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3D-integrated multilayered physical
reservoir array for learning and forecasting
time-series information

SanghyeonChoi1,2,6, JaehoShin1,3,GwanyeongPark1, JungSunEo1, Jingon Jang1,7,
J. Joshua Yang 2 & Gunuk Wang 1,4,5

A wide reservoir computing system is an advanced architecture composed of
multiple reservoir layers in parallel, which enables more complex and diverse
internal dynamics for multiple time-series information processing. However,
its hardware implementation has not yet been realized due to the lack of a
high-performance physical reservoir and the complexity of fabricating multi-
ple stacks. Here, we achieve a proof-of-principle demonstration of such
hardware made of a multilayered three-dimensional stacked 3 × 10 × 10 tung-
sten oxide memristive crossbar array, with which we further realize a wide
physical reservoir computing for efficient learning and forecasting of multiple
time-series data. Because a three-layer structure allows the seamless and
effective extraction of intricate three-dimensional local features produced by
various temporal inputs, it can readily outperform two-dimensional based
approaches extensively studied previously. Our demonstration paves the way
for wide physical reservoir computing systems capable of efficiently proces-
sing multiple dynamic time-series information.

Big data has emerged as a critical driving force to the data-driven
industrial revolution, which underpins decision-making processes in
modern society, enhances efficiency, and promotes innovation1,2. The
ability to collect, analyze, and interpret big data supports companies
and societies involved in artificial intelligence in maintaining a com-
peting edge. Among the various types of data, time-series data, which
are sequential observations collected over specific time frames, have
become increasingly important as dynamic information in applications
such as biometric analysis3, weather forecasting4, stock chart
estimation5, and water inflow prediction6. Their importance arises
from the inherently ordered nature, which allows predicting future

behaviors in dynamic information using estimated models that
describe correlated features.

In artificial intelligence, time-series data have been extensively
explored through approaches including network, statistical, and
transformermodels7,8. A promising approach is the implementation of
reservoir computing (RC) based on nonlinear dynamic systems such as
physical reservoirs (PRs) to replace computationally intensive
software-based methods9,10. Remarkably, memristive systems feature
inherent nonlinearity and short-termmemory capability, which enable
a single memristor node to replace a complex nonlinearly coupled
loop formed by multiple nodes in a software reservoir11–18. Since the
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first demonstration of memristive physical RC11, several approaches
based on memristors, such as the virtual node concept14, self-
organized nanowire network17, input masking16, and a fully analog
framework18, have been suggested to date. Although these proposed
physical RC systems are noteworthy, most of them are fabricated on
single-stacked and two-dimensional (2D) memristive device frame-
works and inevitably restricted to a single reservoir architecture. The
2D-based approaches eventually encounter physical limitations in
addressing multi-variant time information. In addition, several multi-
layered physical RC systems have been recently proposed19,20. These
systems demonstrated the promising aspects of the advanced reser-
voir architecture, including improved reservoir capacity and optimi-
zation. However, these approaches have a 2D lateral architecture or
rely on the inputdesign rule,which requires additionalmultilayeredPR
architecture capable of parallel processing, simplification, and versa-
tility to efficiently address multi-variable temporal inputs (detailed in
Supplementary Note 1). Hence, it is desirable to realize a wide physical
RC with multiple-stacked PRs based on three-dimensional (3D) inte-
grated memristive architecture. This 3D approach is anticipated to
enable the extraction of richer features and multiple local traits from
temporal inputs simultaneously, performing amore accurate, reliable,
and rapid RC than the 2D-based single physical RC. In addition, the
multiple-stacked PRs can provide signal mapping capabilities with a
smaller footprint than a single PR. Consequently, 3D-integrated
memristive PRs architecture is a significant step in the development
of a next-generation physical RC. However, the achievement of the
wide RC based onmultiple-stacked PRs remains elusive within existing
memristive frameworks as well as other device platforms due to the
complex fabrication steps for 3D stacked structures and the stringent
requirements on the PR properties.

For instance, many memristors show unreliable switching char-
acteristics such as variation, instability, and low yield21,22 owing to the
intrinsic nature of switching filaments, which makes it extremely
challenging to meet the high reproducibility requirement of PR states
from cycle to cycle and fromdevice to device. Additionally, the matrix
array structuredemands additional components, such as transistors or
selectors, to ensure reliable programming and reading by preventing
crosstalk23,24. This leads to complex device structure and fabrication
process (i.e., incorporating 1 T) as well as increased power consump-
tion and active node size. Moreover, memristors atmatrix nodesmust
operate in a low programming voltage range because time-series data
processing requires a considerable number of input pulses with vary-
ing intervals (Δt) over a specific time frame for low-power
operation14,15. Furthermore, addressing and predicting correlations
between various dynamic information sources require the ability to
handle multiple time series concurrently in each time frame without
mutual interference25–27. In other words, many independent reservoir
states controlled by sequential input pulses with varying Δt are
required for multiple dynamic tasks to be performed simultaneously
without interference. To effectively tackle these challenges all at once,
we propose and demonstrate the wide RC based on amultilayered 3D-
integrated memristive array structure with several independent
reservoir states at each matrix layer, crosstalk-free and robust
switching characteristics, high device yield, and low programming
voltages. In other words, the primary objective of our research is to
design, fabricate, and implement a wide physical RC platform,
enabling its capacity to be widely applied in sophisticated reservoir
configurations and providing functional benefits that go beyond sim-
ply increasing the density of devices.

