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Distributed feature representations of
natural stimuli across parallel retinal
pathways

Jen-Chun Hsiang 1,4, Ning Shen1,4, Florentina Soto 1 &
Daniel Kerschensteiner 1,2,3

How sensory systems extract salient features from natural environments and
organize them across neural pathways is unclear. Combining single-cell and
population two-photon calcium imaging in mice, we discover that retinal ON
bipolar cells (second-order neurons of the visual system) are divided into two
blocks of four types. The two blocks distribute temporal and spatial infor-
mation encoding, respectively. ON bipolar cell axons co-stratify within each
block, but separate laminarly between them (upper block: diverse temporal,
uniform spatial tuning; lower block: diverse spatial, uniform temporal tuning).
ON bipolar cells extract temporal and spatial features similarly from artificial
and naturalistic stimuli. In addition, they differ in sensitivity to coherent
motion in naturalistic movies. Motion information is distributed across ON
bipolar cells in the upper and the lower blocks, multiplexed with temporal and
spatial contrast, independent features of natural scenes. Comparing the
responses of different boutons within the same arbor, we find that axons of all
ON bipolar cell types function as computational units. Thus, our results pro-
vide insights into the visual feature extraction from naturalistic stimuli and
reveal how structural and functional organization cooperate to generate par-
allel ON pathways for temporal and spatial information in the mammalian
retina.

Sensory systems extract salient features of theworld andprocess them
in parallel pathways. Significant progress has been made in under-
standing the feature preferences of individual pathways for simple
artificial stimuli1–5. However, how features are extracted from complex
natural stimuli and how feature representations are organized across
parallel pathways is unclear.

In the visual system, parallel processingbegins at the first synapse,
wherephotoreceptor signals are distributed tomultiple bipolar cells6,7.
Mice have 15 bipolar cell types8–12; most are conserved in primates,
including humans13–16. One of the bipolar cells exclusively contacts
rods; the other 14 receive input from cones17,18. Cone bipolar cells are

grouped into eight ON and six OFF types (referred to as ON and OFF
bipolar cells hereafter), which depolarize to light increments and
decrements, respectively8–12. The split into ON and OFF channels helps
efficiently encode luminance distributions in natural scenes19–22. The
functional divergence and organization within both channels are not
well understood.

For artificial stimuli, some studies noted varying preferences for
spatial and temporal contrast among ON and OFF bipolar cells11,23,24,
while others reported complex feature preferences of specific bipolar
cell types (e.g., direction and orientation selectivity)25,26. What features
mammalian bipolar cells extract from naturalistic stimuli and how
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features of natural environments are organized across parallel bipolar
pathways remains unknown.

Laminar feature maps organize information throughout visual
systems across evolution4,27–29. ON and OFF bipolar cell axons occupy
the outer 2/5 and inner 3/5, respectively, of the mouse retina’s inner
plexiform layer (IPL)6. Rod bipolar cells target the innermost stratum
of the IPL, conveying dim-light information6,15. In addition, two color-
selective channels (one OFF and one ON) are found at the edges of the
IPL6,30,31. If and how other visual features encoded by bipolar cells (e.g.,
temporal contrast, spatial contrast, and motion) are mapped across
the depth of the IPL is unclear.

Bipolar cell axons integrate photoreceptor signals relayed by their
dendrites from the outer retina with local inputs from amacrine cells, a
diverse class of interneurons in the inner retina6,11,32. It has been sug-
gested that amacrine cell influences diversify the responses within a
single bipolar cell axon25,33,34. Subcellular processing could expand the
number of bipolar cell pathways in the inner retina.Whether individual
bipolar cell axons encode different information in different pre-
synaptic boutons or function as computational units under naturalistic
stimulus conditions remains to be tested.

Here, we combine viral and transgenic labeling with two-photon
imaging to understand how the complement of ON bipolar cell types
encodes naturalistic stimuli and how their axons organize features
extracted from natural environments in the IPL, from single arbors to
neural populations.

Results
Labeling and classification of ON bipolar cell types
To compare visual processing across ON bipolar pathways and
delineate computational units in the inner retina, we recorded
axonal calcium transients in morphologically identified bipolar cell
types with subcellular resolution by two-photon imaging. We
injected adeno-associated viruses (AAVs) expressing Cre recombi-
nase from Grm6 promoter elements (AAV-Grm6-Cre) intravitreally
into GCaMP6f (i.e., a genetically encoded calcium indicator)
reporter mice (Ai148)35,36. This strategy uncoupled labeling density
(controlled by viral infection) and specificity (controlled by the viral
promoter) from expression levels (controlled by the reporter mice)
and enabled sparse but intense GCaMP6f expression in ON bipolar
cells (Fig. 1a, c).

We restricted recordings to isolated bipolar cells that could be
morphologically classified, limited the imaging timeper retina to avoid
tissue damage from laser scanning37, and set stringent thresholds for
repeat reliability of light responses. Thus, we analyzed the responses of
57 ON bipolar cells, representing all types, in 41 retinas of 378 AAV-
injected mice (Fig. 1b).

To compare visual processing across bipolar cell types without
circularity, we classified them independently of their function. After
two-photon calcium imaging, we fixed retinas, stained them for cone
arrestin (CAR) and choline acetyltransferase (ChAT), and analyzed the
morphology and connectivity of bipolar cell dendrites and axons
(Fig. 1c–f). Referencing large-scale anatomical surveys8,10,12,18, we dis-
tinguishedBC5o, BC5i, BC5t, XBC, BC6, BC7, andBC8/9 bipolar cells by
their dendrite and axon territories (Fig. 1d, e), the numbers of cones
contacted (Fig. 1d), and axonal stratification patterns (Fig. 1f) with a
classification tree (Supplementary Fig. 1). We combined results from
BC8 and BC9 because we could not differentiate them anatomically,
and their responses in the ventral retina, the location of our record-
ings, are equally dominated by short-wavelength-sensitive
S-opsin30,31,38,39.

Togetherwith serial electronmicroscopy (EM) reconstructions8,12,40,
ourdata suggest thatONbipolar cell axons form two laminarblocks, one
above the ON ChAT band (i.e., the upper block) encompassing BC5o,
BC5i, BC5t, and XBC, and one below the ON ChAT band (i.e., the lower
block) encompassingBC6, BC7, andBC8/9. The stratificationpatterns of

ON bipolar cell axons overlapped extensively within each block but not
across (Fig. 1g).

Temporal frequency tuning across ON bipolar pathways
ON bipolar cells vary in their preferences for temporal stimulus
contrast11,23. We analyzed the responses of the full complement of ON
bipolar cell axons to sinusoidal luminance fluctuations of varying
temporal frequencies (Fig. 2). The frequency-response curves were
normalized by the profile of the GCaMP6f indicator (Supplementary
Fig. 2). We used simulations to confirm that even though the indicator
attenuates amplitudes at higher frequencies, we could accurately
assess responses to 8Hz stimuli and slower fluctuations (Supplemen-
tary Fig. 3). We first presented fluctuations in a 150μm spot restricted
to the receptive field center (i.e., the region in which excitatory out-
weigh inhibitory influences)41. The frequency-response functions of
most ON bipolar cell types did not differ significantly, with two
exceptions: XBC and BC5t (Fig. 2a, b). XBC preferred higher frequency
stimuli than the rest of the ON bipolar cells (Fig. 2a, b, one-sided Wil-
coxon rank sum test, p < 0.001, r =0.65, z = 4.08, Supplementary
Fig. 3), whereas BC5t preferred lower frequency stimuli than the rest
(Fig. 2a, b, one-sided Wilcoxon rank sum test, p <0.01, r = −0.42,
z = −2.59, Supplementary Fig. 3). Some ON bipolar cell types (incl.
BC5t) exhibited frequency-dependent suppressive baseline (i.e., F0)
responses, whose mechanisms remain to be identified.

The temporal tuning of ON bipolar cell axons can be shaped by
their morphology. In zebrafish and goldfish bipolar cells, smaller pre-
synaptic terminals (i.e., boutons) prefer faster stimulus frequencies
than larger boutons due to changes in the surface/volume ratio42. Yet
the ROIs of XBC, which prefer the fastest frequency among ON bipolar
cells, did not differ significantly in size from ROIs of other ON bipolar
cell types, and the ROIs of BC5t, which prefer the slowest stimulus
frequencies, were smaller than the ROIs of other ON bipolar cells
(Supplementary Fig. 4). Moreover, when we divided ROIs into small
and large (50/50) groups across (Supplementary Fig. 4) orwithin types
(Supplementary Fig. 5), we observed no differences in their temporal
tuning. Thus, the cell-type-specific differences in temporal tuning of
mouse ON bipolar cells are not accounted for by their morphology.

To examine the influence of the receptive field surround (i.e., the
region in which inhibitory outweigh excitatory influences)41 on the
temporal tuning of ON bipolar cells, we presented sinusoidal fluctua-
tions in an 800 μm spot encompassing center and surround. At low
temporal frequencies (≤2Hz), 800μm stimuli elicited ON bipolar cell
responses with similar amplitudes as the 150μm stimuli (Fig. 2c, Sup-
plementary Fig. 6). However, the responses to these stimuli were
phase-shifted (Supplementary Fig. 6) reflecting the different lumi-
nance preferences of the receptive field center (ON) and surround
(OFF). Responses to large stimuli also extended to higher temporal
frequencies (Fig. 2c, comparing 0.5–2Hz and 4–8Hz, one-sided Wil-
coxon signed-rank test, p <0.01, r = −0.45, z = −2.9)11. This high-
frequency enhancement was most pronounced for BC5t, BC7, and
BC8/9.

Thus, the temporal frequency-response functions of six of the
eight parallel ON bipolar pathways overlap with two opposing outliers
(BC5t and XBC). Both outliers are localized in the upper block, gen-
erating diversity in temporal processing within this block, whereas
temporal processing is uniform in the lower block. Interactions
between receptive field centers and surrounds extend response func-
tions to higher frequencies in a cell-type-specific manner.

