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Non-native ants are breaking down
biogeographic boundaries and
homogenizing community assemblages

Lucie Aulus-Giacosa 1 , Sébastien Ollier1,2 & Cleo Bertelsmeier 1

As geographic distance increases, species assemblages becomemore distinct,
defining global biogeographic realms with abrupt biogeographic boundaries.
Yet, it remains largely unknown to what extent these realms may change
because of human-mediated dispersal of species. Focusing on the distribu-
tions of 309 non-native ant species, we show that historical biogeographic
patterns have already broken down into tropical versus non-tropical regions.
Importantly, we demonstrate that these profound changes are not limited to
the distribution patterns of non-native ants but fundamentally alter biogeo-
graphic boundaries of all ant biodiversity (13,774 species). In total, 52% of ant
assemblages have become more similar, supporting a global trend of biotic
homogenization. Strikingly, this trend was strongest on islands and in the
tropics, which harbor some of the most vulnerable ecosystems. Overall, we
show that the pervasive anthropogenic impacts on biodiversity override bio-
geographic patterns resulting from millions of years of evolution, and dis-
proportionally affect particular regions.

Human mobility and trade have exploded in the Anthropocene, caus-
ing voluntary and accidental dispersal of thousands of species
worldwide1–4. Some of these species have been able to establish out-
side of their native range (hereafter referred to as non-native species)5.
The number of emergent non-native species6 and their range sizes are
predicted to increase even further7–9, changing the composition of
species assemblages worldwide. Historically, the spatial turnover pat-
terns in species assemblages (β diversity) were characterized by sev-
eral abrupt transitions, called “biogeographic boundaries”. One
famous example of a biogeographic boundary is the Wallace line
separating the Indomalayan and the Australasian realms. Biogeo-
graphic boundaries have been shaped by geography, past and present
environmental differences and evolutionary history10,11. However, the
reshuffling of biodiversity with human-mediated transport has the
potential to break these historical biogeographic boundaries11,12. Pre-
vious studies on terrestrial gastropods13, reptiles, and amphibians14

have focused on non-native species distributions in their native and
current ranges (i.e., before and after human-mediated dispersal) and
found a reduction in the number of distinct bioregions. Moreover,

recent research on vertebrates has shown that human-mediated
introductions and species extinctions alter biogeographic bound-
aries, with marked differences according to the taxonomic group15.
However, it remains unclear to what degree this occurs in insects,
which outnumber all other known animal species16, and if more subtle
changes in biogeographic boundaries may be revealed with more
extensive spatial coverage. More importantly, it is still an open ques-
tion if, and to what extent, non-native species dispersal affects the
biogeographic boundaries of biodiversity in general, including all
native species within a taxonomic group. Answering these questions is
crucial to understand to what extent the globalization of trade and
transport is leading to a globalization of species assemblages.

In parallel with these changes in biogeographic boundaries, the
global movement of species may either lead to the homogenization or
differentiation of species assemblages. Homogenizationmayhappen if
the same set of species is introduced in several regions, which become
increasingly similar in terms of species composition as a result. Alter-
natively, differentiation of assemblages17 could happen due to inva-
sions of different non-native species. Recently, biotic homogenization
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has become a major topic in global change ecology, with numerous
local and regional studies, including plants in China18,19, micro-
crustacean communities in Brazil20, and island birds21. Yet, most pre-
vious studies have a limited geographic and taxonomic focus20,22 and
almost exclusively investigate the biogeography of non-native species
assemblages13, despite the obvious importance of assessing con-
sequences for native species as well23. Importantly, these previous
studies have measured “homogenization” over the whole extent of a
study region, while in fact, there may be large regional differences,
with some areas becoming, on average, more similar to all other
regions, and some becoming increasingly dissimilar. For example, the
impact of non-native species is expected to be stronger on islands than
on the mainland24 because islands have lower native species
richness25,26. Additionally, islands harbor high numbers of evolutionary
unique, and geographically restricted species making them more vul-
nerable to human impacts24,27. More generally, it is unknown to what
extent different parts of the world are being homogenized or are dif-
ferentiating at different rates.

