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A comprehensive transformer-based
approach for high-accuracy gas adsorption
predictions in metal-organic frameworks

Jingqi Wang1,2,7, Jiapeng Liu 3,4,7, Hongshuai Wang 2,5, Musen Zhou 6,
Guolin Ke 2, Linfeng Zhang2,4, Jianzhong Wu 6 , Zhifeng Gao 2 &
Diannan Lu 1

Gas separation is crucial for industrial production and environmental pro-
tection, with metal-organic frameworks (MOFs) offering a promising solution
due to their tunable structural properties and chemical compositions. Tradi-
tional simulation approaches, such as molecular dynamics, are complex and
computationally demanding. Although feature engineering-based machine
learning methods perform better, they are susceptible to overfitting because
of limited labeled data. Furthermore, thesemethods are typically designed for
single tasks, such as predicting gas adsorption capacity under specific condi-
tions, which restricts the utilization of comprehensive datasets including all
adsorption capacities. To address these challenges, we propose Uni-MOF, an
innovative framework for large-scale, three-dimensional MOF representation
learning, designed for multi-purpose gas prediction. Specifically, Uni-MOF
serves as a versatile gas adsorption estimator for MOF materials, employing
pure three-dimensional representations learned from over 631,000 collected
MOF and COF structures. Our experimental results show that Uni-MOF can
automatically extract structural representations and predict adsorption
capacities under various operating conditions using a single model. For
simulated data, Uni-MOF exhibits remarkably high predictive accuracy across
all datasets. Additionally, the values predicted by Uni-MOF correspond with
the outcomes of adsorption experiments. Furthermore, Uni-MOF demon-
strates considerable potential for broad applicability in predicting awide array
of other properties.

Gas separation1–3 is a significant industrial challenge that requires
immediate attention, given its critical role in various applications. For
example, separating CH4 from CO2 is essential for obtaining high-
quality natural gas and effectively achieving the carbon capture,

utilization and storage for environmental reasons4,5. Gas separation
also has implications for other fields, such as the production of high-
purity oxygen6,7 and nitrogen8,9 for industrial purposes and the pur-
ification of noble gases for medical diagnosis, and lasers10,11. Given its

Received: 23 May 2023

Accepted: 20 February 2024

Check for updates

1Department of Chemical Engineering, TsinghuaUniversity, Beijing 100084, China. 2DP Technology, Beijing 100089,China. 3School of Advanced Energy, Sun
Yat-Sen University, Shenzhen 518107,China. 4AI for Science Institute, Beijing 100190, China. 5Jiangsu Key Laboratory for Carbon-Based Functional &Materials
Devices, Institute of Functional & Nano Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China. 6Department of Chemical and Environmental
Engineering, University of California, Riverside, CA 92521, USA. 7These authors contributed equally: Jingqi Wang, Jiapeng Liu. e-mail: jwu@engr.ucr.edu;
gaozf@dp.tech; ludiannan@mail.tsinghua.edu.cn

Nature Communications |         (2024) 15:1904 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8667-1929
http://orcid.org/0000-0001-8667-1929
http://orcid.org/0000-0001-8667-1929
http://orcid.org/0000-0001-8667-1929
http://orcid.org/0000-0001-8667-1929
http://orcid.org/0000-0003-3353-372X
http://orcid.org/0000-0003-3353-372X
http://orcid.org/0000-0003-3353-372X
http://orcid.org/0000-0003-3353-372X
http://orcid.org/0000-0003-3353-372X
http://orcid.org/0000-0002-2848-8939
http://orcid.org/0000-0002-2848-8939
http://orcid.org/0000-0002-2848-8939
http://orcid.org/0000-0002-2848-8939
http://orcid.org/0000-0002-2848-8939
http://orcid.org/0000-0002-1227-7221
http://orcid.org/0000-0002-1227-7221
http://orcid.org/0000-0002-1227-7221
http://orcid.org/0000-0002-1227-7221
http://orcid.org/0000-0002-1227-7221
http://orcid.org/0000-0002-4582-5941
http://orcid.org/0000-0002-4582-5941
http://orcid.org/0000-0002-4582-5941
http://orcid.org/0000-0002-4582-5941
http://orcid.org/0000-0002-4582-5941
http://orcid.org/0000-0001-8433-999X
http://orcid.org/0000-0001-8433-999X
http://orcid.org/0000-0001-8433-999X
http://orcid.org/0000-0001-8433-999X
http://orcid.org/0000-0001-8433-999X
http://orcid.org/0000-0001-5993-5626
http://orcid.org/0000-0001-5993-5626
http://orcid.org/0000-0001-5993-5626
http://orcid.org/0000-0001-5993-5626
http://orcid.org/0000-0001-5993-5626
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46276-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46276-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46276-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46276-x&domain=pdf
mailto:jwu@engr.ucr.edu
mailto:gaozf@dp.tech
mailto:ludiannan@mail.tsinghua.edu.cn


importance, research in this area is crucial for advancing technology
and meeting industry demands.

Metal-organic frameworks (MOFs) have emerged as a kind of
promising material in the field of gas separation due to their unique
properties12–14. MOFs are composed of metal ions and organic ligands,
which provide them with highly ordered pore structures and adjus-
table aperture sizes. These properties make them ideal for various gas
separation applications15–17. The ability to control the pore size and
chemical composition of MOFs allows for selective adsorption and
separation of different gases. MOFs with different pore sizes exhibit
varied capacities for gas adsorption18, and tuning the chemical
composition19 can affect the preference for adsorbate gases. The
ability to selectively adsorb and separate different gasesmakesMOFs a
promising material for various industrial and environmental
applications20,21.

While the potential of MOFs for gas adsorption is promising,
accurately predicting their adsorption capacity remains a challenge.
Molecular dynamics22,23, Monte Carlo (MC)24 and other simulation/
calculationmethods25,26 havebeen applied toprovide reference values,
but these approaches are computationally expensive and complicated
for implementation, limiting their application to large-scale, multi-gas,
and high-throughput calculations. Moreover, the vast range of oper-
ating conditions for gas adsorption further complicates the
predictions.

Machine learning techniques have demonstrated significant
potential in accurately predicting properties of crystalline
materials27–29, reducing the cost of traditional trial and error experi-
ments, and eliminating the need for expensive simulations. However,
these methods often rely on feature engineering based on expert
domain knowledge, leading to overfitting and biased performance
when using a limited amount of labeled data. With the emergence of
deep learning, graph neural networks,30,31 and Transformers32–34 have
proven successfully in predicting MOF properties. These models
directly incorporate structural information such as chemical bonds,
atoms, and spatial coordinates as inputs, and automatically learn
structural features through data-driven approaches. Thanks to the
powerful representation capacity of these deep-learning frameworks,
learned features can effectively eliminate biases introduced by feature
engineering mentioned earlier.

