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The effects of genetic and modifiable risk
factors on brain regions vulnerable to ageing
and disease

Jordi Manuello 1,2, Joosung Min 3, Paul McCarthy1, Fidel Alfaro-Almagro1,
Soojin Lee1,4, Stephen Smith1, Lloyd T. Elliott3,7, Anderson M. Winkler5,6,7 &
Gwenaëlle Douaud 1

We have previously identified a network of higher-order brain regions parti-
cularly vulnerable to the ageing process, schizophrenia and Alzheimer’s dis-
ease. However, it remains unknown what the genetic influences on this fragile
brain network are, and whether it can be altered by the most common mod-
ifiable risk factors for dementia. Here, in ~40,000 UK Biobank participants, we
first show significant genome-wide associations between this brain network
and seven genetic clusters implicated in cardiovascular deaths, schizophrenia,
Alzheimer’s andParkinson’s disease, andwith the twoantigens of theXGblood
group located in the pseudoautosomal region of the sex chromosomes. We
further reveal that the most deleterious modifiable risk factors for this vul-
nerable brain network are diabetes, nitrogen dioxide – a proxy for traffic-
related air pollution – and alcohol intake frequency. The extent of these
associations was uncovered by examining these modifiable risk factors in a
singlemodel to assess the unique contribution of each on the vulnerable brain
network, above and beyond the dominating effects of age and sex. These
results provide a comprehensive picture of the role played by genetic and
modifiable risk factors on these fragile parts of the brain.

The development of preventative strategies based on modifying risk
factors might prove to be a successful approach in ensuring healthy
ageing. Factors particularly scrutinised in dementia and unhealthy
ageing have included cerebrovascular factors such as high blood
pressure, diabetes and obesity, but also lifestyle ones such as alcohol
consumption, and protective factors such as exercise1. Assessing these
modifiable risk factors together makes it possible to identify the
unique contribution of each of these factors on the brain or on cog-
nitive decline. A Lancet commission, updated in 2020 to include, e.g.,
pollution for its possible role in the incidence of dementia2, examined
the relative impact of 12 modifiable risk factors for dementia, and
showed that these 12 factors may account for 40% of the cases
worldwide3. Conversely, genetic factors are non-modifiable in nature,
but can informus about themechanisms underlying thephenotypes of
interest. These mechanisms sometimes can be shared across these

phenotypes. For instance, genetic overlap has been found for Alzhei-
mer’s and Parkinson’s diseases at a locus in theMAPT region4. Likewise,
one of the most pleiotropic variants, in the SLC39A8/ZIP8 gene, shows
genome-wide associations with both schizophrenia and fluid intelli-
gence, amongst many other phenotypes5,6.

One way to objectively and robustly assess susceptibility for
unhealthy ageing is to look non-invasively at brain imaging markers7.
Using a data-driven approach on a lifespan cohort, we previously
identified an ensemble of higher-order, ‘transmodal’ brain regions that
degenerates earlier and faster than the rest of the brain8. The very same
areas also develop relatively late during adolescence, thus supporting
the ‘last in, first out’ (LIFO) hypothesis, which posits that the process of
age-related brain decline mirrors developmental maturation. Impor-
tantly, this network of brain regions further demonstrated heightened
vulnerability to schizophrenia and Alzheimer’s disease, two disorders
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that impact on brain structure during adolescence and ageing
respectively. Accordingly, this LIFO network was strongly associated
with cognitive traits whose impairment is specifically related to these
two disorders, namely fluid intelligence and long-term memory8.

Here, our main objective was to assess both the genetic and
modifiable risk factors’ contributions to the vulnerability of thesemost
fragile parts of the brain. We conducted a genome-wide association
study on a prospective cohort of nearly 40,000 participants of the UK
Biobank study who had received brain imaging, and in total evaluated
the associationbetween the LIFObrainnetwork and 161modifiable risk
factors, classified according to 15 broad categories: blood pressure,
cholesterol, diabetes, weight, alcohol consumption, smoking,
depressive mood, inflammation, pollution, hearing, sleep, socialisa-
tion, diet, physical activity and education.

Results
The vulnerable LIFO brain network in UK Biobank
Similar to our previously observed results8, the loadings of the LIFO
brain network, i.e., the normalised grey matter volume in the network
after regressing out the effects of all the other brain maps (see Meth-
ods), demonstrated a strong quadratic association with age in the UK
Biobank cohort of 39,676 participants (R2 = 0.30, P < 2.23 × 10−308,

Fig. 1). These higher-order regions thus show an accelerated decrease
of grey matter volume compared with the rest of the brain. Further-
more, these areas define a network mainly involved in behavioural
tasks related to execution, working memory, and attention (Fig. 1,
Supplementary Information).

Genetic influences over the vulnerable LIFO brain network
Using a minor allele frequency filter of 1% and a –log10(P) threshold of
7.5, we found, in the 39,676 participants, genome-wide associations
between the LIFO brain network and seven genetic clusters whose top
variants were all replicated (Table 1/Supplementary Data 1, Fig. 2).

The first autosomal genetic cluster, on chromosome 1, included
two variants (lead variant: rs6540873, β =0.06, P = 1.71 × 10−8, and
rs1452628, with posterior probabilities of inclusion in the causal var-
iant set of 0.56 and 0.45, respectively) close to, and eQTL of, KCNK2
(TREK1). This gene regulates immune-cell trafficking into the central
nervous system, controls inflammation, and plays a major role in the
neuroprotection against ischemia. Of relevance, these two loci are in
particular related in UK Biobank participants with the amount of
alcohol consumed, insulin levels, inflammation with interleukin-8
levels, as well as, crucially, with late-onset Alzheimer’s disease (Table 1/
Supplementary Data 1).

