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The evolution of metastatic upper tract
urothelial carcinoma through genomic-
transcriptomic and single-cell protein
markers analysis
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Aram Vosoughi 1,2, Evan Fernandez2,4, Kyrillus S. Shohdy6, Jyothi Manohar2,
Shaham Beg 1,2, David Wilkes 2, Brian D. Robinson 1,2, Francesca Khani 1,2,
Rohan Bareja2,3,4, Scott T. Tagawa 2,6,7, Madhu M. Ouseph1,
Andrea Sboner 1,2,4, Olivier Elemento 2,3,4,7, Bishoy M. Faltas 2,6,7,8,9 &
Juan Miguel Mosquera 1,2,9

The molecular characteristics of metastatic upper tract urothelial carcinoma
(UTUC) are notwell understood, and there is a lackof knowledge regarding the
genomic and transcriptomic differences between primary and metastatic
UTUC. To address these gaps, we integrate whole-exome sequencing, RNA
sequencing, and Imaging Mass Cytometry using lanthanide metal-conjugated
antibodies of 44 tumor samples from 28 patients with high-grade primary and
metastatic UTUC. We perform a spatially-resolved single-cell analysis of can-
cer, immune, and stromal cells to understand the evolution of primary to
metastatic UTUC. We discover that actionable genomic alterations are fre-
quently discordant between primary andmetastatic UTUC tumors in the same
patient. In contrast, molecular subtype membership and immune depletion
signature are stable across primary and matched metastatic UTUC. Molecular
and immune subtypes are consistent between bulk RNA-sequencing and mass
cytometry of proteinmarkers from 340,798 single cells. Molecular subtypes at
the single-cell level are highly conserved between primary and metastatic
UTUC tumors within the same patient.

Upper tract urothelial carcinoma (UTUC) is defined as urothelial car-
cinoma (UC) arising from the ureter or the renal pelvis. UTUC is a rare
tumor type compared to UC of the bladder (UCB), accounting for
5–10%of allUC tumors, with aggressive clinical presentation.While the
5-year survival rate for non-muscle invasive UTUC is more than 90%, it
drops to less than 40% in patients with regional nodal metastases and
<10% in patients with distant metastases1,2. Despite systemic therapies,
most patients with metastatic UTUC die from the disease3. A better

understanding of the underlyingmolecular basis ofmetastaticUTUC is
needed to develop targeted therapeutic strategies and improve clin-
ical outcomes for patients with metastatic UTUC.

Recent next-generation sequencing (NGS) studies have detailed
the genomic landscape of primary UTUC4–6. Our group recently
demonstrated that primary UTUC has a luminal-papillary T-cell
depleted phenotype and a lower total mutational burden than UCB7.
However, previous studies on UTUC, including ours, mainly focused
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on primary tumors. Only limited molecular data currently exists from
patients with metastatic UTUC6. Furthermore, the extent of intra-
patient genomic and phenotypic heterogeneity within an individual
patient with metastatic UTUC is still unknown.

In this study, we performed whole-exome sequencing (WES),
RNA-sequencing (RNA-seq), andmultiplexed imaging cytometrywhich
leverages antibodies conjugated to rare metals and detection by mass
spectrometry to provide spatial protein expression patterns at a single
cell resolution8,9 from patients with primary and metastatic UTUC
enrolled in our precision medicine study to characterize the genomic,
transcriptomic and immunophenotypic features of metastatic UTUC,
and understand the degree of heterogeneity between primary and
metastatic UTUC.

Results
Genomic landscape of metastatic UTUC
To define the genomic landscape of metastatic UTUC, we performed
WES of 44 prospectively collected UTUC tumors from a new cohort of
28 patients, including 7matched sets of primary andmetastatic UTUC
and germline samples and one rapid autopsy (Figs. 1a, b and Supple-
mentary Table 1). Metastatic lesions showed an average of 196 non-
synonymous Single Nucleotide Variants (SNVs)/Indels (insertions or
deletions) (range 5 − 713) and 149 copy number alterations (CNAs)
(amplifications and deletions, range 4–831). All the analyzedUTUChad
tumor mutational burden (TMB) scores below the UC-specific
threshold we previously defined10 to designate TMB-high tumors.
There were no significant differences in theMSIsensor scores11 or TMB
between primary and metastatic UTUC (Mann-Whitney U-test P
value = 0.65 and 0.22, respectively) (Supplementary Fig. 1). The most
frequently altered genes in our UTUC cohort were TP53 (45.2%),
KMT2D (35.7%), ARID1A (33.3%), and CDKN2A (33.3%) (Fig. 2a). The
frequently altered genes in our cohort were in agreement with pre-
viously reported primary UTUC genomic studies4,5,7,12, except for
FGFR3 (4/42, 9.5%). Of the detected CNAs, the frequency of RAF1
amplification was significantly higher in metastatic UTUC (33.3%)
compared to primary UTUC (4.2%) (Fisher exact test P value = 0.03)
(Fig. 2b). We searched our dataset for tumor samples interrogated by
targeted sequencing panels validated for clinical use. We found two
samples with genomic data from both WES and targeted panels. One
sample (WCM081_P) was tested by Oncomine and another
(WCM057_M1) by 50 gene custom panel that interrogates 2800 hot-
spots/variants of 50 cancer-related genes. Oncomine and the 50 gene
panel confirmed the druggable FGFR3 S249C and PIK3CA E545K
mutations, respectively.