Our approach can efficiently capture and process 3D local
dynamic features ofmultiple time series by implementing a 3D stacked
3 × 10 × 10 tungsten oxide (WOx) array architecture. Each memristor
cell is designed based on asymmetric interfacial Schottky barrier
engineering to achieve crosstalk-free of signals throughout the array.
The 3D stacked array exhibits highly reliable and robust operationwith

characteristics such as a high yield (>98%), exceptional stability
(>4000 consecutive sweeps and >105 cycles), switching uniformity
(~0.24%), and low operating voltage (~0.7 V). We demonstrate reliable
reservoir operations under various time-dependent electrical inputs
without overlapping reservoir states. As a proof of concept, we per-
form spatiotemporal pattern classification of biological cell positions
and behavior prediction of a time-dependent chaotic Lorenz attractor.
Our proposal achieves a higher and faster (~4.5 times) classification
accuracy for 3D positions of a biological cell using 60% fewer mem-
ristor cells, and a tenfold reduction in prediction error for the chaotic
Lorenz attractor compared with the use of a single reservoir. The
proposed 3D physical RC architecture supported by reliable memris-
tors opens an avenue for efficient and compact physical structure for
reservoir computing capable of time-series processing in artificial
intelligence systems.

Results
Three-layer stacked physical reservoirs
Figure 1a illustrates awideRC systemconsisting of three reservoir layers
(yellow, green, and purple) and an output layer. These reservoirs can
perform a nonlinear projection of temporal inputs (un(t)) onto reservoir
states ðxinðtÞÞ per feature space via the different nodes of the reservoirs
(blue circles), where i andn are the order of the reservoir layer (i= 1, 2, 3)
and number of nodes (n= 1, 2,…, n), respectively9,10. As the collective
reservoir states are delivered from each reservoir layer to the output
layer, the weights (Wi

n) between them can be iteratively updated for the
desiredoutputs (yn(t)) according toanalgorithm(e.g., backpropagation,
linear regression). Such learning process through the output layer can
be readily executed based on a linear combination of the weighted
reservoir states, thereby reducing the learning costs when compared
with other time-series processing algorithms. Moreover, it has been
demonstrated through an algorithmic and theoretical approach that the
utilization of a wide RC system is more effective in handling multiple
dynamic time information simultaneously by extracting rich local fea-
tures throughmultiple independent reservoir layers, in comparison to a
single RC system (Supplementary Fig. 1 and Supplementary Note 2)25–27.
As shown in Figs. 1a, b, the wide RC system can be physically mapped
onto a 3D stacked three-layer memristive crossbar array, where each
layer acts as a reservoir (three reservoirs in total). Figure 1b shows a top-
view optical microscopy image of the fabricated 3D stacked three-layer
3 × 10 × 10 memristive crossbar array, where each layer consists of
Pt/WOx/W memristor cells at each crosspoint (300 cells). In Fig. 1b, the
first, second, and third WOx layers are indicated in orange, green, and
purple, respectively, confirming the formation of a 3D stacked array.
Figures 1c, d show the 3D stacked 3 × 2 × 3 subarray (Fig. 1c) with a
magnified view of the vertically integrated cells at a crosspoint (Fig. 1d),
revealing a cell line width of approximately 100μm. To facilitate the
understanding of the 3D stacked architecture, the corresponding
schematics are shown in Figs. 1e, f. Array fabricationwith a cell linewidth
of 20μm is also demonstrated using conventional photolithography
(Supplementary Fig. 2).Moreover, similar switching feature at nanoscale
is demonstrated, as detailed below. Figures 1g–k show cross-sectional
high-resolution transmissionelectronmicroscopy (HR-TEM) images and
the corresponding energy dispersive spectroscopy (EDS) results of the
3D stacked array at a crosspoint, verifying the well-defined vertical
integration of the three Pt/WOx/W junction structures. The detailed
fabrication processes are provided in the Supplementary Information
(Supplementary Fig. 3) and Methods section. Note that the benefits of
our approach are further discussed in Supplementary Figs. 4, 5, Sup-
plementary Table 1, and Supplementary Note 3, 4 of Supplementary
Information.

Electrical characteristics of the 3D physical reservoirs
Figure 2a shows a representative self-rectifying current–voltage (I–V)
switching curve of amemristor in the 3D stackedWOx PRs. The ION/IOFF
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Fig. 2 | Electrical characteristics of 3D Pt/WOx/W memristor array.
a Representative I−V curve of Pt/WOx/W memristor without initial forming and
exhibiting self-rectifying bipolar switching. The top Pt electrode and bottom W
electrode were biased and grounded, respectively. The inset shows the same I−V
curve on a linear scale. b Statistical histograms of switching parameters ION, IOFF,
and ISneak for all the memristors from the first to third layers (300 memristors).
c Schematic of 3D stackedWOx array illustrating switching success and failure (i.e.,
short circuit) as colored and red dotted boxes, respectively. d Operation under

consecutive I−V sweeps over 4000 times for WOx memristor in 3D stacked array.
e Endurance cycling test ofWOxmemristor over 105 cycles by programming at 1.8 V
and −1.8 V for W = 500μs. ION and IOFF were read at VREAD = 0.5 V. f Operating vol-
tage range |V| for WOx memristor (red box) and other self-rectifying memristors.
g Dynamic I behavior over time t for WOx memristor after applying voltage pulses
of 1.8 V for W = 1ms, 100μs, and 50 μs, demonstrating a self-decaying nature
(i.e., short-term memory) with different to (inset).

