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Dynamic similarity and the peculiar
allometry of maximum running speed

David Labonte 1 , Peter J. Bishop2,3, Taylor J. M. Dick 4 &
Christofer J. Clemente 4,5

Animal performance fundamentally influences behaviour, ecology, and evo-
lution. It typically varies monotonously with size. A notable exception is
maximum running speed; the fastest animals are of intermediate size. Here we
show that this peculiar allometry results from the competition between two
musculoskeletal constraints: the kinetic energy capacity, which dominates in
small animals, and the work capacity, which reigns supreme in large animals.
The ratio of both capacities defines the physiological similarity index Γ, a
dimensionless number akin to the Reynolds number in fluid mechanics. The
scaling of Γ indicates a transition from a dominance of muscle forces to a
dominance of inertial forces as animals grow in size; its magnitude defines
conditions of “dynamic similarity“ that enable comparison and estimates of
locomotor performance across extant and extinct animals; and the physical
parameters that define it highlight opportunities for adaptations in muscu-
loskeletal “design” that depart from the eternal null hypothesis of geometric
similarity. The physiological similarity index challenges the Froude number as
prevailing dynamic similarity condition, reveals that the differential growth of
muscle and weight forces central to classic scaling theory is of secondary
importance for the majority of terrestrial animals, and suggests avenues for
comparative analyses of locomotor systems.

The variation of locomotor performance with animal size is of sub-
stantial ecological and evolutionary importance, and has thus long
been a topic of interest in comparative animal physiology and
biomechanics1–6. Empirical data show that maximum running speed
increases up to a critical body mass and then decreases—the fastest
runners are of intermediate size (Fig. 1). This pattern is a noteworthy
outlier among scaling relationships, which typically are monotonous
and satisfactorily described by simple power laws7,8; it has con-
sequentially attracted persistent attention6,9–19. What explains the
peculiar allometry of maximum running speed?

A common starting point for the mechanistic analysis of scaling
relationships are similarity arguments that lead to characteristic
dimensionless numbers20,21. An increment in speed v of a body with

massm implies that workWwas done, so that a general dimensionless
number for speed is:

Π / mv2

W
ð1Þ

Specific scaling predictions then depend on the origin of the
work W, and each distinct origin defines a dimensionless index of
‘dynamic similarity’, Πi. Animals that use the same source of work
movewith equalΠi, and, in that sense, eachΠimaybe interpreted as a
concrete hypothesis on the physical origin ofmotion, which can then
be tested against empirical data. In walking, for example, the grav-
itational potential energy (Epot) of the centre-of-mass (CoM) is
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cyclically exchanged for kinetic energy (Ekin), so that W =mgΔL,
where g is the gravitational acceleration, and ΔL is the characteristic
fraction of the leg length over which the CoM drops as the animal
‘falls’ forward during each step. The associated dynamic similarity
index isΠFr ¼ v2 gΔLð Þ�1 ¼ Fr2 – the square of the Froude number, Fr,
introduced to terrestrial locomotion in seminal work by Alexander22.
The Froude number predicts vFr∝m1/6 for geometrically similar ani-
mals, and is the appropriate dynamic similarity index when Epot and
Ekin fluctuate out-of-phase during stance23. It consequently cannot be
used to predict speed for bouncing gaits such as running or hopping,
for Epot and Ekin now fluctuate in-phase during stance instead23. This
in-phase fluctuation resembles the motion of a mass on a spring,

which has invited the proposition thatW = Eela∝ kΔL2; kinetic energy
is traded with the elastic strain energy (Eela), cyclically stored in and
released from a conceptual spring with spring constant k, deformed
by a maximal characteristic displacement ΔL. The associated
dynamic similarity index is ΠSt / mv2ðkΔL2Þ�1 ¼ St2—the square of a
Strouhal number, St, implicitly applied to bouncing gaits in seminal
work by Blickhan24. For geometrically similar animals, the Strouhal
number predicts vSt /

ffiffiffiffiffiffiffiffiffiffi
k=m

p
ΔL / m0 ¼ constant, which only holds

in a narrow body mass region (Fig. 1). Thus, neither of the two
established dynamic similarity indices provides a complete account
for the non-monotonous scaling of maximum running speed.
Explaining the origin of this peculiar allometry with simple similarity

Fig. 1 | Animals small and large move by using muscle as a motor, but the
maximumrunning speed they canachieve varies non-monotonouslywith size:
the fastest animals are of intermediate size. a Schematic of a minimalistic phy-
sical model of a musculoskeletal system, defined by the muscle work density, Wρ,
the muscle fascicle length, lm, the maximum muscle strain rate, _εmax , the muscle
mass, mm, the gear ratio G and the mass m that is moved. Terrestrial locomotion
also involves the gravitational acceleration g. b The performance space of this
minimalistic system is fully characterised by two dimensionless numbers: the
physiological similarity index, Γ∼mðlm _εmax Þ2ðW ρmmÞ�1G�2, and the reduced
parasitic energy, κg ∼mgðFmaxGÞ�1. Γ quantifies the competition between the
kinetic energy and work capacity of muscle: for Γ ≤ 1, the system can only deliver a
fraction Γ of its maximum work capacity, and for Γ ≥ 1 it has access to its full work
capacity (solid line). For a muscle force that is independent of muscle strain rate,
the transition between these regimes is sharp and occurs at a body mass mt (see
(d)); if the muscle has force-velocity properties, it is more gradual (dot-dashed
line). κg quantifies the fraction of muscle work which flows into kinetic vs grav-
itational potential energy. The energy demanded by gravity only becomes

