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Nanopore analysis of cis-diols in fruits

Pingping Fan1,2,5, Zhenyuan Cao1,2,5, Shanyu Zhang 1,2,5, Yuqin Wang1,2,3,4,
Yunqi Xiao1,2, Wendong Jia 1,2, Panke Zhang 1 & Shuo Huang 1,2

Natural fruits contain a large variety of cis-diols. However, due to the lack of a
high-resolution sensor that can simultaneously identify all cis-diols without a
need of complex sample pretreatment, direct and rapid analysis of fruits in a
hand-held device has never been previously reported. Nanopore, a versatile
single molecule sensor, can be specially engineered to perform this task. A
hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore mod-
ifiedwith a sole phenylboronic acid (PBA) adapter is prepared. This engineered
MspA accurately recognizes 1,2-diphenols, alditols, α-hydroxy acids and sac-
charides in prune, grape, lemon, different varieties of kiwifruits and com-
mercial juice products. Assisted with a custom machine learning program, an
accuracy of 99.3% is reported and the sample pretreatment is significantly
simplified. Enantiomers such as DL-malic acids can also be directly identified,
enabling sensing of synthetic food additives. Though demonstrated with
fruits, these results suggest wide applications of nanopore in food and drug
administration uses.

Natural edible substances, including fruits, tea, honey, vegetables and
many others contain rich cis-diols, such as 1,2-diphenols, alditols, α-
hydroxy acids and saccharides1–4. A thorough understanding of these
compounds in food is essential for nutritional or healthcare
purposes5–7. Rapid and accurate analysis of food is also used for safety
and quality control during food manufacture8,9. However, these cis-
diols from natural sources are invariably a mixture of compounds,
which poses a technical challenge for simultaneous analyte identifica-
tion using a single sensor and under the same condition10. Con-
ventionally, high-performance liquid chromatography (HPLC) has been
widely applied to the analysis of cis-diols in fruits10, tea11,12 honey13 or
vegetable14, but the chromatographic separation of such mixtures is
complex and time consuming and requires equipment that is far from
portable. In HPLC analysis, simultaneous detection of a variety of dif-
ferent analytes using the same chromatographic condition is also
challenging15–17. Other reported analytical methods applicable to cis-
diols include spectrophotometry18, liquid chromatography tandem
mass spectrometry (LC-MS/MS)19,20 and gas chromatography (GC)21,22.
The resolution of spectrophotometry is however insufficient for accu-
rate characterization of a variety of cis-diols. GC requires complex and

poorly reproducible derivatization operations and LC-MS/MSmethods
require complex sample separation prior to the measurement.

Nanopore, which was originally developed for single molecule
sequencing of nucleic acids23, is a highly versatile sensor24–33. When
properly engineered to contain a specific reactive adapter in its lumen, a
nanopore immediately becomes reactive and is sensitive to a set of
corresponding small molecule analytes34–36, which can react reversibly
with the adapter to produce successive events. By producing highly
characteristic event features for different small molecules, a nanopore
can discriminate between different analytes that may be only slightly
different in structure32,37,38. This sensingcapacity is thus suitable fordirect
and simultaneous analysis of a complex mixture of molecules (Fig. 1).

To use a specific reactive nanopore sensor, any sample can be
decomposed into different categories of molecules, including target
analytes, interfering analytes and non-interfering analytes (Fig. 1a).
Target analytes are molecules of interest that can react with the
nanopore to produce corresponding events (Fig. 1b). Simultaneous
presence of multiple types of target analytes can be technically toler-
ated, as long as these target analytes can be fully distinguished by their
nanopore event characteristics (Fig. 1c)32,37,38. Amulti-feature nanopore
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spectrum, which simultaneously considersmultiple event features in a
single plot, can be generated and used as a unique signature for a
specific type of analyte (Fig. 1d). Meanwhile, the interfering analytes
are molecules that are of no interest but can however react with the
pore and can also produce nanopore events. However, as long as these
events can be fully distinguished from that of all target analytes, their
interference in the measurement becomes negligible and these events
can subsequently be removed computationally (Fig. 1e). Non-
interfering analytes are all molecules that fail to react with the nano-
pore and thus they don’t produce any events. Even when present in a
large quantity, the non-interfering analytes will never appear as
nanopore events and their impact can be ignored.

In this work, an MspA nanopore modified with a single phe-
nylboronic acid is prepared. During single channel recording, it
serves to reversibly react with cis-diols such as 1,2-diphenols, aldi-
tols, α-hydroxy acids and saccharides so that highly characteristic
nanopore events are produced. Assisted by custom machine
learning algorithms, a variety of cis-diols in natural fruits can be
accurately and simultaneously identified. This sensing capacity also
allows for high-resolution discrimination of enantiomeric DL-malic
acid, demonstrating immediate applications in the detection of
food additives in commercial fruit products. This technique could
also be integrated into a miniaturized device, demonstrating its
potential for portable sensing.
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Fig. 1 | Nanopore analysis of complex samples. a The cartoon diagram of com-
plex samples (top) and their chemical components (bottom). The chemical com-
ponents in complex samples include different combinations of target analytes
(colored circles), interfering analytes (uncolored circles) and non-interfering ana-
lytes (triangles). b The reactive nanopore sensor. A reactive site was introduced to
the pore constriction by pore engineering. Both target and interfering analytes
report detectable nanopore events. Whereas, the non-interfering analytes cannot
be detected. c Nanopore events. Acknowledging the high resolution of nanopore,
different analytes report unique event characteristics so that target and interfering
events can be directly discriminated. Core parameters in the description of event

features include open pore current (I0), residual current (Ib), standard deviation
(std), kurtosis (kurt), skewness (skew), dwell time (time), median (med) as marked
on the event. The blockage amplitude (ΔI) was defined as ΔI = Ib – I0. The blockage
ratio was defined as ΔI/I0. d Multi-feature nanopore spectrum plotted from the
corresponding events of analytes in Fig. 1c. All event features can be extracted and
the corresponding multi-feature nanopore spectrums were plotted and used for
event identification. e The schematics of sample analysis. As an example, natural
fruit juice can be directly added to the sensor generating different types of target
(solid point) and interfering events (hollow point). A machine learning algorithm
serves to automatically identify target and interfering events.
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Results
Nanopore signatures of model cis-diols
Fruits, which contain a mixture of cis-diols such as 1,2-diphenols,
alditols, α-hydroxy acids and saccharides39–41, were used as an
example for this demonstration. These cis-diols react reversibly
with phenylboronic acid (PBA) in an aqueous environment. Ten types
of cis-diols containing compounds including catechin (CAT),