Despite their high performance and powerful predictive cap-
abilities, existing models for predicting adsorption properties are
typically designed for single tasks, specifically predicting the adsorp-
tion uptake of a particular gas under certain conditions. However, the
available datasets for these single task predictions are often limited,
thereby hindering the models generalizability and full utilization of
their capabilities. On the other hand, the combination of labeled data
from various adsorbate gases across different temperature and pres-
sure environments can create a substantial dataset suitable for training
across the entire working conditions. The increased data size may also
enhance the model ability to generalize and improve their practical
industrial use. Therefore, a unified adsorption framework is necessary
for advancing these models. Additionally, integrating representation
learning (or pre-training) for large-scale unlabeledMOF structuresmay
further improve the model performance as well as representation
ability. The pre-training trick has been widely implemented in combi-
nation with large-scale models to discover drugs35, where pure three-
dimensionalmolecular structureswere used to pre-train thesemodels.
Experimental results have also demonstrated that pre-trained models
outperform previous methods, particularly in property prediction33,
suggesting remarkable improvement through pre-training.

Inspired by this, we propose the Uni-MOF framework as a multi-
purpose solution for predicting gas adsorption of MOFs under dif-
ferent conditions using structural representation learning. Compared
with other Transformer-based models such as MOFormer34 and
MOFTransformer33, our Uni-MOF, as a Transformer-based framework,

not only can the pre-training recognize and recover the three-
dimensional structure of nanoporous materials and thus greatly
improve the robustness of the model, but the fine-tuning task also
further takes into account the operating conditions such as tempera-
ture, pressure, and different gas molecules, which makes Uni-MOF
suitable for both scientific research and practical applications. Uni-
MOF, as a comprehensive gas adsorption estimator forMOFmaterials,
requires only the crystallographic information file (CIF) of the MOF,
along with the associated gas, temperature, and pressure parameters,
to predict the gas adsorption properties of nanoporousmaterials over
awide range of operating conditions.Our framework is easy to use and
allows for module selection. Additionally, it effectively addresses the
issue of overfitting by integrating various cross-system absorption
labeled data with representation learning from massive amounts of
unlabeled structural data. This compensates for the lack of high-
quality and insufficient data, ultimately leading to higher accuracy in
gas adsorption predictions. Our study utilized a self supervised
learning approach on a database containing over 631,000 MOF and
COF structures. The results were remarkable, demonstrating a high
prediction accuracy. Fine-tuning experiments revealed that the Uni-
MOF framework is robust in databases with ample data. When applied
to databases with sufficient sampling of working conditions, our Uni-
MOF framework is able to screen high performance adsorbents under
high pressure accurately by feeding only the labeled data obtained at
low pressure by home-brew simulations. Wemust stress that Uni-MOF
provides a convenient approach for high pressure adsorption capa-
cities, which are generally more computationally demanding for tra-
ditional simulations. The results are consistent with experimental
screening outcomes. Furthermore, the performance of Uni-MOF on
cross-system datasets exceeded that on single-system tasks. By lever-
aging support from other gas adsorption data, Uni-MOF accurately
predicted the adsorption properties of unknown gases.

Uni-MOF frameworkachievesmaterial recognition accuracy at the
atomic level, while the integrated model makes Uni-MOF more
applicable to engineering problems. Undoubtedly, accomplishing
truly unifiedmodels is the future direction of thematerials field, rather
than just focusing on specialized areas. Uni-MOF is a pioneering
practice of Machine Learning in gas adsorption.

Results and discussion
Overview of workflow
The Uni-MOF framework comprises pre-training on three-dimensional
nanoporous crystals and fine-tuning for multitask prediction in
downstream applications. Figure 1 provides a schematic representa-
tion of the Uni-MOF framework. The pre-training of three-dimensional
crystal materials significantly enhances the prediction performance of
downstream tasks, particularly for large-scale unlabeled data. To
address the issue of inadequately supervised training datasets, we
collected an extensive dataset of MOF structures and generated over
300,000 MOFs using ToBaCCo.3.036,37. High-throughput construction
of COFs based on materials genomics strategy with quasi-reactive
assembly algorithms (QReaxAA) is feasible, leading to a comprehen-
sive library of COFs38. Through the spatial configuration of materials,
Uni-MOF is capableof learning thematerial structural properties,most
importantly the chemical bonding information, very well. In order to
enable Uni-MOF to learn more diverse materials and thus improve the
generalization ability to a broader range of materials, we introduced
MOFs and COFs both virtually and experimentally during the pre-
training process. Similar to themasking tagging task in BERT39 andUni-
Mol35, Uni-MOF employs a prediction task for masked atoms, thereby
promoting the pre-trained models to acquire an in-depth under-
standing of the material spatial structures. To enhance the robustness
of pre-training and generalize the learned representation, we intro-
ducednoises to theoriginal coordinates ofMOFs, as depicted in Fig. 1a.
In the pre-training stage, we devised two tasks. 1) reconstructing the
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pristine three-dimensional positions from the noisy data, and 2) pre-
dicting the masked atoms. These tasks can augment the model
robustness and improve downstream prediction performance.

In addition to diverse spatial configurations, a comprehensive set
of material property data points is also crucial for model training. To
enrich the dataset, we established a custom data generation process
(as illustrated in Fig. 1b). For example, we utilized the CoRE MOF
database that comprises successfully synthesizedMOFs, gases that are
significant in the separation field, as well as the common temperature

and pressure operating range under the corresponding system. By
randomly sampling from these various materials, gases, temperatures,
and pressurepools, a significant volumeof adsorption uptake data can
be generated for Uni-MOF fine-tuning. This data generation process
improves the efficiency of data generation and can form a widely
sampled dataset, Table 1 lists all the databases applied in this study.
The simulation-derived database with diversity is beneficial for model
fine-tuning and optimization, ultimately accomplishing the objective
of virtual screening for material performance.

Fig. 1 | Schematic overview of Uni-MOF framework. a pre-training workflow. In
the pre-training stage, in addition to predicting the types ofmasked atoms, a three-
dimensionalpositiondenoising taskwasused to learn the three-dimensional spatial
representation. Uniform noise of [−1Å, 1Å] is added to the 15% of atomic coordi-
nates randomly, and then the spatial position encoding is calculated based on the
corrupted coordinates. b data generation workflow. Cross-system performance
datasets can be collected or generated by random sampling of different operating

conditions. cworkflow of Uni-MOF fine-tuning. A unified gas adsorption prediction
modelUni-MOF is built by the embedding of pre-trainedweight,MOFmaterial, gas,
temperature, and pressure. d overall workflow of Uni-MOF. For the multi-purpose
Uni-MOF framework, no additional analytical calculations for materials are
required, and the properties under varied working conditions can be predicted
based solely on the crystallographic information file (CIF) of MOF materials. MOF
means metal-organic framework.
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The fine-tuning of Uni-MOF depicted in Fig. 1c is based on the
extraction of representations acquired through pre-training, as well as
the generation and collection of extensive datasets using our home-
brew workflows. During the fine-tuning process, we trained the model
using around 3,000,000 labeled data points across various adsorption
conditions of MOFs and COFs, enabling accurate prediction of
adsorption capacities. With the diverse database of cross-system tar-
geted data, the fine-tuned Uni-MOF can predict the multi-system
adsorption property of MOFs under arbitrary states, including differ-
ent gases, temperatures, and pressures. As a result, Uni-MOF is a uni-
fied and readily available framework for predicting the adsorption
performance of MOF adsorbents.

