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A persistent prefrontal reference frame
across time and task rules

HannahMuysers 1,2, Hung-Ling Chen1, Johannes Hahn3, Shani Folschweiller1,2,4,
Torfi Sigurdsson 3, Jonas-Frederic Sauer 1,5 & Marlene Bartos 1,5

Behavior can be remarkably consistent, even over extended time periods, yet
whether this is reflected in stable or ‘drifting’ neuronal responses to task fea-
tures remains controversial. Here, we find a persistently active ensemble of
neurons in themedial prefrontal cortex (mPFC) ofmice that reliablymaintains
trajectory-specific tuning over several weeks while performing an olfaction-
guided spatial memory task. This task-specific reference frame is stabilized
during learning, upon which repeatedly active neurons show little repre-
sentational drift and maintain their trajectory-specific tuning across long
pauses in task exposure and across repeated changes in cue-target location
pairings. These data thus suggest a ‘core ensemble’ of prefrontal neurons
forming a reference frame of task-relevant space for the performance of
consistent behavior over extended periods of time.

The question of how temporally stable behavior is mediated by brain
activity remains enigmatic. Two opposing views are supported by
experimentalfindings: One framework emphasizes gradually changing
neuronal representations in response to identical stimuli (‘repre-
sentational drift’). Such representational drift has been observed dur-
ing perceptual tasks in the sensory cortex1–3, and during navigational
tasks in the associational cortex4,5 and the hippocampal area CA16. The
finding of representational drift raises the question how changing
neuronal tuning might produce stable behavioral performance. Sev-
eral solutions to this problem have been proposed, including stable
readout from non-randomly drifting population codes5, consistent
population codes residing in high-dimensional manifolds rather than
in the activity of individual neurons7, and ‘self-correcting’ assembly
codes that reassign newmembers8. A drifting coding regime is, thus, in
principle compatiblewith stableperception and cognitive behavior. As
an alternative to drift, a fixed association between sensory inputs and
neuronal responses leading to stable activity of a set of neurons
encoding the behavioral output has been observed. Such temporally
stable neuronal responses to recurrent stimuli have been described in
the sensory cortex9,10, in the dentate gyrus of the hippocampus6, and

during recall of fear-relatedmemory traces fromneocortical long-term
stores11 (‘engram’).

The prelimbic region of the mPFC is necessary to support the
execution of spatial working memory and decision-making12–14. While
several studies have investigated multiple prefrontal subregions and
their responses during memory and decision-making tasks within
single experimental days12,15–19, the dynamics of mPFC activity over
extended time periods have remained unexplored. It is thus unclear
whether prefrontal activities follow a stable or a dynamic, drifting
encoding regime on the timescale of weeks. To address this open
question, we monitored the activity of prefrontal neurons in the pre-
limbic and anterior cingulate area over several weeks while mice per-
formed an olfaction-guided two-choice task probing decision-making
and short-term memory.

Results
Task-related activity remains stable over weeks
We performed 1-photon calcium imaging in Thy1-GCaMP6f-mice20,
which express GCaMP6f predominantly in cortical layer 5 pyramidal
neurons20 (Fig. 1a, Supplementary Fig. 1). This transgenic approach
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enabled us to reliably image the same set of deep layer neurons across
prolonged periods of timewithout cytotoxicity due to viral expression
(Supplementary Movie 1). Retrograde tracing revealed that GCaMP6f
was sparsely expressed in both intratelencephalic and pyramidal tract
neurons, indicating that both main classes of layer 5 projection neu-
rons were present in the recorded population (Supplementary
Fig. 2a, b). In the task, the animals learned to associate two odors
(vanilla or coconut) delivered in the central stem of a figure M-maze
with reward sites located at the end of the left and right side arm,

respectively (Fig. 1a). Lens implantation in the mPFC resulted in
moderate levels of gliosis and did not affect learning of the behavioral
task (Supplementary Fig. 2c, d). Moreover, electrophysiological
recordings performed during the task revealed comparable activity
profiles of mPFC neurons, suggesting that lens implantation left the
microcircuit properties of the mPFC intact (Supplementary Fig. 2e, f).

Upon learning, the animals displayed stable behavioral perfor-
mance, which persisted over several weeks (Fig. 1b). Recording from
the same set of prefrontal neurons, thus, provides the opportunity to

Fig. 1 | Active prefrontal ensembles stably encode choice over time. a Top:
schematic of behavioral task. Mice learn to associate two odors (s: sampling) with
reward sites at left and right arms (r: reward). Bottom: schematic of the GRIN lens
implantation for 1-photon calcium imaging in the mPFC and longitudinal registra-
tionof recordedneurons.bTop: stable behavioral performance (F = 0.93,p =0.527,
repeated measures ANOVA). Arrows indicate imaging days. Bottom: proportion of
active neurons during two subsequent days (left) and number of neurons active on
the first vs. all imaging days (right, t = 3.85, p =0.006, 2-sided paired t-test). c Top:
Stable mean calcium activity in the center arm over days (averaged for left and
right, sorted: day 1, Spearman’s r last vs. first: 0.635, p = 2*10−16). Bottom: Stable
preference for activity during left or right trials (side index, Spearman’s r last vs.

first: 0.813, p = 7*10−32, n = 133 neurons). 2-sided correlation tests. d Decoding of
behavioral choice from center arm calcium activity. The models were trained on
day 1. Decoding remained significant versus shuffled data (F = 177.17, p = 3*10−6)
with no decoding accuracy-time interaction effect (F = 1.38, p =0.276, 2-way repe-
ated measures ANOVA). Purple: data, gray: shuffled. e Within-day decoding accu-
racy of single neurons remains correlated over days (sorted for day 1, Spearman’s r
last vs. first: 0.573, p = 6*10−13, n = 133 neurons). 2-sided correlation tests. Boxes
show median and upper/lower quartiles. Circles are individual mice (b) or cells
(c, e). Lines indicate mean ± sem, thin lines show individual mice (n = 8 for all
comparisons). Source data are provided as a Source Data file.
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assess the dynamics of population activity during repeated execution
of the learned task. Longitudinal registration revealed that 82.9 ± 0.5%
of layer 5 neurons could be registered fromoneday to thenext (Fig. 1b,
Supplementary Fig. 3). Registration across all days showed that
47.8 ± 2.5% of neurons were detected as active cells on each day
throughout the ~3 week recording period (63 ± 16 neurons per mouse,
8mice, 13 recordingdaysover 24days in total, Fig. 1b), indicating that a
subset of neurons repeatedly activates during task exposure. Across
days, repeatedly active neurons retained stable activity levels as
quantified from calcium transients during center arm travel (Fig. 1c,
upper; see Supplementary Fig. 4 for a quantification of activities in the
side arm and for different activity threshold values, which gave similar
results). We observed that many prefrontal neurons differed in their
activity during left and right trials. Thiswas quantifiedwith a side index
ranging from −1 (only active during left trials) to 1 (only active during
right trials). The side index of individual neurons remained similar over
recording days (Fig. 1c, lower). These results prompted us to test
whether behavioral choice can be decoded from the same set of
neurons over days. We trained models on calcium activity on the first
day and decoded the target locations for eachmouse on the following
days. The decoder allowed the prediction of trial outcome up to the
last tested daywith high accuracy, irrespective of the chosen decoding
model (Fig. 1d, Supplementary Fig. 5e). Similar high decoding quality
was obtained using calcium transients or the rising phase of transients
instead of mean calcium signals, or when the decoding analysis was
restricted to time points in the central arm before the spatial trajec-
tories deviated for left and right turns, presumably corresponding to
the decision point of the animal21 (Supplementary Fig. 5h). Moreover,
similar decoding results were obtainedwhen themodel was trained on
the last recording day to predict trial outcome on previous days
(Supplementary Fig. 5d). While neurons with large side index were
most effective at decoding trial identity, only ~10 randomly selected
cells were sufficient to decode trial outcome at ~90% accuracy within a
day and ~15 neurons sufficed to decode trial outcome at ~80% accuracy
across the full 24 days (Supplementary Fig. 6c, e). In addition, we
quantified the decoding of trial outcomes on a day-by-day basis using
individual neurons of the repeatedly active ensemble. This analysis
revealed that the decoding performance of task-active neurons was
highly correlatedover time (i.e., a neuronwith largedecoding accuracy
on day 1 also showed large accuracy on day 24, Fig. 1e). There was no
correlation between the change in single-cell decoding accuracy over
days and the position of peak activity of the neurons in the arena
(Supplementary Fig. 6f). Thesedata jointly indicate that the same set of
prefrontal layer 5 neurons maintains similar choice-specific informa-
tion over weeks.