Fig. 1 | Vulnerable ‘last in, first out’ (LIFO) network of higher-order brain
regions that degenerate earlier and faster than the rest of the brain. Top left,
spatial map of the LIFO network (in red-yellow, thresholded at Z > 4 for visualisa-
tion) used to extract the loadings fromevery scanned participant fromUKBiobank
(n = 39,676). Top right, these LIFO loadings (in arbitrary units) show a strong
quadratic association with age in the UK Biobank cohort, i.e. grey matter volume

decreases quadratically with older age in these specific regions (R2 = 0.30,
P < 2.23 × 10−308; inset: residual scatterplot). Bottom, the vulnerable network
appears to encompass areas mainly involved in execution, working memory, and
attention (using the BrainMap taxonomy60, and with the LIFO brain network
thresholded at both Z = 4 and Z = 10, see Supplementary Information).
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The second autosomal genetic cluster on chromosome 4 was
made of 7 loci, with the lead variant rs13107325 in an exon of SLC39A8/
ZIP8 (β =0.14, P = 2.82 × 10−13, posterior probability: 0.99). This locus is
one of the most pleiotropic SNPs identified in GWAS, and is, amongst
manyother associations, related inUKBiobankwith cholesterol, blood
pressure, weight, inflammation with C-reactive proteins levels, dia-
betes with insuline-like growth factor 1 levels, alcohol intake, sleep
duration, and cognitive performance/impairment, including pro-
spective memory (Table 1/Supplementary Data 1).

The third locus was an indel in chromosome 6 in an intron, and
eQTL, of RUNX2 (rs35187443, β =0.06, P = 9.03 × 10−9), which plays a
key role in differentiating osteoblasts, and has been very recently
shown to limit neurogenesis and oligodendrogenesis in a cellular
model of Alzheimer’s disease9.

The fourth locus was a SNP in chromosome 12, in an intron of
NUAK1 (rs12146713, β = −0.10, P = 1.26 × 10−9), and remarkably its top
association in UK Biobank was with the contrast between schizo-
phrenia and major depressive disorder10, and it was also associated
with insulin-like growth factor 1 levels (Table 1/Supplementary Data 1).

The final genetic autosomal genetic cluster was made of 3,906
variants in the MAPT region. Its lead non-triallelic variant, rs2532395
(β = −0.09, P = 3.56 × 10−15) was more specifically <10 kb from KANSL1
and an eQTLofKANSL1,MAPT andother genes in brain tissues (Table 1/
Supplementary Data 1, Supplementary Data 4). This locus was also
associated in UK Biobank with tiredness and alcohol intake.MAPT is in

17q21.31, a chromosomal band involved with a common chromosome
17 inversion11. Adding chromosome 17 inversion status as a confounder
reduced the significance of the association (β = −0.15, P = 8.45 × 10−3).
Since the genotype for rs2532395 was also strongly correlated with
chromosome 17 inversion in our dataset (Pearson correlation r =0.98,
P < 2 × 10−16), this would suggest that the association between MAPT
and the LIFO network is not independent from chromosome 17
inversion. As this extended genetic region is known for its pathological
association with many neurodegenerative disorders including Alzhei-
mer’s disease, we investigated whether the LIFO brain regions medi-
ated the effect of the MAPT genetic cluster (using the lead bi-allelic
variant rs2532395) onAlzheimer’s disease (seeMethods). Despite small
average causal mediated effect (ACME) sizes, we found a significant
effect for both the dominant model (ACME β = 1.16 × 10−4; 95% CI =
[5.19 × 10−5, 1.99 × 10−4]; P = 4 × 10−5) and the recessive model (ACME
β = 1.55 × 10−4; 95% CI = [3.96 × 10−5, 3.74 × 10−4]; P = 4 × 10−5; full output
of the mediation package on the dominant and recessive models
in Supplementary Information).

The two last genetic clusters of 8 and 9 variants respectively were
found on the X chromosome, notably in a pseudo-autosomal region
(PAR1), which is interestingly hit at a higher rate than the rest of the
genome (P = 1.56 × 10−5, see Supplementary Information). The top
variants for these clusters were related to two homologous genes
coding for the two antigens of the XG blood group: rs312238
(β = −0.05, P = 1.77 × 10−10) ~ 10 kb from, and an eQTL of, CD99/MIC2,

Table 1 | Summary of significantly associated genetic clusters with the vulnerable ‘last in, first out’ brain network

Significant
variants

N P-value beta Chr Position a1 a2 af Gene eQTL, tissue Reproduction
P-value

1 rs6540873
rs1452628

2 1.71E−08 0.06 1 215,137,222 A C 0.38 intergenic, ~40 kb
from KCNK2 (TREK1)

KCNK2 (TREK1)
Non-brain

3.92E−04

2 rs13107325
rs13135092
rs35518360
rs35225200
rs13105682
rs6855246
rs1813006

7 2.82E−13 0.14 4 103,188,709 C T 0.07 exon (missense),
SLC39A8 (ZIP8)

UBE2D3
Non-brain

1.18E−03

3 rs35187443
(6:45442860_TA_T)

1 9.03E−09 0.06 6 45,442,860 TA T 0.38 intron of RUNX2 in high LD (R2 = 0.86)
with rs2677109,
eQTL of RUNX2
Brain

3.05E−03

4 rs12146713 1 1.26E−09 −0.10 12 106,476,805 T C 0.09 intron of
NUAK1 (ARK5)

RP11-114F10.2
Non-brain

5.64E−03

5 rs2532395 (highest hit after
tri-allelic rs2693333)a

3,906 3.56E−15 −0.09 17 44,307,193 C T 0.21 intergenic, in MAPT
region, <10 kb from
KANSL1

multiple genes,
including MAPT,
KANSL1, CRHR1,
SPPL2C, ARL17A
Non-brain

1.97E−02

6 rs312238
rs312241
rs312245
rs312250
rs113075535
rs312257
rs312255
rs312256

8 1.77E−10 −0.05 X
Y

2,669,044
2,619,044

G T 0.15 intergenic, ~1 kb
from XG, ~10 kb
from CD99

CD99
Non-brain

1.12E−06

7 rs2857316
rs2109378
rs2534628
rs2534630
rs2534629
rs311155
rs28620378
rs28758440
rs2534635