Above all, Uni-MOF obviates the requirement for additional labor
in identifying human-defined structural features. Instead, the CIF of
MOFs, along with pertinent gas, temperature, and pressure para-
meters, suffices. The self-supervised learning strategy and abundant
databases ensure that Uni-MOF can foretell gas adsorption properties
of nanoporous material in a wide range of operating parameters,
thereby rendering it a proficient gas adsorption estimator for MOF
materials.

Overall performance in large-scale databases
In order to evaluate the predictive capability of Uni-MOF as a com-
prehensive framework for adsorption performance prediction, two
mixed-state databases for gas adsorption, namely hMOF_MOFX-DB
and CoRE_MOFX-DB, were compiled with adsorbate gases consisting
of [CO2, N2, CH4, Kr, Xe] and [N2, Ar], respectively. In addition, the
CoRE_MAP_DB database was generated via our home-brew MC simu-
lationworkflow for the adsorptionuptakeof seven gases (CO2, CH4, Ar,
Kr, Xe, O2, He).

Since the data sources of the three databases are different, we
conducted model training for each database separately in order to
ensure the consistency of data sets. Details of these three databases,
including temperature and pressure ranges, are listed in Supplemen-
tary Table 1. To prevent data bias and ensure that the test set remained
unseen by the model, we divided the data set into three different data
sets (train, valid, and test) with the ratio of 8:1:1 according to the MOF
structure instead of randomly splitting, that is, there is no identical
material between the three datasets. The splitting ensures that the
model accomplishes the prediction of new materials in validation and
test set, rather than those materials that have already been seen. The
model parameters are optimized during the training process and
reflected in the results of the validation set. The optimal model cor-
responding to the validation set is saved, and the prediction results in
the never-before-seen test set represent the final performance (R2

shown here) of the model, thus reasonably avoiding over-fitting.

The collected datasets, hMOF_MOFX_DB and CoRE_MOFX_DB,
exhibit relatively concentrated temperature and pressure distribu-
tions, as depicted in the sub-figure of Fig. 2a, b. Notably, both data-
bases offer adequate data, with over 2,000,000 and 400,000 data
points, respectively. The prediction results demonstrate that Uni-MOF
is remarkably robust when applied to databases that possess sufficient
data with relatively concentrated operating states, such as hMOF_-
MOFX_DB and CoRE_MOFX_DB, with R2 values of 0.98 and 0.92,
respectively. In contrast, our CoRE_MAP_DB database, which we have
learned from Supplementary Table 1, contains slightly less than
100,000 data points. It encompasses an extensive sampling of the
adsorption of seven adsorbed gases in over 10,000 MOFs, covering a
temperature range of 150–300K and a pressure range of 1 Pa–3 bar, as
depicted in the sub-figure of Fig. 2c. For such a widely distributed
database, Uni-MOF can still achieve excellent prediction accuracy with
an R2 value of 0.83, demonstrating its good generalizability.

The analysis also incorporates two other error metrics, i.e., Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). However,
the CoRE_MOFX dataset shows larger errors, particularly in RMSE.
CoRE_MOFX dataset contains Ar and N2 adsorption amounts at 77 K
and 87K, which are significantly lower temperatures compared to the
other two databases. Consequently, the adsorption values in CoR-
E_MOFX are generally larger. The adsorption isotherms with the most
significant errors are depicted in Supplementary Fig. 1. MOF materials
with the largest error typically have Cu (with the lowest energy para-
meter of 2.52K) as the metal site. This implies thatMOFmaterials with
low energy parameter metal sites or large pore sizes are the limiting
factors for low-temperature data prediction. Intriguingly, even with
the highest errors, Uni-MOF can accurately reproduce the adsorption
trend from low to high pressure. Additionally, CoRE_MOFX_DB, as the
collected experimental structural database, contains 1800+ dis-
orderedmaterials out of 12,000+MOFs. DisorderedMOFs were found
to adversely affect the model performance, as the unrealistic internal
structures and limited material samples lead to the challenging pre-
diction of gas adsorption, as demonstrated by the outlier
ja5111317_ja5111317_si_003_clean and LELDOX_clean in Supplementary
Table 3. Therefore, disordered materials were excluded from the
generated CoRE_MAP_DB database, which results in reduced errors
and is more suggested to use for prediction of gas adsorption in
nanoporous materials. The force field used in this work does not
account the effect of open-metal sites. For the top ten outliers in the
CoRE_MOFX_DB database (shown in Supplementary Table 4), 80% of
them have open-metal sites. This suggests that the significant devia-
tions between simulations and Uni-MOF predictions could be due to
the missing interaction between open-metal sites and adsorbate con-
sidered in the simulation.

Additionally, we discovered that the prediction accuracy in the
pre-training stage could reach0.98before and after incorporatingCOF
materials. This indicates that Uni-MOF is capableof effectively learning
the three-dimensional spatial structure of multiple nanoporous
materials. As for the downstream tasks, the predictive performance
(R2, RMSE, andMAE) of Uni-MOF for all three databases surpassed that
of Uni-MOF with only MOF pre-training, as illustrated in Supplemen-
tary Tables 5, 6. This indicates that incorporating COF not only main-
tains but also enhances the model robustness, further demonstrating
the superiority of our Uni-MOF framework.

Experimental adsorption uptake prediction
Despite the excellent prediction performance of Uni-MOF on simu-
lated results, we are wondering how the framework would behave in
comparison to the real experimentally collected results. In this study,
we have chosen commonly used laboratory materials, such as MOF-5
andMOF-17740–43, and compared thepredictedgas adsorption capacity
with existing experimental data. Considering that the CoRE_MAP_DB
database contains a diverse range of operating conditions and

Table 1 | Structure & Data resources

Data Types Sources Availability Software Size

Structure collection hMOF50 — 137,000+

Structure collection ToBaCCo — 10,000+

Structure collection CoRE MOF51 — 12,000+

Structure collection CCDC — 12,000+

Structure collection CoRE COF52 — 600+

Structure collection GCOFs38 — 160,000+

Structure generation this work ToBaCCo.3.0 300,000+

Adsorption
Uptake Data

collection hMOF_
MOFX_DB

— 2,400,000+

Adsorption
Uptake Data

collection CoRE_
MOFX_DB

— 460,000+

Adsorption
Uptake Data

generation this work RASPA54 99,000+

Other Property Data generation this work Zeo++60 149,000+
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experimentally validated MOF structures, we chose the weights
trained using this database to predict the adsorption performance of
experimental materials. Figure 3 displays the predicted results under
different conditions, details are listed in Supplementary Tables 8–10.