Trajectory-specific spatial tuning is preserved over time
Prefrontal neurons show spatially tuned firing during cognitive
tasks14,16–18,22. Whether spatial tuning remains consistent over weeks of
task execution, however, has not yet been assessed. In light of the
stable side indices of prefrontal neurons across days, we thus asked
whether a consistent trajectory-specific spatial map might underlie
trial-specific activity patterns. In agreement with previous
reports14,16–18,22, the spatially binned activity of task-active layer 5 neu-
rons tiled the entire extent of the arena (Fig. 2a, b, for electro-
physiological control data see Supplementary Fig. 2g). Consistent with
the side preference of some neurons, spatial tuning functions were
more strongly correlated between trajectories towards the same as
compared to the opposite side (Fig. 2b, c). We therefore determined
trajectory-specific tuning functions of cells for left and right trajec-
tories and compared them over multiple days. Spatial information
content remained correlated over recording days (Fig. 2d), suggesting
that neurons retain their individual spatial tuning strength over weeks.
Moreover, daily active neurons maintained significantly correlated
trajectory-specific tuning functions throughout days 1–24 (Fig. 2e, f,

see Supplementary Fig. 7 for responses during individual runs). Cor-
relation to thefirst day decayed at a rate of ~0.006/day, consistentwith
a slow representational drift (Fig. 2g). Compared to surrogate data, in
which representational drift was simulated by a cumulative shift of
spatial tuning functions over days, strong correlations to day 1 per-
sisted over a large parameter space (Supplementary Fig. 7b). Addi-
tional analysis of population vectors and the geometrical structure of
the population activity3 confirmed that decorrelation among the
responses of individual neurons emerged only slowly over time (Sup-
plementary Fig. 7d, e). Despite the observed mild drift, trajectory-
specific spatial correlation to thefirst day remained, on average, at ~0.5
on day 24, markedly higher than shuffled control data (Fig. 2g, Sup-
plementary Fig. 7b, c).We therefore tested whether the position of the
animal on the track can be predicted from calcium activity of the first
day. Using models trained on day 1, the animals’ position during out-
ward travel could be reliably decoded up to the last tested day (Fig. 2h,
see Supplementary Fig. 8 for analyses using transients or rising phases
as activity measures, for different decoding models, and for decoding
based onmodels trained on the last instead of the first recording day).
Neurons with high spatial information contributed most to decoding
accuracy (Supplementary Fig. 8b). Thus, our data shows a core
ensemble of task-related layer 5 neurons with stable trajectory-specific
tuning over weeks. Taken together, our data point to a temporally
stable representation of task space.

Representation of task space is most strongly influenced by
linearized positions
To identify how different behavioral parameters influence the repre-
sentation of task space, we used a generalized linear model14 (GLM) to
disentangle the contribution of (linearized) position, speed, and goal
location to calcium activity over the entire trial duration.

On the first imaging day, the full model containing all three pre-
dictors explained 13.2 ± 1.2% of the variance of the calcium signal
(Fig. 3a). To identify the contribution of the individual variables, we fit
reduced models composed of only a single predictor to the data. This
analysis revealed that position accounted for most of the variance,
with lower contributions from speed andgoal location (Fig. 3a, left). To
corroborate this finding, we performed the inverse analysis by ran-
domly time-shifting one predictor from the full model and quantified
the reduction in explained variance in those reduced models. Con-
sistently, models with shifted position showed the largest decrease in
explained variance, followedby speed andgoal location (Fig. 3a, right).
Moreover, 67.6 ± 3.8% of the cells were significantly influenced by the
predictor position, whereas only 41.6 ± 5.8% of the neurons were sig-
nificantly influenced by speed and 26.2 ± 2.9 by goal location (Fig. 3b,
left). In total, 19.5 ± 3.3% of cells were not significantly influenced by
any predictor and 9.7 ± 2.3% by all three parameters. Most of the cells
were either influenced by one or two of the predictors with 35.3 ± 2.4%
and 35.4 ± 2.7%, respectively (Fig. 3b, right). Thus, linearized position
carries the most explanatory power for neuronal activity and most
cells encode for one or two of the investigated variables.

We next asked whether the dominance of position in terms of
explanatory power for a cell’s calcium signal is preserved across days.
Full models, single predictor models or models with one behavioral
variable shifted in time showed a similar percentage of explained
variance across days in our ensemble of repeatedly active neurons
(Fig. 3c), suggesting stable encoding of the behavioral variables across
time in the imaged cell population. The stable representation of task
space in principal cells, thus, represents a combination of all investi-
gated variables including position, speed, and goal location, with the
largest contribution of linearized position.

Stable representation of task space emerges during learning
To test whether the emergence of a stable representation of task space
requires learning of the task rules, we imaged prefrontal neurons in a
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separate cohort ofmice during initial task exposure before the animals
had learned the rule (before learning group, average taskperformance:
47 ± 2%, as opposed to learnedwith ≥70% correct, Fig. 4a, b). This stage
in the learning process was chosen because the animals traversed the
maze in consistent outward trajectories, allowing us to construct
directional spatial tuning functions and to compare their temporal
stability with the learned state (Supplementary Fig. 9). Average spatial
information content and the proportion of repeatedly active neurons
was comparable between both conditions (Supplementary Fig. 9a, b).
However, when data from the first day of each condition were con-
sidered, the consistency of trajectory-specific maps between odd and
even runs was significantly lower in the before learning compared to
the learned group (Fig. 4c). While trajectories of individual runs were
more variable before learning, larger spatial correlation in the learned
group persisted when we compared tuning functions for pairs of
individual trials with comparable difference in trial duration (Supple-
mentary Fig. 9c, e, g). Moreover, correlation of the directional spatial
tuning across four days was lower in the before learning compared to

the learned group (Fig. 4d). In line with this observation, spatial errors
of decoders trained on the first day and tested on data from the fourth
day were significantly larger in the before learning group (Fig. 4e).
These data jointly suggest that the prefrontal representation of task
space stabilizes during task learning.

Time rather than experience determines drift in representation
of task space
We next investigated whether the small changes in trajectory-specific
tuning observed after learning depend on repeated exposure to the
task (i.e., experience) or on the progression of time. In task-proficient
mice, we compared the first and last recording of a sequence of 7
sessions of daily task exposure (continuous) with pairs of recording
days separated by a 1-week pause in task execution (pause, Fig. 5a).
During the pause, mice were kept in the holding facility without
exposure to the experimental room or the task arena. There was no
difference in the correlation of trajectory-specific tuning in continuous
compared to pause pairs (Fig. 5b, c). Consistently, models trained on