9 2.27E−29 −0.08 X
Y

2,698,954
2,648,954

G A 0.32 intron of XG
intron of XGPY2

XG
Non-brain

3.87E−19

Leadvariant in bold. Due to formatting constraints, this is an abbreviatedversionwithout e.g., theassociationwithnIDPs; the full table is available asSupplementaryData 1.P-values arederived froma
two-sided linear association test.
aFull list of significant hits in cluster in Supplementary Data 4.
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and rs2857316 (β = −0.08, P = 2.27 × 10−29) in an intron and eQTL of
XG (Table 1/Supplementary Data 1). Since chromosome X has hardly
been explored, we carried out our own association analyses between
these two top variants and non-imaging variables in UK Biobank.
Intriguingly, the first of these two PAR1 loci, rs312238, was found to be
significantly associated in the genotyped participants who had not
been scanned (out-of-sample analysis in n = 374,230 UK Biobank par-
ticipants) with nitrogen dioxide air pollution, our ‘best’ MRF for pol-
lution (see below), and many other environmental, socioeconomic,

and early life factors (such as urban or rural setting, distance from the
coast, place of birth, number of siblings, breastfed as a baby, maternal
smoking around birth), as well as health outcomes (Supplementary
Data 2). In particular, amongst themore easily interpretable findings of
the most associated variables with rs312238, the T allele of this locus
was associated with two increased measures of deprivation and/or
disability (worse socioeconomic status), the ‘Townsend deprivation
index’ and the ‘Health score’, but also with ‘Nitrogen dioxide air pol-
lution’, ‘Maternal smoking around birth’, as well as ‘Number of full

Fig. 2 | Manhattan plot and regional autosomal association plots for the var-
iants significantly associated genome-wide with the vulnerable ‘last in, first
out’ (LIFO) brain network. Top row, Manhattan plot showing the 7 significant
genetic clusters associated with the LIFO brain network (–log10(P) > 7.5). Second
and third rows, regional association plots of the top variants for each of the 5
autosomal genetic clusters: rs6540873 on chromosome (Chr) 1 (KCNK2),
rs13107325 on Chr4 (SLC39A8), rs2677109 on Chr6 (RUNX2) (as a proxy in high LD
R2 = 0.86 with indel 6:45442860_TA_T), rs12146713 on Chr12 (NUAK1), and

rs2532395 on Chr17 (MAPT, KANSL1)(highest variant after tri-allelic rs2693333; see
Supplementary Data 4 for a complete list of significant variants in this 5th MAPT
genetic cluster). Bottom row, regional association plots of the top variants for the
two genetic clusters in the pseudo-autosomal region PAR1 of the X chromosome:
rs312238 (XG, CD99) and rs2857316 (XG)(UK Biobank has no genotyped variants on
the 3’ side). Based on Human Genome build hg19. P-values are derived from a two-
sided linear association test.
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brothers’ and ‘Number of full sisters’, thus showing consistent signs of
association between this variant and these phenotypes.

We found that the heritability of the LIFO networkwas significant,
with h2 = 0.15 (se = 0.01). The genetic co-heritability between the LIFO
network and Alzheimer’s disease or schizophrenia was not statistically
significant (coefficient of co-heritability = −0.12, se = 0.10; P =0.23;
coefficient of co-heritability = −0.16, se = 0.04, P =0.07, respectively).

Modifiable risk factors’ associations with the vulnerable LIFO
brain network
Including the modifiable risk factors (MRFs) in a single general linear
model allows us to assess the unique contributionof each factor on the
LIFObrain network. Not all UKBiobankparticipants havedata available
for all of the MRF variables however. An analysis limited to those with
complete data for all MRFs would be biased, and based on a relatively
small, low-powered sample. We addressed this issue via a two-stage
analysis inwhich: (i) wefirst identifiedwhichvariablewithin eachof the
15 MRF categories best represented associations of that category with

the LIFO brain network loadings (based on two criteria: significance
and<5%missing values), (ii)we investigated theunique contributionof
that MRF category, over and above all other categories and the dom-
inating effects of age and sex, to the LIFO loadings.

From the first stage of our analysis, 12 of the 15 categories ofMRFs
had at least one ‘best’ MRF, i.e., with a significant effect on the LIFO
brain network and enough non-missing values across all scanned
participants to be investigated further (Table 2/Supplementary
Data 3). The contribution of theMRFs on the vulnerable brain network
differed vastly depending on whether confounding effects of age, sex
and head size were taken into account. The effect size and significance
of some MRFs diminished because of some clear collinearity with
the confounders. For instance, for the category of blood pressure, the
most significant MRF was first “systolic blood pressure, automatic
(second) reading” (r = −0.20, P < 2.23 × 10−308), but after regressing out
the confounders, the ‘best’MRF for this category was “medication for
blood pressure” (r = −0.05, P = 7.55 × 10−22). Conversely, regressing out
the effects of age served to unmask the significant deleterious effects

Table 2 | Details and associations with the vulnerable ‘last in, first out’ brain network for each modifiable risk factor (MRF)
across 15 different categories

With confounders Without confounders

Category Visit MRFs description R2 r P-value R2 r P-value n

Alcohol consumption 2 Alcohol intake frequency 0.002 −0.04 8.53E−18 0.009 −0.10 1.35E−80 39,398

Body size measurements 0 Waist circumference 0.002 −0.05 5.97E−22 0.039 −0.20 <2.23E−308 39,644

Blood pressure 2 Medication for blood pressure 0.002 −0.05 7.55E−22 0.032 −0.18 5.43E−273 37,922