Fig. 1 | 3D stacked WOx physical reservoir (PR) arrays. a Schematic of a wide
reservoir computing (RC) system with multiple reservoirs (see Supplementary
Note 2). b Top-view optical image of fabricated 3D stacked three-layer 3 × 10 × 10
crossbar array with vertical integration of three Pt/WOx/W memristors at each
crosspoint. The first (1st), second (2nd), and third (3rd) WOx layers are shown in
orange, green, andpurple, respectively. The fabrication of each layer is described in
the Supplementary Information (Supplementary Fig. 3). The 3D stacked array can
naturally map a wide RC system onto hardware. c, d Top-view optical image of
3 × 2 × 3 sub-array (c) and magnified view at crosspoint (d) with line width of

100μm. The scale bar for the top and bottom image is 200μm and 100μm,
respectively. e Schematic of fabricated 3D stacked three-layermemristive crossbar
array. Each memristor cell located at the first, second, and third layers is shown in
orange, green, and purple, respectively. f Magnified schematic of vertical integra-
tionof three Pt/WOx/Wmemristors at a certain crosspoint (3 × 1 × 1) inpanel (e) (red
dotted line).g–kCross-sectional high-resolution transmission electronmicroscopy
(HR-TEM) image of three stacked memristors at crosspoint (g) and its corre-
sponding energy dispersive spectroscopy (EDS) results for all (h) and each (i–k) of
its elements. The scale bar for all (g–k) is 100nm.
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and rectification (ION/ISneak) ratios are approximately 4.1 × 102 and
4.8 × 102, respectively, where ION and IOFF are the ON and OFF currents
at reading voltage VREAD = 0.5 V, respectively, and ISneak is the sneak
current at −VREAD. The programming voltage ranges in ±1.8 V. An initial
electroforming step is not required for the fabricated array memris-
tors. This switching phenomenon is attributed to the robust Schottky
barrier formed at the Pt/WOx interface and dynamicmodulation of the
Schottky barrier at the WOx/W interface, which is controlled by the
electric-field-driven migration of oxygen vacancies28,29. It can be also
observed even in the absence of an applied compliance current
(Fig. 2a). This operational advantage can reduce the burden on per-
ipheral circuitry for strict current control, hence, it enables our 3D
stacking array to be denser and more scalable. Note that the shift of
voltage position for minimum currents in Fig. 2a might be associated
with the transient formation of an internal electric field30–32 (Supple-
mentary Note 5). Figure 2b shows the statistical histograms of ION, IOFF,
and ISneak for all the memristors from the first to third layers of the 3D
stackedWOx PRs (300memristors). The I‒V switching curves of all the
reservoir layers are provided in the Supplementary Information
(Supplementary Figs. 6–8). Similar I‒V switching curves are observed
regardless of the location of the reservoir layers. The average values
for ION, IOFF, and ISneak are (1.40 ±0.10) × 10−6 A, (4.05 ± 0.38) × 10−9 A,
and (2.23 ± 0.16) × 10−9 A, respectively. All the distributions of ION, IOFF,
and ISneak are well-fitted by the lognormal distribution curve (Supple-
mentary Fig. 9). Hence, well-defined switching parameters with
acceptably low variations are observed in the 3D stackedWOx PRs. The
device yield of the layers is 98.3% (97, 100, and 98/100 for the first,
second, and third layers, respectively), as illustrated in the schematic
of Fig. 2c (see Supplementary Figs. 6–8). These results support the
reproducibility and expandability of the 3D stackedWOx PRs for large-
scale physical RC systems.

Figure 2d, e show the consecutive switching curves for more than
4000 times and over 105 cycles with an ION/IOFF ratio of approximately
5 × 102, respectively, demonstrating an excellent operating stabilitywith
average cycle variation of 0.24% (Supplementary Fig. 10). In addition,
the multiple 3D stacked WOx PRs exhibit the lowest operating voltage
range (at least |0.7 | V, Fig. 2f andSupplementary Fig. 11)with robust self-
rectification (Supplementary Fig. 12), indicating the possibility of lower
power consumption than existing self-rectifying memristors31,33–45.
Figure 2g shows the current responses of the memristor cell over time
after applying single voltage pulses of different widths (W ). The current
abruptly increases close to ION soon after applying a single voltage pulse
and then decays spontaneously and exponentially over time (t) under
VREAD (i.e., I ∝ exp(−t/to), where to is the characteristic decay time),
eventually returning to IOFF. This behavior was still observed to persist
despite the application of strong programming voltage scheme in both
air and vacuum environments (Supplementary Fig. 13). This sponta-
neous decay in the switching current cannot be attributed to the
protonation-assisted switching mechanism, as the metallic HxWO3

phase is absent and the switching occurs over a short period of time46.
This self-decaying nature (i.e., short-term memory) can describe time-
dependent internal states that enable temporal processing. Because
width W can control to, a 3D stacked WOx memristor cell can process
time-series data over varying time frames. Note that to was observed to
decrease as the W decreased based on a power function (Supplemen-
tary Fig. 14). Consequently, as comparedwith other reportedmemristor
devices47–50, our proposed WOx memristor can exhibit highly reliable
selector-less short-term switching performances, operational advan-
tages, and scalability for showcasing the 3D-integrated multilayered PR
arrays.