Fig. 2 | Persistent trajectory-specific tuning over weeks. a Example of x/y-coor-
dinates, linearized position, and normalized calcium activity (sorted by location of
peak activity during left trajectories). s: sampling; r: reward. b Spatial tuning
functions during odd and even left and right runs within the first recording day
(n = 1109 neurons). c Top: Spatial correlation of odd vs. even runs (consistency) is
higher within trials of the same vs. opposite direction (t = 18.21, p = 3*10−7). Bottom:
Spatial information (SI) is comparable during left and right trials (t = −0.28,
p =0.791). Two-sided paired t-tests. d Spatial information (SI) remains consistent
across days during left (top, r =0.654, p = 10−62) and right runs (bottom, r =0.648,
p = 10−61, Spearman’s correlation coefficients day 24 vs. day 1, n = 502 neurons).
2-sided correlation tests. e Examples of spatially binned activities during five
superimposed individual left runs on day 1 and day 24. f Spatial tuning functions
sorted for the peak location on day 1 (for left and right trajectories, respectively)
show large spatial stability across days. g Top: Average trajectory-specific spatial

correlation to day 1. Correlations decayed over time (F = 16.48, p = 10−6 for the
correlation-time interaction) but remained significant vs. shuffled data to the last
day (t = 11.29 to 18.42, p = 10−5 to 3*10−7, 2-way repeated measures ANOVA followed
by paired t-tests with Šidák correction). Bottom: Distribution of correlation coef-
ficients of individual cells. h Decoding of the animals’ linearized position. Left:
Example of the prediction on day 24 using a model trained on day 1 (blue). Right:
Predictions decayed over time (F = 3.48, p = 6*10−4 for the decoding error-time
interaction) but remained significant vs. shuffled data (gray, t = −7.32 to −13.00,
p = 2*10−4 to6*10−6, 2-way repeatedmeasuresANOVA followedbypaired t-testswith
Šidák correction). Boxes show median and upper/lower quartiles. Circles are indi-
vidual mice (c) or cells (d). Lines in (g) and (h) show mean± sem, thin lines are
individual mice. Left and right trajectories were correlated separately and pooled
subsequently (n = 8 for all comparisons). Source data are provided as a Source
Data file.
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the first day of each pair could predict both position and trial outcome
on the second day equally well in continuous and pause blocks
(Fig. 5d). These results suggest that elapsed time between sessions
rather than experience underlies the observed slow representational
drift in the mPFC.

Representation of task space generalizes across contexts
To test whether the representation of task space differentiates between
task arenas, we assessed the stability of trajectory-specific tuning of
prefrontal cells in task-proficient mice exposed to a visually modified
(novel) arena (Fig. 5e). The novel arena differed from the familiar one in
vertical and horizontal stripes and dots outlining the arena. Trajectory-
specific tuning stability was comparable between familiar-familiar and
familiar-novel pairs of subsequent recording days (Fig. 5f, g). Con-
currently, models trained on data obtained in the familiar arena could
predict the animals’ spatial position from calcium activity of the same
set of neurons in the novel arena, albeit with mildly larger spatial
decoding error (Fig. 5h, left). Finally, trial outcome could be predicted
equallywell in both familiar andnovel arenas basedondecoders trained
in the familiar context (Fig. 5h, right). These results suggest that the
representation of task space generalizes across contexts.

Representation of task space remains consistent across changes
in the reward rule
Sinceour data suggest substantial stability of neuronal responses upon
learning, we asked how newly learned cue-reward associations would
be incorporated into that stable coding regime. We inverted the
association of left and right reward sites with the two odors in a subset
ofmice (new rule), and, upon learningof thenew rule, trained the same
mice back again on the initial reward rule (restored rule, 6 mice,
Fig. 6a). Despite an observable drift, trajectory-specific tuning repre-
senting the learned new rule retained high similarity to the original
state, with considerable correlation to the original tuning pattern
surviving until the mice had learned the restored rule (up to 68 days
after learning of the original rule; Fig. 6b, c, Supplementary Fig. 10b). In
line with this data, position during left and right trajectories could be
decoded during new and restored states using a model trained on the
original rule data (Fig. 6d). Moreover, the neurons’ side index
remained correlated to the original rule during both new and restored
conditions (Supplementary Fig. 10c, d). Consistently, a model trained
on data upon learning of the original rule allowed the decoding of trial
outcome during outward travel in both new and restored states
(Fig. 6e). These data jointly indicate that the tuning of mPFC neurons
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p = 4*10−5, speed vs goal: t = 5.82, p = 6*10−4). Right: Decrease in explained variance
with a single predictor shifted in time (F = 87.99, p = 10−8; position vs speed:
t = −9.39, p = 3*10−5, position vs goal: t = 9.62 p = 3*10−5, speed vs goal: t = 3.67,
p =0.008). b Most cells encode for position (green; speed: purple; goal: blue) and
for one or two variables in total. Left: Percentage of cells significantlymodulated by
the different predictors (F = 38.34, p = 2*10−6; position vs speed: t = −7.08, p = 2*10−4,
position vs goal: t = 8.70, p = 5*10−5, speed vs goal: t = 2.71, p =0.030). Right: Num-
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p =0.002, 0 vs 2: t = −2.74, p =0.029, 0 vs 3: t = 1.84, p =0.108, 1 vs 2: t = −0.02,
p = 0.984, 1 vs 3: t = 5.83, p = 6*10−4, 2 vs 3: t = 16.67, p = 7*10−7). cThe contribution of
predictors is stable across days. There is a main effect of model type (full model:

black; position: green, speed: purple; goal: blue), with position outperforming the
other single predictor models (left, F = 210.13, p = 8*10−16; full vs position: t = 6.62,
p = 3*10−4, full vs speed: t = 15.93, p = 9*10−7, full vs goal: t = 14.64,p = 2*10−6, position
vs speed: t = −15.32, p = 10−6, position vs goal: t = 15.43, p = 1*10−6, speed vs goal:
t = 6.78, p = 3*10−4) and the largest decrease in explained variance for the position-
shifted model (right, F = 245.46, p = 10−11; position vs speed: t = −12.29, p = 10−6,
position vs goal: t = 17.28, p = 5*10−7, speed vs goal: t = 3.32, p =0.013). In both
analyses, ANOVA identified no effect of time (F = 1.49, p =0.146; F = 1.12, p =0.358)
nor model*time interaction (F = 1.13, p =0.287; F = 0.96, p =0.526), suggesting
stable contributionof the individual predictorsover time. Thick lines indicatemean
across animals, thin lines are individual mice. One-way repeated measures ANOVA
(a) and (b), two-way repeated measures ANOVA (c), followed by paired t-tests with
Šidák correction. Boxplots show median and lower/upper quartile of data, circles
show individual mice (n = 8 for all comparisons). Source data are provided as a
Source Data file.
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persists across alterations in the cue-outcome contingency, reminis-
cent of a slowly drifting representation of task space.

Discussion
Previous work showed consistent spatial tuning of prefrontal neurons
during spontaneous behavior within one experimental session23, dur-
ing subsequent trials of tasks under the same rule15,24,25, and during
spatial reversal learning24. Here, we extend upon theseobservations by
reporting a stable representational structure of prefrontal tuning to
the trajectory in the maze (i.e., space) up to several weeks (see Sup-
plementary Fig. 11 for a summary of the findings). Our data imply that
prefrontal neurons show only weak representational drift, even under
conditions of spatial reward rule inversions. Decoding analyses
moreover suggest that downstream reader networks might infer
behavioral choice from the activity of a fewprefrontal neurons that are
part of a temporally stable core ensemble, which we identified here.
The core ensemble might provide an efficient way to drive learned,
stereotyped motor responses in a task, and might thus contribute to
consistent skilled behavior over weeks. Our results are reminiscent of
stable responses in orbitofrontal cortex during the execution of a non-
spatial go/no-go task26 but stay in contrast to recordings from the
posterior parietal cortex, another associational neocortical area,where
prominent representational drift has been observed in a spatial short-
term memory task4.

In line with a recent theoretical publication suggesting that
reference frames might form the basis of location-feature mapping
underlying learning and memory formation in neocortical networks27,

we propose that mPFC neurons generate a reference frame of task-
relevant space, which, once formed during learning, provides a stable
scaffold of task space over the course of weeks. In this task space,
trajectory-specific positional coding seems to be abundantly and sta-
bly encoded. It remains to be investigated in future work whether the
stable reference frame generalizes to non-spatial tasks and extra-
dimensional rule shifts.