Divergence of temporal and spatial information in ON bipolar
pathways
To gain further insights into the ON bipolar cells’ processing of tem-
poral and spatial information, we analyzed responses to light steps
presented in spots of varying size (Fig. 3a, b). In mammalian retinas,
bipolar cell axons with transient responses are thought to stratify
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toward the center of the IPL, and bipolar cell axons with sustained
responses toward the IPL borders6,11,43–49. Our data supports this overall
trend, but rather than a gradual progression from transient to sus-
tained, it revealed discontinuous patterns. First, the responses of
axons in the upper block were, on average, more transient than those
in the lower block (Fig. 3a–c, one-sided Wilcoxon rank sum, upper
block: n = 27, lower block: n = 20, p < 0.001, r = 0.61, z = 4.19). Second,
response kinetics were uniform in the lower block (Kruskal-Wallis one-
way ANOVA, p = 0.46, χ2 = 1.57, η2 = 0.079, df = 2) but varied between
bipolar cell types in the upper block (Kruskal-Wallis one-way ANOVA,
p <0.001, χ2 = 21.6, η2 = 0.8, df = 3). BC5t axons in the upper block
exhibited slow and sustained responses (Fig. 3a–c), matching their
lower frequency cut-offs for sinusoidal fluctuations (Fig. 2a, b). BC5t
axons co-stratify with XBC axons, which had the most transient

responses of all ONbipolar cells (Fig. 3a–c), in linewith theirfiltering of
sinusoidal fluctuations (Fig. 2a, b).

The opposite picture emerged for spatial response profiles
(Fig. 3a–c). Axons of all bipolar cell types in the upper block (BC5o,
BC5i, BC5t, and XBC) showed similarly strong surround suppression,
with responses to 800μmspots reduced to 34%± 9.8% of responses to
150 μm spots (Fig. 3a). By contrast, spatial receptive fields diverged
among axons in the lower block (Kruskal-Wallis one-way ANOVA,
p <0.01, χ2 = 9.64, η2 = 0.48, df = 2). BC7 axons exhibited extreme sur-
round suppression, inverting their responses to spots ≥400μm in
diameter (Fig. 3a–c), whereas BC6 and BC8/9 showed more moderate
surround suppression than BC7 and axons in the upper block
(Fig. 3a–c). The diversity of temporal and spatial tuning in the upper
and lower block, respectively, was further supported by pairwise
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Fig. 1 | Labeling andmorphological classification of ONbipolar cells. aDiagram
illustrating intravitreal injection (left), the adeno-associated virus (AAV) constructs
carrying Grm6 promoter elements, Cre recombinase genes (middle), and the con-
ditional allele of theAi148mouse strain (right). This allele features aTRE2promoter,
loxP-flanked STOP cassettes followed by GCaMP6f, and then a CAG promoter,
lox2272-flanked STOP cassette, and tTA2. b The main dark-shaded branch depicts
the number of mice and bipolar cells that met quality-control criteria during each
data collection phase, while the lighter subsidiary branches detail the criteria for
data rejection, with branch widths representing the number of rejections; the
widths of the twoblocks at left and center are proportional to the numbers ofmice,
right block is proportional to the number of cells. c Top, middle, and bottom
images showcase en-face views of dendrites and axons, and side view of the inner
plexiform layer (IPL), respectively. Co-stains include cone arrestin (CAR) in blue,

labeling cone photoreceptor, and choline acetyltransferase (ChAT) in magenta,
marking starburst amacrine cells. Scale bars (shared for axon and IPL images) are
included. The swarm chart shows dendritic territories with (d) listing bipolar cell
types and counts as BC5o (n = 7), BC5i (n = 7), BC5t (n = 5), XBC (n = 7), BC6 (n = 6),
BC7 (n = 9), BC8/9 (n = 4) and axonal territories (e) as BC5o (n = 7), BC5i (n = 6), BC5t
(n = 5), XBC (n = 8), BC6 (n = 7), BC7 (n = 9), BC8/9 (n = 4). BC5o and BC5i differ-
entiation is based on the number of cones contacted18, shown in the inset. f IPL
stratification profiles of all ON bipolar cell types, BC5o (n = 6), BC5i (n = 5), BC5t
(n = 5), XBC (n = 6), BC6 (n = 6), BC7 (n = 8), BC8/9 (n = 3). The graph has seven
color-coded traces, indicating the mean (±SEM). g This denotes the correlation
coefficient of paired bipolar cell stratification profiles from connectomic
reconstructions8. Source data for this figure are provided as a Source Data file.
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comparisons of differences in response transience and surround
strength between different-type bipolar cells in each block (Fig. 3d).

Some ON bipolar cells express voltage-gated sodium
channels9,50,51, raising the question of whether fire action potentials
(i.e., spikes)43. If ON bipolar cells spike, we would expect response
amplitudes to have binomial distributions and spontaneous spike
events to occur occasionally when the light is off43. All ON bipolar cell
types showed continuous response amplitude distributions to spots of
varying size, and we observed no spike events during the OFF phase of
these stimuli across 3215 trials in 49 bipolar cells (Supplementary
Fig. 7). Thus, the ON bipolar cells in our recordings did not spike.

When we measured the functional distances between ON bipolar
cells in the spatiotemporal response maps (Fig. 3b), we found that
most types differed significantly from each other (Fig. 3e). Similarly,
most bipolar cells were correctly assigned to their morphological type
by a functional distance-based classifier in a leave-one-out cross-
validation test (Fig. 3f). The only outlier was BC5t, frequently misas-
signed to sustained types in the lower block. This could be corrected
by including information about stratification depth in the classifier
(Fig. 3f, g). The resulting simple classifier performed remarkably well
(29–89% correct, chance level: 14.3%).

The encoding space of ON bipolar cells for artificial stimuli
The ability to reliably identify ON bipolar cell types with a simple
classifier derived from observations of isolated axons allowed us to
record simultaneously from populations of bipolar cells labeled by
crossing Grm6-Cre to Ai148mice35,52 and address questions about their
encoding space that require more data.

We segmented two-photon imaging series from the IPL of Grm6-
Cre Ai148mice by finding peaks in the temporal standarddeviation.We
grew regions of interest (ROIs) radially from these peaks until theymet
pixels of neighboring ROIs or fell below a threshold for inclusion
(Fig. 4a, median ROI size: 1.72μm2). We measured the correlation of
ROIs’ responses to repetitions of the same stimulus and rejected non-
responsiveROIs (i.e., ROIswith low repeat reliability).We thenused the
classifier derived from our recordings of morphologically identified
cells to assign responsive ROIs to specific cell types (Fig. 4a). Statistical
outliers with low classification probabilities were removed (<2% of
ROIs). For each imaging series, ROIs assigned to the same cell type (by
unsupervised k-means clustering) were combined and added as a
single data point to our set (see Methods).

To analyze the encoding space across all ON bipolar cells in the
augmented data set, combining single-cell and population record-
ings, we performed a nonmetric multidimensional scaling (MDS)
analysis on the responses to spots of varying size. The first two
principal coordinates accounted for most of the variation in the data
(Supplementary Fig. 8). To test the potential impact of interexperi-
mental variations (i.e., batch effects)53 on this analysis, we split data
sets into two and calculated the Jensen-Shannon divergence (JSD) of
the resulting distributions (see Methods). Repeating this for 2000
different splits, we found that the JSDs did not differ significantly
from zero (p = 0.32), indicating that batch effects did not shape the
encoding space defined by the first two principal coordinates (Sup-
plementary Fig. 9).

We next examined the positions of different cell types in the
encoding space (Fig. 4b, c). Most cell types occupied distinct but
overlapping regions, indicating that parallel pathways encode dif-
ferent information (Fig. 4b, c). To gain further insights into the fea-
tures encoded in the space, we calculated indices of surround
strength and response transience for each cell in the data set. Map-
ping surround strength and response transience onto the encoding
space (Fig. 4d, e) revealed that they define nearly orthogonal axes
organizing the data (Supplementary Fig. 10). To quantify how closely
cell positions in the encoding space aligned with gradients in sur-
round strength and response transience, we calculated the angles
between the average vector of all pairs of cells (n = 41,965) vs. 90-pair
subsamples (0.21%) in Monte-Carlo simulations (Fig. 4d, e). Most
subsample vectors fell within 20° of the population (99.8% for sur-
round strength and 76.4% for transience), indicating that the two
axes explain most of the variation between ON bipolar cells and
define their encoding space. Furthermore, the positions of bipolar
cell types in the upper block (BC5o, BC5i, BC5t, and XBC) varied
predominantly along the axis defined by response transience,
whereas bipolar cell types in the lower block (BC6, BC7, and BC8/9)
differed in their placement along the axis defined by surround
strength (Fig. 4b–e).

Thus, an unbiased analysis of the encoding space of ON bipolar
cells revealed that differences in their responses to an artificial sti-
mulus aredominatedby differences in spatial and temporal tuning and
confirmed the organization of ON bipolar cells into two blocks that
distribute encoding of temporal (the upper block) and spatial infor-
mation (the lower block), respectively.
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The cell-type-specific responses of ON bipolar cells to natur-
alistic stimuli
To explore how ON bipolar cells encode naturalistic stimuli indi-
vidually and as a population, we first acquired movies from a
mouse’s perspective. We mounted a camera (1080 p, 60 fps) on a
rolling support frame an inch off the ground pitched at an angle

matching the mouse’s fixation position (Supplementary Fig. 11)54.
We then moved the camera at speeds matching the locomotion of
mice through diverse environments, interspersed by periods of
quiescence (Supplementary Fig. 11)55,56. We calibrated and cor-
rected distortions in visual angle from the camera (Supplemen-
tary Fig. 11).
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(expressed as 1� correlation coef f icient) for each pair of bipolar cell types. Sta-
tistical significance in the upper triangle is denoted by asterisks (* p <0.05, **
p <0.01, *** p <0.001). Two-sided permutation tests were performed, and their
p-values were adjusted for multiple testing by controlling the false discovery rate
(FDR) at a threshold of <0.05. f Leave-one-out classification tests based on func-
tional similarity are highlighted in light brown font, whereas those incorporating
depth information are in black. g Details the corresponding classification errors.
With themaximumprobability approach, each test cell is assignedone of the seven
possible types, yielding an expected chance level of 14.3%. g Classification prob-
abilities for each bipolar cell type. Rows represent the test cell under consideration,
while columns indicate classification outcomes. Diagonal entries reflect correct
classifications, with other areas indicating misclassifications. Source data for this
figure are provided as a Source Data file.
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We showed two to four repeats of 11 representative clips
(9.8–11.5 s) from these movies to each bipolar cell (Fig. 5a). For all cell
types, the luminance within the receptive field center (200ms before
the present) accounted for a majority of the response variance within
the limits of repeat reliability (Fig. 5b). Despite this shared encoding of
local luminance, ON bipolar cell types differed significantly in their

responses to naturalistic stimuli. This was evident from visual inspec-
tion of their average response traces (Fig. 5a) and statistical analyses of
their correlation distances (Fig. 5c).