Genomic heterogeneity between primary and matched
metastatic UTUC
To compare the clonal structure of primary and metastatic UTUC, we
investigated the number of private and shared mutations between the
primary and metastatic UTUC tumors within each patient. We calcu-
lated the percentage of non-synonymous mutations that were private
to either the primary tumor, the metastatic tumor, or shared within an
individual patient. Of the 7 analyzed patients with paired primary and
metastatic UTUC, 5 received chemotherapy treatment before sam-
pling the primary or metastatic tumor tissue. All the tumors from two
patients, WCM052 and WCM068, were chemotherapy-naïve (Supple-
mentary Fig. 2). On average, only 17.6% (range 7.3–36.4%) ofmutations
were shared by primary andmatchedmetastatic samples (Fig. 3a). The
percentages of shared mutations were higher in the chemotherapy
naïve patients than in patients who received prior chemotherapy
treatment (32.6% vs. 11.5%), suggesting that chemotherapy potentially
increases genomic heterogeneity by inducing mutations13–15.

To determine the biological impact of genomic heterogeneity, we
next sought to define the differences in mutations and CNAs affecting
cancer-associated genes between primary and matched metastatic

UTUCwithin eachpatient. Amedianof 13.5 cancer gene alterations per
sample was identified (range 2 − 51), including a median of 2
(range 1–9) alterations predicted to be likely oncogenic by theOncoKB
database16. When we compared genomic alterations between paired
primary and metastatic tumors, we observed significant intra-patient
heterogeneity in alterations affecting critical cancer genes (Fig. 3b). In
all cases, the primary and matched metastatic tumors shared at least
one pathogenic cancer gene alteration (Supplementary Fig. 3). How-
ever, compared to primary UTUC, we identified additional pathogenic
mutations or CNAs in all but one of the matched metastatic UTUC
tumors (Fig. 3b, Supplementary Fig. 3).

Stability of molecular subtype and immune-contexture assign-
ments between primary and metastatic UTUC tumors
We then evaluated the transcriptomic differences between theprimary
and matched metastatic UTUC using RNA sequencing of 17 UTUC
tumors (six primary and eleven metastatic tumors). The cohort inclu-
ded three patients with primary and matched metastatic UTUC and
one with twometastatic tumors (Fig. 4a). Using the recently published
single-sample consensus molecular classifier17, we found that 83.3% of
primary tumor sampleswere luminal-papillary, and the restwerebasal/
squamous (Fig. 4a). Of the metastatic tumors, 45.5%, 27.3%, 9.1% and
18.2% were luminal-papillary, luminal-unstable, stroma-rich and basal/
squamous, respectively (Fig. 4a). Clustering analysis using the BASE47
gene classifier18 showed a similar frequency of basal subtype between
primary and metastatic tumors (33.3% vs. 27.3%, P value >0.05). When
we evaluated the molecular subtypes between primary and matched
metastatic UTUC tumors, we found that they were relatively stable
compared to genomic changes. Still, discordance inmolecular subtype
was observed in one out of three cases (Fig. 4d). In WCM010, one of
three lymph node metastases was classified as luminal-unstable, while
the primary tumor and the remaining lymph node metastases were
classified as luminal-papillary. For patient WCM031, only the meta-
static tumorswere interrogatedbyRNA-seqdue to the unavailability of
frozen tissue from the primary tumor. Interestingly, molecular sub-
typing revealed discordance of molecular subtypes between the
asynchronous livermetastases (Fig. 4b). The initialmetastasis (M1) and
the second metastasis (M2) demonstrated stroma-rich and luminal
unstable, respectively. GSEA using RNA-seq data revealed no sig-
nificant enrichment of biological gene sets between primary and
metastasis (FDR >0.25) (Supplementary Fig. 4).

