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Drivers and impact of the early silent
invasion of SARS-CoV-2 Alpha

Benjamin Faucher1, Chiara E. Sabbatini1, Peter Czuppon 2,
Moritz U. G. Kraemer3,4, Philippe Lemey 5, Vittoria Colizza 1,6,9,
François Blanquart7,9, Pierre-Yves Boëlle1,9 & Chiara Poletto 8,9

SARS-CoV-2 variants of concern (VOCs) circulated cryptically before being
identified as a threat, delaying interventions. Here we studied the drivers of
such silent spread and its epidemic impact to inform future responseplanning.
We focused on Alpha spread out of the UK. We integrated spatio-temporal
records of international mobility, local epidemic growth and genomic sur-
veillance into a Bayesian framework to reconstruct the first threemonths after
Alpha emergence. We found that silent circulation lasted from days tomonths
and decreased with the logarithm of sequencing coverage. Social restrictions
in some countries likely delayed the establishment of local transmission,
mitigating the negative consequences of late detection. Revisiting the initial
spread of Alpha supports local mitigation at the destination in case of emer-
ging events.

In December 2020, one year after SARS-CoV-2 emergence, the
increased transmissibility and severity of the Alpha variant (Pango
lineage B.1.1.7) prompted an international alert1,2. Attempts to contain
the variant in the UK, where it was first identified, were too late and its
global dissemination led to a resurgence of cases and deaths in many
countries. Sequences shared through GISAID3 in real time provided
records of the variant’s international spread4 and a number of studies
predicted the first countries that would be invaded based on interna-
tional travel from the UK5–7. Still, observations were not in agreement
with the expectations, and it soon became clear that the first Alpha
detection in countries outside the UK occurred when the variant had
been circulating silently in these territories for some time. For instance,
the first case infected by the Alpha variant was identified on 25 Dec
2020 in France3; yet, three weeks later, already 3% of the ~100,000
weekly reported COVID-19 cases were caused by the Alpha lineage8.
Late detection was also noted in Switzerland9 and the USA10,11.

Phylodynamics analysis and modeling studies revealed that silent
spread occurred for early SARS-CoV-2 lineages and subsequent

variants of concern (VOCs)12–20. This has sparked a public health
debate. The efforts to contain a variant at the source are ineffective if
they come too late, when the virus is already spreading cryptically out
of the source. Interventions aiming at mitigation or delay may instead
have an impact depending on the extent and duration of silent dis-
semination at the time they are implemented21,22. Recent works
addressed the minimal sequencing coverage to detect a variant early
enough for an effective response, and proposed modeling tools for
risk assessment23–27. However, the complex interplay of factors deter-
mining the duration of silent propagation remains poorly understood.
Indeed, SARS-CoV-2 VOCs emerged in a context of changing patterns
of genomic surveillance, international travel, population immunity,
and local interventions.When Alpha emerged in late 2020, sequencing
coverage was highly variable and changed dramatically as countries
increased genomic surveillance. It tookmonths from the emergence to
declaring Alpha a VOC2. During this period the epidemiological con-
text across many regions changed substantially. The efforts in the UK
and other countries to control a substantial autumn pandemic wave
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impacted the rate of exportations of Alpha out of the UK and the
chance to seed local transmission. This makes the emergence of Alpha
a paradigmatic example.

Herewe used a Bayesianmodel to retrospectively reconstruct the
initial international disseminationof Alpha from20Sep 2020 to 31 Dec
2020 out of the UK. By leveraging diverse sources of data for the
temporal and geographical change in international travel, sequencing
coverage and local epidemic growth, we show that these factors,
together with the effect of the international VOC alert on surveillance,
drove the duration of Alpha silent spread.

Results
Factors contributing to the spread of Alpha
The early spread of the Alpha variant in the UK occurred in the last
quarter of 2020, in a context where a lockdown in the UK, from 5 Nov
to 2 Dec 2020, reduced local transmission and the potential for
international propagation28–30. Air, train, Channel Tunnel and ferry
passengers traveling out of the UK in this month had fallen up to 20%
of that in September (Fig. 1A).

Over the same period, more than 200,000 sequences were sub-
mitted to GISAID from 73 countries, which allowed monitoring the
spread of Alpha. We defined the date of first Alpha detection in each
country as the date of collection of the first Alpha sequence submitted
to GISAID. We hypothesized that sequences collected earlier but sub-
mitted at a later date resulted from retrospective surveillance and
wouldmisrepresent the routine screening effort. Sequencing coverage
ranged over four orders of magnitude over countries: 59% of the cases
reported in New Zealand over Sep–Dec 2020 were sequenced, but the
median for all countries was only at 0.3%. As might be expected, the
date of first detection of Alpha was earlier with higher sequencing
coverage andmore travelers from theUK (Fig. 1B). TheUKwas the only
country to report the Alpha strain before Dec 1, 2020, followed by
Denmark (2 Dec 2020) and Australia (7 Dec 2020). The Alpha inter-
national alert on 18 Dec 2020, led to a rise in sequencing coverage
(Fig. 1C), shorter collection-to-submission times for Alpha sequences
than for others (27 days (CI [8,137]) vs. 52 days (CI [10,162]), Fig. 1D and
Supplementary Fig. 1) and prioritization of sequencing of travelers
from theUK4,31. Nineteen countries collected their first Alpha sequence
the week following the alert and submitted it with a median delay of
9 days. In most of these countries, the first case detected was a case
imported from the UK32.