neochlorogenic acid (3-CQA), D-sorbitol (D-SOR), xylitol (XYL), L-malic
acid (L-MA), L-tartaric acid (L-TA), citric acid (CA), (2R,3S)-isocitric acid
(ICIT), D-glucose (D-GLC) and D-fructose (D-FRU) were selected as
model analytes (Fig. 2a). They represent 1,2-diphenols, alditols, α-
hydroxy acids and saccharides that are widely encountered in
fruits39–41. MspA-PBA, a hetero-octameric MspA nanopore modified
with a sole phenylboronic acid (PBA) reactive adapter at site 90
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Fig. 2 | Sensing of target cis-diols. a Target cis-diols investigated in this manu-
script. Four kinds of cis-diols, including 1,2-diphenols (purple), alditols (green), α-
hydroxy acids (pink) and saccharides (orange), all contain cis-dihydroxyl groups, as
red-marked (top). For each kind of cis-diols, a few representative analytes were
selected as target cis-diols (bottom). b The phenylboronic acid (PBA) modified
nanopore sensor (Methods). Cis-diols reversibly react with PBA (Supplementary
Fig. 1), generating characteristic events when sensed by MspA-PBA. c–l The che-
mical structures and corresponding nanopore events of target cis-diols, catechin
(CAT) (c), neochlorogenic acid (3-CQA) (d), D-sorbitol (D-SOR) (e), xylitol (XYL) (f),

L-malic acid (L-MA) (g), L-tartaric acid (L-TA) (h), citric acid (CA) (i), (2R,3)-isocitric
acid (ICIT) (j), D-glucose (D-GLC) (k) and D-fructose (D-FRU) (l). The abbreviations
of these cis-diols were marked in the corresponding bracket. The open pore cur-
rents weremarkedby I0. All nanoporemeasurements were performed in a buffer of
1.5M KCl, 100mM MOPS, pH 7.0 and a continually applied bias of +160mV. Each
type of cis-diol was added as a sole analyte to both cis and trans chambers (Meth-
ods). In this paper, alditols, 1,2-diphenols and α-hydroxy acids all showed only one
type of event while saccharides showed several types of events.
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(Fig. 2b), was prepared as previously reported36,42–44 (Methods). The
PBA at the pore constriction reacts reversibly with cis-diols to form a
boronate ester45, and specifically binds molecules containing cis-diols
in a heterogenous mixture (Supplementary Fig. 1). At room tempera-
ture in an aqueousmeasurement environment, the capture and release
of a cis-diol analyte by MspA-PBA can last for more than a few milli-
seconds, which is ideal for data acquisition by single channel record-
ing. The rate of the reaction can also be finely tuned by changes in the
environmental pH and temperature45–47. The MspA nanopore, which
has a conical lumen geometry that focuses the flow of ionic current to
the pore constriction, also provides a high resolution of sensing in the
discrimination of structurally similar compounds which has been well
demonstrated in nanopore sensing of isomers of saccharides36,
alditols43 and ribonucleotides42,44. This high resolution thus enables
direct recognition of target molecules from interfering analytes and
accordingly, the need for sample separation is minimized.

Unless stated otherwise, all nanoporemeasurements were carried
out in a custom nanopore device which has two chambers separated
by a Teflon film containing an aperture of ~100 µm diameter. By con-
vention, the chamber that is electrically grounded is defined as cis and
its opposing chamber is defined as trans. After spontaneously forming
a lipid bilayer on the aperture and with MspA-PBA inserted in this
bilayer, all nanopore measurements were performed in a buffer of
1.5M KCl, 100mM MOPS, pH 7.0 and a continually applied +160mV
bias (Methods). A higher salt concentration and a higher applied bias
generally produce nanopore events of a larger amplitude so that a
better discrimination resolution is achieved (Supplementary Figs 2, 3).
However, a too high applied bias may also generate a high risk of
bilayer rupture. Ahigh salt concentrationmay also lead to introduction
of noises. Thus, a 1.5MKCl buffer and a + 160mVbiaswere found to be
optimum.

To record the event characteristics of model compounds, each
type of cis-diol was added as a sole analyte to both cis and trans
chambers with a defined final concentration. All ten model analytes
reported fully distinguishable nanopore events (Fig. 2c–l). These
events are highly consistent when the same analyte was tested in
measurements with different pores. However, their event character-
istics are visually differentwhendifferent compoundswere tested. The
consistency of event features for each analyte type was also verified by
three independent measurements (N = 3) performed for each condi-
tion (Supplementary Figs 4–13). This further confirms that the high
resolution of MspA can well discriminate between different analytes.
The nanopore signatures of catechin (CAT), neochlorogenic acid (3-
CQA), L-malic acid (L-MA), L-tartaric acid (L-TA), citric acid (CA) and
(2R,3S)-isocitric acid (ICIT) have not been previously reported.

To quantitatively describe sensing events, event parameters
including open pore current (I0), residual current (Ib), blockage
amplitude (ΔI), standard deviation (std), kurtosis (kurt), skewness
(skew), dwell time (time) andmedian (med) were used and are defined
in Fig. 1c. Results of the concentration dependence assay acquired
from all ten model cis-diols were summarized in Supplementary
Figs 14–23 and Supplementary Table 1. Based on the mechanism of
nanopore sensing by singlemolecule reaction, simultaneous capturing
of two cis-diols by anMspA-PBA is impossible. Thus, the event features
of a specific analyte are independent of the analyte concentration.
However, their rate of event appearance is highly concentration
dependent and can be used for analyte quantification. The blockage
amplitude is defined as ΔI = Ib − I0. 1,2-diphenols, alditols and sacchar-
ides all appear as negative-going events (ΔI <0, Supplementary Fig. 24)
but all α-hydroxy acids report positive-going events (ΔI >0, Supple-
mentary Fig. 24). The phenomenon of positive-going events had been
previously observed46. The MspA nanopore is extremely sensitive to
the presence of additive charges at its pore constriction48,49. For
instance, the WT MspA, which has negatively charged aspartic acid at
its pore constriction, reports amuch higher channel conductance than

itsmutant having asparagine introduced bymutagenesis. The negative
charge of α-hydroxy acids should contribute to the increase of the
ionic current, but the size of the small molecule analytes fails to pro-
vide any significant contribution to the blockage of the ionic current.
Thus, binding of α-hydroxy acids generally reports positive-going
events. On the other hand, although 1,2-diphenols, alditols and α-
hydroxy acids all report a single type of nanopore event, the sac-
charides instead reported several event types (Fig. 2k, l). This may
result from interconversion between their pyranose and furanose
forms in an aqueous solution36,47, as was observed in our previous
study36.