To address these questions, we used ants (Formicidae) as amodel
system. Ants dominate terrestrial ecosystems in terms of their abun-
dance (20 x 1015 ground-dwelling individuals) and biomass28, they
occupy various trophic positions29,30 and are present in nearly all ter-
restrial habitats in every continent31,32. Ants are key contributors to
many ecosystem functions, such as seed dispersal33, soil
bioturbation34, resource removal35, pest control, and help structure
most invertebrate communities through predation or competition36.
Ants are also prominent as non-native species,with at least 309 species
established outside of their native range, and 17 being listed as highly
problematic37. Many of these non-native ants displace native species,
altering community structure and impairing ecosystem functions38,
and cause estimated mean annual economic costs of approximately
398 million US$ globally38,39. Moreover, ants are a good model system
for studying unintentional species introductions. Unlike many other
taxa, no ant invasions are thought to have resulted from the deliberate
introduction of species as pets, ornamentals, or biocontrol agents40.

Here, our aim is to test to what extent non-native ant species
dispersal changes biogeographical boundaries. Specifically, we test the
hypothesis that a general trend toward biotic homogenization is
accompanied by large regional differences, with stronger homo-
genization on islands (due to their depauperate faunal composition
and greater vulnerability to invasion25) and tropical areas (since they
are climatically similar to the native ranges of most non-native ant
species). Ant species distributions have recently been mapped across
536 countries and sub-country spatial entities (hereafter
polygons)31,32,41 and global ant biodiversity (known and undiscovered)
has been recently mapped at an even finer grain42. Here, we separately
analyzed biogeographic patterns before and after human-mediated
dispersal for assemblages of non-native ant species (309 species) and
all ant species with known distribution records (13,774 species, here-
after referred to as “all ant species”) at the polygon level to explore the
reshaping of biogeographic boundaries and biotic homogenization
due to the global movement of non-native ant species. We conducted
the analyses at the global level, and then compared the patterns on the
mainland and islands separately (Fig. 1). We show that the pervasive
anthropogenic impacts on biodiversity can override historical bio-
geographic patterns, and that biotic homogenization can be hetero-
geneous in space and vary in intensity. Moreover, we identify tropical
islands as especially vulnerable to homogenization.

Results
Global biogeographic realms and boundaries
We found five biogeographic realms (hereafter realms) of ants before
human-mediated dispersal (Fig. 2), based on a hierarchical clustering
analysis on the pairwise compositional dissimilarity βsim

� �
of assem-

blages using the unweighted pair groupmethod with arithmetic mean

(UPGMA, see Methods and Fig. 1). These mostly correspond to Wal-
lace’s classical realms: Nearctic, Neotropical, Palearctic, Ethiopian, and
Oriental-Australian realms11 (Fig. 2c). The native ranges of 309 non-
native ant species are representative of this general biogeographic
pattern, since they also clustered into five realms (Fig. 2a), which
coincided to a large extent with the five major realms that were deli-
neated for all ant species (Fig. 2c), at the exception of the Nearctic
realm which is grouped with the Neotropical realm, and New Zealand
that is separate from the Oriental-Australian realm.

To test if the dispersal of non-native species has reshaped these
historical biogeographic patterns, we analyzed the changes in
compositional dissimilarity of non-native ant assemblages before
and after human-mediated dispersal (i.e., including both the spe-
cies’ native and non-native ranges). We found a reduction from five
to four realms for non-native ant species (Fig. 2b), with a large
pantropical cluster and three non-tropical clusters which corre-
spond to the Nearctic, Eastern Palearctic, and Western Palearctic
realms. These results concur with the findings for terrestrial
gastropods13 where human-mediated transport also resulted in the
formation of a single tropical cluster and a temperate one. This
reduction in delineated realms among species assemblages is, to
some extent, expected given the large-scale movement of non-
native species around the planet. However, only 2.2% of ant species
used in this study (13,774) have been introduced outside their native
range, and it is still unclear if this has the power to redefine bio-
geographic realms for all ant species. To test this, we analyzed the
composition of species assemblages containing all ants (13,774
species), including the non-native range of non-native ant species.
Surprisingly, we found that the global dispersal of a relatively small
number of non-native species resulted in a remarkable change in
biogeographic realms (Fig. 2d). After human-mediated dispersal,
there is a new pantropical realm mainly composed of the former
Ethiopian, Neotropical, Oriental, and Australian realms and four
other realms consisting of two new realms (India and Southern
Neotropics) and the former Nearctic and Palearctic realms. The
effect of non-native species dispersal was more pronounced in the
tropics, likely due to a higher number of non-native species both
originating from the tropical mainland (GLMM, p < 0.01) and having
been introduced within the tropics (GLMM, p < 0.0001, Supple-
mentary Fig. 2).