appreciable for large κg, eventually resulting in a sharp asymptote at a critical body
mass, mc, at which movement is no longer possible (grey dashed line, see (d)).
c Both dimensionless numbers vary systematically with size for geometrically
similar animals (Γ∝m2/3 and κg∝m1/3). As a consequence of the increase of Γ, larger
animals have access to a larger fraction of their work capacity and are thus gen-
erally faster. However, due to the increase in κg, an increasingly larger share of this
work has to pay for fluctuations in gravitational potential energy, eventually
resulting in a reduction in speed (see (b)). d The combination of both effects
results in the peculiar allometry of maximum running speed (n = 633); the black
dashed line is a least-square fit of Eq. (5), leaving only a dimensionless scaling
coefficient as free parameter (see text). Γ thus emerges as a fundamental dimen-
sionless number formusculoskeletal dynamics,whichmaybeusedand interpreted
akin to the Reynolds number (see discussion). The three short solid lines illustrate
asymptotic scaling relations defined by three alternative indices of ‘dynamic
similarity'', vHi∝m1/3, vFr∝m1/6 and vBo∝ vSt∝m0 (see text). Source data for (d) are
provided as a Source Data file.
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arguments in the spirit of previous pioneeringwork is the core aim of
this study.

Results
Perhaps remarkably, muscle—the ubiquitous animal motor—plays no
or at most an implicit role in classic dynamic similarity theory. What
constrains the speed in movements directly actuated by muscle? One
limit has been suggested in some of the earliest work on animal
biomechanics1,2,25: each unit mass of muscle mm, the argument goes,
can deliver no more than a characteristic amount of mass-specific
work, Wρ. Introducing the ratio mf between muscle mass (mm) and
driven mass (m), mf =mm/m, yields the similarity index
ΠBo / v2ðW ρmf Þ�1 / Bo2—proportional to the square of the Borelli-
number, Bo26. Much like the Strouhal number, the Borelli-number
predicts a mass-invariant speed for geometrically similar animals,
vBo / ffiffiffiffiffiffiffiffiffiffi

W ρmf

p
/m0¼constant. Consequently, the Borelli-number, too, does

not provide a satisfactory explanation for the observed allometry of
maximum running speed.

The shortcoming of the Borelli number is well appreciated in
the literature, and a good many alternatives have been proposed
[see e.g.14,18,27–30]. The most popular idea has been that a fixed power
density of muscle defines a speed limit distinct from the Borelli-
limit, a line of thought which goes back to seminal work by Bennet-
Clark in the 1970s27, and which has been followed and developed
further by several others since [e.g.14,18,28,31–34]. We will discuss the
concept of a power limit to speed in detail separately35, and note
briefly that a finite power density cannot be linked to speed using
only the moved mass—any limit to speed implies an explicit con-
straint on work output, and a variation in muscle power is thus
neither necessary nor sufficient to alter the maximum possible
speed. It has been argued that large animals cannot utilise the full
work capacity of their muscles because they are limited by a sup-
posed maximum anaerobic capacity17. However, the implementa-
tion of this physiological argument is beset by physical and
mathematical errors [see Supplementary Discussion 1 and ref. 19].
Recently, and as an alternative to a supposed power limit, it was
suggested that muscle may be prevented from delivering its max-
imum work capacity because it cannot contract faster than with a
characteristic maximum strain rate, _εmax

26. Where motion is directly
actuated by muscle, this muscle strain rate is coupled to the speed
thus imparted, and muscle work output is consequently bound by
its ‘kinetic energy capacity’, W / ml2m _ε2maxG

�2, where G is the gear
ratio of the musculoskeletal system, and lm is a characteristic mus-
cle fascicle length (Fig. 1a). The associated dynamic similarity index
follows as ΠHi / Gvð Þ2 lm _εmax

� ��2 ¼ Hi2—the square of the Hill-num-
ber, Hi26. The constraint encoded by the Hill-number may appear
reminiscent of the suggestion that muscle ‘force-velocity effects’
limit work output in smaller animals30,36; it is however qualitatively
distinct, for even a muscle which generates a force that remains
constant up to a critical shortening velocity is bound by it. Move-
ment with equal Hill-numbers implies running speeds that scale as
vHi ∝ lm ∝m1/3 for geometrically similar animals19,26, close to what is
observed in lightweight animals [Fig. 1 and e.g. refs. 10,14,19,37], but
incorrect for heavy animals.

In isolation, neither the Borelli- nor the Hill-number account for
the peculiar allometry of maximum running speed. This shortcoming
can be resolved by recognising that both dynamic similarity indices
define an absolute limit on muscle mechanical output—the realised
speed increment can be no larger thanwhichever of the two predicted
increments is smaller26. Because the Hill- and the Borelli-limit scale
differently for geometrically similar animals, vHi∝m1/3 vs. vbo∝m0,
there exists a transition mass, mT, at which the limiting speeds they
predict are equal [a conceptually similar idea, based on a limiting
power density, wasfirst presented in ref. 28. For further details, see ref.
26]. A direct calculation on the basis of empirical data suggests

mt ≈ 54 kg (seeMethods), a physical prediction firmly grounded in first
principles, and situated between statistical estimates based on poly-
nomialmodels [mt ≈ 119 kg, see ref. 6], or linear breakpoint regressions
[mt ≈ 31 kg, see ref. 38]. Animals lighter than mt are Hill-limited and
speed consequently increases with size in this regime; animals heavier
than mt are Borelli-limited, and speed is now independent of size
(Fig. 1a–c). This pattern begins to qualitatively resemble the peculiar
allometry of maximum running speed (solid line in Fig. 1b), but two
noteworthy discrepancies remain: running speed does not remain
constant in heavy animals, but instead decreases; and the scaling of
running speed in animals of intermediate body mass is in fact shal-
lower than vHi∝m1/3 6,39.