Switching mechanism of the 3D physical reservoirs
The interfacial barrier heights were investigated according to the ION
and IOFF states to understand the self-rectifying switching behavior of
the 3D stacked WOx memristor cell. Initially, the Pt/WOx/Wmemristor

was designed based on the asymmetric distribution of oxygen vacancy
(VO) in WOx between Pt and W electrodes. Figure 3a shows the ex-situ
X-ray photoelectron spectroscopy (XPS) results with timed Ar+ bom-
bardment for the W ion peaks at the top and bottom WOx interfaces.
Compared with the top WOx interface, there are two peaks corre-
sponding to W5+ andW0 at the bottomWOx interface (top and bottom
of Fig. 3a)51,52. This indicates the enrichment of VO in the direction of
the bottom WOx interface, which increases the concentration of VO
(CVO

) at theWOx/W interface. Because the Fermi level ofWOx increases
(decreases) with high (low) CVO

53, asymmetric barrier heights Φ1
B and

Φ2
B at the WOx/W and Pt/WOx interfaces can be formed. A detailed

discussion and additional XPS results are presented in Supplementary
Note 5 and Supplementary Figs. 15, 16. The combined effects of the
sputtering parameters and electrodes were also investigated (see the
Methods section and Supplementary Figs. 17–19). The structural ana-
lysis results are consistent with the visual inspection of WOx (Supple-
mentary Fig. 20).

Figure 3b shows the temperature (T)-dependent ION and IOFF states
of the Pt/WOx/Wmemristor and their interfacial barrier heights (Φ1

B at
WOx/W and Φ2

B at Pt/WOx) through the Arrhenius plot. Based on the
fitting results shown in Fig. 3b (solid lines; see the Methods section),
Φ1

B andΦ2
B are shown according to the ION and IOFF states in Fig. 3c. The

asymmetry between Φ1
B and Φ2

B contributes to the self-rectifying fea-
ture shown in Fig. 2a. A larger change in Φ1

B than in Φ2
B is observed

during the switching transition, implying that charge transfer through
Φ1

B is dominant in determining the switching states. When a positive
voltage is applied to the Pt electrode, VOmigrates downward, and CVO

increases at the bottom WOx interface
28,29. In that case, Φ1

B is largely
decreased at VREAD = 0.5 V; then, the conductance state is switched to
ION. When a negative voltage is applied to the Pt electrode, the beha-
viors occur inversely, and the conductance state switches to IOFF.
Additional experimental results for different thicknesses ofWOxunder
ambient or vacuum environments and the structural analysis of WOx

are described in the Supplementary Information (Supplementary
Figs. 17, 21–23, Supplementary Note 5). Note that there is a possibility
that electron trapping/detrapping process may partially contribute to
the switching mechanism, but it is likely to have a minor effect on the
switching compared to the electric field-driven VO migration (Supple-
mentary Fig. 24 and Supplementary Note 5).

Figures 3d and 3e showmaps of the spatial current distribution (�I)
on the Pt-tip/WOx/W junction structure according to the tip bias
(Vbias = ±3 V) using conductive atomic force microscopy (c-AFM). The
estimated contact radius of the Pt tip is approximately 2.1 nm (Sup-
plementary Fig. 25). Details of the c-AFM measurements are shown in
Supplementary Fig. 25 and Methods section. The average values of �I
are 2.63 nA and 8.45 pA at Vbias of 3 V and −3 V, respectively, demon-
strating a uniform change at the whole scanning area without evident
current hotspots (i.e., conductive filaments)54. The I–V switching fea-
ture at the nanoscale using c-AFM is consistent with the switching
behaviors observed in Fig. 2 (Supplementary Fig. 25). Figure 3f shows
statistical ION and IOFF according to thememristor size (with a constant
ION-IOFF ratio, Supplementary Fig. 26), demonstrating the homo-
geneous enrichment and depletion of VO near the WOx interfaces55.
Note that dependency of the ION/IOFF on the size is almost negligible
(Supplementary Fig. 26).

Physical reservoir computing for multiple time-series data
Temporal processing of multiple dynamic inputs was quantitatively
evaluated considering the nonlinear dynamics and short-term
memory of 3D stacked WOx PRs (Fig. 4 and Supplementary
Figs. 27–30). Figure 4a shows the change in PR states (i.e., current
responses) of the memristor cell in response at each timestep (t1–t4)
over a voltage pulse sequence. Pulse sequence [1111] indicates that a
voltage pulse (VINPUT = 1.8 V for 200 ns) is sequentially applied at
each timestep (t1–t4), whereas sequence [0000] indicates that no
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voltage pulses are applied. Hence, 16 reservoir states are successfully
programmed at t4 without notable cycle variations (10 cycles per
sequence, Supplementary Fig. 27). These distinct reservoir states
may be attributed to the self-rectifying properties and the consistent
cycling switching. The trajectories of change in the reservoir states
by the voltage pulse sequences are similarly observed on the mem-
ristors from the first to third layers of 3D stacked WOx PRs (Sup-
plementary Fig. 28).