We developed the Alpha international dissemination model to fit
the date of first detection and the corresponding date of submission
between the beginning of September and end of December in the 73
countries contributing to GISAID during the period. We used dates for
24 countries where the Alpha was detected during the period
(including the UK) and accounted for no detection in the other
countries by statistical censoring. The key assumption of the model is
that the hazard of submitting an Alpha sequence in a country outside
the UK results from the dynamically changing incidence in the UK,
outbound flows of travelers from the UK, sequencing coverage at
arrival and the delay from collection to submission. Thus, we assumed
that before the end of December, the first detected cases were tra-
veling cases4,32 and dissemination was at its early stage, i.e. traveling
cases were traveling out of the UK. Although a simplification, this is in
line with earlier work showing that the UK was the main source of
Alpha dissemination during the first three months, while other coun-
tries becamemore important at a later stage19. Time-varying incoming
travelers from theUK, sequencing coverage and collection-submission
delays were derived from data for each country. Fitted parameters
were the exponential growth rate in the UK before and after the
beginning of the November lockdown and the increase in genomic
surveillance among travelers compared to cases in the community in
destination countries following the international alert. Details are
given in the Methods section.

Observed dates of first detection and submission (Fig. 2A) and a
cumulative number of countries submitting an Alpha sequence
(Fig. 2B) matched the model predictions. Portugal and Germany
detected Alpha earlier than predicted by our model; there the delays
from collection to submission were the longest (48 days for Portugal
and 23 days for Germany, versus a median of 9 days in the other
countries submitting Alpha). For Portugal, the long gap between the
collection dates of the first and the second submitted sequences
suggests a retrospective investigation. The model predicted a median
seeding date of the Alpha epidemic in the UK on 8 Sep 2020 (95%
prediction interval [Aug 21, Sep 19])33. The estimated doubling time of
incidence in the UK was 4.2 days (95% crI [3.6, 5.3]) before 5 Nov 2020
and 10.6days (95% crI [6.5, 22]) afterwards. Assuming the reproductive
ratio R = 1 + rT , with T the generation time interval at 6.5 days34 and r
the Alpha exponential growth in the UK, these estimates would be
compatiblewithR =2:0 [1.8, 2.3] andR = 1:4 [1.1, 1.65] before and after 5
Nov 2020. These values broadly agree with previous estimates, with a
pattern of decreased transmission over time28–30,33,35. With these esti-
mates, the predicted trend of Alpha infections in the UK was in
agreement with the observations (Fig. 2C)36. The large number of
countries reporting Alpha almost simultaneously in late Decemberwas
explained by an estimated 50-fold (95% crl [12, 298]) increase of
sequencing coverage among travelers compared to non-travel related
cases following the alert, consistently with the active search of Alpha
cases among travelers and their contacts. Further details on parameter
estimates and fit convergence are reported in Supplementary Fig. 2
and Supplementary Table 5.

In a sensitivity analysis, results were found to be robust to a range
of modeling assumptions—e.g. changepoints for the exponential
growth of incidence in the UK, rate of detection of COVID-19 infections
outside the UK, and incubation period among the others. Details are
reported in Supplementary Table 5.

Silent spread ranged from days to weeks
We next used the international dissemination model to predict the
date of the first introduction of Alpha from the UK to each of the 73
countries under study and the duration of silent spread, i.e. the
duration of the time from the first introduction to the first detection
of Alpha. We found that up to ~65 countries could have experienced
the introduction of Alpha by the end of December, compared with
the 24 countries that reported it (Fig. 3A). Our model predicted that
the first introduction of Alpha in a country occurred up to 70 days
earlier than the date of first Alpha detection (Fig. 3B, C). For instance,
our model predicted that Alpha arrived 60 days earlier in Italy with
an average sequencing coverage of 0.3% during the period, while it
was only 15 days in Hong Kong with a sequencing coverage of 50%.
Overall, the duration of the silent spread showed a logarithmic
association with the average sequencing coverage (Fig. 3D). The
estimated dissemination pattern is consistent with real-time projec-
tions based on air-travel5. Early introductions in Denmark and the
USA were also consistent with the result of phylodynamic analyses
and retrospective surveillance10,11,37–39. We found that the collection
date of the first Alpha sample ever collected in each country (earlier
than the first detection in 34 countries because of retrospective
surveillance) was within the range of first introduction predicted by
the model but for Colombia.

Local dynamics affected the impact of silent spread
We then focused on the spread of Alpha in six countries where
national genomic investigations estimated the incidence of the Alpha
variant in early January 2021: Denmark, France, Germany, Portugal,
Switzerland, and the USA. We used a stochastic model (auto-
chthonous model A)40 to simulate chains of transmission generated
by infections introduced from the UK as predicted by the interna-
tional dissemination model described above. The model used
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country-specific time-varying reproduction number, overdispersion
in transmission, and a 60% transmission advantage of Alpha over the
wildtype28,29,41. The model reproduced the same trend of the
observed Alpha cases with a case ascertainment fraction around 50%
(Fig. 4A). Incidence in the USA was underestimated, possibly due to
heterogeneity in the different states. To test a finer spatial resolution

we retrieved Alpha frequency data for California, Florida, and New
York City, obtaining a good match with the data for California and
New York City and an under-estimation (within the range of possible
stochastic outcomes) for Florida (Supplementary Fig. 4). To test the
robustness of these predictions, we used a second model with age-
structure, temporal variation in social contacts due to restrictions,