Next, we applied a classifier of 170 immune-related genes, which
we previously developed7 (Supplementary Table 2), to the RNA-seq
data obtained from17 samples (6 primary and 11metastatic UTUC) and
the TCGA-BLCA cohort. The majority of UTUC tumors (76.5%, 13/17)
clustered into the T-cell depleted subgroup (Fig. 4c, d), consistentwith
our previous findings in primary UTUC7. Only 16.7% of primary UTUC
(1/6) and 27.3% of metastatic UTUC (3/11) were T-cell inflamed. The
immune phenotypes were concordant within individual patients.
Additionally, we employed CIBERSORT to estimate the relative abun-
dance of 22 immune cell types from RNA-seq data19. CIBERSORT
showed no significant differences in the infiltration of 22 immune cell
types between primary and metastatic UTUCs. In terms of T-cell sub-
types, activated memory CD4+ T cells and Gamma Delta T cells were
low compared to other T cell types (Supplementary Fig. 5).

Single-cell spatial profiling of the immune contexture of UTUC
reveals intra-tumoral plasticity
To investigate the spatial landscape of the microenvironment of pri-
mary and metastatic UTUC tumors, we employed Imaging Mass
Cytometry™ (IMC™). This multiplexed tissue imaging method uses
antibodies conjugated to rare metals detectable by mass
spectrometry20. In total, from 14 samples of 6 patients, we generated
58 images containing the spatial distribution of 27 distinct molecular
biomarkers, which included markers of tumor cells (pan-Keratin,
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Fig. 1 | Clinical characteristics of the study cohort. a Schematic illustrating the
anatomical sites of primary and metastatic upper tract urothelial carcinoma
(UTUC) samples. Numbers correspond to the number of tumors at each site.
b Clinical characteristics of the study cohort, the anatomical sites of primary and

metastatic tumor samples and sequencing methods performed for each sample.
Barplots represent numbers of non-synonymous mutations for each sample.
Source data are provided as a Source Data file.
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Keratin 5, GATA3, E-cadherin), immune cells (CD3, CD16, CD68),
among others such as functional or stromalmarkers present in various
cell types (Supplementary Table 3). Upon inspection, IMC™ images
generally revealed structured boundaries between tumor and stromal
compartments (Fig. 5a, b). For a quantitative description of tumor and
tumor-associated phenotypes, we segmented a total of 340,798 single
cells across all images and, using themarker intensity as a quantitative
measure of epitope abundance, built a joint space reflecting the phe-
notypic similarity between cells using the Uniform Manifold Approx-
imation and Projection method (UMAP) (Fig. 5c). In this space, the
tumor cells were readily distinguishable from the remaining cells by
the basal marker Keratin 5 or the expression of either the luminal
marker GATA3 or other keratin proteins (Fig. 5d). The remaining cells
formed the immune and stromal compartments of the tumor, of which
the most numerous were cancer-associated fibroblasts, macrophages,
CD4+ and CD8+ T-cells, and endothelial cells (Fig. 5d, e). We found that
the samples classified as immune-inflamed by the RNA-seq-based
classifier had a higher number of CD8+ T-cells and Tregs (Supple-
mentary Fig. 6). Additional immune cell populations were identified
(Fig. 5e). We identified a population of cells positive for CD11b, CD68,
granzyme B, and PD-L1 and weakly positive for CD11c and PD-1. The
number of infiltrating cells from this population was higher in the
samples classified as immune-depleted than immune-inflamed (Sup-
plementary Fig. 6), suggesting a potential role in immune suppression.
The phenotype of this population overlaps with myeloid-derived
suppressor cells, a heterogeneous group of immune cells from the
myeloid lineage. We labelled this population broadly as immunosup-
pressivemyeloid cells becauseour panel ofmarkerswere not sufficient
for further characterization of this population. In the tumor com-
partment, we identified a wide range of tumor phenotypes expressing
various combinations of these markers, including the expression of
tumor-specific proteins (Fig. 5e). Upon closer inspection, we observed
that the degree of plasticity asmeasured by the ratio of the expression
of the basal marker KRT5 to the luminal marker GATA3 (KRT5/GATA3)
per cell was largely conserved across primary and metastatic UTUC
within the same patient (Fig. 5f). However, for one patient (WCM031),
the primary and metastatic tumor cells had distinct phenotypes, with

the primary tumor having a basal phenotype with low CD8+ T-cell
infiltration. In contrast, themetastatic sample has a luminal phenotype
and approximately double the number of CD8+ T-cells (78.6 cells in
primary vs. 134.5 cells in metastasis, Supplementary Fig. 7). These
findings suggest that cancer immune-contexture phenotypes are het-
erogeneous between patients but often conserved between primary
and metastatic tumors within individual patients with UTUC.

Discussion
Here, we describe the genomic, transcriptomic, and immunopheno-
typic landscape of metastatic UTUC. Furthermore, we used multi-
plexed tissue imaging using ImagingMass Cytometry™ to describe the
intra- and inter-tumoral phenotypic heterogeneity of UTUC tumors
and theirmicroenvironment at the single-cell level. Genomic data from
paired primary and metastatic UTUC tumors in small cohorts have
been reported6,21. Here we describe single-cell imaging analysis cou-
pled with transcriptomic data.