To demonstrate the capability of 3D stacked WOx PRs to process
multiple time series without mutual interference, a detection task of
moving biological cells was conducted based on their layer separation
in nucleus, cytoplasm, and background, as shown in Figs. 4b–k56.
Figs. 4b, c show a centered cell image (Fig. 4b) and its simplified 5 × 5-
pixel image (Fig. 4c), where the blue, yellow, andblack pixels represent
the nucleus, cytoplasm, and background, respectively. As shown in
Fig. 4d, the moving cell can be localized in one of five possible cell
positionswith respect to its nucleus: top left (TL), top right (TR), center
(C), bottom left (BL), or bottom right (BR). In three layers of 5 × 5-pixel
images corresponding to the nucleus, cytoplasm, and background
images, each layer is encoded according to the five position cells using
different voltage sequences in the spatial and time domains. For the
centered cell (C) in Figs. 4e, f, various voltage sequences for the five
WOx memristors in each layer are encoded. The multiple 3D stacked
WOx PRs can individually capture three local features of the biological
cell from the first to third layers. Figure 4g shows the final reservoir
states at the center position in terms of these three features. The fea-
tures are spatiotemporally distinguishable, demonstrating the success
of feature extraction using dynamic cell positioning. The results for the
other cell positions (TL, TR, BL, and BR) are shown in Supplemen-
tary Fig. 29.

When each spatiotemporal input for a cell position enters each
reservoir layer, the reservoir state, xi

n, in each layer (i = 1, 2, 3) is gen-
erated. It is then connected to a digital output layer (y1(t), y2(t), y3(t),
y4(t), and y5(t)) to perform learning based on the simple single-layer
gradient descent (Fig. 4h). Details about learning and prediction are
provided in the Methods section. Figure 4i shows the loss function
over epoch for a single reservoir and multiple reservoirs. As shown in
Fig. 4i, the loss function for multiple reservoirs rapidly decreases with
the number of epochs (~4.5 times faster), leading to a higher classifi-
cation accuracy. Note that the further discussion on the convergence
speed is described in Supplementary Note 6. In this detection task, the
accuracy of the multiple 3D stacked WOx PRs is 100% at 100 epochs,
being 7% higher than that of a single reservoir. Thus, for multiple PRs,
only the diagonal boxes are fully saturatedwith yellow in the confusion
matrices for the classification results between the actual and predicted
positions (Fig. 4k). However, for a single reservoir, the blue saturation
of several off-diagonal boxes is observed, indicating incorrect predic-
tions (Fig. 4j). In addition, a single reservoir requires a larger number of
memristors (25) than multiple reservoirs (15) for this detection task,
and it cannot distinguish between the nucleus and cytoplasm at the
overlapping position (Supplementary Fig. 30). Therefore, multiple PRs
can extract rich features from time-series data because each reservoir
learns distinct local features, even when using 60% fewer memristors
than a single reservoir, thus surpassing the performance of a simple
increase in packing density. Additional discussions on the wide RC are
described in Supplementary Note 2, 6.

As another example of physical RC, we considered a time-
dependent Lorenz attractor, which is a nonlinear and deterministic 3D
chaotic dynamic system for representing convection in the atmo-
sphere that is difficult to predict57. We attempted the Lorenz attractor

Fig. 3 | Switching mechanism of 3D Pt/WOx/W memristor. a W 4 f XPS results
taken from top and bottom interfaces of WOx layer, exhibiting asymmetric profile
in concentration of oxygen vacancies (CVO

) depending on the position of the WOx

layer. b Arrhenius plot of ln(I/T2) according to 1/kBT for ION and IOFF states of Pt/
WOx/Wmemristor. VariablesΦ1

B (blue) andΦ2
B (red) indicate each Schottky barrier

height at the W/WOx (bottom) and Pt/WOx (top) interfaces, as shown in the inset.
The changes inΦ1

B andΦ2
B were estimated from the slopes of ln(I/T2) according to 1/

kBT for the ION and IOFF states of the Pt/WOx/Wmemristor, respectively. c Changes

in estimated Φ1
B and Φ2

B for ION and IOFF states. The inset shows the different band
diagrams for the ION and IOFF states and state-dependent CVO

. d, e Conductive
atomic force microscopy (c-AFM) images of current distributions in 1 × 1μm2

WOx/W for tip bias (Vbias) = 3 V (d) and Vbias = −3 V (e). Note that spatial current
distribution (�I) was found to be 2.63 nA (d) and 8.45 pA (e) on the average. The scale
bar for both (d, e) is 100 nm. f Statistical ION and IOFF values for 15 WOx memristors
according to memristor area.
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prediction and simulation using multiple 3D stacked WOx PRs as a
proof of concept. Figure 5a shows the 3D trajectory obtained from the
Lorenz attractor equations with specific parameters (see the Methods
section). As shown in Figs. 5b, c, by deconvoluting the 3D Lorenz
equation into three time-dependent one-dimensional equations
(i.e., x-, y-, and z-axis components over a timestep) (Fig. 5b), the 3D
stacked WOx PRs could directly handle their corresponding chaotic
inputs to generate separable reservoir states, which were then trans-
ferred to the output layer (Fig. 5c).

Basedon the linear regression algorithm, the learning processwas
performed at the output layers considering 100 nodes per reservoir
(300 nodes in total). As shown in Fig. 5d, after initialization and
learning over 1400 timesteps, the predicted behavior closely matches
the actual behavior with a negligible deviation. Figure 5e shows the
amplitudes of the x, y, and z components over time for the actual and
predicted behaviors (2788 timesteps). Hence, we demonstrate the

successful prediction of a time-dependent 3D Lorenz attractor using
multiple 3D stacked 3 × 10 × 10 WOx PRs. The average normalized
mean squared error (NMSE) between the predicted and actual beha-
viors is approximately 2.62 × 10−4, being >10 times better than that
when using a single reservoir with 300 nodes (NMSE of 1.35 × 10−3)
(Fig. 5f and Supplementary Fig. 31). If the reservoir capacity is insuffi-
cient, even when considering multiple reservoirs, the predicted
behavior substantially deviates from the actual behavior (Supple-
mentary Fig. 32). Details about prediction are provided in theMethods
section. The results indicate that the optimizedWi

n in the output layer
obtained from learning allows to suitably predict the futurebehavior in
response to multiple reservoir states (three layers) at the current
timestep. As a result, 3D stacked WOx memristor arrays promote the
prediction accuracy and efficiency of physical RC for multiple time-
series processing. Note that, in Supplementary Note 6 and Supple-
mentary Figs. 33, 34, we show relevant discussions of physical RC