Although the event characteristics of different analytes are
visually distinct fromone another in a 2D event scatter plot ofΔI/I0 and
std, their event distributions still slightly overlap (Supplementary
Fig. 25). However, when more event features were simultaneously
considered, the accuracy of event identification was immediately
improved. This is more clearly demonstrated in the multi-feature
nanopore spectrums, in which the average means and standard
deviations of five event features, including ΔI/I0, std, kurt, skew and
time are shown in the same plot (Supplementary Fig. 26, Supplemen-
tary Table 2). If necessary, more event features can also be included to
further improve the event discrimination.

Event identification by machine learning
To enable automatic and unbiased event identification based on
results from the five-feature nanopore spectra, a custom machine
learning algorithm was developed. All machine learning was per-
formed in the Classification Learner toolbox of MATLAB. Five event
features, including ΔI/I0, std, kurt, skew and time (Fig. 3a) were
extracted to form a feature matrix. The label of each event was
assigned as the type of the sole analyte used for data acquisition. The
event features of a total of 5600 events from all ten types of model
analytes were collected to form the training set which was used for
model training (Methods). In the parallel coordinate plot, all five fea-
tures contribute to the discrimination between events (Fig. 3b).
According to the validation accuracies produced by different classifi-
cationmodels, the Bagging Treesmodel reported the highest accuracy
of 99.3% (Fig. 3c, Supplementary Table 3).

To test the generality of the model, an additional 1120 events,
which didn’t participate in the model training, were used as a testing
set. The results of event prediction for the testing set are summarized
in Supplementary Table 3, in which the testing accuracy of most
models was >80%. During testing, the Bagging Trees model again
reported the highest accuracy of 99.1%. Thus, if not otherwise stated,
the previously trained Bagging Trees model was selected as the opti-
mummodel for all future event predictions. The confusionmatrix plot
of the testing set generated by prediction of the Bagging Trees model
is shown in Fig. 3d. The learning curves are also shown, fromwhich the
model is confirmed to be not overfitting and an input training data of
1000 is enough to gain a >98% prediction accuracy (Fig. 3e). The
machine learning algorithm, which simultaneously considers five
event features in the event identification, is shown to be accurate,
efficient and unbiased. Ten cis-diols were also simultaneously mea-
sured using MspA-PBA in a 1.5M KCl buffer with a continually applied
+160mV bias. Representative traces acquired at this condition were
presented in Supplementary Fig. 27. All events were identified by the
trained Bagging Treesmodel and the events on the tracewere labelled
accordingly. The resolution of the pore and the performance of the
machine learning model are thus well approved.

Rapid analysis of natural fruit juice by a nanopore
The nanopore event characteristics of model analytes and the corre-
sponding machine learning algorithm were used in the rapid analysis
of cis-diol components in natural fruit juice. With prunes as the first
example, a work flow of nanopore analysis of prune juice is
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summarized in Fig. 4a. Briefly, prunes were first pureed in a food
processor and then centrifuged at 1900 g for 10min to separate the
solid material from the juice. To further remove solid residues, the
juice was placed in an ultracentrifugation tube with a 3 kDa molecular
weight cut off (MWCO) and then centrifuged at 2350 g for 10min. The
filtrate was collected and directly added to the nanopore device
(Methods). Subsequently, the corresponding nanopore events were
observed immediately (Fig. 4b). The results of nanopore measure-
ments with natural fruit juice also report background noise events,
appearing as non-clustered distributions in the scatter plot (Supple-
mentary Fig. 28). To remove interference from them, a cluster analysis
algorithm based on Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)50 was introduced to computationally and auto-
matically remove these interfering events (Supplementary Fig. 28).
Subsequently, the trained Bagging Trees model was used to identify
nanopore events in prune juice, enabling identification of 3-CQA, D-
SOR, L-MA, D-GLC and D-FRU (Fig. 5b, c, Supplementary Movie 1).
Three independent trails were performed at the same measurement
condition and highly consistent results were shown (Supplementary
Fig. 29). The high resolution of event discrimination by nanopore
further guarantees that each type of model compound can be recog-
nized reliably. These sensing features of nanopore enable direct
measurement of fruit samples and without complicated sample
separation (Fig. 4a). Instead, when the same juice was sensed by M2
MspA48, which contains no PBA adapter, no nanopore events with well-
defined features were observed (Supplementary Fig. 30). This further

confirms that an unmodified MspA pore fails to provide any useful
information for analysis of fruit juice and that the PBA modification is
critical in the generation of cis-diol events.

The operations demonstrated abovewere also similarly used with
grape or lemon juice. Following corresponding nanopore measure-
ments usingMspA-PBA (Supplementary Figs 31, 32), background noise
reduction with DBSCAN (Supplementary Figs 33, 34) and machine
learningbased event identificationby theBaggingTreesmodel, the cis-
diol components in grape and lemon juice were all accurately recog-
nized. For grapes, the cis-diols identified were L-MA, L-TA, D-GLC,
D-FRU (Fig. 5d, e, Supplementary Fig. 35 and SupplementaryMovie 2),
which are consistent with the results obtained by HPLC51 and for
lemon, the identified events were from L-MA, CA, ICIT, D-GLC and
D-FRU (Fig. 5f, g, Supplementary Fig. 36 and Supplementary Movie 3).
Quantification of relevant cis-diols in above discussed fruit juices were
also performed as described in Methods. The corresponding results
were also presented in Supplementary Tables 4, 5, according to which
grape has the highest D-fructose content and lemonhas the highestCA
content, respectively.

According to these results, L-MA, D-FRU and D-GLC were com-
monly observed from all three types of fruits but D-SOR and 3-CQA
were only detected in prunes. It has been reported that D-SOR intol-
erance is common in humans and can often cause diarrhea52. There-
fore, the prune is a natural laxative which can be used to treat
constipation. 3-CQA on the other hand was reported to have anti-
oxidant and anti-inflammatory effects53. Therefore, proper
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measurements. Source data are provided as a Source Data file.
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consumption of prunes can prevent chronic inflammation. Among
these three types of fruits, L-TA is only detected in grapes. It has been
reported that the tartaric acid not only enhances the astringency of
wine54, but also affects its rheological properties and color55. Thus,
accurate sensing of L-TA by the nanopore may provide a rapid but
accurate way to grade grapes in the wine industry. On the other hand,
CA and its isomer ICIT were simultaneously detected in lemons,
demonstrating the exceptional resolution of MspA in the discrimina-
tion of isomers from a complex sensing environment. Lemon is widely
applied in the seasoning of food and drinks in daily life and these two
acids make a strong contribution to the generation of the unique sour
taste of lemon56,57.