Fig. 1 | Factors associated with the pattern of observed Alpha dissemination.
A Change in outbound international traffic from the UK over time, including air-
travel, train, ferry and Channel Tunnel59. The 73 countries contributing to GISAID
during 1 Sep 2020–31 Dec 2020 are shown as an example. Traffic is rescaled to the
maximum over the period. To improve readability, different months of traffic
maximum are associated with a different color. B Date of first detection, i.e. col-
lectionof thefirst Alpha sequence submitted toGISAID, for eachof the 73 countries
as in (A), according to sequencing coverage and international traffic (passengers/
day) averagedover 1 Sep 2020–31Dec 2020. For eachday, the sequencing coverage
of a country is defined as the numberof collected SARS-CoV-2 sequences onGISAID
—regardless the date of submission—divided by reported cases. The dashed line
provides a guide to the eye, as, under simplifying assumptions44,81, we expect the
date of first detection to be a function of log(sequencing coverage) + log(traveling
flaw) (Supplementary Information). C Number of countries with at least one Alpha

submission plotted by date of collection and date of submission. The black line
shows the average rescaled sequencing coverage. In each country, the sequen-
cing coverage was rescaled by themaximum over the period displayed in the plot
to highlight the trend. Countries’ rescaled time series were then averaged. For the
sake of visualization, the sequencing coverage is here smoothed over a 2 weeks
sliding window. The purple line indicates the date of Alpha international alert (18
Dec 2020). The dashed black line indicates the censoring date used in the analysis
(31 Dec 2020).DDistributions of delay (in days) from collection to submission for
Alpha and non-Alpha sequences collected outside the UK fromDecember 2020 to
mid-January 2021 and submitted up to June 2021 (non-Alpha sequences
n = 149699, Alpha sequences n = 6992). Boxplots represent the median (white
bar), the quartiles and the 95% range (whiskers). The violin plot shows the Kernel
estimation of the underlying distribution. Additional details are reported in
Supplementary Fig. 1.
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and the co-circulation between Alpha and wildtype that was cali-
brated and validated for France42,43 (autochthonous model B) finding
also in this case a good agreement (inset of Fig. 4A).

Besides supporting our estimates of Alpha dissemination out of
the UK, the reconstruction of local epidemics outside the UK allowed
investigating the potential impact of silent spread in the six focal
countries. The estimated Alpha cases as of 31 Dec 2020 broadly scaled
with the international traffic connecting the country with the UK,
showing the important role of importations in determining local Alpha
epidemic size (Fig. 4B). Still, potential consequences of silent spread
could only be gauged by taking into account changes in local trans-
mission (Fig. 4C). For example, while the first detected case in Ger-
many and Switzerland had been collectedwith a similar delay from the
predicted date of first importation, the reproductive ratio Rt in Ger-
many had generally been larger than in Switzerland during the period.

Therefore, the seeding of transmission chains still active at the end of
the year inGermany could takeplacewell before thefirst detected case
was collected for the first time in the territory, while in Switzerland
~50% of the transmission chains started after first virus detection
(Fig. 4C). Overall, later seeding of active chains was associated with
smaller averageRt over the period (Fig. 4D), but not with the reduction
in traveling (Supplementary Fig. 5). Therefore, our analysis suggests
that low levels of local Rt enhanced the relative contribution of late
importations, potentially countering the consequences of late
detection.

Discussion
Genomic surveillance has been a major advancement in monitoring
the spread of SARS-CoV-2 after initial emergence. However, inter-
preting these data is complicated as they do not follow a pre-

Fig. 2 | Comparison between the international dissemination model and
the data. A Date of collection of the first Alpha sample submitted to GISAID and
corresponding date of submission for the 24 countries submittingAlpha sequences
before 31 Dec 2020. Data are shown by purple circles (collection) and green tri-
angles (submission). Median date obtained from the model is indicated by gray
circles (collection) and gray triangles (submission). The horizontal bars display the
95% prediction interval over n = 500 simulations. B Median model predicted

cumulative number of countries submitting a first Alpha sequence to GISAID
comparedwithobservations. In panels A andB, the purple vertical line indicates the
date of Alpha international alert (18 Dec 2020). C Alpha incidence in the UK36 and
median model-predicted epidemic profile in the UK. Both model predictions and
data are rescaled to the sum over the period considered to allow comparing the
profiles of the curves. To account for testing delays model predictions are shifted
right of one week. The gray colored ribbon represents the 95% credible interval.
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established and coordinated sampling design. Retrospective analyses
of the past dissemination of VOCs can provide epidemiological
knowledge that enables us to better respond to future viral emergence
events. Here, taking the initial Alpha spread as an example, we showed
that several components of the highly heterogeneous epidemic con-
text had to be taken into account for interpretation.

Previous studies focused on traveling flows to explain the arrival
of a first infection into a new country44–48. Yet differences in genomic
surveillance capacity, over four orders of magnitude across countries
during Alpha emergence, profoundly affected the introduction-to-
detection delay with a logarithmic decrease in sequencing coverage.
Furthermore, extraneous events like the international alert further
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altered the speed of variant detection. These strong spatiotemporal
changes in genomic surveillance partially masked the true pattern of
Alpha invasion, to the point that the correlation between the dates of
detection and the international trafficwaspoor in the first 24 countries
reporting Alpha (spearman correlation 0.24, p = 0.3). Yet the good fit
obtained with the international dissemination model and the increase
of Alpha epidemic size with traveling flow (Fig. 4B) both suggest that
traveling flows were a driver of viral spread, in agreement with other
works19,44–47,49. A more uniform sequencing collection protocol would
have provided a coherent view of Alpha propagation improving public
health awareness and response. This highlights the importance of
eliminating surveillance blind spots by increasing sequencing in
countries with poor surveillance23.