Fig. 4 | Physical reservoir computing for cell position classification. aChange in
physical reservoir (PR) states of memristor cell at read voltage (VREAD) = 0.5 V per
timestep (t1–t4) and 16 voltage pulse sequences ([1111], [0111],…, [0000]). A voltage
pulse (VINPUT) is 1.8 V for 200 ns with interval (P) = 7 μs. Each reservoir state at t4 is
clearly separated regardless of the cycle variation.b, c Illustrations of biological cell
showing nucleus, cytoplasm, and background (b), and its corresponding 5 × 5-pixel
image (c).d Schematics of five cell positions: top left (TL), top right (TR), center (C),
bottom left (BL), and bottom right (BR). e, f Schematics of three 5 × 5-pixel images
of nucleus, cytoplasm, and background for case C (e), and their corresponding
time-series sequences applied to three PR layers (nucleus for third layer, cytoplasm
for second layer, and background for first layer) (f). The time-series inputs were

voltage pulses converted from each local feature and introduced into different
locations of the memristors in each layer (5 memristors per layer for the spatial
domain) at different times (t1–t5 in the temporal domain). g Final reservoir states at
t5 obtained from first to third reservoir layers (5memristors per layer). h Schematic
of reservoir computing (RC) configuration consisting of input layer for time-series
data, three PRs, and output layer. Weights (Wi

n) between PRs and output layer was
trained to reduce the error (i.e., loss function) by comparing outputs (yn(t)) and the
desired value. i Loss functions for single (navy) and multiple (yellow) reservoirs
according to training epoch. The inset shows the classification accuracies at 100
epochs and numbers of used memristors for the single and multiple reservoirs.
j, k Confusion matrices for single (j) and multiple (k) reservoirs.
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based on multiple 3D stacked WOx PRs as compared with traditional
approaches and suggest how they could be used at the circuit level.

Discussion
We design and fabricate a 3D stacked three-layer 3 × 10 × 10 WOx

memristive crossbar array to implement a wide physical reservoir
system for processing multiple time-series information. This design
exhibits a forming-free feature, high switching uniformity and device
yield (>98%) for a three-layer stacked array, robust endurance (>105

cycles), and low programming voltage (~0.7 V) for self-rectifying
switching. Moreover, it demonstrates essential reservoir properties,
including separation and memory fading. The 3D stacked WOx mem-
ristive crossbar array for wide physical RC allows each array layer to
individually portray and process distinct local features of spatio-
temporal inputs such that the reservoir states can be readily analyzed
at the output layer for classification andprediction tasks. By leveraging
this strategy, for dimensional classification of biological cell positions,
the multiple PRs achieved better classification accuracy (~100%) and
~4.5 times faster convergence using 60% fewer memristors (15) com-
pared with a single reservoir (93% accuracy with 25 memristors). In
addition, for the prediction of the chaotic Lorenz attractor, they
achieved a tenfold lower prediction NMSE (~2.62 × 10−4) than a single
reservoir (NMSE of 1.35 × 10−3). Although the array size is still small as a
proof-of-principle demo, both the principles and device structure are
applicable to large scales. The proposed 3D stacked WOx PR array

represents a leap forward toward an efficient wide RC platform, pro-
mising for time-series processing in edge computing.

Methods
Fabrication of 3D stacked three-layermemristive crossbar array
The 3D stacked three-layer 3 × 10 × 10 WOx memristive crossbar array
was fabricated on either a glass substrate or 285 nm-thick SiO2/p

++-Si
substrate (1.5 cm× 1.5 cm). First, the substrates were prepared using a
conventional cleaning process with acetone, isopropyl alcohol, and
deionizedwater via ultra-sonication for 3min each. To form 1st bottom
electrode lines (< ~10 nm thick) on the substrate, W was deposited by
sputtering system with 5min pre-sputtering step, gas flow of Ar
10 sccm, working pressure of 10 mTorr, and gun power of 100W with
the patterned shadowmask (1.5 cm× 1.5 cm)with linewidth of 100μm.
Note that all the following fabrication processes were performed
through sputtering and shadowmasks to circumvent the sidewall issue
that is critical for the 3D stacked structure. The same-sized shadow
masks with the substrate were used to facilitate the patterning align-
ments. Subsequently, the WOx (~180 nm thick) was deposited on the
center of the 1st bottomWelectrodes except for the contact pads. The
patterning alignment was carefully carried out with an optical micro-
scopy. During WOx deposition, various combinational sputtering
parameters were used, such as 20min pre-sputtering step, gas flow of
Ar 60 sccmandO2 1 sccm,workingpressure of 20mTorr, gunpower of
150W, and substrate temperature of 40 °C, to optimize a nonlinear