WES analysis from paired primary and metastatic UTUC revealed
that metastatic tumors harbored genomic alterations not identified in
the matched primary tumors. Two possibilities can be considered to
account for this heterogeneity: (a) Clones harboring these additional
alterations are resistant to perioperative chemotherapy. (b)Metastatic
lineages arise from early branched evolution in the primary tumors.
These possibilities were discussed in previous reports, which sug-
gested that systemic spread is a very early event in cancer history and
that chemotherapy selects clones harboring drug-resistant mutations
in breast, colorectal, lung, and bladder cancers13,22. In our cohort, intra-
patient heterogeneity of alterations in cancer-related genes was also
observed in the chemotherapy-naïve cases (WCM052 and WCM068).
However, the percentages of shared mutations between primary and
matched metastases were higher than those with a history of che-
motherapy before sampling. Chemotherapy potentially plays a role in
increasing genomic heterogeneity by inducingmutations13–15. Previous
genomic studies in small cohorts showed discordance of mutations
between paired primary and metastatic UTUC6,21. We show that intra-
patient genomic diversity in clinically targetable alterations is also
common in UTUC. This finding is of clinical importance because
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Fig. 4 | Comparisonofmolecular subtypeandT-cell inflammationclassification
in primary andmetastatic UTUC. aGene expression heatmap of UTUC aligned by
cases. The expression value is log-transformed and median centered for selected
genes, for labeled gene sets. Assigned molecular classes are represented on top.
The subtypes are labeled as luminal papillary (LumP), luminal non-specified
(LumNS), luminal unstable (LumU) and basal/squamous (Ba/Sq). b Comparison of

molecular subtypes between paired primary/metastatic and metastatic/metastatic
UTUC. c Supervised consensus clustering of our UTUC and TCGA UCB tumors
according to a 170-immune gene signature classifies tumors into T-cell depleted
(with lower expression of classifier genes), and T-cell inflamed (with higher
expression of classifier genes) clusters. d Breakdown of assigned classification for
primary and metastatic UTUC. Source data are provided as a Source Data file.
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evaluating only the primary or specific metastatic sites could poten-
tially miss therapeutic targets in patients with metastatic UTUC.
However, we acknowledge that even the samples we collected in this
study may not fully represent the entire tumor burden from each
patient. We cannot rule out that some alterations detected only in
metastases were present in unsampled regions of their paired primary
tumors. Circulating cell-free tumor DNA liquid biopsies will likely

complement tissue biopsy and thus capture the scope of genomic
heterogeneity that single-lesion tumor biopsies may miss23.

We observed intra-patient discrepancy of molecular subtypes
within two patients (WCM01031 and WCM031) at the transcriptomic
level using a recently published molecular classification system17. A
recent study provided important findings which may explain the
molecular basis of the molecular subtype shifts in urothelial
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carcinomas. Using a single-cell transcriptome and in vivo bladder
cancer model, Sfakianos et al. revealed lineage plasticity in primary
and metastatic urothelial cancers of the bladder24. The molecular
subtype changes observed in our cohort may reflect the consequence
of lineage plasticity during metastatic progression. In contrast, for
cases WCM068 and WCM085, molecular subtypes were concordant
between the matched primary and metastatic tumors. This observa-
tion is consistent with a recent study showing the molecular subtype
remains stable during metastatic progression of urothelial
carcinoma25. However, we are aware that the degree of intra-tumoral
heterogeneity in expression-based molecular subtypes may be
underestimated due to the sampling bias resulting from a single tumor
biopsy. Intra-tumoral and intra-individualmolecular heterogeneity has
been shown in UC in previous studies26–28. The primary-metastatic
concordance of molecular subtypes within each patient is of potential
clinical relevance because molecular subtypemembership is currently
explored as a biomarker for predicting treatment response and overall
survival29,30. A single snapshotbiopsydoes not reflect the full biological
spectrum of evolving metastatic UTUC.

Interestingly, the expression of immune-related genes was
relatively stable between primary and metastatic UTUC tumors.
Accurate profiling of the immune microenvironment is clinically
relevant because the extent of tumor-infiltrating T-lymphocytes is
positively associated with the efficacy of immune checkpoint
inhibitors31. Furthermore, the concordance of the immune pheno-
type within each patient in our study suggests that evaluating a
single tissue site provides a useful assessment of the local immune
microenvironment of metastatic UTUC tumors. These results have
important implications for predicting the efficacy of immune
checkpoint inhibitors.