Although 1-photon imaging in transgenic Thy1-GCaMP6f mice is a
reliable method to investigate cell populations over extended time
periods in freely moving animals27, it has its limitations. First, the
implanted lens causes a lesion to the neocortex and we cannot
unequivocally exclude that our results might be influenced by altered
neuronal connectivity or local network changes caused by lens
implantations. We observed no behavioral differences in task perfor-
mance or learning between controls and upon lens implantation
(Supplementary Fig. 2d). It remains, however, to be tested whether
learning and/or execution of the behavioral task in this study depends
on the intact mPFC circuitry in unimplanted animals. Second, the
observation that some cells have been found to be active on one day
but not on another day might be a reflection of a true biological phe-
nomenon (i.e., neurons turning inactive between sessions), a technical
confound (e.g., neuronsmoving out of focus), or amixture of both. To
circumvent this limitation, we analyzed repeatedly active cells, which
were found across all imagingdays. Althoughwecould image the same
area of interest with high reliability, we cannot fully exclude the pos-
sibility that some cells, which could not be registered across days,
might have altered their trajectory-specific tuning. Second, GCaMP6f

Fig. 4 | Stable reference frames emerge during learning. a Top: Trajectory-
specific map stability was compared before and after learning both within the first
day (consistency) and over 2 recording sessions 4 days apart (stability). Bottom:
behavioral performance during before learning (gold) and learned blocks (blue).
b Trajectory-specific tuning functions on day 1 and 4 during before learning (top:
n = 923 neurons) and learned conditions (bottom: n = 1611 neurons). c Learning
increases spatial consistency. T = −5.93, p = 3*10−5, 2-sided unpaired t-test, n = 5 and

12 mice. d Reduced spatial stability in the before learning condition (t = −3.98,
p =0.001,n = 5 and 12mice, 2-sided unpaired t-test).e Larger spatial decoding error
across 4 days in the before learning compared to the learned condition (t = 2.23,
p =0.047, n = 5 and 8 mice with >50 neurons, 2-sided unpaired t-test). Boxes show
median and upper/lower quartiles. Circles represent individual mice. Source data
are provided as a Source Data file.
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signals in the transgenic mouse line used in this study were largely
restricted to deep mPFC layers (Supplementary Fig. 1). Previous work
indicated comparable spatial tuning characteristics of superficial and
deep layer mPFC cells during navigation in virtual23 or real worlds in
individual sessions17,18. Future work will be needed to test whether
superficial layer neurons show similar stable tuning responses
across weeks.

Upon learning the task, we observed a stabilization of
trajectory-specific tuning. We hypothesize that this is based on a
stabilization of the reference frame relevant for the animal to
navigate in the task. Learning results in more stereotypical beha-
vioral trajectories, and behavioral variability has been linked with
variability in the neuronal representation28. However, we did not
observe a correlation of trial duration with trajectory-specific tun-
ing correlations (neither within day nor across days). Moreover,
larger trajectory-specific tuning correlations in the learned group
persisted when we restricted the analysis to pairs of trials with low
variability in inter-trial duration (Supplementary Fig. 9g). These
results thus argue against the stabilization observed across learning
beingmerely caused bymore consistent behavior over time. Still, an
alternative hypothesis that warrants direct testing in future is that
prolonged experience of the arena per semight cause a stabilization
of the reference frame even in the absence of learning a
specific task.

Once learned, trajectory-specific tuning remained consistent
across pauses in task execution, suggesting that the progression of
timeper se, rather than experience of the task,might underlie the slow
representational drift in the mPFC. This finding stays in marked con-
trast to observations in the hippocampus, characterized by remapping
of place fields both across trials on one day and across days within the
samearena29,30. In linewith thenotionof time rather than experienceas
the dominating factor underlying representational drift in the mPFC,
changes in trajectory-specific tuning were not substantially acceler-
ated by rule reversal learning and generalized to a novel, visually dis-
tinct arena. Indeed, generalization among contexts is supported by
previous work further emphasizing abstract representations of task
context in the mPFC16,31,32.

Whether the observed stability of trajectory-specific tuning is
internally generated in the mPFC or inherited from another brain
region remains to be determined. It is plausible that a sequence of
activated prefrontal neurons along task trajectories is acquired during
learning by recurrent weight changes within themPFC network. These
synaptic weights might be relatively robust against further updating,
such as during daily task exposure or post-learning rule changes in our
goal-oriented olfactory learning task. Similarly robust encoding of
information has been previously observed in the formof fearmemory-
related prefrontal engrams that reliably reactivate upon reexposure to
the fearful context even after weeks of initial experience11.

Fig. 5 | Preserved trajectory-specific tuning acrosspauses in task execution and
across contexts. a Schematic of continuous (i.e., daily execution of the task) and
pauseblocks (i.e., no exposure to the task apparatus over 7 days).Gray arrows show
the days on which themice experienced the task. Black arrows show the compared
days for continuous (gray) and pause conditions (orange), separated by 7 days
each. b Trajectory-specific tuning functions sorted by the first (left) and last day
(right) of both continuous and pause pairs. 958 and 945 neurons, n = 8mice. c Task
pause does not affect trajectory-specific map stability over 7 days (t = −2.01,
p =0.084, 2-sided paired t-test). d Similar linearized position decoding (left,
training: day 1, testing: day 7, t =0.91,p =0.395, 2-sidedpaired t-test) andprediction
of trial outcome based on calcium signals in the center arm (T = 8, p =0.600,
2-sided Wilcoxon signed-rank test) across continuous and pause blocks.

e Schematic of familiar-familiar and familiar-novel pairs of recording days.
Trajectory-specific tuning of all cells that were active on both days of the pair were
analyzed. f Trajectory-specific tuning functions during familiar-familiar and
familiar-novel sequence sorted by the first (top) or second day (bottom). 1261 and
1267 neurons. g Similar trajectory-specific spatial correlation (t =0.94, p =0.379,
2-sided paired t-test) for familiar-familiar (gray) and familiar-novel conditions
(blue). h Accuracy of position decoding (T = 3, p =0.039) and prediction of trial
outcome based on calcium signals in the center arm (T = 2, p =0.138, 2-sided Wil-
coxon signed-rank tests) for familiar-familiar and familiar-novel conditions. Boxes
show median and upper/lower quartiles. Circles are individual mice (n = 8 mice for
all comparisons). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-46350-4

Nature Communications |         (2024) 15:2115 7



The hippocampal area CA1 is the major source providing spatial
information to the mPFC33,34. The majority of CA1 neurons change their
spatial representation over time6,35, suggesting that a transformation of
dynamic-to-stable neuronal responses might occur during this passage
of spatial information to the mPFC network. The cellular and network
processes whichmight underlie the transmission of spatial information
remain, however, to be investigated. Alternatively, a subset of CA1 place
cellswith temporally consistent placefield locations36, or spatially tuned
neurons in other neocortical areas such as somatosensory37 or orbito-
frontal cortex38 might support stable spatial tuning in mPFC circuits.

Whether the observed stable prefrontal reference frame is neces-
sary for task executionneeds tobe tested in the future (e.g., by targeting
specific cells within this stable framework39). The task representation is
probablywidelydistributedacross thebrain, as has recentlybeen shown
for other tasks40–42. A resulting important questionwill be to disentangle
to what extent variations in the representational stability across cortical
areas might play a role in long-term memory and behavior.

Methods
Animals
Thy1-GCamp6fmice20 (3 female, 10malemice) (Jackson Labs #025393)
maintained on a heterozygous background by crossing with C57Bl6/J

(Jackson Labs #000664) mice were used for the imaging experiments
in this study (age at thebeginning of the experiments: 12-16weeks). For
retrograde tracing, 9 Thy1-CGamp6f mice were used (2 female, 7 male
mice). Additionally, electrophysiological data from 4 male Ai32(RCL-
ChR2(H134R)/EYFP) mice (Jackson Labs #012569) used in a previous
study43 is included. The animals were maintained on a 12 h light-dark
cycle with free access to food and water until the start of behavioral
training. Mice were food-restricted for behavioral training to 85–90%
of their freely feeding bodyweight. All experiments were performed in
agreement with national legislation (licenses G18-145 and G19-145
approved by the Regierungspräsidium Freiburg).