To explain the decrease of speed in the heaviest terrestrial ani-
mals, we note that the work in Eq. (1) is strictly the work done by the
net force, Fnet. Butmuscle is practically never the sole determinant of
the net force, and instead has to frequently act against ‘parasitic’
forces (P), so that Fnet = FmG − P. As a consequence, only somemuscle
work flows into kinetic energy; the rest is lost to parasitic energy
instead [26,29, and see Fig. 1b, c]. This work loss must be accounted for
in Eq. (1):

Π / mv2

Wm �Wp
/ mv2

Wm

1
1� κ

ð2Þ

Here, Wp is the work done by the parasitic force, and κ ¼
PF�1

maxG
�1 is the reduced parasitic energy, a dimensionless number

which characterises the extent to which muscle work is ‘consumed’ by
external forces [Fmax is the maximum force muscle can exert. See
Fig. 1b, c and ref. 26]. For terrestrial locomotion, the key parasitic force
is the gravitational force, Pg =mg, so that κg ¼ mg FmaxG

� ��1 / m1=3

for geometrically similar animals [losses to drag are negligible, see19].
Equation (2) leaves no room for ambiguity: the possible speed incre-
ment is zero for κg = 1. The driving force FmaxG is then equal to the
opposing force mg, and the system is in static equilibrium—a force-
limit to muscle-driven motion, which occurs at a critical mass
mc = FmaxGg−1 (or about 15 t, see methods). En route to this asymptote,
the speed drops gently at first but then with an increasing rate (grey
dashed line in Fig. 1b), qualitatively and quantitatively consistent with
the empirical data (Fig. 1d).

In search for the mechanistic underpinning of the shallower
scaling in animals with a body mass close to but belowmt, we propose
two non-mutually exclusive explanations. First, we note that there is
robust evidence that the musculoskeletal gear ratio, G, breaks with
geometric similarity in some animal groups—large quadrupedal
mammals tend to have larger gear ratios than small quadrupedal
mammals, G∝m0.16 [Fig. 2 and refs. 40–43]. The Hill-number then
predicts vHi / lm _εmaxG

�1 / m1=3m�0:16 / m0:17, in close agreement
with scaling coefficients reported for mammals [v∝m0.17 and v∝m0.16,
see refs. 6,10]. Second, we make explicit the thus far implicit
assumption that the muscle force is independent of muscle strain (ε),
and strain rate (_ε). This simplification is common and convenient, but
only yields first order approximations. A simple implementation of
more realistic muscle properties assigns a linear force-strain rate
relationship, Fmð _εÞ ¼ Fmaxð1� _ε _ε�1

maxÞ [for more complex calculations,
see e.g. refs. 19,26,36], and assumes amaximummuscle strain so small
that muscle effectively remains on the plateau of the force-strain
curve, Fm(ε) ≈ Fmax

44–46. Because the force–strain relationship carries
no new physical parameters, its effect cannot be assessed via simple
dimensional arguments; the maximum work output can however be
evaluated directly via conservation of energy, which yields amaximum
speed [see ref. 26, and SI]:

vHi�Bo ¼ vHi 1þW � exp �1� 1
2Γ

� �� �� �
ð3Þ
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Here,W is the Lambert-W function. The speed predicted by Eq. (3)
cannot exceed the Hill limit, but it can be smaller: the difference is
determined by themagnitude of the ‘physiological similarity index’ Γ26:

Γ ¼ Bo2

Hi2
¼ 1

2
l2m
G2

" #
_ε2max

W ρ;max

" #
mf

h i
¼ Emax

Wmax
ð4Þ

Γ is the squared ratio between the Borelli and theHill number, and
was already leaned on implicitly to calculate the transition mass, mt—

the mass for which the Hill- and Borelli-number are equal, i.e. Γ = 1. Γ
quantifies the extent to which muscle work output is limited by the
maximum kinetic energy capacity, Emax, or by the work density,Wmax

[see Fig. 1b, c and ref. 26, for amore extensive interpretation of Γ]. The
Hill-Borelli number, Hi-Bo = v vHi-Bo

−1, reduces to the Hill- and the
Borelli-number in the limit of small and large Γ, respectively; the effect
of the force-strain rate relationship is that it smoothens the otherwise
sharp transition between theHill- and the Borelli-limit around Γ = 1 [see
dot-dashed line in Fig. 1b and refs. 26,30,36]. As a consequence, the
running speed of animals with a body mass close to but below Γ = 1
generally scales between vHi∝m1/3 and vBo / constant—a manifesta-
tion of ‘force-velocity-effects’30,36 that is in robust agreement with
empirical data (Fig. 1d).