Multiplexed imaging using IMC™ allowed us to comprehensively
profile cancer cell phenotypes and the surroundingmicroenvironment
in primary andmetastaticUTUC, revealing the extensive heterogeneity
between patients but conserved between primary and metastatic
samples of the same individual in all but onepatient.While this analysis
includes a limited set of protein markers compared with RNA-seq, it
allowed us to characterize the spatial heterogeneity of cancer, stromal
and immune cells UTUC evolution at the single-cell level. Furthermore,
this technique validated transcriptome-based predictions of the
immune-inflamed or depleted microenvironment. This spatially
resolved imaging technique generated additional insights not only at
the level of quantifying the density of cellular components of the
immune compartment, such as CD8+ T-cells, but also pinpointing their
distribution, including the degree of infiltration into the tumor mass
compared to their presence in the periphery. We identified a group of
cells that we labeled immunosuppressive myeloid cells as they were
positive for CD11b, CD68, granzyme B, and PD-L1 and weakly positive
for CD11c and PD-1. PD-L1 expression suggests they have immuno-
suppressive properties overlapping with Myeloid-derived suppressor
cells, a heterogeneous group of immune cells from the myeloid
lineage32–34. The higher number of these cells in the immune-depleted
tumors is consistent with their immunosuppressive activity. These
cells also expressed CD11c, the most widely used defining marker for
dendritic cells. Another possibility is that these cells are granulocytes
since CD11b is also a marker of granulocytes and granzyme B is
reportedly a potential marker of tumor-infiltrating neutrophils35.

Examining HLA-DR expression would be needed to confirm whether
the CD11c-positive cells in this subset are dendritic.

Our study integrates genomic, transcriptomic, and multiplexed
spatial single-cell protein expression analyses from matched primary
and metastatic UTUC tumors. The cohort size of 28 patients with
UTUC is relatively small, in part due to the rarity of UTUC. This poses a
challenge for generalizing the results to all metastatic UTUCs. Further
validation studies using larger cohorts would be required. A second
limitation is that only bulk tissue was sequenced from each tumor.
Single bulk tumor sampling might underestimate intra-tumoral het-
erogeneity (ITH), which is now considered a key obstacle to success in
cancer treatment because ITH is the molecular basis of metastatic
dissemination and therapy resistance36,37. Multi-site sampling and
single-cell RNA sequencing could generate additional insights into the
degree of intratumoral ITH in metastatic UTUC. Finally, WES doesn’t
cover the entire genome, and silent mutations were not called by our
clinically oriented analytical pipeline38. Whole-genome sequencing-
based studies will further expand our knowledge of molecular
underpinnings of metastatic UTUC.

Altogether, our genomic, transcriptomic, and phenotyping ana-
lysis of primary and metastatic UTUC brings to light the range of
mutational and phenotypic diversity between and within individual
patients, revealing a broadly conserved phenotypic tumor landscape
against the backdrop of genetic evolution seen duringmetastasis. This
integrated characterization ofUTUC informs the targeted and immune
therapeutic strategies that maximize efficacy in patients with
metastatic UTUC.

Methods
Patient enrollment and tissue acquisition
Patients with primary and metastatic UTUC were prospectively enrol-
led at Weill Cornell Medicine in an institutional review board
(IRB)–approved Research for Precision Medicine Study (WCM IRB No.
1305013903) with written informed consent. Retrospective tissue
samples were retrieved and studied under the protocol for Compre-
hensive Cancer Characterization by Genomic and Transcriptomic
Profiling (WCM IRB No. 1007011157). Tumor tissue from biopsies and
nephroureterectomy specimens was collected from 44 patients diag-
nosed with high-grade urothelial carcinoma. WES data from 7 primary
tumor samples presented in this manuscript have already been
published7. Tumor DNA for WES was obtained from fresh frozen or
formalin-fixed, paraffin-embedded tissue. Samples were selected
based on pathologic diagnosis according to standard guidelines for
UTUC2,39. Small cell carcinoma was excluded from our cohort. Patho-
logical reviewby study pathologists (B.D.R., F.K., J.M.M.) confirmed the
diagnosis and determined tumor content.

DNA extraction and WES
We employed a clinical-grade WES assay (EXaCT-1), which is a test
approved by the Department of Health at New York State (NYS-DOH
ID#43032), to detect somatic mutations, indels and copy number
alterations (CNA), as well as tumor mutational burden (TMB) and
microsatellite instability (MSI)38. WES was performed on each patient’s
tumor/matched germline DNA pair. After macrodissection of target
lesions, tumor DNA was extracted from either formalin-fixed, paraffin-
embedded (FFPE) or cored OCT-cryopreserved tumors using the