Behavioral task
Animals were first habituated to the experimental room and the
experimenterforatleast3daysbyleavingtheanimalsundisturbedinthe
experimental room for 30min. Food restriction was started and the
animalswereintroducedtothebehavioralarena.Olfactorycues(vanilla:
Dr.OetkerVanillaEssence2mL,1:10dilutedinwater;coconut:100%pure
coconutoilVitaD’Or, liquefiedinawarmwaterbath)werepresentedata
sniffingportinthecentralstemofthearena(M-shapedmaze,armlength
40 cm). In the first training phase mice learned to nose-poke into the
sniffingport,wereoneof theodorswasrandomlypresented, and torun

Fig. 6 | Trajectory-specific tuningpersists across rule changes. aTop: Schematic
of original, new, and restored rule conditions. Bottom: Corresponding learning
performance color-coded for individual mice (n = 6 mice, purple: new rule, green:
restored rule). Circles indicate average duration ± sem to criterion. C: coconut, V:
vanilla. b Trajectory-specific tuning functions of all cells during original, new, and
restored rules sorted by the original rule (n = 272, only left trajectories are shown).
Since the last recording day in the original rule, 16–36 and 29–68 days passed until
the mice had learned the new and restored rule, respectively. c Trajectory-specific
correlation to the original rule decays over timebut remains significant vs. shuffled
(gray) during both new (t = 10.37, p = 10−4) and restored rules (t = 5.17, p =0.003,
time-correlation interaction effect: F = 13.68, p =0.014, two-way repeated

measures ANOVA followed by paired t-tests with Šidák correction). d Models
trained on data obtained during the original rule allow the prediction of the ani-
mals’ linearized position during new (versus shuffled: t = −5.30, p =0.003) and
restored rules (t = −5.40, p =0.003, two-way repeated measures ANOVA followed
by paired t-tests with Šidák correction). eModels trained on the original rule allow
the decoding of behavioral choice during new (versus shuffled: t = 7.78, p = 6*10−4)
and restored conditions (t = 7.76, p = 6*10−4, two-way repeated measures ANOVA
followed by paired t-tests with Šidák correction). For all comparisons, left and right
trajectories were correlated separately and pooled subsequently. Boxes show
median and upper/lower quartiles. Circles represent individual mice (n = 6 for all
comparisons). Source data are provided as a Source Data file.
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to the reward location at the end of the side arm to collect a foodpellet
(20mg,DustlessPrecisionPellets®Rodent,Bio-ServF0071). Inthisphase
onlyone armwas accessible during each trial. Once the animals learned
to sample the odor, to collect the reward and to initiate the next trial by
nose-poking, they were trained tomake the correct choice to receive a
reward. In this secondphaseboth armswere freely accessible. A reward
wasonlygivenwhenthecorrecttargetarmwaschosen.Containerswitha
mixed coconut/vanillamixturewereplaced around the arena todiffuse
theodorpresentedatthesniffport.Acameraabovethebehavioralarena
recorded themovement of the animals.

Experiments were performed on two cohorts of mice: In cohort 1,
imagingwas startedwhen themicehad reached >70% correct for three
consecutive days (8 mice). In cohort 2, calcium signals were acquired
during task learning (47 ± 2% correct, average over 4 days during rule
learning, n = 5), and after reaching the criterion (n = 4, one mouse of
this cohort did not learn the task). The training to criterion took
11–36 days (17 ± 3 days, n = 10 mice; for the remaining 2 mice the
training was paused after 6 days and resumed 33 days later. These
animals reached criterion 24 days after start of retraining). Before lens
implantation (see below), the animals were provided with food ad
libitum for at least 3 days. 4 weeks after recovery from implantation,
the animals were food-restricted and re-trained in the task to criterion
(~7 weeks after lens implantation). The effect of rule changes was
tested in a subset of mice of cohort 1 (n = 6) by inverting the associa-
tion of the two odorswith the spatial target (new rule, 42–50 days after
start of the imaging experiments, mean: 49 ± 1). Upon learning of the
new rule, the mice were put back on the originally learned rule
(restored, 66–93 days after start of the imaging experiments, mean:
79 ± 4). After learning the restored rule (cohort 1, 4 mice) and after
learning (cohort 2, 4mice) 8micewere additionally exposed to a novel
arena,whichhad the samedimensions as theoriginal arenabut distinct
visual cues (horizontal and vertical colored stripes and dots along the
walls of the side arms). The animals of cohort 2 received lens implants
before the start of behavioral training.

Surgical procedures
For optical access a gradient reflective index (GRIN) lens of 0.5mm
(n = 2) or 1mm (n = 11) diameter was used (length: 4mm, ProView or
ProView Integrated, Inscopix). Mice were anesthetized with isoflurane
(induction:3%,maintenance:1–2%inO2)andplacedonaheatingpadina
stereotaxic frame.Afteropeningtheskin, twosmallholesweredrilled in
the left and right parietal bone, respectively, and two stabilizing screws
(DIN84 A2 M1 × 2) were inserted. Thereafter, a craniotomy with a dia-
meter of ~1mm was performed over the mPFC (coordinates: 1.7mm
anteriorand0.6mmlateralofbregma).Theanimal’sheadwastiltedby5°
laterally and two orthogonal cuts were applied to the neocortex with a
21 Ginjectionneedletosupportthepenetrationofthe lens.The lenswas
slowly loweredtothemPFC(depth: 1.2–1.6mmfrombrainsurface).The
craniotomy was sealed off with Vaseline, and the lens and screws were
cemented to the skull using Superbond c&b (Sun Medical). Buprenor-
phine (BP, 0.1mg/kg body weight) and Carprofen (CP, 0.1mg/kg body
weight) were injected s.c. prior to and for 2 days after surgery (2–3
injections of BP and 1 injection of CP/day). BPwas supplied for 2 days in
the drinking water overnight (10mg/l). For tracing experiments (see
below), BP/CP injection was performed prior to surgery followed by a
single injection of BP 4–6 h after surgery.

Retrograde tracing
Red retroBeads (Lumafluor Inc.) were diluted 1:1 in sterile phosphate-
buffered saline (PBS). Injection needles were made from glass tubing
using a microfilament puller (Flaming Brown). Under general anes-
thesia (see above), 200nl of retroBeads were injected at the following
coordinates (in mm): (a) mPFC 1.9 anterior, 0.45 lateral of bregma at a
depth of 1.7 frombrain surface; (b) striatum:0.5 posterior, 1.5 lateral of
bregma at a depth of 1.8 from brain surface; (c) periaqueductal gray/

superior colliculus: 4.5 posterior, 0.5 lateral of bregma at a depth of 2.5
from bregma. Mice were perfused 1 week after injection for histolo-
gical processing. For retrograde tracing analysis, colocalization was
visually determined in confocal image stacks using the cell counter
plug-in of ImageJ (V1.52r).

1-photon calcium imaging
1-photon calcium imaging was performed with nVoke and nVista
microscopes (Inscopix) at a frame rate of 20Hz (exposure time:
49.90ms, gain: 2–5 (mean: 2.6 ± 0.2), LED power: 0.3–1.1mW/mm2

(mean: 0.7 ± 0.1mW/mm2)). The imaging plane was set to a depth to
allow imaging of the highest number of cells. In each imaging session
mice performed ~40 trials over the course of 15min. Landmarks such
as blood vessels and the location of active cells wereused tomaintain a
consistent field of view (FOV) over days. Calcium imaging and beha-
vioral recording were synchronized either by triggering the micro-
scope by behavioral video acquisition (EthoVision XT 11.5) or by
triggering a blue LED in the FOV of the behavioral camera for offline
alignment with the calcium data.