Figure 3a presents the Langmuir adsorption isotherm44 obtained
by fitting the predicted methane adsorption capacity under low pres-
sure (less than 5 bar). It shows that the high pressure adsorption
capacity displayed by the Langmuir adsorption isotherm is consistent
with the experimental values. Specifically, the high pressure adsorp-
tion capacity of (Zn2(bdc)2(dabco), methane, 393 K) > (MIL-101,
methane, 373K) > (MOF-177, methane, 398 K). This suggests that the
Uni-MOF framework is capable of accurately screening high perfor-
mance adsorbents under high pressure based solely on prediction
adsorption capacity under low pressure. Nevertheless, we still notice
significant deviations between many predicted and experimental
values under low pressure, especially in the cases of Mg-dobdc and
MOF-5. Simulations may not precisely represent experimental values
for MOFs with open metal sites, such as Mg-dobdc45. However, MOF-5
has closemetal sites, andprevious studies have shown that simulations
can effectively depict experimental gas adsorption values46. Despite
these findings, we observed that the gas adsorption performance of
MOFs varies even under the same operating conditions (refer to

Supplementary Tables 8–10). This suggests that differentmethods and
significant objective errors exist in the experimental values. Therefore,
we did not purposely select data but instead aimed to provide as
comprehensive a representation of the collected data as possible. For
example, the black intersections in Fig. 3e represent experimental
values from various literature sources under identical operating con-
ditions. The results demonstrate that, despite significant variations in
experimental values, the Uni-MOF frameworkmaintains a high level of
accuracy in material ranking, rendering it suitable for addressing
engineering challenges.

Furthermore, the experimental values are introduced to correct
the adsorption isotherms. For example, Fig. 3b shows the Langmuir
adsorption isotherm obtained by fitting both the predicted and
experimental adsorption data. While we use simulated datasets to
address data scarcity, we can also properly introduce experimental
values to correct adsorption isotherms, which helps a more quantita-
tive prediction of adsorption performance at high-pressure where the
gas-gas interaction becomes more significant. In Fig. 3b, one can
observe that the corrected adsorption isotherms have a strong cor-
relation with experimental adsorption capacity to some extent. The
results exhibit that Uni-MOF not only has the ability to screen the
adsorption performance of the same gas in differentmaterials but also

Fig. 2 | Overall performance of Uni-MOF in large-scale databases. The correla-
tion between predicted and simulated value of gas adsorption amount for (a)
Database of hMOF_MOFX_DB (mol⋅kg−1), (b) Database of CoRE_MOFX_DB
(cm3

STP � g�1) and (c) Database of CoRE_MAP_DB (cm3
STP � g�1). Sub-figure is the

distribution of temperature (K) and pressure (bar) for each database. R2 means
coefficient of determination, MAE represents mean absolute error, MOF means
metal-organic framework. Source data are provided as a Source Data file.
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can accurately screen the adsorption performance of different gases in
the same material (Fig. 3c, d) or at different temperatures (Fig. 3e, f).

In the foreseeable future, the intersection of Artificial Intelligence
(AI) and materials science will necessitate the resolution of practical
and scientific issues. Nonetheless, the attainment of process imple-
mentationbyAI in the realmofmachine learning techniques that entail
copious amounts of data remains a formidable challenge, given the
dearth of experimental data and the diverse array of synthetic tech-
nology and characterization conditions implicated. Our research has
made a significant stride in materials science by incorporating oper-
ating conditions into theUni-MOF framework to ensure data adequacy
and enable screening functions that are consistent with experimental
findings.

Cross-system forecasting
In order to showcase the predictive capabilities of Uni-MOF with
regard to cross-system properties, five materials were randomly
selected from each of the six systems (carbon-dioxide at 298K,
methane at 298K, krypton at 273 K, xenon at 273 K, nitrogen at 77 K
and argon at 87 K) contained in databases hMOF_MOFX_DB and

CoRE_MOFX_DB, which have been thoroughly sampled in terms of
temperature and pressure. The predicted and simulated values of gas
adsorption uptake at varying pressures were then compared, with the
results presented in Fig. 4a–f. Adsorption isotherms fitting from both
Uni-MOF predictions and simulated values would artificially reduce
visual errors. In order to eliminate data bias, adsorption isotherms in
all cases were obtained only by simulated values. It is evident that, due
to the fact that the adsorption isotherms were obtained purely
through simulated values, the predicted values of adsorption uptake
generated by Uni-MOF for the hMOF_MOFX_DB and CoRE_MOFX_DB
databases align closely with the simulated values across all cases. This
finding is further supported by the high prediction accuracy demon-
strated in Fig. 2a, b.

Given the ability of Uni-MOF to predict properties across systems,
we were intrigued by its potential to forecast the adsorption capacity
of unknown gases. The CoRE_MAP_DB database contains a diverse
array of adsorption data points for various gases, such as methane,
carbon dioxide, argon, krypton, xenon, oxygen, and helium. To eval-
uate the predictive capability of Uni-MOF, we randomly divided the
CoRE_MAP_DB data points by adsorbate gas into three datasets (train,

Fig. 3 | Adsorption isotherms based on low-pressure predictions and high-
pressure experimental values, each curve represents Langmuir fit. a Uni-MOF
predicted and (b) experimentally corrected adsorption isotherms of methane
adsorption in Zn2(bdc)2(dabco), MIL-101 and MOF-177 at 393 K, 373 K, and 398K,
respectively. c Uni-MOF predicted and (d) experimentally corrected adsorption
isotherms ofmethane and carbon-dioxide adsorption inMg-dobdc at 298K. e Uni-

MOF predicted and (f) experimentally corrected adsorption isotherms of methane
and carbon-dioxide adsorption in MOF-5 at 298K and 296K. Each set of horizontal
plots (i.e., a and b, c and d, e and f) represents the same system, that is, the same
MOF and gas molecule. The hollow marker represents the predicted value of Uni-
MOF, and the filled marker represents the experimental data referenced from
previous literature.
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valid, and test dataset with a ratio of 5:1:1), then predicted the
adsorption capacity for each gas separately. The resulting predictions
are depicted in Fig. 4g and summarized in Supplementary Table 11.
Remarkably, Uni-MOF demonstrated robustness in predicting the
adsorption capacity of unknown gases, achieving a high prediction
accuracy (R2) of 0.85 for krypton and a prediction accuracy above 0.35
for all unknown gases.