Fig. 5 | Imaging Mass Cytometry™ reveals intra-patient concordance in mole-
cular subtype plasticity between primary and metastatic UTUC tumors at the
single cell level.Representative images of IMC™ data from single experiment for a
sample of the (a) immune-depleted (n = 8) or (b) immune-inflamed classes (n = 4).
Red: tumor expressed, E-cadherin; Green: T-cell expressed CD3; Blue: DNA. Scale
bars represent 200 microns horizontally. c UMAP representation of single-cells
segmented in IMC™ data colored by the metacluster of origin. d UMAP repre-
sentation as in c) but where each single cell is colored by the intensity of various

markers in the panel. e Heatmap of clusters found in the IMC™ data (columns) and
their average intensity in the markers. Clusters were aggregated into meta-clusters
dependent on their ontogeny. f Log ratio of KRT5 to GATA3 expression for each
single cell aggregated in boxplots for each sample in the IMC™ dataset (a total of
158,909 cells from n = 12 biologically independent samples). The vertical dotted
line represents the level where the KRT5 expression is equal to the GATA3
expression. Centers, boxes, and whiskers indicatemedians, quantiles, andminima/
maxima, respectively. Source data are provided as a Source Data file.
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Promega Maxwell 16 MDx (Promega, Madison, WI, USA). Germline
DNA was extracted from blood, buccal mucosa, and normal lung and
lymph node tissue using the same method. A minimum of 200ng of
DNA was used for WES. DNA quality was determined by TapeStation
Instrument (Agilent Technologies, Santa Clara, CA) and was confirmed
by real-time PCR before sequencing. Sequencing was performed using
IlluminaHiSeq 2500 (2 × 100bp). A total of 21,522 geneswere analyzed
with an average coverage of 85×usingAgilentHaloPlex Exome (Agilent
Technologies, Santa Clara, CA).

WES data processing pipeline
All the sample data were processed through the computational ana-
lysis pipeline of the Institute for Precision Medicine at Weill Cornell
Medicine andNewYork-Presbyterian (IPM-Exome-pipeline)38. Raw read
quality was assessed with FASTQC. Short reads were then aligned to
GRC37/hg19 reference using BWA. The alignment quality of the
aligned BAM files is obtained by calculating several metrics related to
the average coverage and capture rate by calculating how many
aligned reads fall within a capture region in the AgilentHaloPlexWhole
Exome kit. Our capture rate is determined by the percent of mapped
reads found overlapping any capture region in the Agilent HaloPlex
Whole Exome kit and the total number of mapped reads of any given
sample. High-quality capture rates range from ~80-95%. Average cov-
erage is computed by calculating the average number of reads over-
lapping a capture region in the Agilent HaloPlex Whole Exome kit.
Typically, the average coverage of a sample ranged from 80-100X
(Supplementary Table 4). The tumor purity estimate is computed
using CLONET40. Pipeline output includes segment DNA copy number
data, somatic copy-number aberrations (CNAs), and putative somatic
single-nucleotide variants (SNVs), as described in this section (Sup-
plementary Data 1)41.

Detection of somatic SNVs
SNVs were identified in the paired tumor-normal samples using
MuTect2, Strelka, VarScan, and SomaticSniper, and only the SNVs
identified by at least two mutation callers were retained. Indels were
identified using Strelka and VarScan, and only those identified by both
tools were retained. Somatic variants were filtered using the following
criteria: (a) read depth for both tumor and matched normal samples
was ≥30 reads, (b) the variant allele frequency (VAF) in tumor samples
was ≥10% and >5 reads harboring the mutated allele, (c) the VAF of
matched normal was ≤1% or there was just one read with mutated
allele. The variants were annotated using Oncotator (version 1.9); the
dbSNPs amongst the mutation calls, unless also found in the COSMIC
database, were filtered out. For the IPMs samples, the promiscuous
mutation calls, previously identified internally as artifacts forHaloplex,
were also excluded from the final list of mutations. Pathogenicity and
actionability for each mutation and CNA were determined by the
OncoKB database16. TMB was calculated as the number of mutations
divided by the number of bases in the coverage space permillion. TMB
status (high vs. low) was determined using a urothelial cancer-specific
threshold which our group recently reported10.

Detection of somatic copy number alterations
For somatic copy number alterations, the number of aligned reads for
the capture regions in the Agilent HaloPlex Whole Exome Kit was cal-
culated in both the tumor sample and matched control sample. Cap-
ture regions with total coverage of <100 reads in both the tumor and
matched control samples are filtered out. For the remaining capture
regions, read counts are normalized in both the tumor sample and the
matched control sample by the total number of reads aligned in the
tumor sample and thematched control sample, respectively. Then the
ratio of the normalized read counts in the tumor sample and the
normalized read count in the control sample is calculated. These
capture regions are then ordered karyotypically and sorted by

genomic coordinates to help segment our capture regions according
to the log2 value of the ratio of normalized read counts of the tumor
sample and control sample in a biologically meaningful way. The
normalized ratios of these bins were segmented using the Circular
Binary Segmentation algorithm implemented in the R package DNA-
copy. The algorithm outputs segments where every capture region
found within these segments is represented by the same log2 value.
This log2 value indicates whether the segment has DNA copy number
amplification or DNA copy number deletion. Segments with a log2
value > 1 to are amplified, and segments with a log2 value < −0.5 are
categorized as deleted. We then took the segments called by the
algorithm and annotated these segments by RefSeq genes whose
transcription start and end sites overlapwith the genomic coordinates
assigned to these segments.