Electrophysiological recording and spike sorting
To compare the calcium signals measured with 1-photon recording
to ground-truth data in the absence of lens-induced neocortical
lesions, we analyzed previously acquired electrophysiological
recordings43 from 4 Ai32(RCL-ChR2(H134R)/EYFP) mice performing
the same behavioral task. In brief, custom-made tetrodes (California
FineWire Company, Tungsten 99.95% CS) mounted on amicrodrive
were implanted at AP 1.9, ML 0.5, DV −1.0/−1.7. Two grounding
screws were implanted in the skull ~2 mm around the lambdoid
suture, and an additional stabilizing screw in the rostro-medial part
of the parietal bone. The mice carried an additional chronic elec-
trode in the olfactory epithelium, which was not analyzed in the
context of this study. Broad-band electrophysiological data were
acquired with a tethered amplifier (Intan Technologies, RHD2132)
using GUI software (Open Ephys) at a sampling frequency of 30 kHz.
A common average computed as the mean of 8–10 randomly
selected channels was subtracted from all channels. Recording
sections containing artifacts weremanually identified and removed.
Single units were clustered from 0.3–6 kHz bandpass-filtered data
using MountainSort44. The obtained clusters were first auto-
matically curated based on isolation (threshold of 0.9 and noise
overlap (0.05)) and further manually curated based on clean spike
shapes and autocorrelograms with clear refractory periods. To
assess firing rates (Supplementary Fig. 2f), neurons with >10 spikes
during center arm travel (n = 92 units) were included. To measure
within-day consistency, neurons with >100 spikes during the entire
recording session were considered (n = 82 units). Spatial tuning
functions were obtained by binning the spike count as a function of
linearized position during center and side arm travel. Consistency
was obtained by Pearson’s r between tuning functions of odd vs.
even trials and averaged over all neurons and sessions per mouse
(Supplementary Fig. 2g). The analysis was performed on data
downsampled to 1 kHz.

Histological processing
Mice were deeply anesthetized by intraperitoneal injection of keta-
mine/xylazine (100/13mg/kg body weight). After cessation of pain
reflexes, the thorax was opened to expose the heart, and an incision
was made into the right atrium. Perfusion commenced into the left
ventricle with ice-cold PBS (~5ml), followed by 4% paraformaldehyde
(PFA, ~15–20ml). The brains were removed from the skull and post-
fixed in 4% PFA at 4 °Covernight for retrograde tracing experiments or
for >2 days for removing the GRIN lens.

Coronal sections were cut with a vibratome (Leica VT1000S,
100 µm thickness), stained with 4′−6-diamidino-2-phenylindole (DAPI,
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1:1000 in PBS), and mounted on microscope slides with Mowiol.
Confocal image stacks were obtained with a confocal laser-scanning
microscope (Zeiss LSM 710 or 900).

Immunohistochemistry
To assess number of microglia, level of phagocytic state of microglia,
and number of astrocytes, immunohistochemistry against Iba1 (wako
pure chemicals 019-19741), CD68 (Abcam ab125212) and GFAP (Abcam
ab4674), respectively, was performed. Fixated (in 4% PFA) brain slices
were permeabilized in PBS+0.4% TritonX-100 for two times each
30min. Slices were then blocked in PBS +0.2% TritonX-100 + 4% Nor-
malGoat Serum (NGS) for 30min. Afterwards, sliceswere kept at room
temperature for 6 h in PBS + 0.1% TritonX-100 + 2% NGS and the
respective primary antibody (GFAP 1:500, Iba1 1:1000, CD68 1:500).
Slices were further incubated overnight at 4 °C. Next day, slices were
washed in PBS+ 1% NGS, which was repeated three times for 10min
each. Slices were then incubated with the secondary antibody (goat
anti-chicken Alexa Fluor® 647 (ab150171) or goat anti-rabbit Alexa
Fluor® 647 (ab150079)) for 2.5 h. Slices were then washed two times in
PBS + 1% NGS for each 10min. Finally, slices were stained with DAPI
(1:1000 in PBS) for 5min and thereafter washed with PBS for three
times each 10min. Except for the overnight incubation all steps were
performed at room temperature.

For quantification of the staining, ImageJ (V1.52p) was used. Two
areas, either underneath the implanted lens or on the contralateral
side were drawn and the mean intensity within these areas were
measured.

Extraction of calcium signals
We used the open-source Python toolbox CaImAn45 to identify the
neurons’ shape (spatial component) and the corresponding calcium
trace (temporal component, Supplementary Fig. 3a). For motion cor-
rection, a spatial high-pass filter (Gaussian kernel size 10 pixel; 7.5 µm)
was applied on all imaging frames to obtain sharp images. Rigid shifts
were then inferred by maximizing the cross-correlation between each
frame and a template image that was updated by taking the median
image of the motion-corrected movie. Next, source extraction was
achieved using the ‘GreedyCorr’method in CaImAn that implemented
the CNMF-E algorithm to remove background light signals from the
cellular light sources in 1-photon recording46. The algorithm was
initialized with the parameters: ‘min_corr’ (minimum correlation) and
‘min_pnr’ (minimum peak-to-noise ratio), chosen for each mouse in
cohort 1 (listed in Table 1). For mice in cohort 2 (learning experiment),
‘min_corr’ and ‘min_pnr’ were determined using the Otsu’s threshold-
ing method on the correlation and the peak-to-noise ratio image
(threshold means as listed in Table 1). The quality of extracted com-
ponents was quantified by the correlation value of each spatial com-
ponentwith the frameswhere this componentwas active (rval) and the
signal-to-noise ratio (SNR). Components with rval >0.7 or SNR > 2were
kept for further inspection. Lastly, we used a custom GUI to inspect
components and classify them as putative cells (https://github.com/
chenhungling/CaimanGUI). Components with infiltrating calcium
activity from neighboring components as well as cells with ambiguous
shape or calcium traces were discarded.

Calcium traces were further corrected for slow drifts of the
baseline using a running percentile filter (10th percentile, window size
30 s). Then, the traces were standardized by iteratively calculating
the mean (baseline) and standard deviation (σ). During each iteration,
the signal above 3σ was excluded until the relative change in σ was
smaller than 0.1% ((σ0–σ1)/σ1 < 0.001). The baseline-subtracted and
normalized trace was used for the analysis unless indicated otherwise
(referred to as ‘z-scored traces’). For the additional assessment of
calcium transients, significant transients were calculated based on the
z-scored traces as signals exceeding 3σ and lasting for a minimum
duration of 0.2 s. The rising phase was obtained from these transients

by taking for each transient the signal from threshold crossing to the
first peak after the threshold.

Longitudinal registration of active neurons
For longitudinal registration, the data of cohort 1 were split into two
blocks. The first one included data of the first 24 recording days with a
consistent rule (Figs. 1, 2, and 3). The second block included the data
over rule switches (Fig. 6). Data from cohort 2 (learning experiment,
Fig. 4) were analyzed in a single block. The CellReg47 algorithm was
used to identify the same cells in different imaging sessions (Supple-
mentary Fig. 3). First, the projection images of all cells per sessionwere
aligned across sessions by maximizing the image cross-correlation
with a reference session (cohort 1) or using an optical flow-based
method (skimage.registration.optical_flow_ilk, cohort 2, Supplementary
Fig. 3). Then, the data of the spatial correlation between each cell-pair
across different sessions (defined by a centroid distance <31 ± 1 pixel
(23.3 ± 0.08 µm)) was collected (Supplementary Fig. 3d shows an
example of data distribution of spatial correlation). The data wasfitted
by a weighted sum of two distributions: a lognormal distribution for
modeling ‘same’ cells and a beta distribution for modeling ‘different’
cells. The best fit for each mouse and respective CellReg block were
found by minimizing the mean squared error (MSE; first block:
0.12 ± 0.01) between the collected data and the model. Each cell pair
across sessions was then characterized by a probability to be the same
cell (Psame). Finally, cells were registered via an iterative clustering
procedure where each cell either formed a new cluster if no
Psame > 0.95 was found, or assigned to the cluster with the highest
Psame. We obtained an average true positive score (first block:
0.971 ± 0.004) and true negative score (0.944± 0.007).