Gravity demands a reduction in absolute speed for heavy animals
in the Borelli-limit, and size-specific variations in gear ratio and force-
velocity effects reduce the speed in animals of intermediate weight in
the Hill-limit; these effects may also be assessed in combination.
Equation (3) then gains two additional terms that account for the loss
of work to gravitational potential energy, and for the truncation of the
strain rate accessible to muscle [see Supplementary Note 1 and also
refs. 26,47–49]:

vHi�Bo;g ¼ vHi 1� κg

	 

1þW � exp �1� 1

2Γ
1

1� κg

 ! !" #( )
ð5Þ

Equation (5) reduces to Eq. (3) for κg→0 (i.e. for small animals),
and is the main result of this paper, for it combines all elements of the
preceding stepwise analysis. It paints the followingmechanisticpicture
of the peculiar allometry of maximum running speed: for small ani-
mals, the kinetic energy capacity of muscle far exceeds its work
capacity, Γ < < 1, and gravity only demands a small toll, κG < < 1;
dynamic similarity is defined in terms of approximately equal Hill-
numbers, animals runwith approximately equal ratios ofmuscle strain
rate to gear ratio, and v∝m1/3. In practise, and for all but the lightest
animals, the scaling is reduced further by positive allometry of the gear
ratio, and by the work loss arising from the force-strain rate
relationship26,30,36; animals move with approximately equal Hill-Borelli
numbers, and the maximum achievable strain rate slowly decreases
with bodymass. As soon as animals exceed the transitionmassm >mT,
the work capacity of muscle is larger than its the kinetic energy
capacity, Γ > 1, so that speed remains approximately constant; animals
now run with approximately equal Borelli-numbers, and thus
approximately equal mass-specific work output. For even heavier
animals, speed decreases at an ever-increasing rate, because an
increasing fraction of the muscle work is consumed by the gravita-
tional force, κg→ 126,29. Eventually, at κg(mc) = 1, all animals can hope to
achieve is to balance the gravitational force, no muscle-driven vertical
movement is possible at all, and the speed plummets to zero.

In further support of this mechanical analysis, we next demon-
strate that its qualitative scaling predictions can be rendered semi-
quantitative. To this end, we oncemore draw from empirical estimates
(Table 1), and directly predict the allometry of absolute maximum
running speed. Because our analysis is based on dimensional con-
siderations, it does not reveal numerical (non-dimensional) prefactors.
We thus conduct a least-squares fit of Eq. (5) in log-space, using the
empirical estimates provided in Table 1 as fixed input, and introduce a

prefactor u as free parameter, which yields u = 8.11 (95%CI [7.69; 8.52];
Fig. 1d), i.e. the running speed predicted via Eq. (5) is about an order of
magnitude too low. This discrepancy can be understood from first
principles: The Hill- and the Borelli-number define a maximum speed
increment that can result from a single contraction—but running ani-
mals can anddo accelerate overmultiple steps.During each step, some
kinetic energy is lost to the collision of the leg with the ground50, and
some is actively removed by negative muscle work to bring the
instantaneous vertical centre-of-mass velocity temporarily to zero; the
combined loss consequently needs to be resupplied. A minimalist
plausible assumption is that a constant fraction of the current CoM
velocity is removed with each step, i.e. that the effective coefficient of
restitution (η) is independent of animal size and speed. The accelera-
tion profile is then asymptotic, in agreement with empirical observa-
tions, and the maximum speed is related to η via vpeak∝ vi(1 − η)−1

where vi is the maximum speed increment predicted by the relevant
dynamic similarity index (see methods). We estimate η ≈0.885 from
available data (95% CI [0.879; 0.890]), which corresponds to
u = (1−η)−1 = 8.69 (95% CI [8.26; 9.09]), in robust agreement with the
fitted estimate. We conclude that the prediction of the maximum
running speed enabled by the addition of η to eq. (5) is in satisfactory
qualitative and quantitative agreement with the empirically observed
allometry of maximum running speed (see Fig. 1d).

Discussion
Animals small and large move by doing work with muscle, but the
absolute maximum running speed they can achieve varies non-
monotonously with size6. In principal agreement with previous rela-
ted work14,18,19,28,36, we argue that this peculiar allometry arises because
the limiting physical constraint changes with animal size; in distinction
to this body ofwork, we submit that the two competing constraints are
the kinetic energy and work capacity that characterise every muscu-
loskeletal system. The competition between these two constraints is
captured quantitatively by the physiological similarity index Γ26, which
thus emerges as a fundamental dimensionless number that char-
acterisesmuscle-drivenmotion across scales: small animalsmove with
small Γ and can thus only run as fast as the kinetic energy capacity of
their musculoskeletal system permits; large animalsmovewith large Γ,
and are consequently constrained by the work density of their muscle.
In a sense, Γ is to musculoskeletal dynamics what the Reynolds num-
ber, Re, is to fluid mechanics, a suggestion of analogy we now frame
with three brief examples.

Much like an increase in the Reynolds number indicates a transi-
tion from a dominance of viscous to a dominance of inertial forces, an
inspection of Γ reveals a transition in the key physical ingredients that
limit the dynamic mechanical output of muscle as animals get larger.
Terrestrial scaling theory has traditionally focussed on the impact of
the differential scaling of weight vs. muscle forces: Galileo famously
speculated about size-specific variations in bone proportions51, and
Haldane painted a picture of a giant so threatened by the risk of bone
fracture that they were unable to move52. The theory that the need for
size-invariant bone stresses has driven size-specific adjustments to
skeletal anatomy and animal posture has become textbook
material40,53; many have speculated that the same need is to be held
responsible for the reduction in absolute maximum running speed in
the largest terrestrial animals [e.g.10,15,16,54,55]. The analysis presented
here challenges this perspective, for it suggests that a possible stress
limitation to speed, imposed by the differential scaling of muscle and
weight force, κg∝m1/3, is second to the effect of the differential scaling
of the characteristic maximal inertial force Fci ¼ ma / mv2maxδ