Cholesterol 2 Medication for cholesterol 0.002 −0.04 2.20E−14 0.051 −0.22 <2.23E−308 37,922

Diabetes 2 Diabetes diagnosed by doctor 0.005 −0.07 1.51E−41 0.011 −0.10 3.43E−96 39,306

Exercise 2 Frequency of stair climbing in last 4 weeks 0.001 0.03 8.91E−08 0.003 0.05 1.07E−24 39,372

Hearing 0 Hearing difficulty/background 0.000 −0.02 1.36E−04 0.010 −0.10 6.05E−86 38,970

Inflammation 2 Use of medication for pain relief 0.000 −0.02 1.15E−05 0.001 −0.03 1.92E−10 39,132

Pollution a Nitrogen dioxide air pollution in 2005 0.003 −0.05 2.75E−24 0.000 −0.01 2.22E−02 39,211

Sleep 2 Sleep duration 0.001 −0.03 5.20E−09 0.006 −0.08 2.53E−54 39,313

Smoking 2 Past tobacco smoking 0.002 −0.05 9.53E−19 0.012 −0.11 3.37E−105 38,481

Socialisation 0 Pub or social clubs 0.000 −0.02 2.07E−05 0.002 −0.04 7.99E−18 39,609

Due to formatting constraints, this is an abbreviated version presenting only the ‘best’ MRFs; the full table is available as Supplementary Data 3. P-values are derived from a two-sided linear
association test.
aUpdated regularly.

Table 3 | Singlemodel comprising the 12 ‘best’modifiable risk factors (MRFs) and6confounders showing associationswith the
vulnerable ‘last in, first out’ (LIFO) brain network

Whole model: selected ‘best’ MRFs and confounders

Category MRFs description R2 r p-value n Model R2

Diabetes Diabetes diagnosed by doctor 0.003 −0.054 1.13E−24 35,527 0.0145

Pollution Nitrogen dioxide air pollution in 2005 0.002 −0.049 5.39E−20 35,527

Alcohol Alcohol intake frequency 0.002 −0.045 3.81E−17 35,527

Sleep Sleep duration 0.001 −0.028 1.39E−07 35,527

Body size measurements Waist circumference 0.001 −0.027 2.99E−07 35,527

Smoking Past tobacco smoking 0.001 −0.027 3.14E−07 35,527

Blood pressure Medication for blood pressure 0.001 −0.025 1.61E−06 35,527

Exercise Frequency of stairs climbing in
last 4 weeks

0.000 0.020 2.34E−04 35,527

Hearing Hearing difficulty/Background 0.000 −0.014 1.09E−02 35,527

Inflammation Use of medication for pain relief 0.000 −0.010 5.12E−02 35,527

Socialisation Pub or social clubs 0.000 −0.007 1.83E−01 35,527

Cholesterol Medication for cholesterol 0.000 −0.007 1.97E−01 35,527

‘Best’MRFs are ranked according to their |r| values. Significant results after conservative correction formultiple comparisons are in bold (seeSupplementary Information -Modifiable risk factors two-
stage analysis). P-values are derived from two-sided linear association tests.
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of pollution on the vulnerable brain regions, such as nitrogen dioxide
air pollution or particulate matter air pollution (Table 2/Supplemen-
tary Data 3).

When considered together in a singlemodel in the second stageof
the analysis, 3 best MRFs had an effect on the LIFO brain network that
remained significant beyond the dominating effects of age and sex,
and of the 9 other best MRFs: diabetes (“diabetes diagnosed by doc-
tor”, r = −0.05, P = 1.13 × 10−24), pollution (“nitrogen dioxide air pollu-
tion in 2005”, r = −0.05, P = 5.39 × 10−20) and alcohol (“alcohol intake
frequency”, r = −0.04, P = 3.81 × 10−17) (Table 3). No MRFs showed any
bias in their sub-sampling distribution, i.e., any significant difference
between the original sample and the reduced sample of 35,527 parti-
cipantswhohadvalues for all 18 variables considered (the 12bestMRFs
and 6 confounders: age, sex, age2, age × sex, age2 × sex, head size;
Supplementary Information). In total, the 12 best MRFs explained 1.5%
of the effect on the vulnerable brain network (F12;35509 = 43.5).

While 6 out of the 7 genetic clusters associated with the LIFO
network were correlated with many variables related to each of the 15
MRF categories, including diabetes, alcohol consumption and traffic
pollution (Supplementary Data 1), we also found some genetic overlap
between the very specific best MRF of “alcohol intake frequency” and
the LIFO network in the pleiotropic rs13107325 variant (cluster 2), as
well as rs17690703, part of the large genetic cluster 5 in MAPT (Sup-
plementary Data 4). No genetic overlap was found for the precise
“nitrogen dioxide air pollution in 2005” or “diabetes diagnosed by
doctor”, nor for approximate variables.

Discussion
This study reveals, in a cohort of nearly 40,000 UK Biobank partici-
pants, the genetic and modifiable risk factors’ associations with brain
regions in a ‘last in, first out’ (LIFO) network that show earlier and
accelerated ageing and areparticularly vulnerable to disease processes
such as that of Alzheimer’s disease8. Seven genetic clusters, two of
which in the pseudo-autosomal regionof the sex chromosomes coding
for two antigens of the XG blood system, were found significantly
associated and replicated genome-wide. In addition, after accounting
for age and sex effects, diabetes, traffic-related pollution and alcohol
were the most deleterious modifiable risk factors (MRFs) on these
particularly vulnerable brain regions.