Unless indicatedotherwise, we consideredonlyneurons thatwere
detected as active on each day of the registration set. For analyses
during the execution of the original rule in the first block, registration
was done over 24 recording days. For continuous and pause assess-
ment, 2 sessions thatwere 7 recording days away fromeachotherwere
used for registration. Registration was performed over 2 days to
measure familiar versus novel (n = 8 mice) and 9–11 recording days
(mean: 10 ±0.26, n = 6 mice) to assess original, new, and restored
conditions. For initial rule learning in cohort 2, registration was per-
formed separately over 2 recording days 4 days apart from each other
during learning and two equally spaced recording days after reaching
criterion (Fig. 4). Due to uneven sampling of the task space in some
mice of the before learning group, only left-going trajectories were
analyzed in this experiment.

Extraction of spatial positions and maze areas
Tracking of the center point of the animal’s position was performed by
EthoVision XT 11.5 (Noldus). The animal’s position in the maze (beha-
vioral epochs: sampling, left/right center, left/right side, left/right
reward) was identified by xy-coordinate thresholds using a custom
written python-script. Only correct trials were used for further analysis.

Linearization of 2d trajectories
We mapped 2D trajectories onto a 1D skeleton, which approximated
the linear position as a series of 4 vectors (Supplementary Fig. 5f). For
each x/y coordinate, the nearest point on the skeletonwas found using
the scipy.spatial.KDTree function. The linear position from entry into
the center arm to the end of the side arm was then expressed as nor-
malized distance (from 0 to 1). To assess the point of deviation of
trajectories during left and right trials in the center arm, each left and
right run was linearized in 1D and interpolated by a factor of 10, giving
the linear position of the run. Similarly, the x-coordinate of each run
was interpolated by a factor of 10, giving the x-position. X-positions
were then binned as a function of linearized position (n = 50 bins). For
each bin, the x-position during left and right trajectories were statis-
tically compared using an independent t-test (with Bonferroni
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correction for 50 comparisons). The first bin with a significant differ-
ence was taken as the point of trajectory divergence.

Correlation analysis
Spatial tuning functions were obtained by first binning z-scored cal-
cium signals as a function of linearized position during outward travel
(20 bins, covering center and side arm). The binned signals were
divided by the occupation probability of the bins and normalized to
the bin with the largest mean activity. To obtain spatial consistency
within a day, the tuning functions of each neuron were computed
separately for odd and even runs during left and right trials. Pearson’s r
for odd vs. even runs of the samedirection (i.e., left vs. left and right vs.
right) or across directions (i.e., left vs. right and right vs. left) was used
to assess the similarity of spatial trajectories. Correlation values were
averaged over cells for eachmouse to obtain one value per animal. To
obtain the correlation of tuning functions across days, Pearson’s r was
computed for the average tuning function of each neuron on day 1
versus the other days, separately for left and right trajectories. The
values were then averaged over left and right conditions and neurons
to get one correlation value permouse andday. To get randomcontrol
data for comparison, shuffled data were created by randomly per-
muting the order of the tuning functions of day 1 such that correlation
over days was performed between different neurons (average of 100
permutations). The same analysis was applied to learning vs. learned,
continuous vs. pause, familiar vs. novel, original vs. new, and original
vs. restored comparisons. In addition, we compared the across-days
correlations of the real data to surrogate data with simulated repre-
sentational drift. Separately for the left- and right-going normalized
tuning functions of each neuron, we iterated over the probability for
the tuning function to circularly drift by 1 bin over 1 recording session
(drift probability: 0–100%, step size 10%). An additional noise term
taken from a normal distribution (mean: 0, SD ranging from 0 to 0.5)
was added to the tuning functions. On each successive session, the
neurons with and without drift between sessions were randomly and
independently drawn according to the drift probability. To avoid
tuning functions to drift back towards the original tuning function
(which spans 20bins), the drift function was regularized such that a
cumulative drift >10 bins results in a random drift of −1 or 1 bin on the
next drift step.

Mean activity and side index
Mean activity was defined as the mean signal of significant calcium
transients during center or side arm travel. Side index S of eachneuron

was defined as

S=
al � ar

al +ar
ð1Þ

where al and ar are themean signals of significant calcium transients of
the neuron during left and right trajectories, respectively. For the
display in Fig. 1 and Supplementary Fig. 10c, d repeatedly active neu-
rons with a minimum mean activity of 0.5 z were considered (n = 133
and 19 neurons, respectively). However, different activity thresholds
gave reproducible results for the correlation of mean activity and side
index over time (thresholds: 0.01, 0.05, and 0.1–1.0, 0.1 increments,
Supplementary Fig. 4), and for the dependence of decoding accuracy
of single neurons on absolute side score (thresholds: 0.2–1.0, 0.1
increments, Supplementary Fig. 6b).

Spatial information
Spatial information6 was obtained from significant calcium transients
of repeatedly active neurons separately for left and right trials as

SI =
XN
i= 1

λiln
λi
λ
pi ð2Þ

where λi is the mean activity of the neuron in the ith bin, λ is the
average activity across the trajectory, pi is the occupation probability
of the ith bin, and N is the number of bins of the outward trajec-
tory (N = 20).

Decoder analysis
Two decoders were used to predict position and trial outcome across
days (see below). In general, the models were trained on the first
recording day for each comparison. For the analysis over 24 d in the
first block, all available neurons that were active on each of the
recording days were used (502 total, 6–131 per mouse, mean: 63 ± 16,
n = 8 mice). To assess continuous and pause pairs, neurons active
during both days of each pair were used (n = 958 total, 20–266 per
mouse, mean: 120 ± 31, and n = 945 total, 21–235 per mouse, 118 ± 32,
n = 8 mice). In the second block, decoding was performed for each
mouse using all neurons that were active on the last day of the original
rule and on the first days of both new and restored rules, respectively
(272 total, 11–120 neurons per mouse, mean: 45 ± 17, n = 6 mice). To
assess familiar and novel conditions, all neurons active on two con-
secutive days in the familiar arena (n = 1261 total, 54–248 per mouse,
mean: 157 ± 25, n = 8mice) or during the last day in the familiar and the
first or second day in the novel arena (n = 1267 total, 45–269 per
mouse, mean: 158 ± 27, n = 8 mice) were used. To compare before
learning and learned groups, the models were trained and tested on
20 separate iterations during which 50 neurons were randomly
selected each time per mouse. Since four mice of the before learning
group showed insufficient rightward trials, the before learning-learned
comparison was done on leftward trajectories only.

Decoding of spatial position
Position decoding was performed using support vector regression
with the scikit-learn48 package in Python3.7.7 (sklearn.svm.LinearSVR,
parameters: C = 1, max_iter = 100000). Linearized position during
outward travel was decoded from z-scored calcium signals. Alter-
natively, calcium transients and rising phases of transients were used
as indicated. All left runs (and separately all right runs) of the first day
were used to train the decoder, and all runs of the same direction on
the target day were used for decoding. Results for left and right runs
were averaged. To assess the impact of SI, the data of eachmouse was
split in the 50% of neurons with largest and lowest SI, and decoding
was run separately on both sets. Decoding accuracy was quantified as
the mean absolute error using sklearn.metrics.mean_absolute_error

Table 1 | CaImAn parameters used to extract calcium signals

mouse min_corr sem min_pnr sem

cohort 1 #44 0.7 - 4 -

#45 0.7 - 5 -

#47 0.7 - 5 -

#93 0.7 - 6 -

#94 0.8 - 4 -

#95 0.8 - 6 -

#216 0.8 - 4.5 -

#218 0.8 - 6 -

#219 0.8 - 3.5 -

cohort 2 #478 0.787 0.001 12.718 0.099

#480 0.780 0.004 10.760 0.197

#481 0.798 0.003 12.290 0.081

#483 0.783 0.001 12.097 0.129

#485 0.813 0.001 14.525 0.101

Min_corr and min_pnr describe minimal thresholds for the initialization of component identifi-
cation, namely the minimal correlation value and minimal PNR.
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(ranging from 0 to 1). Shuffled data were created by permuting the
position data in the training dataset (separately for left and right trials,
100 iterations).