According to our model, Alpha was introduced in more than 60
countries before the international alert. This provides evidence that
when an emerging pathogen is not reported in a given destination
country, it may likely be due to the surveillance system not yet being
able to detect it. The alert triggered heightened genomic surveillance
worldwide, reinstated lockdown measures in the UK, and resulted in
border screening and travel bans in countries connected to the
UK23,28–30. However, international response arrived at a moment in
which Alpha was already widespread in several countries, preventing
containment. Improving surveillance across countries would reduce
the time from importation to detection, but it would still clash with
the delay needed to recognize a novel variant as a VOC. A lineage
with important mutations can be identified relatively quickly if
sequencing coverage is high enough23,24,27, although the assessment
of clinical risk is slower24. Lineages have shown the ability to become
dominant without any increase in fitness in particular epidemiolo-
gical contexts50, while others like Beta remained at low frequency
despite mutations of clinical importance. A more rapid recognition
of Alpha as a VOC could have advanced the response by health
authorities to delay the establishment of Alpha during a time when
vaccination became available in some countries21. Similar delays in
declaring a VOC were also observed for subsequent VOC episodes19.
This underlines the complexity of the interpretation of a context with
emerging new variants51—especially when major known drivers such
as international travel are in place—and of the decision-making for
public health response.

The growing Alpha epidemic in the UK allowed dissemination
despite the drop in international traffic out of the UK and the social
restrictions in many countries. For instance, while UK travelers to
France dropped by 56% in November compared to September, the
number of Alpha-infected travelers to France still grew from 1 to 10
daily over November 2020 according to our model. The lockdown
implemented in France at this time likely did not prevent local trans-
mission because Alpha was more transmissible. Local restrictions may
however delay successful invasion, as was apparent from the in-depth
analysis of the six destination countries: a lower local reproductive
ratio delayed the seeding of local transmission chains following
importations up to one month. Although with the same analysis we
could not address the consequences of the decline in travel, we expect
that when local transmission is limited by control measures, intro-
ductions from the country of origin contribute more substantially to

the epidemic at destination20. We can thus hypothesize that limiting
importation early could act synergistically with local restrictions to
limit the size of the VOC epidemic. Still, we expect that the fine tuning
between different factors (e.g. quality and extent of borders control
and timing of their implementation22,52,53) can affect the impact of
travel restrictions.

Following Alpha, other SARS-CoV-2 variants raised concerndue to
their rapid emergence and spread, namely Beta, Gamma, Delta, Omi-
cron and its sublineages. Undetected introductions and silent spread
were likely common to all variants, although the epidemic context
progressively changed between 2021 and 2022. The rise in interna-
tionalmobility and social contacts accelerated the spread of Delta and
Omicron19. This has reduced the window for public health response
requiring an intensification of virus genomic surveillance to enable
authorities to identify variants in time. However the high costs of
genomic surveillance and the phasing out of the pandemic have now
reduced our ability to detect future VOC emergence events. The Alpha
experience shows the importance of designing sequencing protocols
able to balance sustainability and detection capacity by meeting the
minimal requirements of sequencing extent and reporting delay—e.g.
sequencing 0.5% of cases with a turnaround time smaller than 21 days
as previously proposed23, and by leveraging information frommultiple
sources, including wastewater and animal surveillance54,55. Impor-
tantly, this study also highlights that the knowledge of surveillance
extent and protocol adopted by countries is key to real-time data
analysis tobetter assist risk assessment and interventionplanning. This
would be facilitated by the widespread adoption of pre-established
surveillance protocols.

Our study is affected by a number of limitations. First, sequencing
coverage was computed at the country level and no distinction could
be made for traveler vs. local cases due to the poor available infor-
mation on testing rate among travelers18.Wedealtwith this by allowing
an increase in detection after theAlpha alert. Second,we analyzedhere
the period before 31 Dec 2020. This time window was long enough to
cover the seeding from the UK to the destination countries and
observe the consequent onset of local transmission. At the same time,
the window is sufficiently short to assume in first approximation the
UK to be the source of Alpha spread, before large epidemics in other
countries became the dominant source of traveling cases. Extending
the analysis to a longer period would require a more general frame-
work that can be the subject of future work. Third, it is not possible to
set a cut-off between real-time and retrospective surveillance when
computing sequencing coverage from GISAID metadata. The compu-
tation of sequencing coverage being affected by retrospective sur-
veillance could potentially overestimate the extent of the real-time
genomic surveillance. Fourth, we have here defined the date of first
Alpha detection in a country as the date of collection of the first
sequence submitted to GISAID. Reporting of variants of interest to
local public health authorities can be indeed more rapid than sub-
mitting the sequence to GISAID. Still, we acknowledge that this may
depend on the country and stage of the invasion, e.g. before and after
the alert. In addition, the public sharing of a variant’s sequence enables
the recognition of its presence in a given territory by a larger public,
including health authorities and the scientific community worldwide.

Fig. 3 | Timing of first importation and silent spread as estimated by the
international dissemination model. A Cumulative number of countries with an
Alpha introduction as predicted by the model. The quantity is computed from the
median predicted date of introduction in each countrywith 95%prediction interval
obtained over n = 500 simulations. B, C Median date of first introduction when
occurring before Dec 31 (vertical dashed line) for each country estimated by the
model with 95% prediction interval computed over n = 500 simulations. For each
country, we report the date offirst Alpha detection (i.e. collectionof first submitted
sequence) (light pink) and the date of the first ever collected Alpha sequence (dark

pink) from the data. For El Salvador, Papua New Guinea and Madagascar, no Alpha
sequence had been reported before June 2021. D Duration of silent spread in days
vs sequencing coverage. The distribution of the durations of silent spread is
reported in Supplementary Fig. 3. Duration of silent spread is computed as the
difference between the median date of first detection and the median date of first
introduction as predicted by the model. We restricted the analysis to countries for
which both first introduction and first detection were predicted to occur before 7
Jan 2021. Dashed line represents least-squares linear regression. P-value is com-
puted from Wald test with t-distribution.
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To conclude, by jointly modeling epidemic dissemination and
observation based on GISAID submissions we have quantified Alpha
silent spread in countries outside the UK unveiling its link with inter-
national travel and sequencing coverage. Our results show that the
duration of Alpha silent spread varied from days to months. Strong

spatiotemporal heterogeneities in surveillance provided a major
obstacle to data interpretation. Still, restrictions in place in destination
countries may have delayed the establishment of local transmission
and partially mitigated the negative consequences of late detection
and response. By the time a new variant is recognized as a potential