Fig. 5 | Physical RC for prediction of time-dependent Lorenz attractor. a 3D
trajectory of Lorenz attractor in the x, y, and z components. b, c One-dimensional
time-dependent Lorenz attractors over time deconvoluted from 3D Lorenz
attractor (b), and schematic of three physical reservoirs (PRs) for prediction of the
3D Lorenz attractor (c). d Actual and predicted behaviors of 3D Lorenz attractor
after 1400 timesteps. e Individual actual behaviors of x, y, and z components over

time (colored solid lines), and their corresponding prediction results (red dotted
lines) using multiple 3D stacked 3 ×10 × 10 WOx PRs after 1400 timesteps (blue
dotted line). f Normalized mean squared error (NMSE) between actual and pre-
dicted behaviors at timestep 2788 for single (navy) andmultiple (yellow) reservoirs
in the x, y, and z components.
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dynamic switching with self-rectification (see Supplementary Fig. 17).
Perpendicularly to the 1st bottom W electrode lines, the 1st top Pt
electrode lines (< ~10 nm) were formed on the 1stWOx layer by using a
shadow mask and sputter. The Pt was deposited with 5min pre-
sputtering step, gas flow of Ar 10 sccm, working pressure of 10mTorr,
and gun power of 100W. After the Pt deposition, W was directly
sputtered on the 1st top Pt electrodes to form 2ndbottomWelectrode
lines. The 2nd WOx layer was then formed on the 2nd bottom W
electrode/1st top Pt electrode lines, except for the all electrode pads.
The same sputtering parameters used during the formation of 1st WOx

were employed. Similar fabrication steps were repeated until com-
pleting the 3D stacked of the three-layer memristive crossbar array.
The top-view optical images of the fabrication processes and corre-
sponding schematics are shown in Supplementary Fig. 3.

Structural analysis
To identify the formation of 3D stacked junction structure at a certain
crosspoint, the sample for TEM and EDS analysis was prepared via
focused ion beam technique (FIB, Helios G4 HX) and then cross-
sectional TEM image and EDS results of the 3D stacked memristors
were obtained by using a FEI Double Cs and monochromated TEM
instrument. The depth-profiling XPS analysis (PHI 5000 VersaProbe)
was performed by using 100 μm-diameter sized single Pt/WOx/W
memristor (80-nm thick WOx).

Electrical characterization
A semiconductor parameter analyzer (4155C, Agilent), pulse generator
(81104A, Keysight), and low-leakage switch mainframe (E5250A, Key-
sight) were used to electrically investigate and characterize the I–V
switching curves, consecutive sweeps, endurance cycles, voltage ran-
ges, temperature-dependent Schottky barrier height, and size depen-
dencyof the3Dstacked three-layer 3 × 10 × 10WOxmemristive crossbar
array. Memristors in the 3D stacked arrays were randomly accessible
when contacting their corresponding electrode pads. For example, to
select a certain memristor of the 1st layer, the 1st bottom W electrode
pad was grounded, whereas the 1st top Pt & 2nd bottom W electrode
pad was biased. Considering that the 1st top Pt electrode is underneath
the 2nd bottom W electrode, the Pt/WOx/W memristor of the 1st layer
can be characterized. This measurement can be considered a reason-
able method because our WOx-based memristors operate based on
interfacial switching. The time-decay features and current responses
(i.e., reservoir states) as functions of various time-dependent inputs
were measured by using a Keithley 4200 semiconductor characteriza-
tion system that can program arbitrary voltage schemes into memris-
tors. To investigate self-decaying nature, a VREAD of 0.5 V for 5μs was
first applied into the selected memristor in the 3D stacked array to
confirm IOFF state. Then, a programming pulse with amplitude of 1.8 V
for pulsewidths (W) = 1ms, 100μs or 50μs, which can switch the device
into ION state, was introduced into the memristor. The rising and falling
edges of the pulses were set to be 500ns. After the programming, a
VREAD of 0.5 V was used to investigate the current decaying behaviors
over time. To generate reservoir states, time-varying voltage pulse
schemes consisting of four timesteps were used (Fig. 4a). As shown in
the upper panel of Fig. 4a, 16 binary encoding sequences (1 or 0) consist
of 4 timesteps (t1–t4) at P = 7 μs, and each timestep contains either a
VINPUTof 1.8 V forW= 200nswhen its corresponding encoding is 1 or no
pulsewhen its corresponding encoding is 0. The rising and falling edges
of the programming pulse were set to be 50ns. After each timestep,
VREAD of 0.5 V at the time interval of 5 ns was used to record reservoir
states (i.e., current behaviors). Note that for the random access, the
same method used in the electrical characterization was employed.

Conductive atomic force microscopy
To identify the filament-free and homogeneous switching phenomena
of the WOx memristor, conductive atomic force microscopy (c-AFM)

measurement was performed. In order to map the spatial current
distribution (�I), a Pt/Ir-coated c-AFM tip was used to directly scan the
top surface of the WOx/W sample and configure the Pt/WOx/W junc-
tion structure (Supplementary Fig. 25). The Pt/Ir-coated tip was set to
be grounded, and the bottomWelectrode was set to be biased; hence,
tip bias (Vbias) was represented as the opposite bias polarity. The tip
(~24 nm) and estimated contact radii (~2.1 nm) are discussed in the
Supplementary Information (Supplementary Fig. 25). The electrical
characteristics were measured in scanning mode with a scan area of
1 × 1μm2 by using a DLPCA-2000 built-in current amplifier (Electro-
Optical Components) under a humidity below 15%. After the Pt/Ir tip
contacted the WOx/W samples, −3 V and 3 V were applied to the bot-
tom W electrode during scanning, respectively. Then, the spatial cur-
rent distribution (�I) atVbias = 3 V and −3 Vweremappedon the 1 × 1μm2

scan area and itwas verified that there is no occurrence of a conductive
filament.