Three lead variants for our significant genetic clusters have been
previously associated with ageing-related brain imaging measures in
recent studies: one, in cluster 1, an eQTL of KCNK2 (TREK1)12,13, whose
increase in expression mediates neuroprotection during ischemia14,
the ubiquitous rs13107325 (cluster 2), and one, in cluster 4, in an intron
of NUAK1 (ARK5)15–17, which has been associated with tau pathology18

(Table 1/Supplementary Data 1). On the other hand, of the seven
genetic clusters, three were entirely novel (clusters 3, 6 and 7), and not
found in other brain imaging studies, including our most recent work
that expanded on our previous GWAS of all of the brain IDPs available
in UK Biobank19 by including more participants—in fact, the same
number of participants as analysed in this presentwork—and, crucially,
by also including the X chromosome20 (Table 1/Supplementary Data 1).
This suggests that, beyond the genetic hits that were meaningfully
associated with the LIFO brain network and an array of relevant risk
factors, lifestyle variables and brain disorders, and found in a fewother
imaging GWAS, some of the genetic underpinnings of the LIFO net-
work are intrinsically specific to it and to no other pre-existing imaging
phenotype.

All five autosomal genetic clusters identified through theGWASof
the LIFO phenotype had relevant associations with risk factors for
dementia (Results; Supplementary Data 1), including precisely two of
the bestMRFs (for clusters 2 and 5), and three of them directly related
in UK Biobank to the two diseases showing a pattern of brain
abnormalities following the LIFO network: schizophrenia (clusters 2
and 4) and Alzheimer’s disease (cluster 1) (Supplementary Data 1). In

particular, cluster 2 has its lead variant rs13107325 in an exon of one of
the most pleiotropic genes ZIP8, which codes for a zinc and metal
transporter. Considering the vulnerability of the LIFO brain network to
adolescent-onset schizophrenia and its significant association with
fluid intelligence that we previously demonstrated8, it is notable that
this variant has been associated genome-wide with schizophrenia6, as
well as intelligence, educational attainment andmathematics ability5,21.
In line with the LIFO brain network being both prone to accelerated
ageing and susceptible to Alzheimer’s disease, this genetic locus has
also been associated genome-wide with well-known risk factors for
dementia. These comprise alcohol—including the exact same variable
of “alcohol intake frequency” as identified as one of the best MRFs—
cholesterol, weight, sleep—including “sleep duration”—and blood
pressure22–26, all of which significantly contribute to modulating the
LIFO brain network when considered separately (Table 2/Supplemen-
tary Data 3). Of relevance, this genetic locus is also associated to an
increased risk of cardiovascular death27. Cluster 5, a large genetic
cluster in the MAPT region (Microtubule-Associated Protein Tau),
comprised in total 3906 significant variants (Supplementary Data 4).
This genetic regionplays a role in various neurodegenerative disorders
related to mutations of the protein tau, such as frontotemporal
dementia28 andprogressive supranuclear palsy29, but also, of particular
pertinence to the LIFO brain network, Alzheimer’s and Parkinson’s
disease, with a genetic overlap between these two diseases in a locus
included in our significant cluster 5 (rs393152, β = −0.09,
P = 6.35 × 10−14)4. Despite the relatively low number of people with
diagnosed Alzheimer’s disease in the genetic discovery cohort, we
were able to establish—albeit with small effect sizes—a significant
mediation role for the LIFO brain regions between the lead bi-allelic
variant for cluster 5 and this Alzheimer’s diagnosis, suggesting once
more the importance played by these vulnerable brain areas in
unhealthy ageing.

Finally, of the seven clusters, two were located in the pseudo-
autosomal region (PAR1) of the sex chromosomes corresponding to
the genes XG and CD99, coding for the two antigens of the XG blood
group. This blood group system has been largely neglected, its main
contribution related to the mapping of the X chromosome itself, and
its clinical role remains elusive30. In order to investigate further the
possible role of these twovariants of theXGbloodgroup,we examined
out-of-sample their associations with thousands of non-imaging phe-
notypes. This analysis revealed that the first of these two loci was
significantly and consistently associated with early life factors, envir-
onmental factors and health outcomes, including particulate matter
andnitrogendioxide air pollution, the secondmostdeleteriousMRF to
the LIFO brain network (Supplementary Data 2). Whether these asso-
ciations are due to stratification or genotyping artefacts, or to the fact
that this specific variant, which is inherited from a parent, has a par-
ental impact that modulates the effect of early life environment of the
UK Biobank participants, the so-called “nature of nurture”, will need
further investigation31.

Intriguingly, an analysis revealed that the genes involved in the loci
associated with the LIFO network (Table 1/Supplementary Data 1) are
enriched for the gene ontology terms of leucocyte extravasation,
namely “positive regulation of neutrophil extravasation” (P =4.75 × 10−6)
and “T cell extravasation” (P=4.75 × 10−6). This result held when
removing the genes included in the MAPT extended region (with
P= 2.54 × 10−6 and P= 2.54 × 10−6, respectively). Leucocyte extravasation
facilitates the immune and inflammatory response, and there has been
renewed focus on the fact that a breakdown of the blood-brain barrier
together with leukocyte extravasation might contribute to both Alz-
heimer’s disease and schizophrenia32,33. In line with the enrichment
findings, 4 out of the 7 genetic clusters associated with the LIFO net-
work are correlated in UK Biobank blood assays with percentage or
count of immune cells (neutrophil, lymphocyte, platelet, monocyte,
etc.; Supplementary Data 1).
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Regarding MRFs’ effects on the LIFO brain network, diabetes and
alcohol consumption have been consistently shown to be associated
with both cerebral and cognitive decline34,35. On the other hand, pol-
lution—and notably that of nitrogen oxides—has emerged more
recently as a potential MRF for dementia2,36. In particular, the increase
of dementia risk due to nitrogen oxide pollution, a proxy for traffic-
related air pollution, seems to be enhanced by cardiovascular
disease37. In this study, we found that nitrogen dioxide pollution has
one of themost deleterious effects onto the fragile LIFO brain regions.
This effect couldonly be unmaskedby regressing out the effects of age
and sex, as traffic-related air pollution is modestly inversely-correlated
with age (Supplementary Data 5). It is also worth noting that including
age and sex as confounding variables in the first stage of our analysis
reduced considerably the contribution of what had appeared at first—
before regression—as the most harmful risk factors: blood pressure,
cholesterol and weight (Table 2/Supplementary Data 3). Furthermore,
the benefit of examining these MRFs in a single model in the second
stage of our analysis is that we can assess the unique contribution of
each of these factors on the LIFO brain network; in doing so, blood
pressure, cholesterol and weight were no longer significant (Table 3).