�1
max—

the product of the body mass and a characteristic acceleration—and
the maximal ground reaction force FGRF, Γ / FciF

�1
GRF / m2=3: inertial

forces dominate muscle dynamics in large animals, but are of little
relevance in small animals where accelerating muscle contractions
become practically instantaneous. The competition between muscle
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and gravitational force does eventually demand a decrease in speed,
but this decrease does not have to reflect a stress-mitigation strategy
per se; it canoccur simplybecause themonotonous increase of κg goes
hand-in-hand with a change in the fraction of muscle work which flows
into gravitational potential energy, WgW

�1
m ¼ κg vs kinetic energy,

EkinW
�1
m ¼ 1� κg [Fig. 1b, c and ref. 26]. For a large 15 g insect, the

gravitational force consumes a mere 1% of every unit of muscle work,
for a geometrically similar and moderately large reptile of 20 kg it
demands about 10%, and only for a geometrically similar large mam-
mal heavier than about 2 t does the majority of muscle work flow into
gravitational potential energy (Fig. 1b, c and see Supplementary
Fig. 1a).We conclude that the variationof the ratio betweenweight and
muscle force is likely inconsequential for all but the heaviest animals,
because the gravitational force is small compared to the maximum
ground reaction force by virtue of necessity; the majority of terrestrial
animals can perhaps be considered gravitationally indifferent26,56–58.

A powerful application of the Reynolds number is the identifica-
tion of conditions of dynamic similarity—experiments with very small
or very large specimen can be impractical, but a suitable adjustment of
the fluid viscosity enables accurate experiments with scaledmodels of
more convenient size. In the same spirit, dimensional analyses of ter-
restrial locomotion may be used to predict characteristic gait para-
meters as a function of speed, to identify preferred speeds, to define
characteristic speeds at which gait transitions occur, or even to esti-
mate locomotor speed in extinct animals [e.g.5,22,39,59]. Indeed, mean-
ingful comparison of locomotor performance across animals of
different sizes is impossible without a similarity framework, and simi-
larity arguments have consequently taken a central role in comparative
work on animal locomotion. The dominant approach has relied on the
Froude number, to the extent that dynamic similarity in terrestrial
locomotion has become practically synonymous with equality of
Froude numbers. It has been noted that the non-monotonous scaling
of maximum running speed poses a threat to this line of argument
[e.g.6,60]: preferred speeds and gait transition speeds tend to be pro-
portional to the maximum sustained speed3,39, but the Froude number
predicts amonotonous scaling. However, alternative suggestions have
remained absent, and the problem has remained unresolved. The
identification of Γ suggests a possible resolution of this conundrum: Γ
can be defined as the ratio of two dynamic similarity indices, the Hill-
and the Borelli-number, Γ = Bo2Hi−2 26: for Γ < < 1, dynamically similar
gaits involve equal Hill-numbers, for Γ > > 1, they occur at equal Borelli-
numbers, and at intermediate values of Γ ≈ 1, dynamically similar
speeds occur at equal Hill-Borelli-numbers. These dynamic similarity
conditions deviate meaningfully from the classic perspective painted
by the Froude number, for the relevant index now varies with size. To
illustrate the consequences of this shift in perspective, consider the
classic work by Heglund and others, who demonstrated that quad-
rupedswith a bodymass between0.03 and 230 kg prefer tomovewith
and change gaits at speeds that scale as v∝m0.18 −m0.22 3,39. This scaling
is close to the prediction from the Froude number, vFr∝m1/6, but also
close to the linearised scaling derived from the Hill-Borelli number in
the same mass region, vHiBo∝m0.18 (extracted for the trot-gallop tran-
sition, see Supplementary Note 2 and Supplementary Fig. 1b). How-
ever, the two indices yield strikingly different predictions when they
are extrapolated to much smaller or much larger animals: for a small
insectwith aweight of 10mg, dynamic similarity in termsof the Froude
number predicts a characteristic speed vFr = 0.26 m s−1, whereas the
Hill-Borelli-number as defined by eq. (5) yields vHiBo = 0.04m s−1—more
than six times slower (see Supplementary Note 2 and Supplementary
Fig. 1b). For a giant dinosaur of 40t, in turn, the Hill-Borelli-number
suggests that no motion is possible without non-trivial musculoskele-
tal adaptations that break with geometric similarity, whereas the
Froude number predicts neither a flattening nor a decrease in speed,
and instead suggests that vFr = 10.2m s−1 (see Supplementary Note 2
and Supplementary Fig. 1b). Theseexamples are perhaps a naive but by

no means an atypical application of the Froude number; an uncondi-
tional conflation of dynamic similarity with equality of Froude num-
bers is problematic, and may well yield equivalent speeds that are
physiologically implausible, if not physically impossible60,61. We spec-
ulate that dynamic similarity in terrestrial locomotion may be better
defined via equality of the Hill-Borelli-number, i.e. characteristic
movements occur at equal fractions of the maximum possible per-
formance—a hypothesis in need of further investigation.