One canobserve thatpredictionperformance varies amonggases.
For instance, Ar, Kr, and Xe are all noble gases with Kr demonstrating
thebestperformance among themwithR2 of 0.85, while the prediction
performance of Xe is inferior (R2 = 0.41). A similar distribution of MOF
material features across Ar, Kr, and Xe databases is observed, as illu-
strated in the corresponding sub-figure of Supplementary Fig. 2,
indicating that MOF material sampling differences have minimal
impact in this case. Despite the larger molecular diameter of Xe,
making it less favorable for adsorption in small pores, it shows a higher
adsorption limit (depicted in Supplementary Fig. 3) compared to
argon and krypton. This may be a result of the greater energy para-
meters of Xe (ϵ = 167.1 K) when interactingwithMOFmaterial atoms. In
the sub-figure of Supplementary Fig. 2c, materials with high Xe
adsorption capacity (exceeding 400 cm3 g−1) are highlighted in yellow.
These materials generally exhibit larger pore sizes and void fractions,
possessing an largest cavity diameter (LCD) greater than 6.73Å, a void
fraction exceeding 0.68, and a PLD of at least 4.18Å (close to the
kinetic diameter of xenon with 3.96Å). Although it is challenging to

establish a comprehensive connectionbetweenmodel predictions and
the physicochemical properties of gases, it is discernible that gases
possessing larger energy parameters typically demonstrate inferior
predictive performance, such as CH4, CO2, and Xe. This phenomenon
can be attributed to the increased significance of gas molecule inter-
actions with escalating pressure, coupled with the complexity intro-
duced by high energy parameters, ultimately complicating transfer
learning.

Notwithstanding the challenges, encouraging outcomes can still
be observed, as the model precisely predicts the adsorption of mod-
erate krypton, premised on the adsorption behavior of argon and
xenon within the same inert gas category.

In this study, we showcase the general performance of Uni-MOF
for gas transfer learning, employing a database comprising fewer than
100,000 data points. This suggests that even the optimal prediction
conditions were not specifically selected, Uni-MOF is capable in engi-
neering domains. To mitigate over-fitting, the data is typically divided
into three sets. However, transfer learning across diverse gases pre-
sents a considerable challenge, especially when confronted with a
restricted number of gas varieties and data points. As a result, in order
to optimize the utilization of the scarce data, the results obtained by
dividing the data into two datasets based on the gas types are also
shown in Supplementary Fig. 5. Results revealed an improvement in
transfer learning accuracy for each gas to some extent. Unlike the
predictionof adsorption betweendifferentmaterials, the prediction of

Fig. 4 | Uni-MOF cross-system prediction cases. The predicted and simulated
values of gas adsorption amount versus pressure in hMOF_MOFX_DB database for
(a) Carbon-dioxide at 298K, (b) Methane at 298K, (c) Krypton at 273 K and (d)
Xenon at 273K, and in CoRE_MOFX_DB database for (e) Nitrogen at 77K and (f)
Argon at 87K. Different markers in each figure denote different MOF adsorbents.
The hollow marker represents the predicted adsorption uptake of Uni-MOF, and
the filled marker represents the simulated adsorption uptake in the database. The
adsorption isotherms are obtained only by simulated values to eliminate data bias.

g Gas transfer learning under multi-system conditions, with the random division
into three datasets (train, validation, and test dataset with a ratio of 5:1:1) according
to adsorbate gases. h Predicted and simulated CH4 adsorption isotherms at 300K
in COF materials, different marker types represent different COFs. The hollow
marker means predicted value, the filled marker represents simulated value. R2

represents the coefficient of determination. Source data are provided as a Source
Data file.
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adsorption behavior for unknown gases is a formidable challenge.
Variations in molecular size, surface adsorption energy, and inter-
molecular forces among different gas types have a significant impact
on the adsorption mechanism and behavior. Despite this complexity,
Uni-MOF exhibits exceptional generalizability, as evidenced by its
ability to accurately predict the adsorption properties of unknown
gases with only the support of adsorption data from other gases.

Furthermore,we investigated the capability ofUni-MOF topredict
the gas adsorption behavior in COFs. Around 500 data points of CH4

adsorption uptake in CoRE COFs at 300K were simulated. Despite the
limited size of the COF adsorption database, Uni-MOF maintains high
predictiveperformance, achieving anR2 of 0.76. Additionally, as shown
in Fig. 4h, Uni-MOF exhibits high ranking capability for the adsorption
of diverse materials under various pressures.

Framework applying pre-training
In order to verify that the self-supervised learning strategy of pre-
training can effectively improve the robustness and downstream pre-
diction performance of the Uni-MOF, we established and compared
Uni-MOFw/o pre-training againstUni-MOFon three databases, namely
CoRE_MOFX_DB, hMOF_MOFX_DB, and CoRE_MAP_DB. The CoR-
E_MOFX_DB and hMOF_MOFX_DB databases exhibit a high degree of
data concentration, thereby enabling their partitioning into smaller
databases containing adsorption data for various materials under
identical working conditions (i.e., same gas, temperature, and pres-
sure). We trained both CoRE_MOFX_DB and hMOF_MOFX_DB data-
bases using Uni-MOF and Uni-MOFw/o pre-training, and subsequently

calculated the coefficients of determination for each small dataset. In
addition, each small dataset is trained separately using the Uni-MOF
framework to derive the corresponding coefficient of determination.

As shown in Fig. 5a, the filled markers represent the predictive
performance of the whole CoRE_MOFX_DB database. It can be seen
that the Uni-MOF performs better than Uni-MOF w/o pre-training. The
self-supervised learning strategy of pre-training allows the model to
learn the three-dimensional configuration of nanoporous materials in
depth, thus improving the accuracy of model fine-tuning. In this part,
the data sets are divided in a manner where each set comprises the
relevant subsystem data. Therefore, all the hexagonal markers in
Fig. 5a represent the overall predicted performance of Uni-MOF.
Indeed, Uni-MOF demonstrates equally high performance on the
complete data set as it does on an individual data set, even when the
performance of a single data set relies on more extensive data than its
specific prediction task. For fine-tuning of single-system tasks, that is,
training individually for each small data set, the predicted perfor-
mance hardly exceeded the performance of Uni-MOF. Thus, we know
that far-ranging data sampling can further promote the prediction
capacity of the learning model. The same conclusions can be sum-
marized for hMOF_MOFX_DB from Fig. 5b.

However, due to the scattered sampling of the CoRE_MAP_DB
database, limited small data sets cannot be divided following the same
procedure as the previous two databases. Therefore, the correlations
between predicted and simulated values from Uni-MOF and Uni-MOF
w/o pre-training are compared, shown in Fig. 5c. Similarly, compared
with Uni-MOF w/o pre-training, the performance of Uni-MOF was

Fig. 5 | Uni-MOF and Uni-MOF w/o pre-training comparison. The performance
comparison of Uni-MOF and Uni-MOF w/o pre-training in (a) CoRE_MOFX_DB and
(b) hMOF_MOFX_DB. The filled marker represents the prediction performance of
the entire database. The hollow marker represents the prediction performance of

the sub-dataset (certain gas, temperature and pressure). Details can be found in
Supplementary Table 15–17. c The comparison of correlation between predicted
and simulated value of gas adsorption amount via Uni-MOF and Uni-MOF w/o pre-
training for CoRE_MAP_DB database. R2 means the coefficient of determination.
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improved from 0.70 to 0.83, which further proved the significance of
the pre-training strategy for Uni-MOF.