Though the use of the mini food processor and the centrifuge
guarantees the efficiency and the reproducibility of juice generation,
these operations are optional. To further simplify the workflow, the
fruit can bemanually squeezed and the generated juice can be directly
analyzed by nanopore. Todemonstrate this,manually squeezed lemon
juice was ultrafiltered (3 kDa MWCO) at 3380g for 3min at 4 °C. The
collected lemon juice was directly added to the nanopore sensor
(Supplementary Fig. 37a, Methods). The whole operation took only
8min and the measurement results (Supplementary Fig. 37b) are
generally consistent with those demonstrated in Fig. 5f.

By taking grape juice as a demonstrative sample, the stability and
consistency of this technique was also evaluated in a time-extended
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Fig. 4 |Rapidanalysis ofnaturalprune juice. aTheprocedures and the timeline of
operations. (i) Puree generation. Prunes (left) were thoroughly treated by a mini
food processor (right) to produce puree. (ii) Juice generation. The puree was cen-
trifuged at 1900 g for 10min and the supernatant was collected and ultrafiltration
treated. (iii) Nanopore measurement. The filtrate was loaded to both cis and trans
chambers and nanopore measurements were carried out. (iv) Data analysis. The
corresponding nanopore events were further analyzed. The nanopore

measurements were performed in a 1.5M KCl buffer with a continually applied bias
of +160mV. 5μL prune juice was added to both measurement chambers and
thoroughly stirred.bA representative trace segment acquiredwith prune juice. The
top figure is a 260 s trace segment. Zoomed-in views of different sections of the
trace, which are marked with red boxes and roman numerals, are respectively
demonstrated in the bottom. Events of 3-CQA, D-SOR, L-MA, D-GLC and D-FRU
were respectively identified by machine learning and labelled on the trace.
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measurement (Supplementary Fig. 38). According to this demonstra-
tion, the nanopore assay could be continuously run for a fewhours and
a high consistency of results is shown. The characteristic event fea-
tures acquired at the beginning of the measurements and a few hours
later also appear completely identical (Supplementary Figs 38, 39).
Though theMspAnanopore is protein in nature, according to previous
investigations58–60, it demonstrates a high rigidity and durability in the
structure, which is ideal for long term measurement and device
storage.

Rapid analysis of different varieties of kiwifruits
The capacity of MspA-PBA to discriminate between a large variety of
cis-diols also suggests its use to distinguish between fruits of different
varieties. To demonstrate that, three varieties of commercially avail-
able kiwifruits from ZespriTM (New Zeeland), including Green, Sungold
and Rubyred kiwifruit (Fig. 6a, d, g), were analyzed by nanopore. The
juice generation was carried out as described in Methods. The mea-
surement was performed using MspA-PBA in a 1.5M KCl buffer and
a + 160mV bias was continually applied. To initiate the measurement,

2μL kiwifruit juice was respectively added to both cis and trans
chambers. Immediately afterwards, corresponding events were
observed (Supplementary Figs 40–42). All raw data acquired from
different trials of measurements were shown in Supplementary
Figs 43–45. The raw data were further treated by outlier analysis using
One-Class SVM (Supplementary Figs 46–48), which is an unsupervised
machine learning algorithm to detect outlier events. Details of One-
Class SVM model establishment is summarized in Methods. After
outlier analysis, all data were grouped into inlier and outlier events. All
inlier events were predicted using the previously trained Bagging
Treesmodel.Whereas, all outlier eventswere further treatedby cluster
analysis using DBSCAN to detect the appearance of newly appearing
event clusters.

Specifically, new clusters of events, which don’t belong to any
standard events recorded in the machine learning database, were
detected in Sungold kiwifruit (Supplementary Fig. 47) and Rubyred
kiwifruit (Supplementary Fig. 48), suggesting that previously unin-
vestigated cis-diols were detected in these kiwifruit varieties. Accord-
ing to that reported in literatures61,62, sucrose, which is a cis-diol not
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Fig. 5 | Rapid analysis of natural fruit juice. a The schematic diagram of rapid
analysis of natural fruit juice. The fruit was first treated by a food processor to
produce puree. The puree was further centrifuged at 1900 g for 10min to collect
the juice. The supernatant was ultrafiltration treated. The filtrate was then added to
both nanoporemeasurement chambers to initiate themeasurement. Thenanopore
measurements were performed using MspA-PBA in a 1.5M KCl buffer with a con-
tinually applied bias of +160mV. The nanopore events were then identified by the
previously trained machine learning model. b, d, f Representative events acquired
with the juice of (b) prune, (d) grape or (f) lemon. c, e, g The scatter plots of ΔI/I0
versus std of events acquired with the juice of (c) prune (n = 1770), (e) grape

(n = 1732) or (g) lemon (n = 957). To remove background events, the events of
prune, grape or lemon juice were respectively treated by cluster analysis as
described in Supplementary Figs 28, 33 and 34. The identity of each event was
predicted by the previously trained machine learning program. The proportion of
events for each corresponding set of scatter plot data was produced and placed to
the right of the scatter plot. Data in the bar plots (c, e, g) were presented as
mean ± standard deviation values derived from results of three independent mea-
surements (N = 3). The error bars represent standard deviation values. Source data
are provided as a Source Data file.
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previously investigated by MspA-PBA, is also present in Sungold kiwi-
fruit. It is thus speculated that the newly detected event cluster in
Sungold kiwifruit might be from sucrose. To verify this hypothesis,
sucrose was separately measured using MspA-PBA and its event fea-
tureswere recorded and confirmed to be consistentwith that detected
in Sungold kiwifruit (Supplementary Fig. 49). 500 standard events of
sucrosewerecollected as a training dataset and fed to aOne-Class SVM
algorithm. This trained algorithmwas further applied in the analysis of
the outlier events acquired with the Green kiwifruit sample, by which
few sucrose events were recognized according to the consistency of
event features (SupplementaryFig. 50). Theoutlier analysis for sucrose
detected in the Green kiwifruit was also demonstrated in Supple-
mentary Fig. 51. By doing that, we can confirm that sucrose was
detected in both Green and Sungold kiwifruit. The events of sucrose
are more clearly seen in the Sungold kiwifruit likely because a higher
concentration of sucrose is present in Sungold kiwifruit. However,

events of sucrosewere not detected inRubyred kiwifruit, even assisted
by searching using machine learning. However, two extra clusters of
events were detected in Rubyred kiwifruit. Though these two event
types were inconsistent with any previously identified cis-diols using
MspA-PBA, they are treated as characteristic event types specifically
detected in this kiwifruit variety. For the ease of demonstration, they
were respectively marked as U1 (unidentified cis-diol 1) and U2 (uni-
dentified cis-diol 2).