Wemapped the encoding spaceofONbipolar cells for naturalistic
stimuli using a nonmetric multidimensional scaling analysis (MDS,
Fig. 5d). Similar to our analysis of a simple artificial stimulus (i.e., spots
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of varying size), the first two principal coordinates (MDS1 and 2)
dominated the variation between the responses of ON bipolar cells
(Supplementary Fig. 8). Different ON bipolar cell types, occupied
overlapping but distinct areas in the encoding space, indicating that

they convey different information about naturalistic stimuli (Fig. 5c).
Furthermore, ONbipolar cells in the upper (except for BC5t) and lower
block were found in separate sections of the encoding space and
seemed to vary along different axes (Fig. 5d).

Fig. 4 | Feature encoding from artificial stimuli across ON bipolar cells.
a Schematic representation of the data augmentation process for classifying
additional ROIs from calcium images of ON bipolar cell terminals, acquired from
Grm6-Cre Ai148 mice. This classification leverages morphologically identified
bipolar cells in conjunction with the scanning depth of the IPL. A semi-manual
morphological segmentation approach is utilized, relying on the standard devia-
tion of each pixel over time. To ensure diverse sampling, optimal k-means clus-
tering is employed to group functionally similar segments. Classification hinges on
the closest functional similarity and IPL profile match from the identified bipolar
cell types. Following this, depth and functional probability maps are arranged
based on the classification of the seven distinct bipolar cell types. Outliers are
highlighted in black and excluded (<2% of ROIs, see Methods). b The encoding
space, informed by both functional and morphological data, uses the first two
coordinates from nonmetric multidimensional scaling (MDS1 and MDS2) for
representation. The x and y axes are set to these coordinates. Individual bipolar cell

types are differentiated by color-coding: BC5o (n = 45), BC5i (n = 40), BC5t (n = 45),
XBC (n = 10), BC6 (n = 61), BC7 (n = 54), BC8/9 (n = 35). c Presents the distance
matrix (the distance in the first three primary coordinates of the encoding space for
artificial stimuli) for each bipolar cell type pairing. Asterisks in the upper triangle
indicate statistical significance (* p <0.05, ** p <0.01, *** p <0.001). Two-sided
permutation tests were performed, p-values have been adjusted for multiple test-
ing by controlling the false discovery rate (FDR) at a threshold of <0.05. d Left: The
encoding space from (b) is overlaid with each ROI’s surround strength. Gradient
colors encode the value of the surround strength. Top right: A probability dis-
tribution captures the angular relationships between subsampled paired vectors
(90 pairs or 0.21%) and the collective paired vector angles for surround strength (as
detailed in Methods). Bottom right: Each MDS coordinate’s variance contribution
to surround strength is charted. e This panel parallels (d) but for response tran-
sience. Source data for this figure are provided as a Source Data file.
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Fig. 5 | ON bipolar cell responses and encoding space for naturalistic stimuli.
a Color-coded traces of the responses (mean ± SEM) of ON cone bipolar cell types
to naturalistic movie clips ranging from 9.8 to 11.5 s in duration. Sample sizes as
follows: BC5o (n = 38), BC5i (n = 20), BC5t (n = 33), XBC (n = 7), BC6 (n = 36), BC7
(n = 28), BC8/9 (n = 23). Responses to eight of 11movie clips are shown, as identified
below the representative frames. b The variance of bipolar cell responses to nat-
uralistic stimuli is dominated by local luminance. Bar charts depict the mean, with
error bars representing ±SEM. Sample sizes as follows: BC5o (n = 31), BC5i (n = 16),
BC5t (n = 21), XBC (n = 7), BC6 (n = 21), BC7 (n = 20), BC8/9 (n = 18). Not all ROIs in
(a) were repeated at least twice. The repeat reliability, visualized as a black line, is
derived from the squared correlation coefficient between two repeated response
sets. This can be less than the explained variance, which is based on the squared
correlation coefficient between averaged responses from repeats and the preced-
ing 200ms luminance trace. The explained variance and repeat reliability of each
individual data point in the samples can be found in the Source Data. c Distance

matrixwithdistancemeasured as 1� correlation coef f icient betweeneachbipolar
cell type pair. Statistical significance is marked in the upper triangle by asterisks
(* p <0.05, ** p <0.01, *** p <0.001), with sample sizes consistent with (a). Impor-
tantly, ROI classification was based on responses to spot stimuli, not naturalistic
stimuli to avoid circularity.d The encoding space, calculated by response variances
to naturalistic stimuli, is presented with the first two coordinates of nonmetric
multidimensional scaling (MDS1 and MDS2) as defined in the x and y axes. Distinct
bipolar cell types are demarcated and color-coded, maintaining the counts from
(a).eThedistancemeasure in the first three primary coordinatesof encoding space
between each bipolar cell type pair. The upper triangle denotes statistical sig-
nificance (* p <0.05, ** p <0.01, *** p <0.001) with sample sizes matching those in
(a). For (c, e), two-sided permutation tests were performed, and their p-values have
been adjusted for multiple testing by controlling the false discovery rate (FDR) at a
threshold of <0.05. Source data for this figure are provided as a Source Data file.
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Distributed encoding of naturalistic stimulus features acrossON
bipolar cells
To explore how visual features of natural environments are organized
across ON bipolar cells, we calculated several parameters (i.e., local
luminance, spatial contrast, temporal contrast, motion coherence, and
in-center contrast) of naturalistic stimuli within the receptive field
center (and surround) over time and measured the influence of these
parameters on the neuronal responses (Fig. 6a). To extract parameters
from the correct areas of naturalistic movies, we first mapped the
receptive field of each cell by reverse correlating its responses to a
binary checkerboard white noise stimulus (Supplementary Fig. 12)57.
We then confirmed that slight variations in the receptivefield positions
from the center of the stimulus display in our data (95% of ON bipolar
cells had receptive field centerswithin 18.3 µmfromthe display center)
did notmeaningfully affect the parameters extracted from naturalistic
movies (Supplementary Fig. 13).

Whenweoverlayed the feature sensitivities for naturalisticmovies
on the encoding space of ON bipolar cells, we found that spatial con-
trast (i.e., luminancedifferences between the receptivefield center and
surround) and temporal contrast (i.e., temporal luminance changes in
the center and surround) accounted for differences between ON
bipolar cell responses (Fig. 6b, c). Spatial and temporal contrast

sensitivity for naturalistic stimuli are analogous to surround strength
and transience, respectively, measured for responses to spots of
varying size (Fig. 4). ONbipolar cell axons in the upper blockdiverge in
their sensitivities to temporal contrast of naturalistic movies (Supple-
mentary Fig. 14), whereas ON bipolar cell axons in the lower block
differed in their sensitivities to spatial contrast (Supplemen-
tary Fig. 14).

Differences in spatial contrast sensitivity dominated the first
principal coordinate of the encoding space (Fig. 6b), whereas temporal
contrast sensitivity was distributed across the first three principal
coordinates (Fig. 6c), highlighting the independent distributed
encoding of spatial and temporal information across bipolar cells
(Supplementary Fig. 10). In addition, sensitivity to coherent motion
through the receptive field contributed to variation in the first and
second principal coordinates (Fig. 6d). The angle of variation in
coherent motion sensitivity across the encoding space diverged from
that for spatial (35.2°) and temporal contrast sensitivity (20.3°, Sup-
plementary Fig. 10). Consistentwith this observation, coherentmotion
sensitivity varied across bipolar cell types in the upper and lower block
(Supplementary Fig. 14, Kruskal-Wallis one-way ANOVA, p <0.001,
ƞ2 = 0.24). There was little correlation between coherent motion and
temporal (R2 = 0.00014) or spatial contrast (R2 = 0.023), indicating that
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Fig. 6 | Feature encoding from naturalistic stimuli across ON bipolar cells.
a Traces of five stimulus features, as identified above each trace, derived from 11
movie clips. b Spatial contrast sensitivity of each ROI color-coded onto the
encoding space (Top: first and second principal coordinates, uppermiddle: second
and third principal coordinates). Lower middle represents the probability dis-
tribution of angles, derived from subsampled paired vectors (constituting 90 pairs
or 0.53%) in relation to the sum of all paired vectors for spatial contrast sensitivity

(see Methods). Bottom, variance in spatial contrast sensitivity explained by each
MDS coordinate. c Analogous to (b) for temporal contrast sensitivity. d Analogous
to (b) for coherent motion sensitivity. e Analogous to (b) for in-center contrast
sensitivity. The total ROI counts for each panel are as follows: (b) n = 185, (c) n = 185,
(d) n = 185, and (e) n = 162. ROIs with repeat reliability (R2) < 0.2 were omitted from
the analysis in (e). Source data for this figure are provided as a Source Data file.
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they are statistically independent features of naturalistic movies mul-
tiplexed in the stimulus encoding of the ON bipolar cell population.

Some bipolar cells in salamanders integrate spatial information
within their receptive fields nonlinearly58. Nonlinear integrationmakes
bipolar cells sensitive to spatial contrast in their receptive field center
(i.e., in-center contrast). We found limited sensitivity to in-center
contrast in mouse ON bipolar cells and no significant impact of this
parameter on their joint encoding space (Fig. 6e).

Thus, the distributed encoding of spatial and temporal contrast
features in complementary blocks ofONbipolar cell types is conserved
from artificial to naturalistic stimuli. Motion provides an independent
feature of naturalistic stimuli that is distributed acrossON bipolar cells
in both blocks.