Structural features prediction and high-throughput screening
While the Uni-MOF framework is adept at discerning the spatial
arrangement of nanoporous materials, we aim to further explore its
potential in forecasting structural attributes. The structural feature
prediction results of Uni-MOF for the hMOF and CoRE_MOF materials
libraries are presented in Fig. 6a–d.

It can be observed that the prediction performance of hMOF
structural parameters is generally superior to that of CoRE_MOF. By
employing a combination of structural building blocks (metal nodes,
ligands, and functional groups), the design space of the hypothetical
MOF (hMOFs) dataset was fully explored, and structural features are
more evenly distributed compared to the CoRE_MOF dataset. Experi-
mentally synthesized MOF materials (CoRE_MOF) tend to have struc-
tural preferences for metal nodes (e.g., with zinc, copper, and
cadmium) and linkers. Previous research has demonstrated that the
experimental MOF (CoRE-2019) is primarily concentrated in the small
pore region,while the hMOF (Tobacco) ismore evenly distributedwith
a slight shift of focus towards the large pore region47. The same
observation can be found in Supplementary Fig. 6, where Supple-
mentary Fig. 6a and Supplementary Fig. 6b show the differences
between CoRE_MOF and hMOF structures using the t-distributed sto-
chastic neighbor embedding (t-SNE)method. Through Supplementary
Fig. 6c–f, it can be seen that the apertures of CoRE_MOF are obviously
concentrated in the small aperture region, especially the PLD. hMOF,
on theother hand, can still observe the aperturegradient due to its rich
structural sampling and data points, even though the apertures are
generally small. Thus, for different types of databases, the prediction
of structural features performs differently, especially for PLD. Notably,
in materials such as hMOFs, its predictive capability attains a coeffi-
cient of determination greater than 0.99, signifying a high level of

precision and dependability. One has come to recognize that Uni-MOF
demonstrates a strong capability in predicting the structural features
of materials, owing to the utilization of pre-training on a substantial
number of three-dimensional structures. Thus, Uni-MOF not only
accurately predicts the desired performance ofMOFmaterials but also
precisely predicts their structural features, which holds significant
importance for material research and application.

Innumerable nanoporous materials can be created with varied
secondary building units48, leading to exceptionally diverse MOF
structures, making MOF structure-property analysis a very strategic
initiative. In this work, multi-gas adsorption uptakes under various
operating conditions were collected and generated, where the argon
uptakes at 87K and 1 bar is representative and analyzable. Argon
accounts for the vast majority of noble gases in the atmosphere
(9340 ppm at ambient conditions), and has been widely used for
insulation and illumination with a commercial value of 3.1 USD kg−114.
Figure 6e shows a comparison of the kernel density estimate (KDE) for
different structural features between the entire CoRE_MOF with argon
adsorption values and MOFs in CoRE_MOF with the top 10% perfor-
mance of argon adsorption. KDE visualizes the distribution of data
using a continuous probability density curve in a less cluttered way.

As the distribution of some structural features is bounded, it may
lead to distortions (such as the minus value of surface area and
volume). However, it still presents interpretable and accurate trends in
the structure of top MOF adsorbents. The typical parameters
describing pore sizes are as follows. 1) pore limiting diameter (PLD) is
the largest free sphere; 2) LCD is the largest included sphere along the
free sphere path. Thus, LCD is intrinsically larger than PLD in the same
material. Compared with the entire MOF database, the top 10% of
MOFs have larger distribution values of 5–10Å and 10–12Å for PLD and
LCD, respectively. The void fraction of the whole database is moder-
ately distributed around 0.5, while that of the top 10% MOFs is much
larger, mainly distributed around 0.75. Since most of the adsorption

Fig. 6 | Structural features prediction and analysis. The correlation between
predicted and computational value of (a) Pore Limiting Diameter (PLD) (Å), (b)
Largest Cavity Diameter (LCD) (Å), (c) void fraction, and (d) pore volume (cm3 g−1)
of MOFs in hMOF (main figure) and CoRE_MOF (sub-figure) databases.
e Comparison of the kernel density estimate (KDE) for different structural features

[PLD (Å), LCD (Å), void fraction, surface area (m2 g−1), volume (Å3)] between the
CoRE_MOF with all argon adsorption values and the CoRE_MOF with the top 10%
performance of argon adsorption at 87K and 1 bar. R2 is the coefficient of deter-
mination, MOF means metal-organic framework. Source data are provided as a
Source Data file.
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occurs on the surface of nanoporous materials, the surface area
becomes one of the most critical determinants, and the results show
that the top 10% of MOFs possess a very large surface area of about
3000m2 g−1, which is consistent with common sense. The surface area
determines the surface adsorption process, while the LCD determines
the internal absorption process. Therefore, the top 10% MOFs were
classified into three tiers according to their adsorption performance
on argon, and the numerical distribution of these two key factors
(surface area/LCD)was explored (shown in Supplementary Fig. 8). One
can see that at 87 K and 1 bar, the most promising MOF adsorbents for
argonmainly possess an LCD of about 15Å and a surface area of about
4100 m2 g−1.

Modeling of material structural representation
To validate that the MOF structures are well learned in both the pre-
training and fine-tuning stages, we visualize the structural features,
which are 512-dimensional vectors, using the t-SNE method49. The
results are shown in Fig. 7. As illustrated in Fig. 7a, b, the learned
features are capable of classifying MOFs either from CoRE_MOF or
hMOF datasets. One may also notice that the boundary between
CoRE_MOFandhMOF in thefine-tuned features ismuchmoreobvious,
suggesting a significant improvement of these features after the fine-
tuning. Remarkably, this is clearly demonstrated when we draw the
embeddings versus the surface areas of MOFs, as shown in Fig. 7d,
where the structures with small surface areas are located in the upper-
right and lower-left corners, and the structureswith large surface areas
are in the center. In comparison to the pre-training features, Fig. 7c, the
fine-tuning can significantly improve the representation quality.

On the other hand, we are more curious about whether the
learned structural representations are closely correlated with the

adsorption behaviors. To address this issue, we visualize the structural
embeddings versus the adsorbate values of both Ar and N2, and show
the result of Ar here as an example, see Fig. 7e–f. As one can observe,
the representations learned in the pre-training stage are not able to
classify the structures with different adsorbate capacities while struc-
tures with various adsorbate values are grouped together, see Fig. 7e.
However, after the fine-tuning, the structures with different adsorbate
behaviors are well separated, demonstrating a good relationship
between the learned representations and the target of adsorbate
values, see Fig. 7f. This well explained the functions of the fine-tuning
stage in further affecting the structural representations aswell as other
model parameters.

