilizing microfluidic devices other than the mother machine, where
cell populations can be refreshed by younger progeny and the dele-
terious effects of cell aging and death can be mitigated. Beyond control
of gene expression, neural networks can be used to optimize experi-
ment automation. Researchers have already proposed online optimal
experimental design approaches, where experimental inputs are opti-
mized tomaximize the information acquired about bacterial growth55. In
another study, a neural network was used to detect important cellular
events and adapt acquisition parameters accordingly56. As machine
learning basedmethods for control and automation in applications such
as autonomous driving, games, or robotics51 keep improving, we expect
real-time interfaces between these algorithms and live cells to open
entirely new ways to conduct biological research.

Methods
Plasmids and strains
All experiments use E. coli MG1655. For experiments where only GFP
was controlled, the fliC flagellar gene was deleted to prevent cells
from swimming out of the microfluidic traps. The deletion was per-
formed using the Datsenko-Wanner chromosome engineering
protocol57. We then transformed this strain with plasmids pNO286-3
and pSR58.6 from the CcaSR v3 optogenetic system28. For tetra-
cycline resistance experiments, the fliC genewas kept, as the deletion
altered the physiological response to the antibiotic. We inserted the
tetA gene from plasmid pRGD-TcR (Addgene #74110) upstream of
sfGFP in a transcriptional fusion. The primers GCATTTTTAAcgcagt-
caggcac and TCTCCTCTTTtcaggtcgaggtgg were used to amplify the
tetA gene and the primers ctcgacctgaAAAGAGGAGAAATACTAGATG
and cctgactgcgTTAAAAATGCGATCCTAAC were used to amplify the
pSR58.6 backbone. The insert and backbone were joined via Gibson
assembly58 and co-transformed with plasmid pNO286-3 in
MG1655. This plasmid is available on AddGene.

Cell cultures and growth media
Before starting experiments, cells were grown overnight in 5mL LB
supplemented with 0.2 g/L Pluronic F-127, 25 µg/ml chloramphenicol,
and 50 µg/ml spectinomycin. Pluronic prevents cell adhesion within
the microfluidic chip; chloramphenicol and spectinomycin are
required for plasmid maintenance. In the morning, cultures were
refreshed at a 1:100 ratio in 5mLof the samemedia supplementedwith
1 g/L of glucose and grown for 3 h. Cells were loaded into the chip as
described below. Themedia used in themicrofluidic chip after loading
the cells was LB broth supplemented with 0.2 g/L Pluronic F-127 and
1 g/L of glucose. For experiments where only GFP was controlled, we
added 5 µg/ml chloramphenicol and no spectinomycin. The reason for
these lowered doses of antibiotics is that once loaded in individual
chambers the bacteria do not compete with each other, and plasmid
loss is less problematic. Chloramphenicol was still used to prevent
contamination of the media. For tetracycline resistance experiments,
we added no antibiotics to minimize the potential for spurious cross-
resistance effects.

Microfluidics
The master molds for the mother machine microfluidic chips were
made with SU-8 resin on silicon wafers using photolithography, based
on the design in https://gitlab.com/dunloplab/mother_machine. To
produce the microfluidic devices, we poured polydimethylsiloxane
(Dow Corning Sylgard 184) and cured it overnight at 75 °C, cut out the
chips and punched the inlets and outlets, and removed debris on the
chip with Scotch tape. We then bound the chips to a 24× 50 × 1.5mm
glass slide (Fisherbrand 12-544-EP) after activating both surfaces for
10 s at 100W in a plasma oven (EMS Quorum 1050X). We found that
carefully optimizing plasmaparameters and controlling humidity were
critical for good binding. Before using the plasma, we used an elec-
tronics duster to remove most debris on the glass slide. The chip
features 8 parallel channels wheremedia flows, eachwith 1000 growth
chambers of 25 × 1.8 × 1.2 µm dimension.

Before loading the cells, water supplemented with 0.5 g/L Pluro-
nic F-107 was flowed manually through the chip at high pressure. This
improved chamber loading rates significantly, allowing >95% of
chambers to be filled with cells. Then the cell cultures were spun down
at 16,000 g, the supernatant was removed, and the cell pellet was
resuspended into ~50 µL media. This high concentration resuspension
was then flowed into the chip, and the chip was spun in a tabletop
centrifuge at 4696 g to introduce the cells into the mother machine
chambers. Finally, the microfluidic chip was connected to a peristaltic
pump (Ismatec EW-78001-12) flowing growth media and set up on the
microscope. The chipwas left on themicroscope stage for 3–4 h under
constant red light without any imaging to allow the cells to recover
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before an experiment began. For tetracycline resistance experiments,
the bottle of media was manually swapped at t = 9 h to a new one
supplemented with 40 µg/mL tetracycline.