To summarize, cis-diols identified in Green kiwifruit and Sungold
kiwifruit were confirmed to be sucrose, D-FRU, D-GLC, L-MA, L-TA, CA
and ICIT (Fig. 6b, c, e, f). The results are also consistent with that
previously studied using conventional methods61,63. For Rubyred
kiwifruit, events of D-FRU, D-GLC, L-MA, L-TA, ICIT, U1 and U2 were
identified (Fig. 6h, i). Three independent trails were also carried out
with each kiwifruit variety to show the consistency of measurement
(Supplementary Figs 52–54). According to above results, events of D-
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Fig. 6 | Rapid analysis of different varieties of kiwifruits. a, d, g Three com-
mercially available kiwifruit varieties, including (a) Green, (d) Sungold and (g)
Rubyred kiwifruit. The kiwifruit juice was generated as demonstrated in Methods.
The nanoporemeasurementswereperformedusingMspA-PBA in a 1.5MKCl buffer
with a continually applied bias of +160mV. For each type of kiwifruit, 2μL kiwifruit
juice was added to both measurement chambers for nanopore sensing. b, e, h The
scatter plots of ΔI/I0 versus std of events acquired with the juices of (b) Green
kiwifruit (n = 930), (e) Sungold kiwifruit (n = 903) and (h) Rubyred kiwifruit
(n = 950). These events were respectively acquired from 60min continuous
recordings for each condition.All target cis-diols except the sucrosewerepredicted
by the Bagging Trees model. Sucrose events (marked as orange) were observed
only in events acquired with green and sungold kiwifruits (Supplementary

Figs 46–47, 49–51). Two extra populations of events, which don’t belong to any
previously identified event type, were detected from events acquired with the
Rubyred kiwifruit. These events were respectively marked as U1 (unidentified cis-
diol 1) andU2 (unidentified cis-diol 2) (Supplementary Fig. 48) and colored black in
(h). c, f, i The proportion of target cis-diols and interfering cis-diols events from
results acquired with (c) Green kiwifruit, (f) Sungold kiwifruit and (i) Rubyred
kiwifruit. The proportion of sucrose, U1 and U2 events from kiwifruits were also
indicated with arrows. Data in the bar plots were presented as mean± standard
deviation values derived from results of three independent measurements (N = 3).
The error bars represent standard deviation values. Source data are provided as a
Source Data file.
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FRU, D-GLC, L-MA, L-TA and ICIT were detected from all kiwifruit
varieties. Sucrose was only detected in Green and Sungold kiwifruit
and the Sungold kiwifruit reports a higher concentration of sucrose
than that measured with the Green kiwifruit and sucrose was not
detected in Rubyred kiwifruit. Instead, two previously unidentified cis-
diols were detected only in Rubyred kiwifruit. These different combi-
nations of cis-diols in different kiwifruit varieties should contribute to
the different taste of these kiwifruit products. However, to the best of
our knowledge, a direct single molecule discrimination between
molecular compounds in different fruit varieties has never been pre-
viously reported.

Rapid analysis of commercial fruit juice products
Following the same principle, cis-diols may as well be identified
directly fromcommercial fruit juice products. Specifically, L-malic acid

(L-MA), which is a naturally occurring α-hydroxy acid, is widely found
in fruits64. Its enantiomer, D-malic acid (D-MA), is however rarely seen
in nature. Due to the cost reasons, a mixture of DL-malic acid (Fig. 7a)
instead of L-malic acid, is more frequently applied as synthetic food
additive65,66. Another pair of similar α-hydroxy acid enantiomers used
as food additive is DL-tartaric acid67. However, rapid discrimination of
α-hydroxy acid enantiomers directly from a food sample is not a tri-
vial task.

To testify this using nanopore, MspA-PBA sensing of D-MA and
L-MAwas respectively carried out in a 1.5M KCl buffer with a + 160mV
bias. Representative traces were demonstrated in Fig. 7b, according to
which the events of D-MA and L-MA are fully distinguishable. This
difference is more clearly shown in the corresponding event scatter
plot (Fig. 7c, Supplementary Figs 8, 55), further confirming the high
resolution of MspA-PBA in the discrimination between α-hydroxy acid
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Fig. 7 | Rapid analysis of commercial juice and juice drink. a The chemical
structures of D-malic acid (D-MA) and L-malic acid (L-MA). b Representative traces
respectively acquired with D-MA (lavender) and L-MA (claybank). The corre-
sponding representative eventswere demonstrated to the right of the traces. cThe
scatter plot of ΔI/I0 versus std of events acquired fromD-MA and L-MA. 500 events
from each type of analytes were included in the scatter plot (n = 1000). The event
features of D-MA were also added to the previous training set to generate new
machine learning models. The Bagging Trees still showed the highest accuracy,
measuring 98.9% (Supplementary Fig. 57). d, g Two types of commercial juice and
juice drink, including (d) 100% grape juice (HuiyuanTM) and (g) grape juice drink
(WahahaTM). e, h The scatter plot of ΔI/I0 versus std of events acquired with (e)
100% grape juice (n = 477) and (h) grape juice drink (n = 555). Events demonstrated
were respectively acquired from 60min continuous recording for each condition.
The target cis-diols in 100% grape juice and grape juice drinkwere first treatedwith
outlier analysis (Supplementary Figs 62, 63) and then predicted by the Bagging

Treesmodel (Supplementary Fig. 57). L-MA in 100%grape juice andDL-MA ingrape
juice drink were identified using machine learning and indicated with arrows and
the circles. A population of events in 100%grape juice, which doesn’t belong to any
previously identified event type, was also detected and grouped by a DBSCAN
algorithm and marked as U3 (unidentified cis-diol 3) (Supplementary Fig. 62).
f, i The proportion of target cis-diols and interfering cis-diols events from results
acquired with (f) 100% grape juice and (i) grape juice drink. Data in the bar plots
were presented as mean± standard deviation values derived from results of three
independent measurements (N = 3). The error bars represent standard deviation
values. The proportion ofDL-MAevents from two sampleswere also indicatedwith
arrows. All results were acquired by nanoporemeasurements using MspA-PBA in a
1.5M KCl buffer with a continually applied bias of +160mV. Two commercial juice
and juice drinkproductsweredirectly added toboth chamberswithout any sample
treatment. Source data are provided as a Source Data file.
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enantiomers. To enable machine learning based identification, 500
events acquired with D-MA were collected and added to the existing
training set already containing ten cis-diols (Supplementary Fig. 56). By
doing that, a new machine learning model, which can identify 11 cis-
diols including both D-MA and L-MA, is established. According to the
training and validation with a variety of models, the Bagging Trees
model has performed the best by reporting an accuracy of 98.9%
(Supplementary Fig. 57). This model is thus used for all further event
predictions.