Homogeneous processing of naturalistic stimuli in individual
bipolar cell axons
Having analyzed the distribution of visual information across parallel
pathways composed of different ONbipolar cell types,wenext wanted
to test whether the axon arbors of individual bipolar cells respond to
naturalistic stimuli homogenously or heterogeneously to understand if
subcellular processing further diversifies and organizes visual infor-
mation of bipolar cells in the inner retina or if their axon arbors can be
considered computational units. We anatomically segmented axon
arbors into ROIs isolating presynaptic boutons (Fig. 7a). Figure 7b
shows representative responses of three ROIs of individual axon
arbors to two repeats of four naturalistic movie clips for all ON
bipolar cell types. Pairwise analyses of ROIs in the same arbor
revealed that, within stimulus repeats, responses were highly corre-
lated (i.e., overall high correlation coefficient of orange dots in
Fig. 7c, d). ROI pairs with lower correlation coefficients invariably had
lower repeat reliability in their stimulus responses, indicating that
the respective traces were shaped by noise or spontaneous activity
(i.e., most orange dots are confined to the upper left quadrants in
Fig. 7c). Similarly, comparing the responses of ROI pairs to different
stimulus repeats showed that correlation coefficients closely fol-
lowed repeat reliability (i.e., purple dots in Fig. 7c cluster around the
unity diagonal). Together these results suggest that light responses
are uniform across axon arbors and that heterogeneities in axonal
calcium transients result from noise or spontaneous activity. This
finding held for all ON bipolar cell types.

True heterogeneity of light responses within axon arbors would
be expected to increase with the distance between the ROIs examined.
We observed no distance dependence in the correlation coefficients of
ROI pairs, neither within stimulus repeats nor across (Fig. 7d). Finally,
we estimated the length constants of signal integration in ON bipolar
cell axons by modeling the expected pairwise correlations and com-
paring them to our observations (Fig. 7e). For all ON bipolar cell types,
the estimated length constants were longer than the equivalent dia-
meter of their axon arbors, independent of whether the ROI distances
were measured along the axon path or within the imaging plane
(Fig. 7e). Thus, ON bipolar cell axons homogenously process natur-
alistic stimuli and can be considered computational units.

Homogenousprocessingof artificial stimuli in individual bipolar
cell axons
We found that bipolar cells distribute spatial and temporal information
encoding across complementaryblocksofON types (Figs. 2–6). To test
whether spatial or temporal information varies systematically across
individual axon arbors, we compared ROI responses to spots of dif-
ferent sizes (Fig. 8). Figure 8a, b show anatomical segmentations and
ROI responses of representative bipolar cells of all ON types. Pairwise
analyses revealed that neither variations in the ROIs’ surround
strengths (Fig. 8c) nor response transience (Fig. 8d) depended on the
distance between ROIs along the axon path or within the imaging
plane. This finding held for all ON bipolar cell types.

Thus, the axons of individual ON bipolar cells do not subcellularly
organize spatial or temporal information but respond homogeneously
to naturalistic and artificial stimuli.

Discussion
We examined how retinal ON bipolar cells extract and organize
information from artificial and naturalistic stimuli by imaging calcium
transients in their axon arbors, which integrate photoreceptor signals
conveyed from the dendrites with local input from amacrine cells. Our
results support the following main conclusions. (1) ON bipolar cells
generate distributed representations of temporal and spatial stimulus
features in two blocks of four cell types. (2) The axons of the ON
bipolar cell types jointly encoding temporal vs. spatial information
separate laminarly in the IPL (upper block: temporal information,
lower block: spatial information). (3) ON bipolar cells extract and dis-
tribute temporal and spatial features similarly for artificial stimuli and
naturalistic movies. (4) For naturalistic movies, ON bipolar cells vary
systematically in their responses to coherent motion. (5) Motion
information is distributed across theONbipolar cell types in the upper
and the lower block, multiplexed with the encoding of temporal and
spatial contrast, statistically independent features of natural environ-
ments. (6) The axon arbors of individual ON bipolar cells (of all types)
respondhomogeneously to artificial andnaturalistic stimuli, indicating
that they function as computational units.

We reach these conclusions based on functional recordings of
morphologically identified bipolar cell types. Function-agnostic clas-
sification with a decision tree avoids circularity, geometric biases of
clustering algorithms, and oversights from undersampling59–62. It
allowed us to discover a previously unknown division of the ON
pathway into two blocks that distribute temporal and spatial infor-
mation encoding, respectively. From our recordings of morphologi-
cally identified bipolar cells, we derived a simple classifier (based on
function and IPL depth) that allowed us to augment our data with
population recordings, leveraging their higher throughput to address
questions that required more data. This sequential approach, using
morphologic (or genetic) identification of cell types for targeted
recordings of individual neurons to derive a functional classifier for
analyses of large-scale population recordings, could help analyze
information processing and distribution in other parts of the nervous
system.

Analyses of published serial EM reconstructions8,12,40 and our light
microscopy data revealed that ON bipolar cell axons stratify in two
blocks of four types (Fig. 1). The upper block comprises BC5o, BC5i,
BC5t, and XBC, and the lower block BC6, BC7, BC8, and BC9. Axons
within each block overlap extensively and likely converge on post-
synaptic targets, whereas axons in different blocks likely innervate
different partners. It has been reported that bipolar cell axons strati-
fying toward the center of the IPL respond more transiently to light
steps than axons stratifying toward the edges6,11,43–47. Our data recapi-
tulate this overall trend (Fig. 3). More importantly, they reveal that
temporal tuning is diverse within the upper block and uniform in the
lower block of ON bipolar cells. In the upper block, XBC has higher and
BC5t lower frequency cut-offs than the other bipolar cell types (Fig. 2),
whereas all types in the lower block filter temporal frequencies with
similar cut-offs (Fig. 2). Responses to light steps range from transient
(XBC) to sustained (BC5t) in the upper block, whereas all types in the
lower block exhibit sustained responses (Fig. 3). Finally, MDS analyses
revealed that ON bipolar cells in the upper but not in the lower block
distribute the encoding of temporal information extracted from arti-
ficial and naturalistic stimuli across types (Figs. 4, 6, 7). Ichinose et al.
characterized the temporal tunings of ON bipolar cells by patch-clamp
recordings23. Their findings matched ours for some types (e.g., XBC)
but not for others (e.g., BC7)23. Ichinose et al. recorded somatic vol-
tages in the presence of inhibitory synaptic blockers to isolate the
dendritic processing of photoreceptor signals23. Thus, consistencies in
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ourfindings suggest that dendritic processing of photoreceptor inputs
dominates the axonal responses of the respective bipolar cell types. In
contrast, discrepancies likely reflect the local influence of amacrine
cells on others.

Few previous studies analyzed the spatial tuning of ON bipolar
cells, with varying results. Some reported homogenous surround
strengths11,63, whereas others observed diversity but either focused on
individual cell types64 or combined the results of many24. All studies so
far have been restricted to artificial stimuli. We analyzed the spatial
processing of artificial and naturalistic stimuli across all ON bipolar

cells. We found that surround strengths were uniformacross cell types
in the upper block but varied widely between cell types in the lower
block (Fig. 3). Furthermore, MDS analyses revealed that ON bipolar
cells in the lower but not in the upper block distribute the encoding of
spatial information extracted from artificial and naturalistic stimuli
across types (Figs. 4, 6, 7). Thus,we uncover a neworganizing principle
of the ON pathway, its division into two laminar blocks in the IPL that
distribute the encoding of temporal and spatial information across
their constituent cell types. It will be interesting to test whether this
organization is conserved acrossmammals, like the laminar separation
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of ON and OFF pathways6, and if the OFF pathway mirrors the ON
pathway’s division of temporal and spatial information. Anatomically,
the OFF pathway shows a similar separation into two blocks of axons
(upper: BC1A, BC1B, and BC2; lower: BC3A, BC3B, and BC4)8,40,65.

In each ON pathway block, two cell types showed similar spatio-
temporal feature preferences: BC5i and BC5o in the upper block and
BC8 and BC9 (which we combined in our analyses) in the lower block.
Interestingly, BC5i axons were recently shown to signal the orientation
of visual stimuli, preferring vertical over horizontal edges26. Similarly,
BC9 selectively contact true S-cones throughout the retina to convey
chromatic information31,38. Thus, orthogonal features are added to the
distributed encoding of temporal and spatial luminance contrast in the
two ON pathway divisions. Why orientation-selective signals are
groupedwith the temporal channel and color-selective signalswith the
spatial channel remains to be explored.

We find that ON bipolar cell responses to naturalistic stimuli are
dominated by local luminance (Fig. 5) and that ON bipolar cells simi-
larly distribute the encoding of spatial and temporal contrast infor-
mation for artificial andnaturalistic stimuli across cell types (Figs. 2–6).
Thus, the inner and outer retinal circuits that control bipolar cell
activity appear to function similarly under artificial and naturalistic
stimulus conditions. Because of increasingly complex neural interac-
tions, the same does not hold for ganglion cells, postsynaptic targets
of bipolar cells and the output neurons of the eye66,67.

In addition to luminance (shared), spatial and temporal contrast
(distributed across the upper and lower block, respectively), ON
bipolar cells extract motion information from naturalistic stimuli
(Fig. 6). Sensitivity to coherent motion is distributed across cell types
in both blocks, multiplexed with differences in temporal contrast
sensitivity (Figs. 5, 6). Motion sensitivity is higher in the upper block
(Supplementary Fig. 9), which aligns with the dendritic stratification of
ganglion cells that encode different speeds and trajectories of object-
and self-motion1,68–70. In the salamander retina, some bipolar cells
integrate spatial information nonlinearly, driving responses to con-
trast within their receptive field center58. In mice, we find no evidence
for nonlinear spatial integration of naturalistic stimuli among ON
bipolar cells (Fig. 6). Thus, the sensitivity to spatial contrast in the
mouse retinal output (i.e., the receptive field subunits of ganglion
cells71–73) is likely limited by the size of bipolar cell receptive fields.