Greater biogeographic changes on islands
To test to what extent the changes in biogeographic patterns are dri-
ven by island versusmainland assemblages, we did separate clustering
analyses on the pairwise compositional dissimilarity of islands and
mainlands for all ant species (Fig. 3 and Supplementary Fig. 5 for non-
native ants). Before human-mediated dispersal, island assemblages
(Fig. 3c) fell within the same realms as the adjacent mainland assem-
blages (Fig. 3a). In total, there were seven realms, with slight differ-
ences between mainlands and islands. Notably, the Australian
mainland realm was divided into an Oriental-Oceanian realm and
southern Australian islands.

After human-mediated dispersal of non-native species, the num-
ber of biogeographic realms decreased for bothmainland and islands,
with respectively five and four remaining realms (Fig. 3b–d). Strikingly,
most ant assemblages on tropical islands form a single new realm
spanning thewhole circumferenceof the planet (Fig. 3d), similar to the
pattern in our global dataset (Fig. 2). However, when we analyzed
mainland assemblages separately from islands, the effect of non-native
species dispersal was much weaker. This suggests that non-native ant
species dispersal had a much greater impact on island biogeography
than on the mainland. A possible explanation is that the ratio of non-
native to native species is greater on islands (0.94 ± 1.73) than on
mainlands (0.05 ±0.14) (Wilcoxon test, p <0.0001, Supplemen-
tary Fig. 3).
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Homogenization of ant species assemblages
To measure the degree of biotic homogenization in ant assemblages
after human-mediated dispersal, we calculated a homogenization
index (hi,j) as the change in compositional dissimilarity βsim

� �
across all

pairwise comparisons of polygons and �hi� the average value of the
homogenization index by polygon (see Methods).

Globally 52% of pairs of ant assemblages have become more
similar to each other (i.e., have been homogenized), while 7% have
becomemore dissimilar (i.e., have differentiated).Moreover, we found
that the degree of homogenization differs among regions, with island
assemblages homogenizing more than mainland assemblages (61 and
48% of ant assemblages subjected to biotic homogenization, respec-
tively). To test if the average degree of assemblage homogenization
ð �hi�Þwas linked to the location on islands and/or within the tropics, we
used a non-parametric two-way ANOVA (see Methods). The most
homogenized assemblages were located on islands (p <0.01, islands:
�hi� = −0.057 ± 0.057, mainlands: �hi� = −0.023 ±0.021), with more
notable effects in the tropics (p <0.001, tropical: �hi� = −0.048± 0.042,
non-tropical: �hi� = −0.021 ± 0.031) (Fig. 4a). Strikingly, the most

homogenized assemblages also correspond to ant biodiversity hot-
spots such as the northernNeotropic, Ethiopian,Madagascan, Oriental
and Australian regions43.

To test if assemblages become more similar on average to other
assemblages because they have received many non-native species
(recipient regions), or because they have many species which have
established non-native populations elsewhere (donor regions), we
used negative binomial generalized linear mixed models (GLMMs, see
Methods). Tropical islands were greater recipient regions of non-
native ant species, contributing to their biotichomogenization (Fig. 4c,
Wilcoxon test, p <0.001). In contrast, at a global level the homo-
genization index of mainlands decreases because mainlands are
greater donor regions of non-native species (that often become
established on tropical islands), thereby becomingmore similar to the
assemblages of the recipient regions. Consequently, when considering
mainlands separately, there are no dramatic biogeographic changes
given that the non-native species they receive represent a smaller
fraction of all species than on islands (Supplementary Fig. 3) and the
non-native species they have donated to other assemblages mostly
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Fig. 2 | Global biogeographic patterns before and after human-mediated dis-
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establish on islands. This likely explains why we did not detect a large
pantropical realm when considering mainlands only (Fig. 3b), con-
trasting with the global pattern (Fig. 2d). These results emphasize that
the reshaping of biogeographic realms in the Anthropocene is not a
simple numbers game where the most species-poor regions are the
most affected. Indeed, the global homogenization process depends on
both exports (by donor regions) and imports (by recipient regions) of
non-native species.