Nanopore sensing was then respectively carried out with com-
mercial 100% grape juice (HuiyuanTM, Fig. 7d) and grape juice drink
(WahahaTM, Fig. 7g). The measurements were performed with MspA-
PBA in a 1.5M KCl buffer and a + 160mV continually applied bias.
Without performing any sample separation, 2 μL different types of
juice sample was respectively added to the nanopore device in sepa-
ratemeasurements. Immediately afterwards, corresponding nanopore
events were observed with different commercial juice products (Sup-
plementary Figs 58, 59). Three independent trails were also carried out
for each condition to show its reproducibility (Supplementary
Figs 60–61).

All acquired nanopore events were first treated by outlier analysis
(Supplementary Figs 62, 63). By usingOne-Class SVM, an unsupervised
machine learning algorithm for outlier detection, all events that fail to
show any consistency with the standard events generated by the pre-
viously investigated 11 cis-diols, were grouped as outlier events. All
outlier events were further treated by cluster analysis to check the
presence of any cluster-forming events. Specifically, for the events
acquiredwith the 100% grape juice, a cluster of events which has never
been previously investigated usingMspA-PBA, was discovered. For the
ease of demonstration, this cluster of events is referred to as U3
(unidentified cis-diol 3). TheU3 eventswere however never detected at
all in any freshly squeezed grape juice samples mentioned in this
paper. It is speculated that the U3 event might be from the specific
variety of grape used in the generation of the commercial 100% grape
juice or it might be from food additives introduced during juice
production.

For all inlier events, the newly established Bagging Trees model
was applied for event identification. For both types of commercial
juice products, events of D-FRU, D-GLC, L-MA and L-TA were clearly
identified (Fig. 7e–f, h–i). Three independent trails were also carried
out with each commercial juice product to show the consistency of
measurement (Supplementary Figs 64–65). In the 100% grape juice,
only L-MA was detected, suggesting that no DL-MA food additive was
added to this juice product. However, both D-MA and L-MA were
detected in the grape juice drink, consistent with that listed in the
corresponding ingredient table.With the establishedmachine learning
algorithm, all above fruit juice analysis was carried out extremely
rapidly. Both juice sampleswereaddeddirectly to the nanopore device
without any need of sample separation.

To also show the portability of the technique, nanopore analysis
of fruits was also carried out with an Orbit mini portable patch clamp
amplifier (Nanion Technologies GmbH) (Fig. 8). To perform the mea-
surement, theOrbitmini, which is of a palm size and an extremely light
weight, is connected to a routine laptop computer, weighing ~1 kg. The
operation of the whole setup can be powered solely by the inbuilt
laptop battery, enabling the application of nanopore sensing even
without any electricity supply. Representative traces and statistical
results produced with natural grape juice at this condition are sum-
marized in Fig. 8. The results are generally consistent with that
acquired using the Axon200B patch clamp amplifier and Digidata
1550B digitizer.

Compared with conventional analytical methods such as mass
spectrometry, liquid chromatography and gas chromatography, a
nanopore platform generally offers a higher portability, a lower mea-
surement cost, a more simplified sample preparation and the capacity

to perform simultaneous sensing of multiple analytes, which is extre-
mely suitable for portable food analysis. This might be useful for food
industry or food and drug administration. Specifically, its high reso-
lution in direct discrimination between isomers and enantiomers is
advantageous over MS. It also offers a more rapid result feedback,
which is generally faster than chromatography-based methods. Being
an emergingmethod, the nanopore platform at its present form is still
disadvantageous in the limit of detection and the accuracy of quanti-
fication. We however foresee that these disadvantages could be
improved in future development of this technique.

Discussion
MspA-PBA, a reactive MspA nanopore containing a sole PBA adapter,
was applied to the identification in fruit juice of catechin, neo-
chlorogenic acid, D-sorbitol, xylitol, DL-malic acid, L-tartaric acid, citric
acid, (2R,3S)-isocitric acid, sucrose, D-glucose andD-fructose. These 12
analytes respectively represent saccharides, alditols, 1,2-diphenols and
α-hydroxy acids widely encountered in fruits. Though nucleotides are
in principle detectable by MspA-PBA42,44, their concentrations are too
low to be detected directly from the fruit juice. In each measurement,
only ~ µL fruit juice was added, which doesn’t significantly change the
pH and ion strength of the buffer environment (Supplementary
Table 6). The inherent proteins, nucleic acids and polysaccharides in
fruits, which either don’t interact with the PBA or report clearly dis-
tinguishable events, are alsonot interferingwith themeasurements. By
simultaneously considering five event features, including ΔI/I0, std,
kurt, skew and time, a custom machine learning algorithm provides
automatic and unbiased identification of unknown nanopore events
with a classification accuracy of 99.3%. A nanopore that can simulta-
neously detect saccharides, alditols, 1,2-diphenols andα-hydroxy acids
has not been demonstrated previously. Although the previous studies
have reported the use of phenylboronic acid-modified nanopores for
saccharide sensing, they either fail to achieve a single molecule reso-
lution and are incapable to performsimultaneous sensing68,69 or report
a clearly insufficient resolution70 for fruit analysis. This sensing capa-
city ofMspA-PBAwas further applied to the direct and rapid analysis of
natural fruit juice of prune, grape, lemon and different varieties of
kiwifruits. The capacity ofMspA-PBA to discriminate betweenDL-malic
acid also enables its immediate application in the detection of syn-
thetic food additive in commercial juice products. To the best of our
knowledge, nanopore sensing of catechin, neochlorogenic acid, DL-
malic acid, L-tartaric acid, citric acid, (2R,3S)-isocitric acid and sucrose
has not been previously reported. Nanopore analysis of natural fruit
juice, which systematically demonstrates how natural complex sam-
ples can be analyzed in single molecule, was also not previously
reported. Though the technique at its current form can only detect
free cis-diols in natural samples, it is possible to release the bound cis-
diol by sample treatment of enzymatic71,72 or chemical hydrolysis71,73,74,
followed with nanopore analysis. Though only demonstrated with
fruits, this sensing strategy is in principle generally suitable for other
natural samples containing cis-diol components. All nanopore mea-
surements can also be carried out in a miniaturized device (Fig. 8) to
demonstrate portable food analysis. Different from that required in
genome sequencing, the food samples normally contain abundant cis-
diols and the need of a high-throughput acquisition system to max-
imize the efficiency of sensing is less urgent. However, a multiplexed
array of sensors which can simultaneously analyze different food
samples is more practically needed.