Fig. 4 | Local spread of Alpha in six destination countries. AModel vs. empirical
Alpha infections. In the main plot, the empirical estimates of Alpha cases are
computed by multiplying the Alpha frequency from virological investigations by
the reported COVID-19 incidence at the same date—the date is indicated in the plot.
Model estimates are obtained with the autochthonous model A (AM A in the plot).
Gray lines show ratios of 100%, 50% and 25% between observed and predicted
infections attributable to reporting. In the inset, the frequency of Alpha in France
obtained from the autochthonousmodel B (AM B in the plot) is compared with the
empirical data. In both panels, black error bars indicate the prediction interval over
500 stochastic simulations obtained with the median volume of Alpha introduc-
tion, output of the international dissemination model assuming a 7-day delay
between case and infection. Dark colored bars account for the variability in the
output of the autochthonous models accounting for the upper and the lower limit
of the prediction interval of the Alpha introductions as given by the international

dissemination model. Light colored bars account for variability in the delay from
infection to case reporting (ranging from 4 days to 10 days). B Empirical Alpha
infections vs average international traffic. C Comparison between the date of first
introduction as predicted by the international dissemination model and the seed-
ing time of the transmission chains survived until 31 Dec 2020, predicted with the
autochthonous model A. Circles indicate medians and segment the 95% prediction
interval. Colors indicate the effective reproduction number of the historical strain,
Rt , computed from weekly mortality data (Methods). The star shows the date of
first Alpha detection as a comparison. D Difference between the median delay of
seeding predicted by the autochthonous model A and the same quantity in the
reference case—i.e. when Rt is the same in all countries and traveling fluxes do not
change in time, plotted against the median Rt during the period from first intro-
duction to seeding.
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threat, surveillance authorities of countries outside the variant source
should be prepared for the variant being potentially already present in
the territory. Enhancement in local screening and measures aiming at
containing local transmission are thus key ingredients of a response
plan. Taken together these findings provide lessons learnt for the
future management of SARS-CoV-2 variants. Beyond that, retro-
spective reconstructions of SARS-CoV-2 spread are essential to
improve computational modeling and public health knowledge to
better guide the response to future spreadof viruseswith zoonotic and
pandemic potential.

Methods
Data
GISAID records. While we did not use any actual sequences in this
study, fromGISAID entries3 we retrieved collection dates, submission
dates, information on lineage (i.e. whether it was Alpha or not) and
country for all human SARS-CoV2 sequences submitted between 15
Aug 2020 and 1 Jun 2021 included (n = 1,735,675 downloaded on 2 Jun
2021). Data in GISAID originated from 144 countries, however, only
73 countries had submitted sequences collected between September
2020 and December 2020. We used GISAID entries to determine the
date of the first submission of an Alpha sample in each country and
the respective date of collection, the latter defined as the “detection
date”. Assuming that detection occurs at the time of sample collec-
tion corresponds to the optimistic hypothesis that surveillance
authorities are informed right after a sample is collected. We also
computed the date of the first collection ever of an Alpha sample in
each country, irrespective of the date submitted. Finally, we deter-
mined the distribution of delays from collection to submission and
the sequencing coverage from the number of sequences by country
and date of collection (see below). For GISAID sequences missing a
collection date (3%), we imputed the missing date with a date
selected at random from the sequences with complete data sub-
mitted in the same week and country. We resorted to imputation
instead of inferring a statistical model because of the small percen-
tage of missing records. In addition, the strong spatiotemporal var-
iations displayed by the data could be hard to capture by a
statistical model.

COVID-19 cases and death data. We retrieved the daily number of
COVID-19 cases by country from the COVID-19 data repository hosted
by the Center for Systems Science and Engineering at Johns Hopkins
University (CSSE)56 to compute the sequencing coverage. Incidence of
Alpha cases in the UK was obtained from the “Variants of Concern:
technical briefing 7—Data England” report36. We used the weekly
deaths time series from the European Center for Disease Prevention
and Control57 (downloaded on 1 Jul 2021) to compute the time varying
reproduction ratio in Denmark, France, Germany, Portugal, Switzer-
land and the USA.

Travel data. Travel flow from the UK to destination countries was
reconstructed combining air travel data, estimates of passengers via
train, Channel Tunnel and ferries. We computed probabilities of travel
assuming a catchment population of 36M for London airports. More
precisely:

• Air travel data were obtained from the International Air Transport
Association (IATA)58. It comprised the monthly number of pas-
sengers outbound from English airports by country of destina-
tion. From the monthly data we computed an averaged daily flux
of passengers over themonth. For each country,we aggregated all
passengers directed to the country and leaving fromall airports of
London.

• Eurostar rail passenger numbers going each day to France, Bel-
gium and the Netherlands were estimated as in59, assuming a 95%
reduction due to the COVID-19 pandemic60.

• We used the monthly number of cars crossing the Channel
Tunnel59,61 to derive an averaged daily flux of passengers over the
month.We assumed that 1.5 passengers travel on average for each
car59 and that the repartition of passengers among countries in
continental Europe is the same as for trains.

• Numbers of passengers via ferries to France, Belgium, the Neth-
erlands, Spain and Ireland were obtained by ref. 62. We used
monthly data to compute an averaged daily flux of passengers
over the month.