Another crucial organizational question is whether the axon
arbors of individual ON bipolar cells are divided into functionally dis-
tinct regions or operate as computational units. Subcellularprocessing
and differential distributions of visual information are common in
neurite arbors of amacrine cells32,36,74–76. Recently it has been suggested
that the same may apply to the axon arbors of bipolar cells, which
could greatly expand the number of parallel pathways in the inner
retina25,42,77. However, other studies indicated that bipolar cell axons
process visual information homogeneously11,64,78,79. We surveyed how
axon arbors of all ON bipolar cells integrate artificial and naturalistic
stimuli (Figs. 7, 8). We find no evidence for local processing in com-
paring responses across axon arbors, and our modeling indicates that
the length constants of integration exceed the equivalent diameter of

axon arbors. These findings held for all ON bipolar cell types. Thus, we
conclude that bipolar cell axons function as computational units.
However, it remains possible that the output of axon arbors is diver-
sified by local synaptic or neuromodulatory influences on the release
machinery79.

Our insights into the organization of visual information about
natural environments with assignments to specific morphologically
identified ON bipolar cell types, in conjunction with progress in retinal
connectomics8,12,40,65,80–82, should advance biologically plausible/rea-
listic circuit models for understanding retinal computations, a long-
standing goal of vision science6,83.

Methods
Animals
Throughout this study, we used mice expressing the genetically
encoded calcium indicator GCaMP6f in aCre-dependent tTA-amplified
manner (Ai148mice)35,36. We subretinally injected Ai148micewith AAV-
Grm6-Cre or crossed them toGrm6-Cremice52 for sparse and denseON
bipolar cell targeting, respectively. For subretinal AAV injections,
mouse pups (postnatal days four to six) were anesthetized on ice, and
200nL AAV-Grm6-Cre was delivered into the subretinal space with a
Nanoject II injector (Drummond). For two-photon imagining, we iso-
lated retinas from adult mice of either sex. Data frommorphologically
identifiedONbipolar cells included in this studywereobtained from41
mice (22 females, 19 males) with an average age of 2.9 ± 0.6 (standard
deviation) months. We observed no sex-specific differences in our
results and, therefore, combined data from males and females. Mice
were housed on a 12-h light/12-h dark cycle. Behavioral experiments
were conducted at 20–21 °C with 30–50% humidity levels. All proce-
dures in this studywere approved by the Animal Studies Committee of
Washington University School of Medicine (Protocol # 23-0116) and
performed in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals.

Adeno-associated viruses
Viral particles were packaged and purified as previously described in
refs. 84,85. Briefly, AAV1/2 chimeric virions, which readily infect
bipolar cells86, were produced by co-transfecting HEK293 cells with
pAAV-Grm6-Cre, in which four repeats of a 200 bp Grm6 promoter
element87,88 drive expression of Cre recombinase, and helper plasmids
encoding Rep2 and the Caps for serotypes 1 and 2. Forty-eight hours
post-transfection, we collected the cells and their surrounding fluid.
We then purified viral particles via heparin affinity columns (Sigma).

Immunohistochemistry
After two-photon calcium imaging, the retinas were transferred to
membrane disks (HABGO1300,Millipore) and fixed for 30minwith 4%
paraformaldehyde in mACSFHEPES containing (in mM): 119 NaCl, 2.5
KCl, 1.3MgCl2, 1 NaH2PO4, 2.5 CaCl2, 11 glucose, and 20HEPES, with pH
adjusted to 7.37 using NaOH. To prepare for immunostaining, retinas
were cryoprotected in 10% sucrose in PBS for 1 hr at RT, 20% sucrose in
PBS for 1 hr at RT, and 30% sucrose in PBS overnight at 4 °C. We then

Fig. 7 | Subcellular responses of ON bipolar cells to naturalistic stimuli.
a Representative images of segmented bipolar axonal arbors of all cell types.
Functional imaging plane outlined in red on top of the anatomical z-stack for path
distance measurement based on 3D skeleton reconstruction. Colors differentiate
morphologically separate ROIs. Numbers indicate the three ROIs whose responses
are shown in (b). 10-μm scale bars are included. b Response traces from the three
representative ROIs in (a) to naturalistic stimuli. Two repeats (first: blue; second:
green) of four representativemovie clips for the individual ROIs and the averageoff
all ROIs (gray) are shown. c Scatterplots of the repeat reliability for eachROI pair vs.
their within-repeat (orange) cross-repeat (purple) correlation coefficients. Calcu-
lations were performed on a per-movie-clip basis. d Scatter plots of the path dis-
tance between ROIs from 3D-reconstructed axon arbors vs. their within-repeat

(orange) cross-repeat (purple) correlation coefficients. e Top: The correlation
coefficient between observed data and projected data, charted as a function of the
length constant reliant on path distances measured in 3D reconstructions (see
Methods); the traces (shaded areas) indicate the mean (±SEM) of the correlation
coefficient. Dashed vertical lines indicate the equivalent diameter of axon arbors of
bipolar cells of the respective types. Sample sizes as follows: BC5o (n = 3), BC5i
(n = 2), BC5t (n = 2), XBC (n = 2), BC6 (n = 2), BC7 (n = 2), and BC8/9 (n = 1). Bottom:
mirroring top but using Euclidian distances between ROIs rather than on-path
distances (top). Samples sizes as follows: BC5o (n = 11), BC5i (n = 5), BC5t (n = 2),
XBC (n = 4), BC6 (n = 5), BC7 (n = 7), and BC8/9 (n = 4). Source data for this figure
are provided as a Source Data file.
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freeze-thawed the retinas three times to enhance permeability, after
which they were washed three times for 10min each in PBS, blocked
with 10%normal donkey serum in PBS for 2 h at RT, and incubatedwith
primary antibodies for 5 days at 4 °C. We used the following primary
antibodies in this study: chicken anti-GFP (1:1000, ThermoFisher,
RRID:AB_2534023), rabbit anti-cone arrestin (CAR, 1:1000, Millipore,
RRID:AB_1163387), and goat anti-choline acetyltransferase (ChAT,

1:200, Millipore, RRID:AB_11213095). After primary antibody incuba-
tion, we washed retinas three times for 10min each in PBS at RT and
stained with secondary antibodies conjugated with Alexa 488 (1:1000,
anti-chicken IgY, ThermoFisher, RRID:AB_2534096), Alexa 568 (1:1000,
anti-rabbit IgG, ThermoFisher, RRID:AB_2534017), and Alexa 633
(1:1000, anti-goat IgG, ThermoFisher, RRID:AB_2535739) overnight at
4 °C. Following another three 10-min PBS washes, the retinas were
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mounted in Vectashield medium (Vector Laboratories,
RRID:AB_2336789).

Confocal imaging and bipolar cell classification
Confocal images of bipolar cells were acquired on an FV1000 laser
scanning microscope (Olympus) with a 60× 1.35 NA oil immersion
objective (Olympus). Image stacks were captured at a voxel size of
0.066–0.3μm (x/y – z axes). For the anatomical analysis, image stacks
were projected using Fiji → Image → Stacks → Z Project, then axon and
dendrite territories were measured using Fiji → Analyze →Measure. For
stratification profiles in the IPL, side view of image stacks was first
processed using Fiji → Image → Stacks → Reslice [/] → Z Project, then
fluorescence intensity of axon wasmeasured using Fiji→ Analyze→ Plot
Profile along the IPL distance, whose boundaries were defined by the
somas of OFF- and ON- starburst amacrine cells respectively with ChAT
staining. For each axon, intensity at each IPL distance / the highest
intensity (%) (Y%) was calculated, binned, and plotted with MATLAB
(The Mathworks). Bipolar cells were classified into their well-known
types by axon territories and stratification profiles in the IPL, and den-
dritic territories and thenumber of cone contacts in theouter plexiform
layer using a classification tree (Supplementary Fig. 1)12,18,89,90.

Stratification analysis
We computed paired correlation coefficients between the IPL profiles
of different ON bipolar cell types measured in large-scale EM
reconstructions8 to assess their division into upper and lower blocks,
respectively.

Two-photon imaging
Two-photon imaging was performed on a custom-built upright
microscope (Scientifica) controlled via the Scanimage r3.8 toolbox in
MATLAB. Data were acquired using a DAQ NI PCI6110 board (National
Instruments). The genetically encoded calcium indicator GCaMP6f 91

was excited with a Mai-Tai laser tuned to 930nm, and its fluorescence
emission was collected through a 60×1.0 NA water immersion objec-
tive (Olympus). To prevent the visual stimulus light (peak: 385 nm)
from hitting the photomultiplier tube, we captured fluorescence
through a sequence of filters (1: 450-nm long-pass, Thorlabs; 2:
513–528 nm band-pass, Chroma). Two-photon timeseries were
acquired at 9.5Hz for responses to varying size spots, naturalistic
movies, and checkerboard white noise stimuli and at 37.9 Hz for
frequency-modulated spots. The average pixel density was 18.4 pixels/
μm² (8.19–26.2 pixels/μm2). All recordings were made >500 µm from
the injection site to avoid complications associated with potential
retinal detachments from subretinal injections. Before each visual sti-
mulus, the retina was adapted to laser scanning for 30 s. All images
were acquired in the ventral retina, where S-opsin is dominant39.
Throughout the experiments, retinas were perfused at a rate of ~6mL/
min with 33 °C mACSFNaHCO3, containing (in mM) 125 NaCl, 2.5 KCl, 1
MgCl2, 1.25 NaH2PO4, 2 CaCl2, 20 glucose, 26 NaHCO3, and 0.5 L-glu-
tamine, equilibrated with a 95% O2 and 5% CO2 mixture.

Image preprocessing
During two-photon imaging, we simultaneously acquired transmitted
light and fluorescence signals to detect z-axis displacements. Image

series that exhibited such displacements were excluded from further
analyses. For the remaining series without z-axis drift, images were
registered using MATLAB’s built-in image registration function,
restricted to rigid translation between frames. The translation matrix
was estimated based on the transmitted light images and applied to
both the transmitted light and fluorescence images. Following suc-
cessful registration, we applied a 3D median filter (3 × 3 × 3-pixel ker-
nel) to the fluorescence signal to counteract acquisition noise. An
initial threshold was set for pixel inclusion in subsequent analyses to
capture the top 75% of pixels in standard deviation over the recording
time. This automated thresholding was refined by manual visual
inspections, aiming to isolate signals from bipolar cell terminals and
remove background noise. Responses from eligible pixels were epo-
ched by each stimulus condition. For varied-size spots and frequency-
modulated spot stimuli, the average response from 0.5 s before sti-
mulus onset was subtracted as a baseline correction.