Methods
Nanopore preparations
The preparation of MspA-PBA36,42–44 was carried out as described
below. Briefly, the desired MspA hetero-octamer, which was referred
to as (N90C)1(M2)7, was composed of seven units of M2 MspA-D16H6
(D90N/D91N/D93N/D118R/D134R/E139K) and one unit of N90CMspA-
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Fig. 8 | Portable nanopore analysis of grape juice. a The workflow of portable
nanopore analysis of grape juice. The grape juice was prepared as described in
Methods. (i) The nanopore setup. A Nanion Orbit mini was paired with a laptop
computer to perform the measurements. (ii) Sample addition. 1μL grape juice was
added to the chip and stirred thoroughly to initiate the measurement. The nano-
pore measurement was performed using MspA-PBA in a 1.5M KCl buffer and a
continually applied bias of +160mV. (iii) Data acquisition. Nanopore events of
grape juice were observed immediately after sample addition. b A representative
traceacquiredwith natural grape juice usingNanionOrbitmini. 1μLgrape juicewas
added to the measurement device. The top figure is a 260 s continuous trace. A
section of this trace, as marked with a red box, is zoomed in and shown below.

Events of L-MA, L-TA, D-GLC and D-FRU were identified and labelled on the trace
using machine learning (Fig. 3). Noise events were also detected and marked.
c Scatter plot of ΔI/I0 versus std for nanopore events acquired with grape juice
(n = 492). All background events were removed with DBSCAN cluster analysis
(Supplementary Fig. 66). All events were predicted by the previously trained Bag-
ging Trees model (Fig. 3). The data presented in each scatter plot was from a
continuous measurement of 40min. d The proportion of target cis-diols events in
grape juice acquired using Nanion Orbit mini. Data presented in the bar plot were
from one measurement (N = 1). The results are consistent with that acquired with
the Axon 200B+digidata 1550B device (Supplementary Figs 31, 35). Source data are
provided as a Source Data file.
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H6 (D90C/D91N/D93N/D118R/D134R/E139K). The genes of M2 MspA-
D16H6 and N90C MspA-H6 were respectively synthesized by Gen-
Script. Both genes were simultaneously placed in the same co-
expression vector pETDuet-1 and expressed in E. coli BL21 (DE3)
pLysS competent cells (GenScript, New Jersey). After protein expres-
sion, the collected bacterial pellets were resuspended in the lysis
buffer (100mM Na2HPO4/NaH2PO4, 0.1mM EDTA, 150mM NaCl, 0.5%
(v/v) Genapol X-80, pH 6.5) and incubated at 60 °C for 50min. After
being centrifuged and ice-incubated for 30min, the supernatant in the
suspension was collected, filtered and loaded to a HisTrapTMHP nickel
ion affinity column (GE Healthcare). The column was first eluted with
buffer A (0.5M NaCl, 20mM HEPES, 5mM imidazole, 0.5% (w/v)
Genapol X-80, pH 8.0) to elute miscellaneous proteins. It was then
eluted with a linear gradient of mixing buffer A and buffer B (0.5M
NaCl, 20mM HEPES, 500mM imidazole, 0.5% (w/v) Genapol X-80, pH
8.0) to collect all hetero-octameric assemblies of MspAs. To separate
(N90C)1(M2)7 from all other hetero-octameric assemblies, a 10% SDS-
polyacrylamide gel was used to perform gel electrophoresis of the
eluent fractions collected from the nickel column. After gel electro-
phoresis, the gel was stained with coomassie brilliant blue (1.25 g
coomassie brilliant blue R250, 225mL methanol, 50mL glacial acetic
acid, 225mL ultrapure water) for 4 h and de-stained with an elution
buffer (40% (v/v) MeOH, 10% (v/v) glacial AcOH). The gel fragment
containing the target (N90C)1(M2)7 assembly was then excised from
the gel. The obtained gel piecewas crushed and immersed in a protein
extraction buffer (150mMNaCl, 15mMTris-HCl, 0.2% (w/v) DDM, 0.5%
(v/v) Genapol X-80, 5mM TCEP, 10mM EDTA, pH 7.5). The extracted
(N90C)1(M2)7 was immediately used or stored at −80 °C for long
term use.

To modify (N90C)1(M2)7 with phenylboronic acid, 2μL 3-(mal-
eimide) phenylboronic acid (MPBA, 500mM) and 5 μL freshly pre-
pared (N90C)1(M2)7 were simultaneously added to a 43μL 1.5M KCl
buffer (1.5M KCl, 100mM MOPS, pH 7.0) and thoroughly mixed. The
mixturewas incubated at 25 °C for 10min tofinalizeporemodification.
The prepared nanopore was either immediately used in all down-
stream nanopore measurements or is stored at −80 °C for long term
use. For simplicity, this MPBA modified (N90C)1(M2)7 is referred to as
MspA-PBA throughout the manuscript.

Nanopore measurements
Nanoporemeasurements were performed similarly to that reported
previously42. All nanopore measurements were performed with an
Axonpatch 200B patch-clamp amplifier paired with a Digidata
1550B digitizer (Molecular Devices). To reduce external environ-
ment noises, the custommeasurement device was fixed in a custom
Faraday cage mounted on an optical table (Jiangxi Liansheng tech-
nology Co., Ltd). The measurement device was composed of two
chambers separated by a Teflon film containing an aperture of
about 100 μm in diameter. Prior to the measurement, the aperture
was first treated with 2% (v/v) hexadecane in pentane and set for
pentane evaporation. Then both chambers were filled with 500 μL
1.5 M KCl buffer (1.5 M KCl, 100mMMOPS, pH 7.0). Afterwards, two
Ag/AgCl electrodes which were separately connected to the patch-
clamp amplifier, were respectively inserted in each chamber, in
contact with the buffer solution. By convention, the electrically
grounded chamber is defined as the cis chamber and its opposing
chamber is defined as the trans chamber. To form a phospholipid
bilayer on the aperture of the Teflon film, 100 µL pentane solution of
DPhPC (5mg/mL) was added to both chambers and the lipid bilayer
spontaneously forms when the buffer solution in one of the cham-
bers has been pipetted up and down for several times. Spontaneous
pore insertion was triggered by adding newly prepared MspA-PBA
to the cis chamber. Upon a single nanopore insertion, the buffer in
the cis chamber was immediately exchanged with fresh buffer to
avoid further pore insertions.

All nanoporemeasurementswere performedwith a singleMspA-
PBA channel and all analytes were added to both chambers. Specifi-
cally, the portable nanopore analysis of natural grape juice analysis
was carried out using Nanion Orbit Mini (Fig. 8). Unless otherwise
stated, all other measurements were performed using Axonpatch
200B patch-clamp amplifier paired with a Digidata 1550B digitizer
(Molecular Devices). Unless otherwise stated, all measurements were
performed at 25 degrees of Celsius with a continually applied bias of
+160mV. All single-channel recordings were sampled at 25 kHz and
low-pass filtered with a corner frequency of 1 kHz. Unless otherwise
stated, the final concentrations of the analytes in both chambers
were set as: 0.8mM for catechin (CAT), 0.5mM for neochlorogenic
acid (3-CQA), 2mM for D-sorbitol (D-SOR), 2mM for xylitol (XYL),
0.6mM for L-malic acid (L-MA) and D-malic acid (D-MA), 0.6mM for
L-tartaric acid (L-TA), 6mM for citric acid (CA), 1mM for isocitric acid
(ICIT), 30mM for D-glucose (D-GLC) and 10mM for D-fructose (D-
FRU). Based on the principle of nanopore sensing by single molecule
reaction, the event feature is independent of the analyte concentra-
tion. With only a sole reactive adapter at the pore constriction,
simultaneous capturing of more than one analyte is also technically
impossible. However, some of the analyte type may require a higher
analyte concentration to report a sufficiently high event appearance
rate. Thus, the selection of these analyte concentrations is to max-
imize the efficiency of nanopore appearance rate.