Virological investigation records. National investigations were con-
ducted in a number of countries in early January. Through biblio-
graphic search and via social media we gathered the data from
virological surveys or extensive screening for Denmark, France, Ger-
many, Portugal, Switzerland, the USA. These surveys give an estimated
frequency of Alpha infections for the cases detected a given day (or a
given time period). We also considered the daily number of detected
cases on the day of the survey (or the midpoint of the time period)
from CSSE. From these two numbers, we calculated the number of
detected Alpha cases. In Supplementary Table 1 we report the source,
the date of the survey, detected Alpha frequency, and the number of
Alpha cases computed for each country. In Supplementary Fig. 4, we
also analyzed three locations in the US, i.e. Florida, California and New
York City. Sources for these data are reported in Supplementary
Table 2.

Data processing
Sequencing coverage. The sequencing coverage was computed for
each day and each country as the number of sequences collected after
imputation divided by the number of cases. In Fig. 1C, we smoothed
the sequencing coverage with a two-week sliding window to highlight
the general trend.

Delays from collection to submission. We computed the collection-
to-submission times in different ways before and after the Alpha alert
on 18 Dec 2020. Before the alert, we hypothesized that Alpha
sequences would be reported with the same time pattern as other
sequences. We therefore computed a delay distribution by country
and by date of collection using all GISAID sequences as πcðd;uÞ= nu +d,c

Nu,c

where d is the delay, Nu,c the number of sequences collected on day u
in country c and nu+d,c those submitted on date u+d. For sequences
collected after the alert of 18 Dec 2020, we accounted for the different
delay distribution for Alpha and other sequences. Due to the limited
number of Alpha sequences collected outside the UK soon after the
alert we aggregated all data collected outside the UK, thus defining an
averageAlpha delay distribution for all countries.We thenused a 3-day
smoothing time window, where length 3 was chosen as the best
compromise to smooth out fluctuations without masking meaningful
trends. We therefore computed πcðd;uÞ= nd + u

Nu
with Nu the number of

Alpha sequences collected between day u� 1 and u+ 1, and nu+d the
number of those sequences submitted after d days for each country c.
Delays from collection to submission are reported in Fig. 1D and
Supplementary Fig. 1. In the sensitivity analysiswecomputed theAlpha
collection-to-submission delays after 18 Dec 2020 separately for each
country. We used a longer smoothing time window (7 days instead of
3 days) to compensate for the geographic disaggregation.

International dissemination model
We model the observed data consisting in date pairs fSc,Tcg by coun-
try, where Sc is the date of first submission of an Alpha sequence to
GISAID and Tc the corresponding date of collection in country c. The
model is based on the following assumptions: i) Alpha incidence in the
UK grows exponentially with a piecewise exponential rate to account
for the autumn lockdown; ii) imported cases are proportional to
international traffic; iii) collection and sequencing of a sample from an
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imported case of SARS-CoV-2 Alpha and its submission on GISAID is
proportional to sequencing coverage and the detection-to-submission
delay computed from GISAID metadata.

More precisely, we first described incident Alpha infections in the
UK at time t as exponentially growing with time according to
incUK ðtÞ= expðPt

T0
rðuÞÞ, where T0 is fixed at 15 Aug 202033, the date

when the risk of emergence starts and r(t) the daily exponential growth
rate. The daily exponential growth rate in the UK was considered
piecewise constant, r1 up to Nov 5th, 2020, when the UK entered a
lockdown, and r2 afterwards. In other words, incUK ðtÞ was a “two-
slope” exponential, growing as expðr1tÞ before Nov 5 and as expðr2tÞ
afterwards.We also explored amodel with no change of slope and two
changes of slopes (at 5Nov 2020and at 2Dec 2020, beginning and end
of the lockdown respectively) in the sensitivity analysis.

In the UK, the number of Alpha sequences collected depended on
incidence and sequencing coverage as

λ*UK ðtÞ=KUKsUK ðtÞ
XJ

j =0

incUK ðt � jÞ, ð1Þ

where sUK ðtÞ is the sequencing coverage on day t, J the duration of
incubation and KUK the detection probability. For the incubation
period we used 5 days63 and tested 4 and 6 days in the sensitivity
analysis. We considered that one case out of 4 would be tes-
ted (KUK =0:25)64.

Consistently with4,32 we assumed that the first case reported to
GISAID in each country outside the UK was an imported case, infected
in the UK but discovered abroad. Thus, we modeled detection and
sequencing in countries outside the UK without the need to model
local variant growth. There, the expected number of sequences col-
lected at time t in country c additionally accounted for traveling as

λ*cðtÞ=Kc pcðtÞ=NscðtÞ
XJ

j =0

incUK ðt � jÞ, ð2Þ

where pc(t)/N is the fraction of the population traveling from the
catchment area of the London airports to country conday twithN = 36
millions inhabitants the population of the area, and sc(t) the sequen-
cing coverage in country c on day t and Kc the fraction of imported
infections being detected asCOVID-19 cases.We assumed detection of
imported cases to be higher than the detection of local cases, thus we
usedKc =0:5 (>KUK ). In the sensitivity analysis, we tested all airports of
England, instead of airports of London, as the origin of Alpha infected
travelers, andKc =0.25. Finally, we allowed for an increase in collection
of Alpha sequences among travelers relative to others after the alert of
18 Dec 2020 due to increasing sampling of travelers from the UK4,32

using a multiplicative factor γ. Therefore, the expected number of
collected Alpha sequences on day t is λcðtÞ= λ*cðtÞ before 18 Dec 2020
and λcðtÞ= γλ*cðtÞ afterwards. Taking into account collection-to-
submission time, the expected number of sequences submitted at
time t in country c is therefore αcðtÞ=

P
u≤ tλcðuÞπcðt � u,uÞ, and the

probability that a sequence submitted on day t was collected on day u,
with u≤ t, is λcðuÞπcðt � u,uÞ=αcðtÞ.