Onedefining characteristicof the LIFObrain network is howmuch
age explains its variance. Indeed, in the dataset covering most of the
lifespan that was initially used to identify the LIFO and spatially define
it8, age explained 50%. In the UK Biobank imaging project, where
imaged participants are over 45 years old, age explained 30% (Fig. 1). It
is thus perhaps unsurprising that, while the explained variance by each
of the MRFs varies widely (Table 2/Supplementary Data 3), it reduces
notably once the effect of age and other confounders has been
regressed out (without confounders included in the model: maximum
8.4%; with confounders: maximum0.5%). Combined, the 12 bestMRFs
explained a significant 1.5% of the effect on the vulnerable brain net-
work after regressing out age, head size and sex effects. Regarding the
genetichits, we founda significant heritabilitywithh2 = 0.15, in keeping
with our results for structural brain phenotypes (except for subcortical
and global brain volumes, which demonstrate higher heritability19).

The uniqueness of this study relies on the fact that we combined
the strengths of two different cohorts: the first, which revealed the
LIFO grey matter network, is lifespan, demonstrating the mirroring of
developmental and ageing processes in the LIFO brain areas, some-
thing that could never be achieved with UK Biobank because of its
limited age range. Of note, for this initial work with the lifespan
cohort8, we not only included grey matter partial volume images, as
done in this current study, but also Freesurfer information of cortical
thickness and surface area. The LIFO network showed no contribution
from Freesurfer cortical thickness or area. Thismight hint at processes
that only partial volume maps are able to detect due to the LIFO net-
work’s specific localisation, including in the cerebellum and sub-
cortical structures, which are not included in the area and thickness
surface methods from Freesurfer.

Limitations of our study pertain to the nature of the data itself and
the way each variable is encoded in the UK Biobank (binary, ordinal,
categorical, continuous), the number ofmissing values, what is offered
as variables for eachmodifiable risk factor category (e.g. we chose not
to create any compound variables, such as the ratio of cholesterol
levels or systolic and diastolic blood pressures), and the curation of
each of these variables. Some of the factors might be proxies for
another category, but including the ‘best’ ones in a single model alle-
viate these issues to some extent. Another limitation is the assumption
in our models that each risk factor has a linear, additive effect on the
vulnerable LIFO brain network. It is also important to note that cross-
sectional and longitudinal patterns of brain ageing can differ, as has
been shown for instance for adult span trajectories of episodic and
semantic memory, especially in younger adults38. A recent study has
also demonstrated a specific ‘brain age’ imaging measure to be more
related to early life influences on brain structure than within-person

rates of change in the ageing brain39. Further work will be needed to
establishhow the LIFOnetworkdata changes in termsofwithin-person
trends, for instance by investigating the growing UK Biobank long-
itudinal imaging database. While we took care of assessing the
replicability of our genetic results by randomly assigning a third of our
dataset for such purposes (all our significant genetic hits were repli-
cated), this was performed within the UK Biobank cohort that exhibits
well-documented biases, being well-educated, less deprived, and
healthier than the general population, especially for its imaging arm40.
Independent replications will be needed to confirm the existence of
the LIFO-associated genetic loci.

In conclusion, our study reveals the modifiable and non-
modifiable factors associated with some of the most fragile parts of
the brain particularly vulnerable to ageing and disease process. It
shows that, above and beyond the effect of age and sex, the most
deleterious modifiable risk factors to this brain network of higher-
order regions are diabetes, pollution and alcohol intake. Genetic fac-
tors are related to immune and inflammatory response, tau pathol-
ogy, metal transport and vascular dysfunction, as well as to the XG
blood group system from the pseudo-autosomal region of the sex
chromosomes, and meaningfully associated with relevant modifiable
risk factors for dementia. The unprecedented genome-wide discovery
of the two variants on the sex chromosomes in this relatively unex-
plored blood group opens the way for further investigation into its
possible role in underlying unhealthy ageing.

Supplementary Information is available for this paper.

Methods
For the present work the imaging cohort of UK Biobank was used and
we included 39,676 subjects who had been scanned and for whom the
brain scans had been preprocessed at the time of the final set of ana-
lyses (M/F 47–53%; 44–82 years, mean age 64 ± 7 years; as of October
2020)41,42. Structural T1-weighted scans for each participant were
processed using the FSL-VBM automated tool to extract their grey
matter map43,44. The ‘last in, first out’ (LIFO) network of mainly higher-
order brain regions was initially identified by performing a linked
independent component analysis on the grey matter images of
another, lifespan observational cohort of 484 subjects8,45,46. This map
of interest, along with the other 69 generated by the analysis, was first
realigned to the UK Biobank ‘standard’ space defined by the grey
matter average across the first 15,000participants, then regressed into
the UK Biobank participants’ grey matter data, to extract weighted
average values of grey matter normalised volume inside each of the z-
maps, using the z-score as weighting factor. This made it possible to
assess the unique contribution of this specific LIFO map, above and
beyond all the rest of the brain represented in the other 69 maps. At
the end of this process, we obtained a single imagingmeasure for each
of the 39,676 participants, i.e. a ‘loading’ corresponding to their
amount of grey matter normalised volume in the LIFO brain network.

Ethics
Human participants: UK Biobank has approval from the North West
Multi-Centre Research Ethics Committee (MREC) to obtain and dis-
seminate data and samples from the participants (http://www.
ukbiobank.ac.uk/ethics/), and these ethical regulations cover the
work in this study. Written informed consent was obtained from all of
the participants.