Morphological ROI segmentation
We employed a semi-automated process based on the temporal
standard deviation of the calcium images to morphologically segment
bipolar cell images into ROIs. Segmentation involved the following
steps: First, local peaks were identified using a threshold. Initially, this
threshold is set at the 75thpercentileof all pixel values. It was thenfine-
tuned based on visual inspection. Second, ROIs are grown from local
peaks, assigning each above-threshold pixel to its nearest peak while
ensuring a continuous connection. Third, if visual inspection indicated
that further segmentation was necessary, new ROIs were manually
added. The center of such a newly added ROI was determined by the
peak position among the 12 nearest pixels to the manually assigned
ROI location. Once added, the segmentation process was recalculated
to integrate the new ROI. Fourth, after the segmentation, each pixel in
the 2D image—having collapsed the time dimension—was assigned an
ROI number based on the segmentation. Pixels not included in any ROI
were set to zero, excluding them from further analyses.

Visual stimulation
Visual stimuli generated in MATLAB were presented via the Cogent
Graphics toolbox developed by John Romaya at the Laboratory of
Neurobiology at the Wellcome Department of Imaging Neuroscience
from a UV E4500 MKII PLUS II projector illuminated by 385-nm LED
(EKB Technologies). Neutral density filters (Thorlabs) were used to
attenuate the projector’s output, which was focused onto the photo-
receptors via the substage condenser of the upright two-photon
microscope (Scientifica). Stimuli were shown in 800 µm diameter cir-
cular areas on the ventral retina. Before each visual stimulus, we
adapted the retina for 30 s to laser scanning and the average back-
ground intensity of the stimulus.Wepresented spots of sevendifferent
sizes (diameters: 20, 50, 100, 200, 400, 600, and 800 µm, i.e., varying
size spot stimulus) in a pseudorandom sequence. Each spot turnedON
(4.04 × 103 isomerization/cone/second or R*) for 1.5 s and OFF for 1.5 s
(1.02 R*). The ON-OFF sequence was repeated five times in a row for
each spot size, with 1.5-s gaps (2.02 × 103R*) between sizes. To test
temporal frequency responses, the intensity in spots of two diameters
(150 and 800 µm) was sinusoidally for 2 s six at different frequencies
(0.5, 1, 2, 4, 8, and 16Hz). The sinusoidal modulation spanned the

Fig. 8 | Subcellular responses of ON bipolar cells to artificial stimuli.
aRepresentative images of segmentedbipolar axonal arbors of all cell types. Colors
differentiatemorphologically separateROIs. Numbers indicate the four ROIswhose
responses are highlighted in (b). 10-μm scale bars are included. b Heatmaps or the
responses of all ROIs (rows) of representative ON bipolar cells to spots of varying
size (columns). Outlines highlight the four ROIs indicated in (a). c Scatter plots of
charting the differences in surround strength between ROI pairs vs. their on-path
(orange) separation measure from 3D reconstructions of axon arbors or Euclidian
distances (purple) in the image stack. Data pooled from all 3D reconstructed

bipolar cells. Cell counts: BC5o: n = 3, BC5i: n = 2, BC5t: n = 2, XBC: n = 3, BC6: n = 2,
BC7: n = 2, BC8/9: n = 1. Data points (i.e., ROI pairs; shared for both distance
metrics): BC5o:n = 1026, BC5i:n = 681,BC5t:n = 414,XBC:n = 505, BC6:n = 121, BC7:
n = 481, BC8/9: n = 435. Linear regression lines are plotted for each set, with the R2

values given at top in matching colors. d Analogous to (c) for differences in
response transience. Cell counts same as in (c), data points (i.e., ROIpair) as follows:
BC5o: n = 1030, BC5i:n = 694, BC5t: n = 413, XBC:n = 539, BC6: n = 126, BC7: n = 590,
BC8/9: n = 421. Source data for this figure are provided as a Source Data file.
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projector’s full range (1.02–4.04 ×103R*). Different stimulus fre-
quencies were shown in pseudorandom sequences (each frequency
appearing five times) with 1.5 s gaps (2.02 × 103R*) between stimuli.
The scan region for temporal frequency responses was half the size
used for other stimuli to increase the signal-to-noise ratio for each ROI.
At a scan rate of 37.9 Hz, we could discern signal fluctuations up to
18.95Hz, given the Nyquist criterion. For naturalistic movies, we pre-
sented 11 clips at 52.5Hz, each lasting 9.8–11.5 s (average: 11.22 ± 0.55 s)
and ranging in average intensity from 1.30 × 103–2.55 × 103R*. The
acquisition of these clips is described in the following section. Movie
clips were separated by gaps of 1.43 ± 0.29 s. For checkerboard white
noise stimuli, each frame consisted of a 15 × 20 grid of 20 × 20 µm2-
squares. The intensity of each square was determined by a binomial
process (OFF squares: 1.02 R*, ON squares: 4.04 × 103R*). In total, 900
unique frames were shown in each recording. Their sequence was
repeated twice to gauge response quality.

Acquisition of naturalistic movies
We captured natural scenes on a commercial camera (Crosstour
CT9000), recording at a resolution of 1080 p (1920 × 1080pixels) and
a frame rate of 60 frames per second (fps). The camera was secured to
a rolling support frameusing aflexible gooseneckclamp, positioning it
approximately one inch above the ground and aligning it with an azi-
muth of 60° and an elevation of 30° (Supplementary Fig. 7), simulating
the mouse’s perspective54. We moved the camera at speeds matching
to previously reported mouse movement velocities (Supplementary
Fig. 7)55,56. Following the recording session, we estimated the pacing of
each frame and analyzed the distribution of movement speeds. This
was done by measuring multiple points along the path using a tape
measure and applying shape-preserving piecewise cubic interpolation.
To calibrate the camera and assess visual distortion, we employed a
method involving the presentation ofmultiple rings of varying sizes on
a sheet of paper. These rings were placed in front of the camera, and
the angle and distance of each ring relative to the lens center were
measured and compared to the resulting image. To present visual
stimuli that mimic natural viewing as closely as possible, we matched
the paired pixel distances in the video to visual angles in physical
space. We discovered that a 170° fisheye perspective linearized the
visual angle in the acquired flat image (Supplementary Fig. 7). We
projected stimuli at 1.98 µm/pixel onto flat-mounted retinas. One
degree of visual angle covers 32.5 µm on the mouse retina92. The pro-
jection field of our visual stimulus (600× 800 pixels) thus covers
37° × 49°. All movies were center-clipped according to this calibrated
relationship.

F1 power and phase analyses and GCaMP6 frequency responses
correction
Power spectra of responses to frequency-modulated spots were
obtained by Fast Fourier Transforms (FFT). Here, X represents the
signal in the time domain, and N denotes the length of X . We upsam-
pled the signal to 189.4Hz for enhanced resolution in the frequency
domain. The power of each componentwas calculated as jFFTðX Þ=Nj2.
Due to its discrete nature, the power from one or two frequencies
nearest to the F1 frequency were combined. The F1 power for each
bipolar cell was averaged across stimulus repetitions and normalized
to the peak F1 power across all frequencies. BecauseGCaMP6f acts as a
low-pass filter, we corrected the F1 power by subtracting the simulated
F1 power of GCaMP6f’s responses to identical frequency modulations.
We used rise (49.5ms) and decay (156ms) time constants derived from
in vivo mouse V1 cortex 82 recordings and adjusted for the recording
temperature93 for our simulations. Using these time constants, we
constructed a response function and convolved it with the frequency
modulation, appending a 1 s baseline value (set at 0.5) to the start and
finish for stability. The simulated responses underwent the same ana-
lysis as bipolar cell signals. Correction involved subtraction from both

normalized signals. For F1 phase analysis comparing large and small
spot stimuli, we derived the phase from the angle of the FFT compo-
nents. To average the angle over trials and adjacent frequencies, each
angle was converted to a vector, followed by calculating the angle of
the vector sum. InMATLAB’s FFT implementation, −90° alignswith the
0° of the stimuli’s single function. We consolidated phases from five
frequencies, ranging from 0.5 to 8Hz, to discern phase differences
between spot sizes.

Assessment of response quality to higher-frequencymodulation
To test whether we could reliably analyze responses to frequency-
modulated spots against the noise, we applied a simple autoregression
model (AR) to capture the temporal correlation of each trial for each
ROI and then simulated traces with identical correlation structures not
influenced by visual stimulation. The AR model depicts the relation-
ship between consecutive observations as follows:

xt =ϕxt�1 + ϵt ð1Þ

Where xt is the response amplitude at time point t. ϕ is the auto-
correlation parameter. ϵt is white noise with a standard deviation
matching the distribution of {x1,x2, . . . , xn}. To estimate ϵt , we applied
Ordinary Least Squares estimation:

β̂= ðXTX Þ�1
XTY ð2Þ

WhereX is the designmatrix, each row corresponding to a time points;
the first column is a column of ones for the intercept term, and the
second column contains the predictor variable data from time t = 1 to
t =n Y is the response variable data from time t = 1 to t = n − 1. The
estimated parameter ϕ is the second element of β̂:

ϕ= β̂2 ð3Þ

The repeat reliability is measured by the median squared corre-
lation coefficient between the traces of half-split repeated trials, where
all possible splits were evaluated.

Measurement of ROI diameters and corresponding frequency
responses
To examine whether ROI size shapes temporal tuning, we segmented
ROIs from the recordings of frequency-modulated spots of 42 bipolar
cells. The diameter of each ROI was measured manually by drawing a
line across the cross-section perpendicular to the axonal branch. To
ensure response quality, the ROI size in the image was required to be
larger than five square pixels, and repeat reliability had to be >0.1. For
comparisons between twoROI-diameter groups, the data weredivided
by the median diameter. We then averaged the responses across all
ROIs within the same size category and estimated the F1 power from
those averages. The final value is an average of these F1 power mea-
surements across recordingswithin a cell. F1 power is corrected for the
GCaMP6f temporal dynamics as previously described. For evaluating
frequency tuning within a bipolar cell, the analyses are the same,
except the ROIs of each recording are split into groups of equal
numbers based on their diameter.