Life at different Reynolds numbers promotes or even necessitates
non-trivial adaptations in locomotor formand animalmorphology. For
example, jet propulsion becomes impractical at small Re due to
excessive dissipation, and effective lift-based locomotion requires an
Re larger than some critical intermediate value62. Similarly, life at dif-
ferent Γ comes with altered demands on musculoskeletal ‘design’. We
briefly discuss two hypotheses on how this variation in physical
demandsmay have resulted in non-trivialmusculoskeletal adaptations
in defiance of geometric similarity. First, we note thatmaximum speed
is independent of muscle mass at small Γ. This prediction is note-
worthy, for a variation in muscle mass alters the maximum net work
and power the musculoskeletal system can deliver, and textbook
scaling theory would consequently predict a concomitant decrease in
maximum speed. But the maximum speed in the Hill-limit depends
solely on the kinetic energy capacity, and is thus independent of
maximal muscle work and power capacity. Selection on large muscles
may thus be relaxed at small body sizes, but taxa with a lower muscle
mass fraction mf are predicted to reach the Borelli-limit and the force
limit at a lower critical mass. Consequently, such taxa should slow
down at a lower body mass, and be limited to a smaller absolute size.
Preliminary support for these hypotheses exists: mf is approximately
geometrically similar within reptiles and mammals63,64, but reptiles
have a mf about a factor of two lower than mammals64. And indeed,
reptiles run with approximately equalmaximum speed asmammals at
small body sizes (Fig. 1), but slow down at a lower bodymass16, and the
largest extant reptile is about five times lighter than the largest extant
mammal. A more quantitative test of this hypothesis is hampered by
the absence of reliable maximum running speed measurements for
reptiles larger than about 10 kg; of course, selection also does not act
solely on maximum speed. Second, the functional significance of the
gear ratio G changes with size: for small Γ, a smaller G maximises the
kinetic energy capacity of the musculoskeletal system and thus the
maximum speed. For large Γ, G merely controls whether a unit of net
work is done by a large force and a small displacement or vice versa; it
consequently leaves the possible work output unaffected. However,
large animals also move with large κG, and G then also controls the
partitioning ofmusclework into Epot and Ekin26. As a result, a larger gear
ratio now allows larger speeds with equal muscle work output, in
remarkable contrast to the canonical interpretation of G as a para-
meter which controls force-velocity trade-offs. A deviation from geo-
metrically similar gear ratios may also be beneficial for animals below
the transition mass. Speed increases with size in this regime,
demanding an equivalent increase in the body-mass-specific work
output of muscle. How this increased work output is achieved is an
open question, because it requires breaking with geometric similarity:
a size-invariant gear ratio would assign all variation in work output to
an increased muscle strain, which would then grow with substantial
positive allometry. A small increase in the gear ratio reduces the
maximum speed, in return for a substantial reduction of the necessary
muscle strain. Small animals thus appear to benefit from small gear
ratios, and large animals from large gear ratios—a pattern which
resembles classic observations [we note that other non-mutually
exclusive hypotheses on the benefit of scaling gear ratios exists, see
e.g. refs. 40,41,65]. A robust assessment of the allometry of G, its
mechanical effects, and identification of the functional demandswhich
drive it, will have to await availability of a sufficiently large and phy-
logenetically diverse dataset, for the allometry of G is confounded by
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evolutionary history [see41, and methods]. However, the conclusion
that the largest extinct animals will have moved with larger gear ratios
appears a physical necessity: for a muscle mass fraction of about 20%
across all limbs, comparable to that in extant quadrupeds andbipeds64,
a gear ratio ofG = 0.3 would result in static equilibrium at a bodymass
of about 15 t (assuming half of the limbs are in ground contact); this
criticalmass goes asmc∝G3, and a gear ratio ofG = 1would thus suffice
to achieve static equilibrium in a giant dinosaur of about 500 t, about
6–10 times heaver than existing estimates for the mass of the largest
dinosaur66.

The size-specific variation of Γ and κg has substantial con-
sequences for the mechanical performance space accessible by mus-
cle, and thus for ‘optimal’ musculoskeletal ‘design’ across animal size.
Although the minimalist physical estimates presented in this work are
rooted in first principles and show noticeable agreement with
empirical observations, a mere consistency between a theory and the
data it was constructed to explain ought not be mistaken for con-
clusive evidence—the available data carries uncertainty, simplifying
assumptions and approximations introduce inaccuracies, the model
includes many independent parameters, and alternative scaling argu-
ments exist11,14,18,19,28. Extensive studies that integrate results from
invertebrate and vertebrate taxa across a maximal size range and
phylogenetic diversity are crucial to identifying adaptations to the
challenges posed by the highlighted physical constraints; to so test
theoretical prediction outside their original domain; to separate phy-
sical, developmental, and phylogenetic constraints; to advance our
general understanding of the mechanical limits to terrestrial locomo-
tion across animal size; and to ultimately explore the physical origin of
similar patterns in the allometry of locomotor speed across running,
flying and swimming animals17,67. The future of evolutionary bio-
mechanics is bright.

Materials
Empirical data on maximum running speed
Data on maximum running speed was extracted from the
literature6,10,12,17,37,61,68–102, either directly from the text or tables where
possible, or from figures, using Ankit Rohatgi’s WebPlotDigitizer.v 4.6

(automeris.io/WebPlotDigitizer, n = 632). All data is available in a
Source Data File. There is no way of knowing whether any measured
speed represents a true maximum, and it can be reasonably argued
that the only reliable estimates come from race horses, race dogs, and
elite human sprinters. We submit that this uncertainty is sufficiently
trumped by the variation introduced by the variation in body mass,
which spans 11 orders of magnitude. This argument is in keeping with
common practice in the literature: the general trend that a cheetah is
faster than both a mouse and an elephant appears challenging to call
into question. One further limitation requires commentary: the
assembled data combines ontogenetic, static and evolutionary allo-
metry into one single data set, i.e. it lumps data from individuals of the
same species at different ontogenetic levels; of individuals of the same
species at the same ontogenetic level but different size; and of indi-
viduals fromdifferent species. There are strong reasons to believe that
ontogenetic, static and evolutionary allometries can and do differ [e.g.
refs. 62,64,103–106], but the physical constraints that are the subject
of this work are invariant to evolutionary biology, and apply equally
well to each of these three levels. Although the relative magnitude of
the involvedphysical quantitiesmaywell differ across phylogenetically
distant groups, it is hard if not impossible to break with geometric
similarity overmanydecades of bodymass, so that the lumpedanalysis
we conduct is plausible at least to first order.