Furthermore, the multi-head attention mechanism of the Trans-
former can learn the interactions within the material structure. With
the64-Heads attention algorithm, the atomic interaction landscapesof
hmof-5004238 in two different heads are represented in Fig. 7h, i. As
shown in Fig. 7h, strong interactions can be observed between the
metal sites (Zn), Zn and O atom, and also O atoms. Figure 7i also
depicts the interaction between the linear carbon chains (C7-C15). In
addition, there is a noticeable correlation between the O0 atom and
the Zn atoms (Zn0, Zn2, Zn4, Zn6). The structural illustration in Fig. 7g
further confirms this result, as the four atoms are chemically linked.
Beyond this, the various chemical landscapes of hmof-5004238 in
different heads are depicted in Supplementary Fig. 9. In this manner,
Uni-MOF identifies tremendous materials and provides reliable pre-
dictions for diverse properties.

Conclusion
In this study, we introducedUni-MOF, amulti-purpose framework that
can accurately predict gas adsorption in MOF materials. We also

Fig. 7 | Visualization of structural representations of MOFs in the hMOF and
CoRE_MOF datasets, the low-dimensional embeddings are computed by t-SNE
(t-distributed stochastic neighbor embedding) method. The representations
retrievedafter (a), (c), and (e) pre-training and (b), (d), and (f)fine-tuning versus the
other properties. a, b The low-dimensional embeddings versus dataset labels,
where darker color represents CoRE_MOF and lighter color represents hMOF.
c, d illustrate the representations versus surface area in m2 g−1 for hMOF and

CoRE_MOF combined. e, f show the relationship of representations with respect to
the adsorbate values of Ar at 87K, 0.01 Pa for the CoRE_MOF dataset only.
Explainable Artificial Intelligence (XAI). g Illustration of hMOF-5004238 structure
and (h), (i) heat map of atomic interactions learning from multi-head attention
algorithm in head 10 and head 18. MOF means metal-organic framework. Source
data are provided as a Source Data file.
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generated, collected, and organized relevant databases of nanoporous
materials and gas adsorption datasets. The self-supervised learning of
a database containing over 631,000 MOFs and COFs was performed,
resulting in a high prediction accuracy of 0.98. This indicates that the
representation learning framework based on three-dimensional pre-
training effectively learns the complex structural information of MOFs
while avoiding over-fitting. We applied Uni-MOF to predict the gas
adsorption performance of threemajor databases and achieved a high
prediction accuracy of up to 0.98 in database with sufficient data. In
the case of a sufficiently sampled dataset, Uni-MOF not only maintains
a predictive accuracy above 0.83, but also accurately selects high-
performance adsorbents under high pressure by solely predicting
adsorption under low pressure, consistent with experimental screen-
ing results. Thus, Uni-MOF represents a significant breakthrough in the
field of material science with regards to the application of machine
learning techniques. Furthermore, our Uni-MOF framework shows
superior performance on cross-system datasets compared to single-
system tasks and can accurately predict the adsorption properties of
unknown gases with a high prediction accuracy of up to 0.85,
demonstrating its strong predictive ability and generality. Through
extensive pre-training of three-dimensional structures, Uni-MOF
effectively learns the structural features of MOFs, achieving a high
coefficient of determination of 0.99 for hMOFs. Additionally, t-SNE
analysis confirms that the fine-tuning stage can further learn structural
features, and structures with different adsorbate behaviors are well
identified, indicating a strong correlation between learned repre-
sentations and gas adsorption targets.

Our database encompasses a pressure range of 0–10 bar and
temperature ranges of 77–87 K and 150–300K, making it suitable for
the majority of gas adsorption issues. Uni-MOF has demonstrated
precise prediction outcomes for a fairly comprehensive collection of
MOF structures and distinct COF materials. Even under some extreme
conditions, the predicted trend remains highly dependable. With Uni-
MOF, the continuous updating of databases and even usage scenarios
are supportable, which further emphasizes its universality. In sum-
mary, Uni-MOF framework serves as a versatile predictive platform for
MOFmaterials, functioning as a gas adsorption estimator forMOFs, as
it exhibits high precision in predicting gas adsorption under diverse
operating conditions andhasbroadapplications in thefield ofmaterial
science.

Methods
Materials and data collection and generation
The MOF/COF structures used for pre-training are either collected
from the currently available database or generated using the corre-
sponding program. There is a wealth of existing MOF/COF databases,
including computer-synthesized databases of hMOFs50, ToBaCCo
(Topologically Based Crystal Constructor) MOFs, and experimental-
level databases of CoRE (Computation-Ready Experimental) MOFs51,
CoRE COFs52 and CCDC (The Cambridge Crystallographic Data Cen-
tre), etc. One integrated database online isMOFXDB, wheremore than
168,000 MOF/COF structures are available. Apart from exploring
nanoporous materials in the materials library, we employed the
ToBaCCo.3.0 program to generate over 306,773 MOF structures. The
ToBaCCo program takes as input a topological blueprint, searches
compatible node building blocks from a defined set, and constructs all
possible structures using the topology in combination with different
node building blocks and edge building blocks. In particular, the
programgenerates structures with three folders as input variables, i.e.,
“templates”, “nodes”, “edges”. To generate as many MOF structures as
possible, we use all edges as provided in “edges_database”, all nodes as
provided in “nodes_database” and all templates as provided in “tem-
plate_database”. For the downstream task, i.e., gas adsorption uptake
by MOFs, we collected data from online sources such as MOFXDB,
composing datasets of more than 2,400,000 sorptions of hMOFs on

five gases (CO2, N2, CH4, Kr, Xe) at 273/298K and 0.01–10 Pa and over
460,000 sorptions of CoREMOFs on two gases (Ar, N2) at 77/87 K and
1–105 Pa. In this work, only single component gas adsorption data are
considered. In addition, we conducted Grand Canonical Monte Carlo
(GCMC)53 simulations using the RASPA54 software to produce another
99,000+ gas adsorption uptake dataset, with 50,000 initialization
cycles and an additional 50,000 cycles employed for adsorption
capacity samples. The collected sorptions were obtained within
150–300K and 1 Pa–3 bar, considering seven types of gas molecules
(CH4, CO2, Ar, Kr, Xe, O2, He). Interactions between gas molecules and
atoms in adsorbent materials were described in terms of Lennard-
Jones (12–6) potential, and the cutoff radius is set to 12.9Åwith the tail-
correction. The force field parameters of framework atoms were
described by UFF (Universal Force Field)55. The force field parameters
of noble gas molecules (i.e., argon, krypton, and xenon) were esti-
mated from the principle of corresponding states for the second virial
coefficients56 (listed in Supplementary Table 19). Themolecularmodel
Transferable Potentials for Phase Equilibria57 was also used. In our
work, the partial charge of the framework atoms is not considered
because of computational cost and significant deviations observed in
adsorption results by using different partial charges assignment
methods58.