Functional variation between upper and lower blocks
To examine whether sampling from upper or lower blocks provides a
wider variation in surround strength or transience, we randomly
sampled our data 2,000 times, evenly across all combinations within
any given block. Specifically, each time the data were drawn from all
combinatory pairs of BC types, and then for eachpair, data pointswere
randomly selected from both types. The absolute difference was cal-
culated from each sampling of individual pairs.
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Trial-based peak amplitude analysis across varied-size spots
To investigate the potential for spike activity in ON cone bipolar cells,
we tested for a consistent amplitude as the hallmark of regenerative
spike events. We evaluated the peak amplitudes trial by trial across
spot sizes of 20, 50, 100, 200, and 400μm in diameter. The time
window for detection extended from 0.1 to 1.5 s after stimulus onset,
which matched the 1.5 s duration of the stimulus presentation. To
ensure response quality, the repeat reliability of five repeated trials for
each spot size was required to be higher than 0.5; 81.5% of trials met
this criterion. Only the ON phase of the repeated trials was examined.
In total, 3215 trials from 49 bipolar cells were analyzed. To detect
peaks, we employed MATLAB’s built-in function designed to identify
peak-like events in the response traces. This same analysis was applied
to trial-based responses for both the ON and OFF phases of the
stimulus.

Functional distance metrics
To ensure consistency when comparing functional distances between
bipolar cell types across both artificial and naturalistic stimuli, we
adopted a correlation coefficient-based measurement. Here, correla-
tion distancewas defined as 1� correlation coef f icient between pairs
of response units. We used a Euclidean distance metric when con-
sidering the encoding space (i.e., the first three principal coordinates
of MDS analyses). We evaluated the significance of distances between
specific bipolar cell type pairs with a permutation test, determining
whether the observed distance between a pair of bipolar cell types was
greater than when the labels of individual cells were interchanged in
Monte-Carlo simulations (5000 iterations).

Augmenting data from individual cells with population
recordings
We segmented two-photon imaging series of bipolar cell axon popu-
lations in the IPL of Grm6-Cre Ai148 mice as described under ‘Mor-
phological ROI segmentation.’ To eliminate redundancies and avoid
over-weighing population recordings, we consolidated functionally
similar ROIs recorded in the same imaging plane into a single ROI as
follows. First, for every recording column (i.e., multiple IPL depth
imaged in the same region of the retina), we compiled responses from
all the morphologically segmented ROIs and undertook k-means
clustering based on their response correlations. To determine the
optimal value of k, we used the Bayesian Information Criterion (BIC):
BIC =nln RSS

n

� �
+ klnðnÞ, where n stands for the total number of data

points, while RSS represents the sum of distances from each point to
the centroid of its cluster, specifically when using the correlation dis-
tance metric. We then consolidated ROIs within the same k-means
cluster and the same image plane into single ROIs.

We assigned the consolidated ROIs to specific ON bipolar cell
types based on their functional similarity to data obtained from mor-
phologically identified cells and the imaging depth in the IPL. To
incorporate the information from the IPL depth, we translated the
functional distance into a probability metric using a gamma distribu-
tion fit to the functional distances between ROIs and nearest identified
cell types. The depth-related probability for each cell type was
informed by the skeleton density from large-scale EM
reconstructions8. For every depth, the probability assigned to eachON
cone bipolar cell type was normalized, ensuring the combined prob-
abilities of all types added to one. ROIs were assigned to bipolar cell
types based on the highest combined functional and depth prob-
abilities. We applied a gamma function to fit the probability distribu-
tion of the combined probability (before normalizing to the
maximum) and excluded those are lower than 95% of the data
(approximation to two standard deviations in normal distribution),
which are less than 2% of total augmented data. Importantly this ROI
classification for data augmentation used only the functional distances
from responses to varying size spots (i.e., artificial stimuli) and thus

avoids circularity for assessing cell type differences in responses to
naturalistic stimuli with the augmented data. Correspondences
between ROIs across stimuli were determined by registering the
location of ROIs within the respective image series.

Evaluatingbatch effects via Jensen-Shannondivergence (JSD) for
2D distributions
We used an extensive sub-sampling process to evaluate the potential
contributions of batch effects to our data distributions. We generated
2000 combinations of recording set distributions and undertook
20,000 randomresamples of all data points. The purposewas to test if
the distribution from two subsets of recordings deviates significantly
from that of two subsets generated by randomly sampling all data
points. We used the JSD for this assessment, targeting the first two
principal coordinates of the encoding space. Our null hypothesis was
that the batch effect did not shape data distributions in the encoding
space and that JSDs between two subsets of recordings, therefore,
resemble JSDs between two randomly sampled subsets. The JSD is
mathematically defined as:

JSDðPkQÞ= 1
2
DKLðPkMÞ+ 1

2
DKLðQkMÞ ð4Þ

Where,M = 1
2 ðP +QÞ and DKL denotes the Kullback-Leibler divergence.

For its computation, we employed a discrete approximation given by:

DKLðPkMÞ=
X

ij

P xij

� �
log

PðxijÞ
MðxijÞ

 !

ð5Þ

To approximate the probability densities PðxÞ, QðxÞ andMðxÞ, we
utilized a kernel smoothing function specifically targeting bivariate
data, primarily the first two MDS coordinates.

Multidimensional scaling (MDS) analysis
To analyze the feature encoding space of ON bipolar cells, we per-
formed nonmetric MDS analyses on their correlation distances. When
examining responses to naturalisticmovie clips, any ROIswith a repeat
reliability <0.2 (measured as squared correlation coefficient [R2] of the
average responses to two splits of repeating stimuli) was omitted. To
ensure the integrity of the distance metric, we implemented a weight
mask. Any distance deviating by more than three standard deviations
from themean was given zero weight. This impacted 3.52% of the data
for naturalistic stimuli and 3.27% for artificial stimuli. We then com-
puted the MDS for 16 dimensions, setting a cap at 2000 iterations
using the squared stress criterion.

To measure the variance explained by each MDS coordinate, we
calculated a distance metric from the Euclidean distance of the
aggregated coordinates. R2 was then calculated between the response
distance metric and the sub-MDS-coordinate distance metric. Impor-
tantly, the same binary weight mask was employed to remove outlier
values. The outcomes from our 16-dimensional MDS showed R2 values
of 0.93 for naturalistic stimuli and 0.98 for artificial stimuli. However, a
characteristic of the correlation distance metric meant some pairings
did not adhere to the triangle inequality of the Euclidean distance. This
inconsistencywas observed in 1.72% of naturalistic stimuli pairings and
6.34% for artificial stimuli. Collectively, the first three principal coor-
dinates accounted for >0.59 of the explained variances.

We chose MDS over principal component (PCA) or similar ana-
lyses for two reasons. First,MDS analyses compute a distancematrix to
estimate the dissimilarities between cells based on their complete
response traces. It then identifies the dimensions of the space defined
by the distancematrix acrosswhich the cell population varies themost
(i.e., the principal coordinates). Thus, this analysis reveals what orga-
nizes the diversity of ON bipolar cells. PCA or similar approaches
instead highlight the stimulus dimensions acrosswhich responses vary
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themost. Thus, it focusses primarily on the stimulus space rather than
the cellular encoding space.

In addition to this conceptual difference, there is a technical
reason for choosingMDS over PCA to analyze responses to naturalistic
stimuli. We presented naturalistic stimuli as two to four repeats of 11
representative movie clips. To include a cell’s response to a given clip
in our analysis, it needed to exceed a quality threshold (i.e., repeat
reliability). Because MDS starts by calculating distances between cell
pairs, each distance calculation could include all clips for which both
cells exceeded the required repeat reliability. Different clips could be
included for different cell pairs. In PCA, all cells need to be compared
across the same stimulus clips, which would either compromise
response quality or drastically reduce the number of admissible clips.

Assessing the local luminance contributions to responses
To determine the impact of local luminance on bipolar cell responses,
we calculated the explained variance (R2) between response traces and
local luminance with a 200-ms shift, following the method outlined in
the section on ‘Spatial contrast sensitivity analysis.’ We restricted our
analysis to cells and ROIs for which we had independent repeat
recordings from naturalistic movie stimulation. The repeat reliability
of each cell and ROI was gauged by the R2 of its averaged responses in
two separate subsets of repeated trials.

Analysis of feature encoding from varying size spots
Responses to varying size spots for each cell or ROIwere averagedover
all qualifying pixels across repeated trials. Averaged responses were
then baseline subtracted and normalized to their peak amplitude
before calculating the following feature sensitivities.

Surround strength (S)

S=
rc � rs

rc
ð6Þ

where rc represents the average responses to 50 and 100 µmdiameter
spots centered on the receptive field, and rs refers to the average
responses to 600 and 800 µm diameter spots encompassing the
receptive field surround. The response time window for both was
0.34–1.54 s after spot onset.

Response transience (T)

T =
re � rl
re

ð7Þ

where re represents the average responses to 50, 100, and 200 µm
diameter spots early (0.23–0.67 s) after spot onset, and rl refers to the
average responses to the same stimuli later (1.21–1.65 s after
spot onset).

Analysis of feature encoding from naturalistic movies
Responses to naturalistic movies for each cell or ROI were averaged
over all qualifying pixels across repeated trials before calculating the
following feature sensitivities.

Spatial contrast sensitivity (S)

S= log
Corr g Sc � Ss

� �
,R

� �2

Corr g Sc
� �

,R
� �2

 !