Microscopy
Weused aNikonTi2 chassis widefield epi-fluorescencemicroscope. All
imaging was performed with a 100X oil objective (Nikon MRD31905).
Both phase contrast and GFP imaging were performed with an eGFP
filter cube in the light path (Chroma 49002) to increase acquisition
throughput. The fluorescence excitation white light source was a
Lumencor SOLA light engine. Image acquisitions were performed with
an Andor Zyla 4.2P-USB3 camera. For most experiments, fluorescence
light intensity was set to 5%, and exposure was set to 85ms. For tet-
racycline resistance experiments, these values were 30% and 100ms
respectively to match the dynamic range of the original strain. We
placed an RGB LED ring around the microscope condenser (Adafruit
Neopixel 1586) to apply constant illumination to the cells. The cells
could thus be exposed to red light (620 nmwavelength) or green light
(525 nm wavelength). During the 3–4 h recovery and equilibration
period before an experiment was started, cells were exposed to con-
stant red light with this LED ring. A Digital Micromirror Device
(Mightex Polygon400) was connected to the illumination light path of
the Ti2 chassis to dynamically project patterned images onto the field
of view. This allowed us to target specific chambers with red or green
light. The light source of the DMD was an X-Cite XLED1 featuring an
RDX red LED unit (660–675 nm) and a BGX green LED unit
(505–545 nm). In experiments where only GFP was controlled, we
applied only red DMD stimulations (60ms exposure, 2066mW/cm2)
while the LED ring supplied constant green light for the entire
experiment. DMD illuminations were the most time-consuming
operations in our experimental loop, and constantly shining green
light onto the cells with the LED ring allowed us to avoid single-cell
green stimulations with the DMD. In tetracycline resistance experi-
ments, cells were targeted with both red (60ms exposure, 2066mW/
cm2) and green (100ms exposure, 331mW/cm2) stimulations while the
LED ring was kept red for the entire experiment. These settings
allowed us to have a tighter off state. Finally, we used an Arduino Uno
microcontroller to coordinate hardware synchronization between the
camera, the light sources, the LED ring, and the DMD to increase
acquisition speed (see GitLab repository).

All equipment was connected to a workstation computer (HP
Z840with 128GBDDR4physicalmemory, 2 Intel Xeon E5-2623 v4CPU
featuring 4 physical, 8 logical cores each at 2.60GHz, and an nVidia
Quadro P4000 GPU featuring 8GB GDDR5, 1792 CUDA cores at
1.2 GHz) and was interfaced with the Micro-Manager microscope
control software v2.0.159, and its core API was accessed in Python via
Pycro-Manager v0.1460. This allowed us to develop Python modules
and scripts for highly customized acquisitions and to exploit the
Tensorflow v2.6 deep learning librarywith GPU acceleration. The code
we used to control our platform is available on GitLab: https://gitlab.
com/dunloplab/pycromanager

Error metrics
We use two main metrics to assess accuracy between a set of ground
truth or control objective values, and a set of model predictions or
controlled cell fluorescence values. We represent the objective or
ground truth values asgðnÞ

t and the predictionor fluorescence values as
f ðnÞt , with t∊〚1,T〛 as the time index, and n∊〚1, N〛 as the sample or
cell index. The rootmean square error computed across time, for each
cell n is:

RMSEtimeðnÞ=
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Thismetric allows us evaluate the error for a single prediction or a
single controlled cell over a period of time, making it possible to look
at error as a distribution and to extractmedianerror andpercentiles. In
some cases we also use the root mean square error computed across
cells, at each point in time:

RMSEcellsðtÞ=
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Thismetricmakes it possible to look at the evolutionof error over
time, across all cells or samples.

Open-loop time-lapse experiments and data analysis
Training and validation experiments were performed across 125–150
different locations in the microfluidic chip, each one of them with
27–28 chambers in the field of view (amounting to 3375–4200mother
cells per experiment). Data were acquired in series of 25 positions,
where first phase contrast and GFP images were acquired and then
optogenetic stimulations for all 25 positions were applied. Phase
contrast and GFP acquisitions were both performed using 85ms
exposure times. The red DMD stimulations were performed using
60ms exposure times. All positions were acquired and stimulated
every 5min. All acquired images were immediately saved to disk. In
parallel, the phase contrast images were cropped into smaller images
around each chamber in the field of view, and were segmented with
our time-lapse analysis software DeLTA v2.0.5 8ceb0131,32. Because we
were only interested in following the mother cell trapped at the dead
end of the chamber, we did not perform DeLTA’s tracking step and
simply retrieved data corresponding to the cell at the top of the image.