Before human-mediated transport, species assemblages that are
geographically closer tend to sharemore similar species. To test if this
relationship has been affected by the increasing homogenization of
community assemblages, we measured the distance-decay (relation-
ship between geographical distance and number of shared species)
before and after human-mediated dispersal of non-native species (see
Methods). Our analysis confirmed that the increasing dissimilarity of
ant assemblages as a function of geographical distance weakened in
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b Average degree of homogenization (�hi�) by polygon. c Number of donated and
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*: 0.05 < p ≤0.1, **: 0.01 < p ≤0.05, ***: p ≤0.001). Box plots (a–c) represent data

from n = 536 polygons (68 non-tropical islands, 232 non-tropical mainlands, 84
tropical islands, and 152 tropical mainlands) where the lower bound of lower
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the Anthropocene (Mantel r-statistics, 0.68 before and 0.37 after
human-mediated dispersal of non-native species, p <0.001, Fig. 5).

Discussion
Our results show that the pervasive anthropogenic impacts on biodi-
versity redefine biogeographic patterns resulting from millions of
years of evolution and natural dispersal, and disproportionally affect
particular regions. Even though non-native species represent a small
fraction of all ant species, they have already caused global homo-
genization of ant species assemblages. This is in line with the trend
towards biotic homogenization found in other taxa and regions13,18–22.
However, our study shows that sucha profound impactnot only on the
biogeography of non-native species themselves13,14, but for all species
in a taxonomic group.

Moreover, we argue that it is crucial to move beyond the binary
assessment of “homogenization” or “no homogenization” in a given
study area, and to consider the complexities of species movements
around the planet in greater detail. Here, our findings go beyond
previous work and underline the importance of assessing regional
heterogeneity, since many areas became more similar to other
assemblages either because they were recipient or donor regions of
non-native species. Moreover, some areas did not homogenize com-
pared to other assemblages. Accounting for these aspects, we identi-
fied tropical regions and islands25 as especially vulnerable, with the
emergence of a new pantropical realm. This is particularly concerning
as almost two-thirds of biodiversity hotspots37 are located in tropical
regions and islands are well-known centers of endemism44,45. We did
not quantify the role of different environmental or socio-economic
drivers of the observed changes, but as non-native ant species mostly
originate fromandare introduced in tropical areas (GLMM,p < 0.0001,
Supplementary Fig. 2), climatic filtering is likely a main contributing
factor in non-native species establishment14. Additionally, trade—and
in particular the plant and fruit trade—is known to be an important
introduction pathway of non-native ants46 and could determine which
locations within a suitable climatic area (the tropics) are more likely to
be reached by non-native ants13,14.

Our study presents several limitations. First, many ant species are
not yet described42, and our knowledge on the delimitation of species’
native vs. non-native ranges is generally based on expert opinion or
historical records of first observation and not on population genetic
surveys. However, new records are continuously published in the
literature42,47–50, also contributing to our knowledge on the spread of
non-native ants37,51, and compiled in the Global Ant Biodiversity
Informatics (GABI)32 to provide the latest developments on ant