ð8Þ

where R denotes the response of the cell or ROI to the naturalistic
movie, Sc represents the contrast in a 100 µm diameter receptive field
center, and Ss corresponds to the contrast in a 600-µm diameter area
encompassing the receptive field surround. The function g convolves
the contrast traceswith a 4 s kernel, with its central component being a
2 s response function of GCaMP6f, described under ‘F1 power and
phase analyses and GCaMP6 frequency responses correction.’ A

weighted mask was produced to convolve with each movie frame as
follows. Inside the designated receptive field, each pixel’s weight was
determined by normalizing amultivariate normal probability function.
Here, sigma was defined as 2πr l, where l stands for a 2D identity
metric and r signifies the radius in µm. Any weight beyond this
receptive field size is set to zero. The mask’s weights were normalized
by their maximum value. This value for eachmovie frame was derived
from the dot product of the frame pixel values, ranging between -0.5
and 0.5, and the weighted mask vector, all divided by the sum of all
weights. Corr refers to the correlation coefficient. gðScÞ indicates the
local luminance. To account for the response delay of ON bipolar cells,
we introduced a 200ms shift to the contrast traces to achieve
temporal alignment. This was equally applied to all other feature
calculations.

Temporal contrast sensitivity (T)

T = log
Corr g f b Sc

� �� �
,R

� �2

Corr g f b Sc
� �� f l Sc

� �� �
,R

� �2

 !

ð9Þ

where Sc represents the contrast in a 100-µm diameter receptive field
center. The function f b convolves the receptive field contrast with a
band-pass temporal kernel, a difference of Gaussians approximated by
two Gaussian membership functions. These functions are character-
ized by their standard deviations, means, and weights within a 1 s
window. Conversely, the function f l serves as a low-pass filter and is
similarly defined but with different temporal parameters. For f b, the
first Gaussian had mean 0.08 s, SD 0.05 s, and weight 1. The second
Gaussian had mean 0.12 s, SD 0.12 s, and weight −0.5. For f l , the first
Gaussian hadmean 0.24 s, SD 0.1 s, and weight 1. The second Gaussian
had mean 0.3 s, SD 0.24 s, and weight -0.001.

Coherent motion sensitivity (M)

M = log
1

Corr g Oa �Ov

� �
,R

� �2

 !

ð10Þ

where optical flow for each pixel was calculated using MATLAB’s built-
in ‘estimateFlow’ function, analyzing consecutive movie frames,
employing the Horn-Schunckmethodwith the smoothness parameter
set to three, ensuring a global constraint was in place. The outcome
was an optical flow map in which each pixel is represented by a 2D
vector. To extract coherent motion in a receptive field, we generated a
binary mask setting pixels in a 200 µm area centered on the receptive
field to one and the rest to zero. Ov and Oa represent the vector sum
and average vector length, respectively, of all pixels within themasked
area of the optic flow map.

In-center contrast sensitivity (I)

I = log10 q g Sc
� �

,g Scin
� �

,R
� �� � ð11Þ

where Sc represents the local luminance in a 100 µm diameter recep-
tive field center. Scin, denotes in-center contrast calculated by dividing
the receptive field center into four quadrants and adjusting the
individual contrast using a linear ramp function. We also explored
other in-center contrast measures, including the weighted standard
deviation of pixel values and increased divisions, up to pixel-wise
rectification. We did not observe significant differences between these
methods. Function q identifies the optimal ratio β that blends center
and in-center contrast to achieve the highest correlation with the
recorded responses. Here, β represents the weight attributed to the in-
center contrast, while 1� β corresponds to the center contrast.

White noise-guided receptive field alignment
To determine the receptive field positions of ON cone bipolar cells,
which are non-spiking neurons, we correlated their responses with the
local luminance (g Sc

� �
) in 80 µm disks spatially weighted with
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multivariate normal distributions and temporally convolved with a
filter based on the GCaMP6f kinetics91,93. To map the receptive fields,
we estimated g Sc

� �
at 441 distinct positions, separated by 4 µm along

the x and y axes. We then calculated correlation coefficients between
g Sc
� �

and bipolar cell responses for each of these locations. The
position of the receptive field center was then identified as the peak in
the resulting map of correlation coefficients, refined using a 2D spline
interpolation.

Spatial correlation of visual features in naturalistic stimuli
We established a grid of distinct receptive field positions extending
from −40 to 40μm along both axes, with 4μm intervals. This grid
facilitated the analysis of each visual feature, with receptive field
positions adjusted accordingly. We calculated the correlation coeffi-
cient between each receptive field position, as well as the associated
distances. For naturalistic movie clips, the correlation coefficient, as a
function of receptive field distance, was determined using median
values from pairs equidistant within bins of 2μm, with bin centers
ranging from 1 to 76μm.Thismethodologywas consistently applied to
various visual features, including luminance, spatial and temporal
contrast, coherent motion, and center-surround contrast.

Additionally, we evaluated the distribution of receptive field
positions for each bipolar cell by correlating the responses with
simulated responses specific to the receptive field. Recordings with a
minimum squared correlation coefficient of 0.1 against simulated
GCaMP6f responses were selected, yielding 59 valid recordings. From
the estimated receptive field centers, we calculated the standard
deviation and the bounds containing 95% of the data to provide a
statistical analysis of their spatial distribution.

Analysis of angular deviation of encoded features
The extraction of visual features of artificial and naturalistic stimuli is
described in detail under ‘Analysis of feature encoding from varying size
spots’ and ‘Analysis of feature encoding from naturalistic movies,’
respectively. To measure the angular deviation in the encoding of
these features by ON bipolar cells, we computed a vector vs,f defining
the orientation of the encoding in the space defined by the first three
principal MDS coordinates as:

vs,f =
1
n

Xn

i,j

wf ,i �wf ,j

� �
vi � vj
� �

ð12Þ

Here, vi and vj denote vectors corresponding to paired data
points in the encoding space. wf ,i and wf ,j represent the values of a
given feature f for the paired data points. To determine the alignment
between an encoding feature and a coordinate, we compute the angle
between vs,f and standard coordinate vectors: vx = ð1,0,0Þ, vy = ð0,1,0Þ
or vz = ð0,0,1Þ. The angle, denoted by θ, is calculated as:

θ= cos�1 va � vb
va
�� �� vb

�� ��

 !

ð13Þ

Where va and vb are placeholders for the vectors under comparison.
Tomeasure the angulardeviationacrossONbipolar cellswe calculated
the vs,f for 1000 random 90-pair subsamples of the data (for varying
size spots this represents 0.21% of the data, for naturalistic movies
0.53% of the data) and then measured the angles between each
subsample and vs,f calculated from the complete data set.

Measuring path distances in 3D bipolar cell reconstruction
We used Fiji94 to measure the path distance between ROIs in 3D
reconstructions of bipolar cells. Bipolar cell axons were skeletonized
based on z-stacks acquired by two-photon imaging. Bipolar cell
responses to visual stimuli were acquired separately in time series of
single optical sections. Time series were registered to the z-stacks

usingMATLAB’s built-in control-point selection function. The centroid
of each ROI was then linked to its nearest point on the skeleton,
searched in 0.1 µm increments. We then generated a graph incorpor-
ating both ROIs and the skeleton to measure the shortest distance in
3D space between ROIs along the skeleton path.

Estimating length constants and response heterogeneity in
axon arbors
The relationship between the distance separating twoROIs in a bipolar
cell axon arbor and differences in their responses can be characterized
by a length constant. A shorter length constant indicates lower cor-
relation (r) in responses of two ROIs separated by a given distance. We
modeled r using an exponential decay formula:

rd,λ = e
�d

λð Þ ð14Þ

where d denotes the distance (in µm) between two ROIs, and λ repre-
sents the axonal length constant (in µm). Notably, the correlation
between twoROIs is not solely determinedby their separation, but also
the quality of their responses.Wemeasured response quality as repeat
reliability (i.e., the correlation coefficient between the responses to
repeated trials of the same stimulus). This expected paired response
consistency of two ROIs (qi,j) was computed as:

qi,j = Corr Ri,1,Ri,2

� �
Corr Rj,1,Rj,2

� ���
�

��
� ð15Þ

where indices i and j denote different ROIs.Wemeasured the observed
paired reliability of two ROIs (ki,j) as:

ki,j = Corr Ri,1,Rj,2

� �
Corr Rj,1,Ri,2

� ����
��� ð16Þ

We next compared the expected and observed response con-
sistencies as a function of the length constant according to:

Corrðrλ � q,kÞ ð17Þ

where ⊙ indicates component-wise multiplication.

Statistics
Functional data from identified ON bipolar cell types were collected
from retinas of 39mice. Two-photon imaging from an additional eight
micewereused for data augmentation. All summarydata and response
traces are presented as mean± SEM. Differences between surround
strength and transience of the upper and lower blocks of bipolar cell
responses were assessed using the Wilcoxon rank sum tests, with
results reporting sample sizes, p-values, effect sizes (r), and either
z-values or U-values when n < 30. Variations within blocks and differ-
ences in frequency responses across cell typeswere analyzed using the
Kruskal-Wallis one-way ANOVA, including details such as sample sizes,
degrees of freedom, p-values, effect sizes (η2), and chi-squared (χ2)
values. The Kolmogorov-Smirnov (K-S) test was used to compare
phase shifts in the frequency responses between small and large spot
sizes; we report the corresponding sample sizes, p-values and statistic
(D), representing effect sizes. Paired-group sample-median compar-
isons were adjusted using the Tukey-Kramer method to correct for
multiple comparisons. Comparisons involving different pairs of bipo-
lar cell types underwent correction formultiple comparisons using the
Benjamini-Hochberg procedure. Several permutation tests were con-
ducted, and details on their samplingmethods, sample sizes, p-values,
and observed effect sizes are detailed bin thisMethods section and the
respective figure legends. We report exact p-values when they are
larger than 0.001; otherwise, we note that p <0.001.
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Software information
ImageJ has been updated during the process, but version 1.53 v was
used for most analyses.

MATLAB R2021a was used for data processing and analysis. We
designed and presented visual stimuli with MATLAB R2016b and
Cogent graphics version 1.33. ScanImage version r3.8was used for two-
photon calcium imaging. Adobe Illustrator (2022, version 26.0.3) was
used to assemble the final figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All other data are available
from the lead contact, Daniel Kerschensteiner (kerschen-
steinerd@wustl.edu), upon request. Additional data for Fig. 1g is in the
supplementary material of https://doi.org/10.1038/nature12346.
Source data are provided with this paper.

Code availability
The custom MATLAB scripts used for analysis are available at https://
github.com/Jen-Chun-Hsiang/ONBCEncoding or https://doi.org/10.
5281/zenodo.10569732.
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