Empirical estimates for physical parameters of musculoskeletal
systems
The physical analysis presented in the results has the advantage that it
enables a direct quantitative estimation of the maximum running
speed; it contains no empirical parameters void of physical meaning,
and hence, in principle, does not require any statistical fitting routines.
In order to provide a direct prediction, estimates for the relevant
physical quantitieswereextracted from the literature (see Table 1), and
we now briefly discuss critical aspects of this process.

First, and in general, the exact geometric similarity was assumed
wherever available scaling exponents were consistent with or very
close to this hypothesis (but see point three on the gear ratio). Geo-
metric similarity is a parsimonious and plausible null hypothesis, and

Table 1 | Inorder todirectlypredict the allometry ofmaximumrunning speed, estimates for thephysicalparameters thatdefine
the Hill- and the Borelli-limit were extracted from the literature: a representative fascicle length, lm, the maximum muscle
strain rate, _εmax, themusculoskeletal gear ratio,G, the ratio betweenmuscle andbodymass,mf =mmm−1, themuscle density,ρ,
the maximum isometric muscle stress, σmax, the effective coefficient of restitution, η, and the maximum strain, εmax

Parameter Empirical estimate Source Comment

Primary parameters lm 0.03m mass1/3 kg−1/3 64 Averaged across hind- and forelimbs, and assuming geometric similarity.

_εmax 10 muscle lengths s−1 111,112 Faster strain rates have been reported, but likely represent extreme specialisation.

G 0.3 41–43,107 Arithmetic average; see text and Fig. 2.

mf 0.1 64 Assuming geometric similarity, and that half of the total limb muscle mass contributes to
acceleration during stance.

ρ 1060 kgm−3 113 Density of muscle tissue.

σmax 250 kPa 114–116

η 0.89 61,109 Effective coefficient of restitution. See text.

εmax 0.3 Yields a typical work density of 71 J kg−1.

Derived parameters vHi 1m s−1mass1/3 kg−1/3 Assuming geometric similarity.

vBo 3.8 m s−1 Assuming geometric similarity.

Γ 0.07 mass2/3 kg−2/3 Assuming geometric similarity.

κg 0.041mass1/3 kg−1/3 Close to an upper bound estimated from experimental data in ref. 117, κg≥0.05 mass1/3.

Wρ 71 J kg−1 Consistent with typical estimates114,116.

From these parameters,wederived first order predictions for theHill- andBorelli-limit, vHi ¼ lm _εmaxG
�1 and vBo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σεmaxρ�1mf

p
, the physiological similarity index, Γ ¼ v2Hiv

�2
Bo , the reducedparasitic

energy, κg ¼ ρgm�1
f σ�1

maxlmG
�1 , and the work density of muscle,Wρ =σmaxεmaxρ

−1. Estimates for lm andmfwere obtained as arithmetic averages or via log-log regression from data on 31mammalian

and reptile species that varied across four orders of magnitude in body mass; the fascicle length here is the fascicle length of a hypothetical muscle which has a volume and physiological cross-
sectional area equal to the sum of all relevant limb muscles64. All estimates assume that half of the total limb muscle mass contributes to the acceleration during stance.
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thus the obvious starting point. Second, we note that the fascicle
length, lm is an equivalent fascicle length, equal to the fascicle length of
a hypothetical muscle which has a volume and physiological cross-
sectional area equal to the sum of that of all relevant limb muscles,
averaged across all limbs [for further detail, see ref. 64]. In practice,
this definition reflects the physical reality that the speed of individual
contractile elements linked in series is additive. The physiological
cross-sectional area then follows in analogy, as the ratio between total
limb muscle volume and equivalent fascicle length64. Third, we esti-
mate an average gear ratio G =0.3 ± 0.2 from published data on 42
vertebrate species covering about five orders of magnitude in body
mass [Fig. 2; data from41–43,107]. As is well established, the gear ratio
increases significantly with size within quadrupedal mammals,
G∝m0.16 [40,41, We note that this slope differs from the estimate
reported in the original papers, as we included additional data.]. G is
however approximately size-invariant within the bipedal, hopping
Macropodoidea [G∝m0.004;107]. We used a size-invariant gear ratio as
the initial guess for our across-clade analysis to adhere to the parsi-
monious assumption of geometric similarity, and because the allo-
metry of the gear ratio appears to be clearly confounded by
evolutionary history, so that extrapolation to groups not represented
in the available data is likely unreliable [Fig. 2 and41]. Further quanti-
tative interpretation and in particular extrapolation to animals outside
the size range for which data is available can be conducted once a
larger and more phylogenetically diverse dataset is available. The
functional significance of a systematic variation of G with size, and its
effect onmaximumrunning speed, is critically evaluated inmore detail
in the results. Fourth and last, our analysis required estimation of an
effective ‘coefficient of restitution’, η, which quantifies the speed loss

from collisions and unavoidable fluctuations in the vertical centre-of-
mass velocity that accompany each step. We first briefly derive the
relation between the speed increment per step (vi), the effective
coefficient of restitution (η), and the maximum possible speed (vpeak),
and then estimate η directly from empirical data. All statistical analysis
below or elsewhere in the manuscript was conducted in R v. 4.3.2 pr
Python 3.