biogeography. Second, there are still many regions of the world are
under-sampled50,52. This may affect the calculation of the β diversity
index, which partially depends on species richness. As a consequence,
the degree of homogenization may be over-estimated in areas with
much undiscovered ant biodiversity42 because rare native species are
more likely to be under-sampled than non-native species. The addition
of new records as well as newly described species to particular regions
would lower our estimateddegree of homogenization. However, this is
unlikely to affect our main conclusion that homogenization is het-
erogeneous andmost pronouncedon islands, as tropical andmainland
regionsmostly act as donor regions and islandsmostly act as recipient
regions of non-native ant species. However, future studies on the
impact of ant invasions may analyze biogeographic patterns at finer
resolution53 to detect more precisely biogeographic transitions, as for
recent studies on bioregionalization in European ants54 and global
native ant biodiversity42. Additionally, in our study we considered
islands as entities that are smaller than a continent and surrounded by
water (comprising both single islands and island archipelagos). We
acknowledge that islands are largely under-exploredwith, for example,
more than 108 large islands globally (with an area >200 km2) that have
received no sampling effort50. This under-sampling may have affected
our estimate of homogenization on islands, although we believe that
the general pattern of homogenization along the tropical belt is likely
to be robust. The release of a new database of global ant biodiversity
on islands50 is an exciting perspective for future research to investigate
differences among different islands, linking the degree of homo-
genization to the characteristics of the islands (e.g., size, isolation,
sovereign state) for example. More detailed species distribution data
may also enable future studies to analyze the relative importance of
potential drivers of changes in biogeographic patterns, such as climate
or trade patterns.

Moreover, futurework couldassess changes in phylogenetic54 and
functional β diversity once such data becomes available, giving com-
plementary results about the potential evolutionary and ecosystem
consequences of non-native species introductions. Finally, ant
assemblages might be homogenized due to local extinction of ende-
mic native species in addition to the establishment of widespread non-
native species15,17,24. In our study, we did not assess the effect of
extinctions as data on ant population declines are largely lacking (but
see ref. 55), although their role is extremely intriguing.

In conclusion, ongoing globalization contributes to the spread
of non-native species, with particularly important consequences
for island assemblages. Species introductions are predicted to accel-
erate in the coming decades6,56. Therefore, global biodiversity

Fig. 5 | Global distance-decay before and after human-mediated dispersal
across all ant assemblages (13,774 species). Distance-decay represents the rela-
tionship between compositional similarities (1−βsim) of ant assemblages (for all ant
species) and geographical distances between the centroids of polygons before

(a) and after (b) the human-mediated dispersal of 309 non-native ant species.
Compositional similarities are fitted against distancewith nlsmodels. The R-square
of the models and distance-decay rate per 1000 km are given above the graphs.
Source data are provided as a Source data file.
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homogenization is likely to occur with unknown evolutionary, ecolo-
gical, and economic consequences. As non-native species are among
the greatest drivers of biodiversity loss globally23,57–59, understanding
the spatial variation and intensity of biotic homogenization more
precisely is key to informing conservation measures60 to preserve the
biotic uniqueness of regions globally.

Methods
Distributional data and pre-processing
Species native ranges were sourced from the webmaps displayed on
antmaps.org which is linked to the Global Ant Biodiversity Informatics
(GABI) project31,32; the details of ant species distribution records are
fully described in ref. 32. For non-native species, we used the native
and non-native ranges of 309 non-native ant species that have been
established outdoors, excluding non-native species that are only
introduced indoors or intercepted at border controls, described in
ref. 37. Our study did not require ethical approval.

From this dataset, we excluded species with unknown distribu-
tions as well as records which are listed as “dubious” or “needing
verification”. Species distributions were formatted as presence/
absence data at the geographical scale of the sub-country political
regions (referred to as “bentities” in GABI, hereafter polygons), and
absences were inferred as the lack of presence data. The polygons,
described in ref. 32, reflect human political delineations (e.g., country
level; state), geology (e.g., mainlands, islands), and scientific knowl-
edge (e.g., specific split of political entities). Out of a total of 546
polygons, ant species are found in 536.

Our final dataset comprised the distribution of 13,774 ant species
with valid species namebasedonAntCat.org and additional non-native
ranges of 309 non-native ant species. The native records of non-native
ant species were considered to correspond to the species’ ranges
before human-mediated dispersal, while entire distribution including
native andnon-native ranges correspond to the species’ current ranges
after human-mediated dispersal.