After segmentation, single-cell features were extracted on-the-fly
and recorded in a data array. The first of these features is the sequence
of optogenetic stimulations applied to the cell, stored as 0 for red
stimulation and 1 for green. After image analysis, the mother cell
average GFP intensity and cell area (in pixels, 1 pixel ≈4400 nm2) were
computed using the mother cell’s segmentation mask. We also recor-
ded the average fluorescence of all cells in the chamber, the standard
deviation of those levels, and the total number of cells in the chamber.
The optogenetic stimulations for a chamber’s immediate neighbors
were also compiled. Finally, we extracted image sharpness, defined as
the mean value of the Laplacian of the cropped phase contrast image
of the chamber. In total, 8 single-cell feature timeseries were extracted
on-the-fly. These arrays were saved to disk at the end of each experi-
ment. These single-cell feature arrays were then normalized to the
[0, 1] range to train and be used as inputs to the neural networks
(Supplementary Text). For subsequent feedback experiments, the
single-cell feature arrays were normalized to the [0, 1] range on-the-fly
using the same functions and parameters.

Weperformed acquisition experiments for four training and three
validation sets. These experiments were performed without feedback
control, although features were extracted on-the-fly. The training and
validation experiments include a total of 15,898 and 13,811 mother
cells, respectively. Each experiment lasted between 16 and 24 h.
Optogenetic stimulations were pre-determined as random binary
sequences. To ensure that cells would be subjected to long periods
with orwithoutDMDstimulations, these sequenceswere computed by
binarizing a one-dimensional random walk (Supplementary Text).

Growth rate was not computed on-the-fly, and was instead
computed a posteriori from the cell area data. First, we set area
values to NaN (“not a number” in floating point format) for cells and
timepoints where cell area or fluorescence levels were too small to
represent a cell (less than 0.44 µm2 and 100 a.u. respectively), which
are indicative of image analysis artefacts that become more frequent
as cells die. Then, at every time point t we computed the growth rate
for each cell as:
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growthðtÞ= areaðt + 1Þ�areaðtÞ
areaðtÞ

Finally, growth values below −2.4 h−1 were filtered to NaN to avoid
time points where divisions occur. While these values could be com-
puted from lineage tracking information, this approach simplifies
analysis. To compute population medians or smoothed timeseries,
NaN values were ignored.

Timeseries forecasting
The deep learning models are written and run with the Tensorflow/
Keras library v2.6. They are structured as encoder-decoder networks.
The encoder consists of two LSTM27 layers of 64 and 16 units
respectively, that reduce the 8-dimensional hours-long timeseries
into a 32-dimensional latent space vector. This encoded repre-
sentation of the cell’s past is then concatenated with the binary
vector of potential future optogenetic stimulations. This con-
catenated vector is the input of the fluorescence prediction decoder.
The decoder consists of 5 densely-connected layers27 of 32 units with
rectified linear activation, and a final densely-connected layer of 12,
24, 36, or 48 units depending on the prediction horizon, with a linear
activation function. These hyperparameters were selected after
evaluating their performance both in terms of prediction accuracy
and inference time (Fig. S1).

For training, a random cell and timepoint were picked among the
thousands of 8-dimensional, 16–24 h long single-cell trajectories. The
cell’s trajectory prior to the selected timepointwas extracted as training
inputs for a random past period of time ranging between 3 and 12 h
(36–144 time points). The cell’s optogenetic stimulations and fluores-
cence for the 1 to 4hours (12 to 48 time points) following the selected
timepoint were also extracted, as training input and ground truth,
respectively. We used Keras’s built-in mean squared error between the
model’s predictions and the ground truth as training loss, and used the
Adam algorithm34 for gradient descent with a learning rate of 10−3.