Towrite up the likelihood of observations, we considered that the
model described the dynamics of collection and submission until the
end of 2020. We assumed Poisson variability in the number of Alpha
infections and computed the probability that an Alpha sequence is
submitted on GISAID for the first time on date Sc in country c as

PðScÞ= exp �
X

u<Sc

αcðuÞ
0

@

1

A 1� expð � αcðScÞ
� � ð3Þ

The log-likelihood of the data in the model was:

log Lðfr0,r1g,γ;fSc,TcgÞ=

=
X

c:Sc ≤D

logð1� expð�αcðScÞÞÞ + logðλcðTcÞπcðSc � Tc,TcÞ=αcðScÞÞ

�
X

c

XSc

T0

αcðuÞ,
ð4Þ

where the first sum runs on countries where an Alpha sequences was
submitted before date D (= 31/12/2020) and the second runs in all
countries. The summary of all fixed parameters and their values is
reported in Supplementary Table 3.

The model likelihood was explored with a Metropolis-Hastings
procedure using R v4.3. We used an Exp(0.1) exponential prior on the
first exponential growth rate r1, a N(0,1) prior on second growth rate r2
to allow for negative growth and an Exp(0.01) prior for the increase in
sampling γ (Supplementary Table 4). Unless stated otherwise, 3 chains
were run in parallel for 100000 iterations, with the first 50000 dis-
carded as burn-in, the second half was thinned (1 iteration every 25) for
a final posterior sample of size 2000. Convergence of the chains was
checked visually (Supplementary Fig. 2). Estimates and credible
intervals for the fitted parameters are reported in Supplementary
Table 5 (baseline values, first row).

We computed the predictive distribution for the date of detection
given the actual travel and sequencing coverage as

Fcðt;pc,sc,KcÞ= 1� exp �
Z t

T0

λcðu;pc,scÞdu
 !

ð5Þ

using the posterior sample and computed 95% prediction intervals
from these samples.

We finally computed the model-predicted date of first introduc-
tion in country c as the distribution Fcðt;pc,1,1Þ in each country,
assuming that 100% sequencing occurred (s = 1) and all cases were
detected (K = 1).

We computed predictive distributions from the model using
parameters taken in the posterior distribution as follows (where the
“hat” notation corresponds to the estimated value):

• Expected incidence in the UK:

incUK ðtÞ= exp
Xt

T0

r̂ðuÞ
0

@

1

A ð6Þ

• Distribution of time of emergence in the UK:

PðTe < tjTe <TUK Þ = 1� exp �
Xt

To

r̂ðuÞ
0

@

1

A= 1� exp �
XTUK

To

r̂ðuÞ
0

@

1

A

0

@

1

A

ð7Þ

• Cumulated distribution of date of first submission:

PðSc ≤ tÞ= 1� exp �
X

u≤ t

α̂cðuÞ
 !

ð8Þ

• Cumulated distribution of date of first introduction:

PðIc ≤ tÞ= 1� exp �
X

u≤ t

λ̂
1

cðuÞ
 !

ð9Þ
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with

λ1cðtÞ=pcðtÞ=N
XJ

j =0

incUK ðt � jÞ ð10Þ

the number of (detected and undetected) infections.

To visualize goodness of fit, we computed the cumulated number
of countries submitting an Alpha sequence by date t as

P
c PðSc ≤ tÞ,

and for the countries reporting an Alpha sequence, the cumulative
distribution of introduction date conditional on submission
date, PðIc ≤ tjScÞ.

Autochthonous model A
To simulate the number of Alpha variant infections at the beginning
of 2021 in each country of interest, we used the daily rates of
importation as estimated from the international dissemination
model λ1cðtÞ) and simulated the subsequent stochastic outcome of
each imported infectious individual in the destination country. The
different Alpha epidemic clusters initiated by each importation were
assumed to be independent. The stochastic epidemic growth model
has been described elsewhere40. For each day since T0 and each
country of destination, we drew the number of imported infections
in a Poisson distribution with rate λ1cðtÞ. Then, starting with each
imported infection, we simulated an epidemic chain assuming that
each infected individual produced a number of secondary infections
according to a negative binomial distribution with mean ð1 +αÞRt and
dispersion parameter κ =0:4, where Rt is the effective reproduction
number at date t and α =0:6 is the transmission advantage of the
Alpha variant relative to the historical strain, assumed to be the same
in every country41. The generation time distribution was gamma with
mean 6.5 days and s.d. 4 days (shape 2.64, scale 2.46)29. To compute
the effective reproduction number Rt of the historical strain from
mortality data, we computed first the daily exponential growth rate
as rt = 1=7 logðDw+ 1=DwÞ where Dw is the number of deaths in weekw.
To account for the lag between disease onset and death (approx.
3 weeks), we considered that this exponential growth rate applied to
infections for days t in week w� 3. We finally computed
Rt =

R1
0 expð�rtτÞgðτÞdτ with gðτÞ the generation interval

distribution65. Note that the calculation of Rt in this way is robust to
under reporting biases, provided that the reporting ratio does not
change substantially over the period. This approach yielded esti-
mates similar to the Epiestim method66.

The model was implemented in C + + (v11). In the simulations of
epidemic clusters, the code loopsover time, starting fromone infected
individual at the day of importation, and ending at 31 Jan 2021. Time
was discretized in time-steps of 0.1 day. The secondary infections are
added to their (future) date in the incidence table, and the code pro-
ceeds to the next infected individual at this time step, then to the next
time-step. Five hundreds (500) replicate simulationswere obtained for
each country to account for stochastic variability in the number and
timing of importations and growth of local epidemics.