Material analysis
The key to high-throughput computational materials science is robust
software tools. Here, we use the Python Materials Genomics59

(pymatgen), a robust and open-source Python library, to derive useful
material properties from raw crystallographic structural data and
conduct comprehensive materials analysis. Materials properties,
including lattice vectors, lattice angles, unit cell volume, atoms, and
coordinates, are extracted using the pymatgen. The atom types and
coordinates will be used in the pre-training stage for the self-
supervised learning strategy. The Python package -
OpenMetalDetector51, wasused to analyze collections ofMetal Organic
Frameworks for open metal sites.

Uni-MOF framework
Pre-training. We employed Uni-Mol as the pre-training framework,
which is a dedicated pure three-dimensional pre-training framework
designed for molecules. Uni-Mol has shown high performance in var-
ious downstream tasks in the field of drug discovery. However, due to
the completely different structure and three-dimensional spatial dis-
tribution of MOF materials compared to small molecule drugs, as well
as the periodic boundary conditions (PBC) of porous structures and
themuch larger number of heavy atoms in crystals,wemadenecessary
modifications to Uni-Mol based on these facts.

1) We leverage an extra head of the lattice matrix to preserve cell
geometric information. The presence of PBC is considered in MOF
representation learning as PBC is natural for MOF materials. Besides
masked atoms prediction and coordinates recovery in Uni-Mol pre-
training, a regression head to prediction lattice 3 × 3 matrix is used to
learn the PBC information.

Llattice =MSEðA, ÂÞ= 1
n

Xn
i = 1

∣Ai � FFNðCLSireprÞ∣
2 ð1Þ

L =Llattice +LUni�Mol ð2Þ

where CLSrepr indices representation of Uni-Mol for classification
token, classification token (CLS) refers to the special token in the input
sequence of atoms, which is used to represent the entire molecule in
the output of Uni-Mol. A is the lattice matrix, we use Feedforward
Neural Network (FFN) of CLSrepr to predict lattice matrix with
optimizing MSE loss directly. L in Uni-MOF pre-training is a
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summation of Llattice and original LUni�Mol . In LUni�Mol , the atom-
masked prediction and coordinates recovery are two major compo-
nents of loss items. For more details, the readers are welcome to refer
to original paper of Uni-Mol.

2) We propose an edge gated kernel for geometric spatial posi-
tional encoding. MOFs share totally different arrangement of atoms
compared to drug molecules in three-dimensional space, with porous
structures and an average above 1000heavy atoms in a single cell. Uni-
Mol uses a Gaussian kernel to encode spatial positional information,
while in MOF pre-training suffers from training instability with a
Gaussian kernel of much larger pair distance and atom counts. To
address this, we propose an edge gated distance kernel.

A ðd, r;a,bÞ=ard +br ð3Þ

pij =p
proj
ij +pemb

ij = LNðFFNðdijÞÞ+ σðA ðdij , tij ;a,bÞÞ � EmbeddingðtijÞ
ð4Þ

where dij is the Euclidean distance of atom pair ij, and tij is the edge
typeof atompair ij. Please note the edge here is not the chemical bond,
and edge type is determined by the atom types of pair ij. Að�,�;a,bÞ is
the affine transformation with parameters a and b, it affines dij corre-
sponding to its edge type. pij indices the edge gated distance kernel,
which is a summation of distance projection and edge gated embed-
ding. FFN is the Feedforward Neural Network about the non-linear
transformation of distance dij, and LN is the LayerNorm operation. A
sigmoid gated is used as the affine transformation ofA to weight edge
pair type embedding.

Fine-tuning. Prediction of multi-gas adsorption under different oper-
ating conditions, the fine-tuningmodel should be fedwith not only the
three-dimensional spatial structure but also the gas and operating
conditions (i.e., temperature and pressure). Therefore, gas block and
temperature/pressure blocks are proposed in Uni-MOF to form a
cross-system performance prediction module.

Gas block The gas representation is a combination of gas id and
gas intrinsic property-related descriptors.

x̂g = concatðEembeddingðgiÞ; FFNðgxÞÞ ð5Þ

where gi indices the gas id of gas g, gx represents the gas g descriptors
(listed in Supplementary Table 2). The gas representation bxg is a con-
catenation of gas id embedding and FFN layer mapping of gas
descriptors.

Num block We use Equal Distance Discretization (EDD) and
LogarithmDiscretization (LD) for temperature and pressure encoding,
respectively. EDD first maps the numerical value into the corre-
sponding bucket with equal width, then applies embedding mapping.
LD utilizes the logarithm transform with EDD to accommodate loga-
rithmic likely features.

EDDðxjÞ= Eembeddingðbððxj � xmin
j Þ=wÞcÞ ð6Þ

LDðxjÞ= EDDðlog10ðxjÞÞ ð7Þ

xnum = concatðEDDðxtempÞ;FFNðxtempÞ; LDðxpressureÞ;FFNðxpressureÞÞ
ð8Þ

where the interval width is noted as w= ðxmax
j � xmin

i Þ=Nj, x denotes
numerical features, xtemp and xpressure are the original temperature and
pressure values of the corresponding environment. For the tempera-
ture feature, we use EDD and FFN embeddings, and for the pressure

feature, we choose to use LD and FNN with consideration of logarith-
mic likely transformation in pressure.

High-throughput analysis of large MOF database
To further investigate the effect of material structure on gas adsorp-
tion, Zeo++60, a software package for crystalline porous materials
analysis, was used to performan analysis of the structure and topology
of the material geometry. Structural features include the LCD, PLD,
void fraction, void volume, and specific surface area. The internal void
volume can largely influence the performance of nanoporous materi-
als. Precise definitions exist for volume from different methods,
especially the accessible and nonaccessible probe center pore volume
(Ac-PC, NAc-PC), accessible and nonaccessible probe-occupiable pore
volume (Ac-PO, NAc-PO)61. The concept of accessibility relies on the
probe size, and a probe of the radius of 1.8Å is used in our work in
order to directly relate the pore volumes to experimentally measured
Nitrogen (kinetic diameter of 3.64Å) isotherms. Accessible volume
calculated here is also defined as the volume available to the center of
the spherical probe, corresponding to the accessible probe center
pore volume.

Statistical data visualization
In this work, Python data visualization libraries such as seaborn62 and
matplotlib63 were used for informative statistical graphics. Three-
dimensional structures are drawn using the web service BohriumTM at
https://bohrium.dp.tech.

Computing environment
Uni-MOF pre-training and fine-tuning are performed on V100/A100
GPUs, and Monte Carlo simulations are performed on CPU cluster of
BohriumTM.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data presented in this study are available in the manuscript file,
the Supplementary Information file and Source Data files. Source Data
in this study have been deposited in the figshare database64 under
accession code of https://doi.org/10.6084/m9.figshare.24996317.

Code availability
Code to run the Uni-MOF model is available in GitHub (https://github.
com/dptech-corp/Uni-MOF)65.

The notebook demo can be found at https://bohrium.dp.tech/
notebook/cca98b584a624753981dfd5f8bb79674.
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