We analyzed the distributions of 309 non-native ant species,
including information on their native ranges (i.e., before human-
mediated dispersal, 484 polygons, Supplementary Fig. 1a) and current
ranges (i.e., after human-mediated dispersal, 512 polygons, Supple-
mentary Fig. 1b). We additionally calculated the ratio of non-native ant
species to total ant species richness by polygon (Supplemen-
tary Fig. 2).

Geographical focus: global, mainlands, and islands
Among the 536 polygons where ant species are recorded, 384 were
located on mainlands and 152 on islands. For this analysis, we defined
an island as an area surrounded by water smaller than the smallest
continent (with Greenland being therefore the biggest islands). To
classify polygons as mainlands and islands, we used recent works on
ant species distributions50 and on invasive species61 on islands (Sup-
plementary Fig. 4). We did not considered Newfoundland as an island
as most of its surface was comprised on mainlands. The number of
native ant species varied from 0 to 962 on mainlands (mean ± sd =
175.8 ± 162.1) and 0 to 852 on islands (mean± sd = 78.6 ± 146.2). The
number of non-native ant species varied from 0 to 72 on mainlands
(mean± sd = 6.3 ± 7.7) and 0 to 59 on islands (mean ± sd = 14.5 ± 14.2).

Identification of biogeographic realms based on compositional
dissimilarity
We calculated pairwise matrices of compositional dissimilarity among
polygons using the β diversity index (βsim, vegan package62, v2.5-7).
This metric is particularly suited for biogeographic studies because it
measures species turnover by focusing on compositional differences
more than differences in species richness (“narrow sense” turnover)63.
The βsim indexmeasures species turnover between two spatial entities
based on presence/absence data, and ranges from0 – total similarity –

to 1 – total dissimilarity (1).

βsim = 1� a
min b,cð Þ+ a ð1Þ

Where a is the number of shared species between two geographic
units, and b and c are the number of unique species in each of the two
geographic units respectively.

To identify biogeographic patterns, we performed a clustering
analysis of the compositional dissimilarity matrices using an
unweighted pair group method with arithmetic mean (UPGMA)
(hclust64, stats package65, v4.2.2)13,53. We applied the method to two
distinct datasets: non-native ant species (309 species) and all ant
species (13,774 species), both decomposed into species distributions
before (native ranges) and after human-mediated dispersal (native +
non-native ranges) of non-native species. To determine the number of
clusters, we tested the stability of trees using a simple permutation test
run on 999 iterations (rtest.hclust function based on ref. 66). Sig-
nificant clustering was indicated by a p value of an inferior node of less
than 0.05. The reason for using this method is that it can identify the
dissimilarity level below which all clusters can be considered non-
random. To assess if our results are robust and do not change with the
choice of the clustering methods, we also explored different fre-
quently used clustering methodologies which revealed the same bio-
geographic patterns (elbow method10, average silhouette67, and
Kelly–Gardner–Sutcliffe penalty68). We replicated the approach at the
global level and for mainlands and islands separately.

The maps of non-native ant species compositional dissimilarity
are displayed at the global level before and after the human-mediated
dispersal of non-native species (Fig. 2 and Supplementary Fig. 5 for
mainlands and islands). Themaps of compositional dissimilarities of all
ant species are displayed before and after the human-mediated dis-
persal of non-native species at all geographical foci (global: Fig. 2,
mainlands and islands: Fig. 3).

To explore to what extent the size of species pools per polygon
affects the delineation of biogeographic realms, we performed a sen-
sitivity analysis. We performed separate cluster analyses to identify
realmbasedon randomselections of ant species (300, 400, 500, 1000,
2000, 5000, and 10,000 species among all ant species) to determine
the minimum species pool size necessary to detect historical biogeo-
graphical pattern. Additionally, we tested if these realms can be
detected using the native ranges of non-native ants (Supplementary
Methods and Supplementary Fig. 3). This analysis revealed that their
native ranges are representative of ant biogeography, as they corre-
spond to the historical biogeographic realms for all ant species. This
would not be the case for a random selection of 300 ant species, for
which the biogeographic pattern would bemuchmore variable. This is
likely because non-native species have larger native ranges than other
ant species (Supplementary Fig. 3).