Modifiable risk factors selection
The following 15 categories of modifiable risk factors (MRFs) for
dementia were investigated based on previous literature: blood pres-
sure, diabetes, cholesterol, weight, alcohol, smoking, depression,
hearing, inflammation, pollution, sleep, exercise, diet/supplementa-
tion, socialisation, and education. These included well-documented
cerebrovascular risk factors, and in particular included all of the 12
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modifiable risk factors considered in the updated Lancet commission
on dementia, with the sole exception of traumatic brain injury3. For
each category, several MRF variables from UK Biobank were very
minimally pre-processed (Supplementary Information). In total, 161
MRF variables were obtained. To optimise the interpretability of the
results, and to be able to relate them to previous findings, we did not
carry out any data reduction, which would have prevented us from
identifying exactly which variable—and subsequently, which genetic
component for this specific variable—contribute to the effect. For
these same reasons, we did not create any compound variable.

Statistical analyses
Genome-wide association study. We followed the same protocol we
had developed for the first genome-wide association study (GWAS)
with imaging carried out on UK Biobank19. Briefly, we examined
imputed UK Biobank genotype data47, and restricted the analysis to
samples that were unrelated (thereby setting aside only ~450 partici-
pants), without aneuploidy and with recent UK ancestry. To account
for population stratification, 40 genetic principal components were
used in the genetic association tests as is recommended for UK Bio-
bank genetic studies19,20,47. We excluded genetic variants with minor
allele frequency <0.01 or INFO score <0.03 or Hardy-Weinberg
equilibrium –log10(P) > 7. We then randomly split the samples into a
discovery set with 2/3 of the samples (n = 22,128) and a replication set
with 1/3 of the samples (n = 11,083). We also examined the X chromo-
somewith the same filters, additionally excluding participants with sex
chromosome aneuploidy: 12 in non-pseudoautosomal region (PAR)
and 9 in PAR for the discovery set, 3 in non-PAR and 6 in PAR for the
replication set. Variants were considered significant at –log10(P) > 7.5,
and replicated at P <0.05.

Modifiable risk factor study. In the first stage, the general linear
model was used to investigate, separately, the association between
each of these 161 MRFs and the LIFO network loadings in all the
scanned UK Biobank participants (n = 39,676). We ran each model
twice: once as is, and once adding 6 confounders: age, age2, sex, age ×
sex, age2 × sex, and head size, to estimate the contribution of these
MRFs on the LIFO network above and beyond the dominating effects
of age and sex. Sex was based on the population characteristics entry
of UK Biobank. This is a mixture of the sex the NHS had recorded for
the participant at recruitment, and updated self-reported sex. For the
GWAS, both sex and genetic sex were used (the sample was excluded
in case of a mismatch). In total, 32 variables tailored to structural
imaging had been considered as possible confounders, and we
retained those with the strongest association (R2 ≥0.01; see Supple-
mentary Information). Socioeconomic status via the Townsend
deprivation index was also considered as a possible confounding
variable but explained little variance (R2 < 0.001) and thus was not
included as a confounder.

MRFswere not considered further if theywere not significant—not
surviving Bonferroni-correction, i.e., P > 1.55 × 10−4—and if more than
5% of the subjects had their MRF values missing. For each category, a
single ‘best’MRF was then selected as the variable with the highest R2

among those remaining, after regressing out the confounding effects
of age and sex.

In the second stage, all these best MRFs were then included in a
single general linear model, together with the same 6 confounders
used in the first stage, to assess the unique contribution of each factor
on the LIFO brain network loadings. A prerequisite to carry out this
single general linear model analysis was to only include participants
who would have values for all best MRFs and confounders. This
explains the additional criterion of only including MRFs that had no
more than 5% of values missing, to ensure that the final sample of
participants who had values for all these best and confounding factors
would not be biased compared with the original sample—something

we formally tested (see Supplementary Information)—especially as
data are not missing at random in UK Biobank, and exhibit some
genetic structure48. The sample was therefore reduced to a total of
35,527 participants for this second stage analysis (M/F 17,290–18,237;
45–82 years, mean 64 ± 7 years). The effect of these best MRFs taken
altogether was considered significant with a very conservative Bon-
ferroni correction formultiple comparisons across all combinations of
every possible MRF from each of the initial 15 MRF categories
(P < 4.62 × 10−17, see Supplementary Information for more details). In
addition, both full and partial correlations were computed for the
same set of best MRFs and confounders, in order to assess possible
relationships between variables.

Post hoc genetic analyses
Chromosome 17 inversion. We investigated chromosome 17 inversion
status of the participants in the discovery cohort by considering their
genotype on 32 variants that tag chromosome 17 inversion according
to Steinberg et al.11. Of these 32 variants, 24were present in our genetic
data. We labelled the participants homozygous inverted, hetero-
zygous, or homozygous direct (not inverted) when all 24 of these
alleles indicated the same zygosity. This yielded an unambiguous
inversion status for 21,969 participants (99% of the discovery cohort).
To examine if the association between the non-triallelic lead variant of
the MAPT genetic cluster (rs2532395, Table 1/Supplementary Data 1)
and the LIFO network was independent from this common inversion,
we determined inversion/direct status of the discovery cohort and: 1.
repeated the association test between rs2532395 and the LIFO phe-
notype, with chromosome 17 inversion status added as a confounder;
and 2. correlated the genotype for rs2532395 with chromosome 17
inversion.