Estimation of Schottky barrier height
Todetermine the Schottkybarrier heights of the Pt/WOx/Wmemristor,
temperature-dependent I–V curves were investigated and plotted
according to the following thermionic emission equations:

I =AA*T2 exp
�qΦB

KBT

� �
, ð1Þ

ln
I

T2 = lnðAA*Þ � qΦB

KBT
, ð2Þ

whereA,A*, T, q,ΦB, andKB are the effective area, Richardson constant,
temperature, electronic charge, Schottky barrier height, and Boltz-
mann constant, respectively. Hence, Φ1

B and Φ2
B for the ON and OFF

states at VREAD = ±0.5 V are quantitatively estimated from the slope of
the straight fitting lines shown in Fig. 3b.

Dimensional classification of biological cell positions
The dimensional classification of five biological cell positions was
simulatedbasedon the individual PR states encoded fromeach layer of
the 3D stacked WOx array. Three layers of 5 × 5-pixel images corre-
sponding to the nucleus, cytoplasm, and background images are
individually encoded by each layer of the 3D stacked WOx array.
A Keithley 4200 system, capable of generating arbitrary voltage pulse
patterns, was employed to measure the reservoir states (i.e., current
responses) at each timestep (from t1 to t5) by applying the spatio-
temporal inputs shown in Figs. 4e–g. Five memristors per layer were
selected in each 10 × 10 crossbar array for spatial information pro-
cessing of the biological cell, and all reservoir states were read atVREAD

past 5μs after the application of each programming pulse (1.8 V for
200ns). The programming and reading disturbances in the 3D stacked
3 × 10 × 10 WOx array can be minimized owing to the self-rectifying
function. The reservoir states of the different memristors in each layer
were individually recorded by applying time-dependent voltage pulses
to the top Pt electrode line of the selectedmemristor with a grounded
bottom W electrode line.

Subsequently, a single-layer neural network with a supervised
learning algorithm was employed as the output layer. By considering
the PR states at the final time frame (t5) as input x, output y was gen-
erated through the softmax activation function:

yj =
e zjPj
k = 1 e

zk
,zj =Wi,j � xi +b, ð3Þ

whereWi,j is the synaptic weight between a reservoir and output layer,
b is the bias, and i and j are integers identifying the reservoir nodes and
output neurons, respectively. The number of output neurons was five,
corresponding to the considered cell positions (top left (TL), top right
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(TR), center (C), bottom left (BL), or bottom right (BR)). During
learning, the cross-entropy loss function (ε) was decreased using delta
rule of gradient descent as follows:

ε= � 1
n

Xn
m= 1

Xj

k = 1

ŷðmÞ
k logð yðmÞ

k Þ, ð4Þ

Wi,j � Wi,j � η
∂ε
∂W

, ð5Þ

where n is the number of input data points, ŷj is the one-hot encoding
of yj, and η is the learning rate. After learning, additional images were
generated per cell position and used during prediction (Supplemen-
tary Fig. 35), and also their corresponding PR states were produced
based on the fitting results (Supplementary Fig. 36).

Prediction of time-dependent Lorenz attractor
The 3D Lorenz attractor is a set of chaotic solutions of the Lorenz
systemdescribed by three ordinarydifferential equations according to
the axis:

dx
dt

=αð y� xÞ, ð6Þ

dy
dt

= x β� zð Þ � y, ð7Þ

dz
dt

= xy� γz: ð8Þ

These equations can describe various chaotic behaviors and
physical phenomena over time depending on the values of parameters
α, β, and γ. By setting α = 10, β = 28, and γ = 8/3 for the chaotic beha-
viors, the Lorenz attractor was normalized and deconvoluted into
time-varying amplitudes for the x, y, and z components. These values
were applied into each PR after normalizing the inputs in the operating
voltage range from 0V to 1.8 V, as shown in Figs. 5b, c. At each reser-
voir, 100 memristors were utilized and simulated to enrich the reser-
voir states because some device variations can produce qualitatively
similar but quantitatively different current responses (Supplementary
Fig. 28 and Supplementary Note 2, 6). The reservoir states obtained
from the three PRs were fed into the corresponding output layers, and
theweights were optimized using the supervised learning algorithmof
linear regression with the pseudo inverse:

W = XTX
� ��1

XTY ð9Þ

X, W, and Y are a set of reservoir states, weights, and actual
behaviors, respectively. After initialization during the initial 100
timesteps, the weights were updated until 1400 timesteps. Initializa-
tion was required to prepare and assist the prediction processing of
the RC system without learning because the initial conditions of the
Lorenz attractor could strongly affect its future behavior. When
learning was complete, the actual behaviors at the current timestep (t)
were used to predict the behaviors at the next timestep (t + 1).

Normalized mean squared error
The normalized mean squared error (NMSE) used for performance
evaluation was calculated as

NMSE=

P
t

P
jðyj tð Þ � tj tð ÞÞ2P
t

P
j t
2
j ðtÞ

, ð10Þ

where tj(t) and yj(t) are the actual and predicted behaviors,
respectively.

Data availability
All data supplementary to the findings of this study are availablewithin
the article and its Supplementary Information, or from the corre-
sponding author upon request.

Code availability
All codes used for the simulation are available within the article and its
Supplementary Information, or from the corresponding author upon
request.
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