The effective coefficient of restitution
The Hill- and the Borelli-number provide upper bounds for the speed
increment that can be achieved with a single contraction, but running
animals accelerate over multiple steps. To estimate the absolute
maximumrunning speed, an assumption is thus required on how these
increments accumulate over a series of steps. If animals were able to
add the same increment at every step without any intermediate loss of
kinetic energy, the speed would simply be the product of the number
of steps and the speed increment. However, every step is associated
with collisional dissipation of energy by necessity50, and with a further
lossof kinetic energy because the vertical centre-of-mass velocitymust
be instantaneously zero at some point during stance. As a result, a
fraction of the speed is lost with each step and needs to be re-supplied
by muscle work. A parsimonious assumption is that this fraction, 1 − η,
is a constant independent of animal size and speed; initial empirical
evidence in support of this assumption is provided below. A mathe-
matical function can be constructed which encodes this assumption,
and sodescribes the speed as a function of the step number,n, the loss
factor, 1 − η, and the maximum speed increment, vi:

v ¼ vi
1� ηn

1� η

� �
ð6Þ

This expressions predicts an asymptotic acceleration profile,
which mirrors empirical data [e.g. refs. 69,108, and see Fig. 3a]. The
asymptotic maximum speed follows as vpeak = vi(1 − η)−1, which is the
prediction leaned on in the results.

In order to estimate η, we re-analysed data presented in refs.
61,109 for 9 species of birds and 13 species of lizards, varying between
8 g and 80 kg in body mass, and running atmaximum speeds between
0.5 and 5.4m s−1. We selected sequences ofmultiple strides over which
the average centre-of-mass (CoM) velocity remained approximately
constant, to exclude acceleration and deceleration periods, and then
extracted the maximal ratio of the minimum and maximum CoM
velocity from these strides as an idealised upper bound for η. η was
then estimated as the slope of a zero-intercept ordinary least square
regression of the minimum vs the maximum speed, which yielded
η = 0.89 (95% CI [0.88, 0.92]), with a robust coefficient of determina-
tionR2 = 0.99 (see Fig. 3b). Although encouraging, this result shouldbe
considered approximate. A more detailed analysis that relies on
experiments designed for this analysis is required to derive firm con-
clusions about the variation of η with phylogeny, animal size,
and speed.

Estimation of the transition mass between the Hill- and the
Borelli-limit
Animals transition from the Hill- to the Borelli-limit when the speeds
predicted by both are equal, i.e. when Γ ¼ v2Hiv

�2
Bo ¼ 1. Using the esti-

mates provided in Table 1 yields Γ =0.07m2/3 kg−2/3, which is unity for
mT = (1/0.07)3/2 ≈ 54 kg.

Estimation of the critical mass
The critical mass is the mass at which the maximal ground reaction
force exactly balances the weight force, or in other words themass for
which κg = 1; the mechanical system is then in static equilibrium. Using
the estimates provided in Table 1 yields κg =0.041m1/3 kg−1/3, so that
mc = (1/0.041)3 ≈ 15 t. This upper bound is close to the maximum body

Fig. 2 | The variation of the musculoskeletal gear ratio, G, with size across 42
vertebrate species varying by five orders of magnitude in mass40–43,107. In the
initial across-clade analysis of the allometry of maximum running speed—which
included invertebratesmuch smaller than 0.01 kg and vertebrates heavier than 2 t—
an average gear ratio, G =0.3 (solid line) was used, because it complies with the
parsimonious assumption of geometric similarity, and because the gear ratio is
confounded by evolutionary history, as evidenced by the different slopes for
quadrupedal mammals vs. bipedal Macropodoidea, so that extrapolation bears
significant risks [dashedvs. dotted line41,107]. The assumptionof a size-invariant gear
ratio is subsequently relaxed for the size range for which experimental data are
available, and the consequences of a size-variable gear ratio are discussed. Source
data are provided as a Source Data file.
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mass estimate of 18 t for the largest extinct terrestrial mammals,
proboscideans110. For a larger gear ratio of G = 1, κg =0.0125, and
mt ≈ 500 t; the critical mass is extremely sensitive to the gear ratio, and
goes as its cube.

Work partitioning into kinetic and gravitational
potential energy
The reduced parasitic energy κg ¼ mgðFmaxGÞ�1 can be directly rela-
ted to the fraction of work which flows into gravitational potential vs
kinetic energy,WgW

�1
m ¼ κg vs EkinW

�1
m ¼ 1� κg , respectively

26. Using
the estimates in Table 1 yields κg =0.041m1/3 kg−1/3, which for body
masses ofm = 15 g, 15 kg and 2 t yieldsWgW

�1
m ¼ 1%, 10% and 52%, and

accordingly EkinW
�1
m ¼ 99%, 90% and 48%, respectively. The con-

sumption of muscle work by gravitational potential energy remains
below 10% for animals with a body mass below 10 kg, and the majority
of terrestrial animals may thus be considered gravitationally indiffer-
ent (Supplementary Fig. 1a).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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