Patterns of homogenization/differentiation after human-
mediated dispersal
To calculate the extent that a pair of polygons has been homogenized
or has differentiated due to human-mediated dispersal of non-native
ant species, we calculated a homogenization index19 (hi,j), where
hi,j = βAHMDi,j – βBHMD i,j, with βAHMDi,j representing the βsim index after
human-mediated dispersal and βBHMDi,j the βsim index before human-
mediateddispersal betweenpolygons i and j. This indexwas calculated
for all ant species at three geographical foci (global, mainlands and
islands), for a total of three homogenization matrices. For each pair-
wise comparison, if hi,j > 0 (βAHMDi,j > βBHMD i,j), the pair of polygons are
subject to biotic differentiation (as the βsim index calculates how dis-
similar two entities are) and if hi,j <0, there is biotic homogenization.
We then calculated the proportion of assemblages that have been
homogenized (hi,j < 0) or differentiated (hi,j >0).
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To assess which polygons are more prone to biotic homogeniza-
tion, we calculated the average value of the homogenization index
ð�hi�,ð2ÞÞ for each polygon across all pairwise comparisons (Fig. 4a). To
test if �hi� was linked to their location on islands and/or within the
tropics, we used the Scheirer–Ray–Hare test (rcompanion package69,
v4.2.26)which is the equivalent of a non-parametric two-wayANOVA. A
tropical versus non-tropical status was attributed to each polygon
according to the location of each polygon centroid (sf package70,71,
v1.0-10). Polygons for which the centroid was located between the two
latitudinal parallels 23° far from the equator were considered as tro-
pical. We then mapped the average global homogenization �hi� for all
polygons (Fig. 4b).

�hi� =
XN

j = 1

hi,j=N ð2Þ

where N is the number of polygons (global: 536, islands: 152,
mainlands: 384).

We tested if the number of non-native species exported from
donor regions (i.e., the species’ native ranges), and the number of non-
native species imported by recipient regions (i.e., the species’ non-
native range) was linked to status as islands or mainlands and location
within tropical or non-tropical areas, using aWilcoxon signed-rank test
with Bonferroni correction (Fig. 4c). To account for geographic non-
independence of polygons, we then used separate GLMMs for donor
and recipient regions in which we included “region” (i.e., 23 sub-
continental regions as classified in the GABI database) as a random-
effect term. We fitted the GLMMs using the Automatic Differentiation
Model Builder GLMMADMB R package72 (v0.8.3.3) which provides a
framework tomodel over-dispersed data and zero inflation27. For each
of the GLMMs, we tested both a Poisson and a negative binomial dis-
tribution, and in all cases, the latter produced a better fit based on AIC.
The best model for the number of imported species per recipient
region did not include the interactions between locations on islands
and/or within the tropics. However, the best model for the number of
exported species per donor region included the interaction (p <0.05).

Distance-decay relationship before and after human-mediated
dispersal of non-native species
Areas that are geographically closer tended to have more similar
species assemblages. We tested if the distance-decay relationship
changed after human-mediated transport using non-linear least
squares models of compositional similarity (1-βsim) as a function of
distance between polygon centroids (nls73, stats package65, v4.2.2) for
all ant species (Fig. 5) at the global scale. We then used the Mantel
statistic to test if the relationship between species assemblage simi-
larity and geographic distance changed after human-mediated dis-
persal (mantel test, vegan package62, v2.5-7).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data that support this study were sourced from the webmaps
displayed on antmaps.org which is linked to the Global Ant Biodi-
versity Informatics (GABI) database31,32 and ref. 37. All processed data
generated and analyzed in this study havebeendeposited in a Figshare
repository accessible at https://doi.org/10.6084/m9.figshare.
22188208.v174. Source data are provided with this paper.

Code availability
The full reproducible code is available at https://doi.org/10.6084/m9.
figshare.22188208.v174. Data processing and statistical analyses were
undertaken in R (v.4.1.0; R Core Team, 2021) and RStudio (Version

2022.12.0 + 353). Graphics and maps were produced using the
ggplot275 (v.3.4.1) and sf70,71 (v1.0-10) packages.
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