Computational MSI analysis
MSI was detected by the MSI sensor computational tool. This tool
quantifies MSI in paired tumor–normal genome sequencing data and
reports the somatic status of corresponding microsatellite sites in the
human genome11. MSIsensor score was calculated by dividing the
number of microsatellite-unstable by the total number of
microsatellite-stable (MS) sites detected. The cut-off for defining MSI-
high (MSI-H) versus MS stable (MSS) samples was 3.5 (MSI-H> 3.5,
MSS < 3.5)11.

RNA extraction, RNA sequencing, and data analysis
RNA-seq and data processing were performed using the following
procedures. Briefly, RNA was extracted from frozen material for RNA-
seq using Promega Maxwell 16 MDx instrument (Maxwell 16 LEV sim-
plyRNA Tissue Kit (cat. # AS1280)). Specimens were prepared for RNA
sequencing using TruSeq RNA Library Preparation Kit v2 or riboZero.
RNA integrity was verified using the Agilent Bioanalyzer 2100 (Agilent
Technologies). cDNA was synthesized from total RNA using Super-
script III (Invitrogen). Sequencing was then performed on GAII, HiSeq
2000, or HiSeq 2500 as paired-ends42. All reads were independently
aligned with STAR_2.4.0f143 for sequence alignment against the human
genome sequence build hg19, downloaded via the UCSC genome
browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/),
and SAMTOOLS v0.1.1944 for sorting and indexing reads. Cufflinks
(2.0.2)45 was used to estimate the expression values (FPKMS), and
GENCODE v2346 GTF file for annotation. Rstudio with R (v3.6.1) was
used for the statistical analysis and the generation of figures.

Molecular subtyping
The log-transformed expression data was used to infer molecular
subtypes using a recently published classification system as imple-
mented in the consensusMIBC R package17. Default parameters were
set except for minCor representing a minimal threshold for best
Pearson’s correlation (minCor = 0.15). The consensus classification
implements a nearest centroid method and Pearson’s correlation and
classifies samples into 6 molecular classes: Luminal Papillary (LumP),
Luminal Non-Specified (LumNS), Luminal Unstable (LumU), Stroma-
rich, basal/Squamous (Ba/Sq), Neuroendocrine-like (NE-like).

T-cell inflammation classification analysis
The previously published T-cell inflammation gene signature was used
to classify tumors into T-cell inflamed or depleted7. The expression
data, quantified as FPKMs,wasobtained for the EIPMUTUCpatients, of
which RNA-seq was available (n = 17). The FPKMs for the primary
tumors were obtained from the GDC/TCGA bladder cohort (TCGA
BLCA, n = 414). The genes from the signature were selected for
expression-based supervised clustering. The FPKMs were log-
transformed and median centered and partitioning around medoids
(PAM) algorithm was applied to cluster the transformed expression
data. This led to the identification of two broad clusters: one with
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higher expression of the signature genes was labeled as T-cell
inflamed, while that with low expression of signatures genes was
labeled as T-cell depleted.

Deconvolution using Cibersort
Weused Cibersort to estimate the relative abundance of 22 leukocytes
in the tumormicroenvironment for each tumor in our cohort (n = 17)19.
Cibersort was applied to the RNAseq expression profiles (FPKMs)
without quantile normalization (as recommendedby the developersof
this method). We used the default LM22 signature as the reference
matrix and the default ‘relative’ mode for result normalization. From
the results, we filtered out the cell types for which the Cibersort esti-
mates were not significant (p values < 0.05). Cibersort provides an
empirical p-value testing the null hypothesis that a particular sample
does not contain any of the 22 cell types. Two samples were excluded
because the empirical p value for the deconvolution was over 0.05.

GSEA Pathway analysis
We applied the single sample gene set enrichment analysis (GSEA) to
the 17 UTUC RNAseq expression profiles using the Hallmark pathways
from the Molecular Signatures Database (MSigDB)47–49. The enrich-
ment scores from the ssGSEA analysis were standardized using the
z-score normalized across all samples for each pathway. The p-values
for statistically significant pathways between the primary and meta-
static tumors were calculated using the Wilcoxon signed-rank test.