Number of infections output of the model were compared to the
empirical number cases estimated from the virological survey.
Assuming a delay between infection and case detection of one week,
empirical cases were comparedwithmodel-predicted Alpha infections
7 days before. Since delay in reporting may vary from one country to
another—somecountries report casesbydateof testing, othersbydate
of notification, data may be smoothed, etc.—we also tested delays of 4
and 10 days.

Autochthonous model B
We used a stochastic discrete age-stratified, two-strain transmission
model to simulate the epidemic dynamics in France generated by the
estimated Alpha importations42,43,67.

The model integrates data on demography, age profile, social
contacts, mobility and adoption of preventive measures. Four age
classes are considered: [0–11), [11–19), [19–65) and 65+ years old
(children, adolescents, adults and seniors respectively). Transmission
dynamics follows a compartmental scheme specific for COVID-19
where individuals are divided into susceptible, exposed, infectious,
hospitalized and recovered. The infectious class is further divided into
prodromal, asymptomatic and symptomatic. Susceptibility and trans-
missibility depend on age68–70. Transmissibility also depends on the
level of symptoms71–74.

Contact matrices are setting-specific. Contacts at school are
modeled according to the French school calendar, while those at work
and on transports according to the workplace presence estimated by
Google data75. During the different stages of the pandemic, physical
contacts are modulated based on surveys on the adoption of physical
distancing76, self-protection42, and assuming a reduction in contacts
due to severe symptoms. The integration of all these data allows for
capturing the social distancing restrictions put in place in France to
curb the second wave, namely a lockdown with schools open77 from
week 44 (starting October 31, 2020) to week 51 (ending December
15, 2020).

The model was previously used to respond to the COVID-19 pan-
demic in France in 202042,43,63,78, assessing the impact of lockdown63, of
night curfew43 and of the reopening of schools78, estimating the
underdetection of cases42, and anticipating the impact of the Alpha
variant in France43. In particular, we used, here, the same two-strain
version of the model developed to study the impact of January 2021
curfew in France on the Alpha circulation in the territory43, with same
parametrization and same transmissibility calibrated to national daily
hospital admission data79. This accounts for the co-circulation of Alpha
variant and the historical strains, and assumes complete cross-
immunity between the two strains, higher hospitalization rate and an
increase in transmissibility of 50% for Alpha28. We also tested a 60%
advantage in transmission, finding that results were robust. Values of
other key parameters are generation time equal to 6.6 days, and
incubation period 5.2 days. Other parameter values are reported in
ref. 63. The model was implemented in Python 3.8.5.

We simulate the epidemic dynamics using the output of the
international dissemination model as seeding for the dynamics. At
each date, we extract the number of prodromal adults infected with
the variant from a Poisson distribution with mean equal to the travel-
ing cases at that date obtained from the international dissemination
model. We repeat this extraction for each of the 500 stochastic runs
performed and we simulate the resulting outbreak. We then compute
the proportion of Alpha on January 8 and compare it with the pro-
portion identified by the first large-scale genome sequencing initiative
(called Flash#1)41 conducted in the country on January 7-8, 2021 (Alpha
proportion in France equal to 3.3%).

Seeding time of active transmission chains
The time of seeding of a transmission chain still active at a reference
end time (time TR) is uniformly distributed over the range of possible
introduction times when the exponential growth rate r is the same in
the place of origin (here the UK) and in the destination country and
travelingflows are constant over time. This is because starting fromthe
date of emergence TE , the number of introductions in the destination
country at some time tI will be proportional to exp½rðtI � TE Þ� and each
case introduced will cause exp½rðTR � tI Þ� cases at time TR, so that the
overall number of cases at time TR is exp½rðtI � TE Þ� exp½rðTR �
tI Þ�= exp½rðTR � TE Þ� irrespective of the actual date of introduction.
Therefore, date ðTE +TRÞ=2 is the expected median introduction date
in this simple scenario of constant exponential growth rate and
traveling.

We therefore used the autochthonousmodel A to reconstruct the
distribution of the seeding times for the transmission chains still active
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on December 31st, 2020. We computed the distribution of seeding
times and the difference between the median of this distribution and
the expected median under the constant exponential growth rate and
traveling described above. The extent of this difference illustrates the
effect of the actual change in epidemic growth rate and traveling flows
on seeding success. We are here interested on how this quantity
changed across the six countries. We found that it increased for low-
ering values of Rt . This show that low values of Rt were likely hindering
the seeding of local transmission chains by the introduced cases,
making the late importations comparatively more important.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thefindings of this study are basedonmetadata associatedwith a total
of 1,735,675 sequences available on GISAID and submitted between 15
Aug 2020 and 1 Jun 2021 included and downloaded on 2 Jun 2021 via
gisaid.org (GISAID: EPI_SET_230724tv). To view the contributors of
each sequence associated with the metadata we used, visit https://doi.
org/10.55876/gis8.230724tv. Proprietary airline data are commercially
available from OAG and IATA databases (https://www.iata.org/). All
other data used in the study are publicly available online. Channel
Tunnel data were obtained from https://www.eurotunnelfreight.com/
fr/2021/01/trafic-navettes-du-mois-de-decembre-2020/, ferries data
were obtained from https://www.gov.uk/government/statistical-data-
sets/sea-passenger-statistics-spas, COVID-19 cases were obtained from
https://github.com/CSSEGISandData/COVID-19, COVID-19 deathswere
obtained from https://www.ecdc.europa.eu/en/publications-data/
data-national-14-day-notification-rate-covid-19, Alpha cases in the UK
were obtained from https://assets.publishing.service.gov.uk/media/
6059e4ad8fa8f545d5c339fc/Variants_of_Concern_VOC_Technical_
Briefing_7_England.pdf.

Code availability
Source codes to reproduce the results of this study are publicly shared
on zenodo80 and on github (https://github.com/EPIcx-lab/COVID-19/
tree/master/Adherence_and_sustainability).
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