Data analysis
Event detection was first performed by the “single channel search”
function of Clampfit 10.7. Subsequently, the start time, end time and
dwell time of each event were obtained. Only events with a dwell time
more than 10ms were used for further analysis. The start and end
times of events were listed in a text file for subsequent event feature
extraction. The raw Axon abf files and the text file containing the start
and end times of the events in the files were imported into MATLAB.
Based on the start time and the end time of the event, the event fea-
tures including blockage ratio (ΔI/I0), standard deviation (std), kurtosis
(kurt), skewness (skew) and dwell time (time) were extracted for
machine learning. The generation of histograms and scatter plots were
performed by Origin 9.2 (Origin Lab).

Machine learning was performed by the “classification learner”
toolbox in MATLAB. For CAT, 3-CQA, D-SOR, XYL, L-MA, L-TA, ICIT,
500 and 100 events of each analyte were collected to form the training
set and the testing set, respectively. For D-GLC and D-FRU, 1000 and
200 events of each analyte were collected to form the training and the
testing set. For CA, 100 and 20 events were collected to form the
training and the testing set. The label of each event was assigned as the
identification of the chemical compound used in the production of the
data. Model training was performed with the training set and the 10-
fold cross validation accuracies were obtained. The testing set was
used to test all trained models and testing accuracies were reported.
Different models, including Decision Trees, Discriminant Analysis,
Naïve Bayes, Support Vector Machine (SVM), K Nearest Neighbor
(KNN), Ensemble and Neural Network were trained and tested.
According to the results of 10-fold cross validation accuracy and the
testing accuracy (Supplementary Table 3), the Bagging Trees model
reported the highest overall accuracy. Therefore, the trained Bagging
Trees model was used for further event prediction.

The density-based spatial clustering of applications with noise
(DBSCAN) cluster analysis was applied for clustering on a Python
platform. The Epsilonwas set to 0.17 and themin_sampleswas set to 18
for analysis of prune juice, grape juice and lemon juice. The Epsilonwas
set to 0.1 and the min_samples was set to 10 for analysis of kiwifruit.
The Epsilon was set to 0.3 and the min_samples was set to 30 for
analysis of commercial 100% grape juice.

One-Class SVM, a machine learning algorithm for outlier analysis,
was performed by the ‘Scikit-learn library’ in Python. The training set
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for outlier analysis of kiwifruits is the same as the ten cis-diols training
set described in Fig. 3. The training set for outlier analysis of com-
mercial products is the same as the eleven cis-diols training set
described in Supplementary Fig. 57. The training set of sucrose, which
contains 500 standard events was acquired with sucrose. The data was
later used in the identification of sucrose in Sungold kiwifruit and
Green kiwifruit. Briefly, ΔI/I0, std, kurt, skew and time of events were
employed as event features for outlier analysis. The parameter ‘nu’was
set to 0.05. Different One-Class SVMmodels were respectively trained
by different training set for further event discrimination. The model
automatically judges whether the analyzed event belongs to any pre-
viously trained event types so that the event is considered as an inlier
event. If not, it is considered as an outlier event instead. The inlier
events of kiwifruits and commercial products were further predicted
by the trainedBaggingTreesmodels, as respectively described in Fig. 3
and Supplementary Fig. 57. The outlier events were then treated with
cluster analysis using DBSCAN. If a group of these outlier events were
identified to have similar event features and appear as a cluster, this
group of outlier events are considered a set of detected but uni-
dentified cis-diol.

All machine learning models and sample data used to train, vali-
date and test themodel have been deposited in Figshare. Please follow
the link https://figshare.com/s/5fc838dad55e6452bc95 for download.

Fruit juice preparations
Technical details of all fruit samples used in the measurements were
demonstrated in Supplementary Fig. 67. To perform the measure-
ment, different fruits were respectively washed, cut into pieces and
mashed into pulp. Then, the pulp of different fruits was separately
treated by a mini food processor to produce puree (Figs 4a, 5a, 6). To
remove the solid residues, the puree was centrifuged at 1900 g for
10min at 4 °C and the supernatant was collected as juice. The super-
natant was then added into an ultrafiltration tube with a 3 kDa mole-
cular weight cut off (MWCO) and centrifuged at 2350g for 10min at
4 °C. Thefiltratewas collected and immediately used in all downstream
measurements. The whole operation takes about 25min (Fig. 4a).

In Supplementary Fig. 37, the lemons were cut into fruit pieces.
The fruit pieces were pinched by hand to product fruit juice. And the
fruit juice was added into the ultrafiltration tube with a 3 kDa mole-
cular weight cut off (MWCO) and centrifuged at 3380 g for 3min at
4 °C. Thefiltratewas collected and immediately used in all downstream
measurements. The whole operation takes about 8min (Supplemen-
tary Fig. 37a).

Quantification of target cis-diols
The concentrations of target cis-diols were evaluated according to the
following equation:

Ci = Ei= ki*t
� � ð1Þ

Where i (from 1 to 10) stands for different cis-diols, including CAT, 3-
CQA, D-SOR, XYL, L-MA, L-TA, CA, ICIT, D-GLC and D-FRU, respec-
tively. Ei is the number of binding events of each cis-diol type. ki is the
calibration coefficient defined as the number of event occurrences per
unit concentration (mM) per unit time (ms). The value of ki is derived
from results of the concentration dependence measurements (Sup-
plementary Figs 14–23). The results were also summarized in
Supplementary Tables 4, 5. t is the recording timeof themeasurement.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are shown in the main text
and the Supplementary Information, which are also available within
the source data provided with this paper. All data used to train, eval-
uate and test the machine learning model have been deposited in
Figshare. Please follow the link: https://figshare.com/s/
5fc838dad55e6452bc95 for download. Source data are provided with
this paper.

Code availability
The custom machine learning code and sample data used to train,
validate and test the model have been deposited in Figshare. For
simplicity, the shared package is referred to as ‘fruit classifier’. Please
follow the link https://figshare.com/s/5fc838dad55e6452bc95 for
download.
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