Imaging Mass Cytometry™
Antibodies were conjugated in BSA and Azide-free format using the
MaxPar X8 multimetal labeling kit (Standard BioTools™) per the
manufacturer’s protocol. These antibodies were tested on control
tissues such as lymph node and tonsil to validate the staining pattern
as verified by our pathologist. Freshly cut 4-micron thick FFPE tissue
sections were stored at 4 °C for a day before staining. Slides were first
incubated for 1 hour at 60 °C on a slide warmer, followed by dewaxing
in fresh CitriSolv (Decon Labs) twice for 10minutes, rehydrated in
descending series of 100%, 95%, 80%, and 75% ethanol for 5minutes
each. After 5minutes of MilliQ water wash, slides were treated with
antigen retrieval solution (Tris-EDTA pH 9.2) for 30minutes at 96oC,
cooled to room temperature (RT), washed twice in TBS, and blocked
for 1.5 hours in SuperBlock Solution (Thermo Fischer). Overnight
incubation occurred at 4oC with the prepared antibody cocktail con-
taining the metal-labeled antibodies (Supplementary Table 3). The
next day, slides were washed twice in 0.2% Triton X-100 in PBS and
twice in TBS. DNA stainingwas performed using Intercalator-Iridium in
PBS solution for 30minutes in a humid chamber at room temperature,
followedby awashing step inMilliQwater and air drying. TheHyperion
instrument was calibrated using a tuning slide to optimize the sensi-
tivity of the detection range. Hematoxylin and Eosin (H&E) stained
slideswere used to guide the selection of regions of interest inorder to
obtain representative regions. All ablations were performed with a
laser frequency of 200Hz. Tuning was performed intermittently to
ensure the signal detection integrity was within the detectable range.

Analysis of Imaging Mass Cytometry™ data
ImagingMass Cytometry™ data were preprocessed by the following
steps. First, image data was extracted from MCD files acquired with
the Hyperion instrument. Hot pixels were removed using a fixed
threshold. The image was amplified two times. Gaussian smoothing
was applied, and from each image, a square 500-pixel crop was
saved as an HDF5 file for image segmentation. Segmentation of cells
in the image was performed with ilastik (version 1.3.3)50 by manually
labeling pixels as belonging to one of three classes: nuclei – the area
marked by a signal in the DNA and Histone H3 channels (Supple-
mentary Table 3); cytoplasm – the area immediately surrounding
the nuclei and overlapping with signal in cytoplasmic channels; and

background – pixels with low signal across all channels. Ilastik
learns from these sparse labels by training a Random Forest classi-
fier using features present in the images. Features used were the
Gaussian Smoothingwith kernel widths of 1 and 10 pixels, Hessian of
Gaussian Eigenvalues with kernel 3.5 and 10 pixels, and Structure of
Tensor Eigenvalues with kernel of 10 pixels. The outputs of pre-
diction are class probabilities for each pixel which were used to
segment the using DeepCell version 0.8.2)51 with the Multi-
plexSegmentation pre-trained model.

To identify cell types in an unsupervised fashion, we first
quantified the intensity of all samples in each segmented cell, not
overlapping image borders. Channels with “functional” markers
Ki67, PD-1, PD-L1, and Granzyme B were not used for downstream
cell type identification but only for visualization. In addition, for
each cell, we computed morphological features such as the cell
area, perimeter, the length of its major axis, eccentricity, and
solidity using the skimage.measure.regionprops_table function
(version 0.18.1)51. Cells with a solidity value of 1 (perfectly round
cells) were excluded from the analysis. Using Scanpy
(version 1.7.1)52, we log-transformed the quantification matrix, and
Z-scored values per image, capping the signal at −3 and 3, followed
by global feature centering and scaling. The batch was removed
with Combat (Scanpy implementation), and features were scaled
again. Principal Component Analysis was performed, and we com-
puted a neighbor graph on the PCA latent space using batch-
balanced k-nearest neighbors (bbknn) (version 1.4.0)53. We com-
puted a Uniform Manifold Approximation and Projection (UMAP)54

embedding (umap package, version 0.4.6) with a gamma parameter
of 25, and clustered the cells with the Leiden algorithm55 with
resolution 0.5 (leidenalg package, version 0.8.3).

Statistical analyses
A two-sided Mann–Whitney test was used for statistical tests to check
for significant differences between the two distributions. The two-
sided Fisher’s exact test was applied to determine whether the devia-
tions between the observed and the expected counts were significant.
We used a p-value threshold of 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequence data that support the findings of this study are
available in the database of Genotypes and Phenotypes (dbGaP)
under the accession number: phs001087.v3.p1. For IMC™, the pre-
processed.tiff files are available at https://doi.org/10.5281/zenodo.
5719187. Source data are provided with this paper.

Code availability
Source code used to analyze IMC™ data are available at https://github.
com/ElementoLab/utuc-imc and deposited on Zenodo: https://doi.
org/10.5281/zenodo.1023033456.
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