Causality within each genetic cluster. We used CAVIAR (Causal
Variants Identification in Associated Regions49) to assess causality of
variants that passed the genome-wide significance threshold in each of
the genetic clusters we report. CAVIAR uses a Bayesian model and the
local linkage disequilibrium structure to assign posterior probabilities
of causality to each variant in a region, given summary statistics for an
association.Wedidnot performCAVIAR analysis on the genetic cluster
on chromosome 17, as its non-triallelic lead variant (rs2532395) was
strongly correlated with chromosome 17 inversion, and the LD matrix
was large and low rank. We excluded the X chromosome loci from this
analysis due to the difficulty in assessing LD in this chromosome.

Enrichment analysis. Based on the genes listed in the ‘Genes’ column
of Table 1/SupplementaryData 1, weperformedan enrichment analysis
for the genes associatedwith the LIFObrainnetwork using PANTHER50.
PANTHER determines whether a gene function is overrepresented in a
set of genes, according to the gene ontology consortium51,52.

Mediation analysis between MAPT top variant and Alzheimer’s
disease, via the LIFO brain network. As the gene MAPT is associated
with Alzheimer’s disease, and as we found a significant association
between MAPT and the LIFO brain network, we examined to what
extent the effect of MAPT is mediated by the LIFO brain regions. We
conducted amediation analysis using the counterfactual framework in
which the average indirect effect of the treatment on the outcome
through the mediator is nonparametrically identified (version 4.5.0 of
the R package ‘mediation'53). This is a general approach that encom-
passes the classical linear structural equationmodelling framework for
causal mediation, allowing both linear and non-linear relationships. In
this analysis, the genotype for the lead bi-allelic variant of the MAPT
association was used as the treatment, the LIFO loadings as the med-
iator, and Alzheimer’s disease diagnosis as the outcome.

From the ~43 K UK Biobank participants who had been scanned,
we searched for those who had been diagnosed with Alzheimer’s
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disease specifically, regardless of whether this diagnosis occurred
before, or after their brain scans. Based on hospital inpatient records
(ICD10: F000, F001, F002, F009, G300, G301, G308, and G309 and
ICD9: 3310) and primary care (GP) data (Eu00., Eu000, Eu001, Eu002,
Eu00z, F110., F1100, F1101, Fyu30, X002x, X002y, X002z, X0030,
X0031, X0032, X0033, XaIKB, XaIKC, and XE17j), we identified 65 such
cases— UK Biobank being healthier than the general population, and
those scanned showing an even stronger healthy bias—of which 34
were included in the discovery set after QC.

We considered two conditions for the effect of the treatment on
the outcome. First, a dominant condition in which the minor allele is
assumed to be dominant and for which at least one copy of the minor
allele is considered treated. Second, a recessive condition in which the
minor allele is assumed to be recessive. We considered that either
condition was nominally significant if the confidence interval of the
average causal mediated effect did not intersect zero, and had an
associated P < 0.05 ÷ 2 (correcting for the two conditions). We asses-
sed confidence intervals and P-values using 50,000 bootstrapped
samples.

Associations between the LIFO brain network’s genetic hits and
the MRFs. First, we reported in Table 1/Supplementary Data 1 the
significant associations between the LIFO genetic hits and UK Biobank
variables related to the 15 categories listed for the MRFs. For this, we
used the Open Targets Genetics website, which reports the GWAS
carried out inUKBiobank (https://genetics .opentargets.org/). Second,
we assessedwhether therewas anygeneticoverlapbetween the known
genetic components of the 3 best MRFs and the LIFO phenotype.
Again, we used the Open Targets Genetics website outputs for these 3
very specific UK Biobank variables, and compared the significant hits
for these 3 bestMRFswithin ±250kbp of, or in high LD (>0.8) with, our
own LIFO variants. If reported hits were limited, we also searched
online forGWASdoneon similar variables. Finally,wealso included the
list of significant hits for diabetes54, which focused on a potential
genetic overlap between diabetes and Alzheimer’s disease.

Post hoc association for the sex chromosomes variants. The allele
counts of each participant for two specific significant variants of the
sex chromosomes not—or hardly—available in open databases such as
https://genetics.opentargets.org/55 were further associated out-of-
sample with all non-imaging phenotypes of UK Biobank (n = 16,924).
This analysis was carried out in the entire genotyped, quality-
controlled sample where participants who had been scanned were
removed (final sample: 374,230 participants), taking into account the
population structure (40 genetic principal components), as well as the
confounding effects of age, sex, age x sex, age2 and age2 x sex. Results
were corrected for multiple comparisons across all non-imaging phe-
notypes and the two variants.

Heritability. We examined the heritability of the LIFO phenotype, and
the coheritability between the LIFO network and Alzheimer’s disease
or schizophrenia using LDSC56. This method uses regression on sum-
mary statistics to determine narrow sense heritability h2 of a trait, or
the shared genetic architecture between two traits. LDSC corrects for
bias LD structure using LD calculated from a reference panel (we used
LD from the Thousand Genomes Project Phase 157). We obtained
summary statistics for ameta-analysis of Alzheimer’s disease involving
71,880 cases and 383,378 controls58. The number of genetic variants in
the intersection between the summary statistics was 1,122,435. For
schizophrenia, the summary statistics were obtained from a meta-
analysis involving 53,386 cases and 77,258 controls59. A total of
1,171,319 genetic variants were in the intersection with the summary
statistics for LIFO. For both Alzheimer’s and schizophrenia, the X
chromosome was not included in the heritability calculation, as it was

excluded from the meta-analysis that we sourced the summary sta-
tistics from.

Reproducibility. No data was excluded for the MRF analyses. For the
genetic analyses, these were restricted to samples thatwere unrelated,
without aneuploidy and with recent UK ancestry (see above).

No statistical method was used to predetermine sample size. The
experiments were not randomised. The Investigators were not blinded
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the FLICA decomposition maps − including the LIFO grey matter
network − in UK Biobank standard space, the UK Biobank grey matter
template, scripts, and the LIFO loadings for all of the participants are
freely available on a dedicated webpage: open.win.ox.ac.uk/pages/
douaud/ukb-lifo-flica/.
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