First, to evaluate predictionperformance,modelswere trained on
only the training datasets for 500 epochs, 200 steps per epoch, and
100 samples per batch. We generated validation samples to evaluate
model performanceduring training: At the end of each training epoch,
the RMSEtimeðnÞ was evaluated over 10,000 random samples from the
validation dataset (Fig. S19). A potential point of concern was that our
limit of 500 training epochs may have been premature, as recent
studies have shown that validation loss can drop dramatically, long
after model performance appears to plateau61. To test this, we also
trained themodel for 10,000 epochs and observed that themodel did
not generalize any further (Fig. S20). We found that validation error
rapidly plateaus and tends to increase again after 200 epochswhile the
training loss generally keeps decreasing, pointing to potential over-
fitting of the network beyond the 200 epoch point. Therefore, we
concluded that 200 epochs was the optimal hyperparameter under
our training conditions. Finally, based on this conclusion we trained
new models over the combined training and validation datasets for
200 epochs, and those models were used for feedback control.

For the linear forecasting model, we provide a detailed explana-
tion for our implementation in Supplementary Text. Briefly, because a
linear regression model is mathematically equivalent to a single-layer
perceptron with a linear activation function, we re-used the training
procedure described above with only minor modifications. For the
ODE-based model from Chait et al. 20, we implemented the same ODE
model as in that study, fit it to our data, and implemented the same
hybrid Kalman filter for state estimation. Details can be found in
Supplementary Text, andwe provide our implementationwith the rest
of our code (see Code Availability Statement).

Deep model predictive control
Once trained, themodelwas split into its encoder anddecoder parts to
perform feedback control. The encoder is only run once per input

timeseries, returning the 32-dimensional latent space representation
of the cell’s past. This representation is then concatenated with
potential future control strategies, and fed into the decoder to predict
the effect each candidate strategy will have on the cell’s future gene
expression level. Splitting the model allowed us to run the LSTM
encoder only once per cell, which is the slower part of ourmodel since
recurrent neural networks are less adapted to parallelization. The
model was not re-trained on-the-fly during control experiments.

The deep model predictive control algorithm works as follows:
The root mean square error between the output of the prediction
decoder and the control objective is computed, and a binary particle
swarmoptimizer with 40 particles iterates over it 25 times to refine the
control strategy (Fig. S9, Supplementary Text). The strategy that is
predicted to bring the cell’s fluorescence level closest, in terms of
RMSEtimeðnÞ, to the pre-determined control objective is selected. We
did not constrain strategy selection; any binary sequence of red or
green stimulations can be selected by the controller. The first time
point of the optogenetic stimulation strategy is applied, and 5minutes
later after the images are acquired and analyzed, the whole process is
repeated. See Supplementary Text for a more detailed problem
statement.

Although both image segmentation and the control algorithm are
fast when run separately on our microscope’s computer, constantly
switching between deep learning models on the same computer cre-
ates significant overhead that severely slows down the execution of
both processes. To circumvent this problem, we implemented a small
TCP/IP server that runs the control algorithmona separate laptop (Dell
XPS15 9560 with 32 GB DDR4 physicalmemory, 1 Intel i7-7700HQCPU
featuring 4 physical, 8 logical cores at 2.80GHz, and an nVidiaGeForce
GTX 1050 GPU featuring 4GB GDDR5, 640 CUDA cores at 1.34GHz)
instead of the microscope’s computer. After image analysis is run on
the microscope’s computer, the extracted data are sent to this server,
and the control strategies are sent back. In future implementations, it
is possible that this could be addressed by installing a second GPU on
the microscope’s computer.

For the deep model predictive control experiment where all cells
were assigned the same sinewave control objective, we controlled
2068 cells independently, where cells were randomly assigned to four
groups, under the 1, 2, 3, and 4-hour horizon algorithms. For all sub-
sequent experiments, the 2-hour horizon controller was used.

For the concentric sinewaves and the 2001: A Space Odyssey
experiments, pixels in the original movie were randomly shuffled and
each experiment completed a subset of the 10,000 pixels of the
shuffled movie. The movie was de-shuffled afterwards. For the con-
centric sinewaves movie, we ran 3 experiments of 3462, 4151, and
3478 single cells. The 1091 extra cells in the third experiment were
assigned to re-run the worst performing trajectories of the previous
two experiments, and the data from the re-run trajectory was used in
the movie over the original. For the 2001: A Space Odyssey movie, we
ran 3 experiments of 3456, 4143, and 3463 single cells, again using the
extra 1062 cells to re-run the worst-performing pixels.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets, processed experimental data, and trained models have
been deposited and are available in the Zenodo database under
accession code 8114649, https://zenodo.org/record/8114649.

Code availability
All code used to train neural networks, perform deepmodel predictive
control, analyze data, and plot the figures in this study is on GitLab,
https://gitlab.com/dunloplab/deepcellcontrol.
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