Decoding of trial outcome
Logistic regression was implemented with sklearn.linear_model.Logis-
ticRegression (parameters: C = 5, penalty = ’l2’, max_iter = 1000).Within
each day, the data were sorted by trials, and z-scored calcium signals
(or significant transients or rising phases where indicated) were aver-
aged for each cell and trial during the center epoch. To decode across
days, all trials of the first day served as the training dataset, and
decoding was done on all trials of the target day. Shuffled control data
were obtained by averaging the decoding results on permuted trial
labels of the target day (100 iterations). To assess decoding during the
period before diversion of trajectories for left and right trials within a
day, the z-scored calcium signals for each cell were averaged until the
diversion point for each trial. Next, decodingwasperformed in a leave-
one-out regime such that the outcome of a randomly selected trial was
predicted using the remaining trials as training data. This procedure
was repeated 100 times with a randomly selected test trial, and the
accuracy of the decodingwas expressed as the proportion of correctly
predicted trials. To obtain shuffled control data, the trial labels were
permuted independently during each iteration, and the random pre-
diction was averaged. To resolve the number of neurons needed for
decoding, a random subset of neurons of increasing size was drawn
from the total population, and the decoding was performed as before.

To test the contribution of individual neurons to trial outcome
decoding, decoding was performed separately for each cell in the first
block. To remove neurons without activity in the selected task period,
a cut-off for the minimal required calcium activity was set at 0.5 z
(leaving themodel with 133 neurons from8mice in total), but different
threshold values gave comparable results (Supplementary Fig. 6b).
Decoding accuracywasmeasured by applying a leave-one-out strategy
such that themodelwas trainedon the z-scored calcium activity of one
neuron during all but one trial of a given day and then used to predict
the outcome of the remaining trial. This was repeated for all trials of
each day. Spearman’s correlation coefficient was used to assess the
correlationbetweendecoding accuracyof theneuronsonday 1 and24.

To test whether trial outcome decoding depends on the chosen
model, the above analysis based on all available neurons was repeated
with a support vector classifier (sklearn.svm.SVC, parameters: C = 5,
penalty = ’l2’, max_iter = 1000) and with an artificial neural network
(Supplementary Fig. 5e). The latter was implemented in pytorch as a
3-layer network with hidden sizes = 200 neurons and ReLu non-linear
activation functions. The network was trained on data from day 1 in
500 epochs (learning rate: 0.0001) tominimize the BCEWithLogitsLoss
function. As shuffled controls for this analysis, the calciumdata of each
neuron was randomly shifted in time (5–20 s) before training. The
trained models were used to make binary predictions based on cal-
cium data of the following recording days.

Generalized linear modeling
To identify encoding of linearized position, speed, and goal location in
the imaged cell population we used a GLMwith a linear link function14.
The z-scored calcium signal was concatenated for correct, outward
trials (i.e., from sampling to reward). Similarly, speed and linearized
position were concatenated to match the calcium signal. Left or right
goal location was indicated with 1 or 2 for the entire trial, respectively.
Position was binned in 50 equal bins. The first and last bin were kept
(sampling and reward location), the others were added to create 8 bins
across the trajectory (smaller bin sizes were tested and did not show
any difference, similar to previous reports14). Speedwas categorized in
quartiles, matching the speed of the individual animal. All predictors
described above were used as categorical variables. The ‘full model’
contained all predictors, the ‘single-models’ only one selected

predictor, and the ‘shifted models’ all predictors, but one randomly
shifted in time to not match the neuronal data anymore. These linear
models were then fitted (Matlab function fitglm) on 90% of (training)
data points and used to predict the remaining 10% (test) data points.
To diminish training and testing on directly adjacent events, data was
chunked in 5 s bins,whichwere then randomlyassigned to training and
testing datasets. Models were 10 times cross-validated, to ensure all
data was used for training and testing.

Explained variance was determined by the squared correlation
(Pearson’s r; r2) of predicted and actual calcium data. The decrease in
explained variance (Δr2), when one predictor was shifted, was calcu-
lated as the difference in explained variance of the full model and the
shiftedmodel. To identify whether individual cells were modulated by
a specific predictor, the difference between the r2 of the ‘full model’
and the r2 of a model without the respective predictor (predictor was
set to zero) was calculated. ThisΔr2without was compared to aΔr2shuffled-
distribution (generated by calculating the difference in r2 between a
model with the predictor shifted and amodel where the predictor was
set to zero, 1000 times). If the cell’s Δr2without was greater than 99% of
the Δr2shuffled-values, the neuron was considered to be significantly
modulated by that variable.

Geometry of the population response
We used a geometrical approach to analyze population vector
activity3. Population activity as a function of space was extracted from
z-scored calcium activity of all n repeatedly active neurons of a
recording session during three spatial bins: At the start of the outward
trajectory, themidpoint, and the endpoint, separately for left and right
trajectories (bins correspond to the same 20 bins as used for the
construction of spatial tuning functions). We constructed the geo-
metrical object with corner points given in n dimensions by each
population vector, and extracted the edge angles between vectors
connecting the corner points (10 edge angles for each of the 6 corner
points). The dissimilarity between the resulting edge angle matrix of
each day with day 1 was expressed as the edge angle similarity matrix
||Aa,b||F using the Frobenius norm

jjAa,bjjF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i = 1

XN

j = 1
jAa

i,j � Ab
i,j j

2
r

ð3Þ

where Aa and Ab denote edge anglematrices onday a and b,M denotes
thenumber of corner points ( = 6), andNdenotes the number of angles
of incoming pairs of edges from other corner points ( = 10). ||Aa,b||Fwas
computed separately for odd and even runs and averaged for each
session. This allowed normalization using the same odd-evenmatrices
of each day to estimate within-day dissimilarity. Normalization was
applied to ||Aa,b||F to obtain the normalized edge angle dissimilarity
||Âa,b||F as

jjAa,b^jjF =
jjAa,bjjF � jjAwjjF
jjAsjjF � jjAwjjF

ð4Þ

where ||AW||F is the within-day Frobenius norm computed between odd
and even runs averaged over all days, and ||AS||F is the Frobenius norm
between matrices of the last and first day obtained after column- and
row-shuffling the tuning functions. The resulting metric is thus bound
between 0 (equivalent to the dissimilarity over time being equal to the
within-day dissimilarity) and 1 (with the dissimilarity being equal to the
dissimilarity of shuffled data). Population vectors were obtained from
the same three spatial points as the averageof the significant transients
of each neuron, and correlated with day 1 using Pearson’s r.

Statistical analysis
Comparisons between 2 dependent groups (e.g., left and right trials or
data and shuffled datasets from the same animal) were made with

Article https://doi.org/10.1038/s41467-024-46350-4

Nature Communications |         (2024) 15:2115 12



two-sided paired t-tests (for normally distributed data, assessed by a
Shapiro–Wilk test) orWilcoxon signed-rank tests (for data that did not
follow a normal distribution). For comparisons of independent data,
unpaired two-sided t-tests were used for normally distributed data,
and Mann–Whitney U-test for data that did not follow a normal dis-
tribution. For comparisons of multiple time points with a single group
(e.g., behavioral performance over days), one-way repeated measures
ANOVA was used. To compare time series of two groups (e.g., spatial
correlation to day 1 for data and shuffled controls), two-way repeated
measures ANOVA was used. Pairwise comparisons commenced for
each time point using paired t-tests with Šidák correction. Unless
indicated otherwise, statistics were based on averages per mouse.
Statistical tests were computed using Python’s stats and pingouin49

packages. Data are expressed as mean ± sem.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The calcium and behavioral data generated in this study have been
deposited in the Zenodo database under accession code https://doi.
org/10.5281/zenodo.10528243. Source data are provided with
this paper.

Code availability
Custom code is available under accession code https://doi.org/10.
5281/zenodo.10528243.
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