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Marine heatwaves disrupt ecosystem
structure and function via altered food
webs and energy flux

Dylan G. E. Gomes 1,2,6 , James J. Ruzicka 3, Lisa G. Crozier 4,
David D. Huff 5, Richard D. Brodeur 5 & Joshua D. Stewart 1

The prevalence and intensity of marine heatwaves is increasing globally, dis-
rupting local environmental conditions. The individual and population-level
impacts of prolonged heatwaves on marine species have recently been
demonstrated, yet whole-ecosystem consequences remain unexplored. We
leveraged time series abundance data of 361 taxa, grouped into 86 functional
groups, from six long-term surveys, diet information fromanewdiet database,
and previous modeling efforts, to build two food web networks using an
extension of the popular Ecopath ecosystem modeling framework, Ecotran.
We compare ecosystem models parameterized before and after the onset of
recent marine heatwaves to evaluate the cascading effects on ecosystem
structure and function in the Northeast Pacific Ocean. While the ecosystem-
level contribution (prey) and demand (predators) of most functional groups
changed following the heatwaves, gelatinous taxa experienced the largest
transformations, underscored by the arrival of northward-expanding pyro-
somes. We show altered trophic relationships and energy flux have potentially
profound consequences for ecosystem structure and function, and raise
concerns for populations of threatened and harvested species.

Marine heatwaves (MHWs) are periods of prolonged, unusually warm
ocean temperatures that can have significant impacts on marine
ecosystems1–4. In tropical systems, sustained periods of warm water
can cause coral bleaching and mass mortality events, which likely
affects entire communities that rely on the complex structure and
ecosystem functions provided by live coral5. In temperate systems,
ocean temperature increases can lead to harmful algal blooms that
produce toxins that kill othermarine organisms6,7. These algae blooms
can also lead to widespread hypoxic events, contributing to recent
increases in theoccurrenceof ecological ‘dead zones’ that affect awide

range of species8. MHWs can alter nutrient cycling and availability in
the ocean, which can affect the growth of phytoplankton. These
bottom-up processes can alter lower trophic level productivity, which
may in turn lead to stress and starvation in top predators, ultimately
affecting reproductive success9,10. Cumulative impacts can lead to
poleward distribution shifts of many pelagic species11–13, resulting in
disrupted or novel communities and changes in predator-prey rela-
tionships, which likely lead to changes in the overall structure of
marine ecosystems as a consequence of MHWs. However, the full
ecosystem-scale effects of MHWs have not been estimated within an
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impacted system to date, leaving substantial uncertainty in the short-
and long-term consequences of MHWs on ecosystem structure and
function.

The Northern California Current marine ecosystem extends
from Vancouver Island, British Columbia, Canada to Cape Mendo-
cino, California, United States. It is a highly productive upwelling
marine ecosystem that supports high biomass of marine species,
many of which are harvested in economically and socially important
fisheries14. Sea surface temperatures in the ecosystem have been
anomalously high in recent years, starting with the warm water blob
in the winter of 2013-201415–17, which was among the largest andmost
intense MHWs ever recorded1,18,19, and continuing through the pre-
sent (Fig. 1a). The initial MHW starting in 2013 included temperatures
roughly 3 °C above normal (exceeding three standard deviations)
and persisted in two prolonged pulses until 201518,19. Re-occurring
MHWs, including the so called blob 2.0 in 2019, have since keptmuch
of the North Pacific Ocean in a state of anomalously warm conditions
over the past decade, indicating that these novel conditions are
perhaps the new normal18–20.

These anomalously warm periods have led to documented
changes in the abundance and distribution of diverse taxa including
gelatinous invertebrates, copepods, krill, squid, fishes and
sharks20–27, impacts to important fisheries28, declines in primary
productivity29, increased abundance of relatively rare or non-existent
Southern visitors (such as the sudden arrival of great abundances of a
pelagic tunicate, Pyrosoma atlanticum)24,30,31, and mass mortality
events for seabirds and marine mammals10,32. Extreme warming
events within the Northern California Current are expected to be
exacerbated by climate change in complex and potentially non-linear
ways33,34. Yet the ecosystem-wide ramifications of such suddenevents
are likely to be far greater than the expected changes due to long-
term warming alone35.

Here, we compare two end-to-end ecosystem food web models of
the Northern California Current representing time periods immediately
preceding (1999–2012) and following (2014–2022) the onset of a pro-
longedperiodof thermal anomalies (Fig. 1a)markedbyat least twowell-
described marine heatwaves36–38 to make inferences about ecosystem-
level changes that have occurred since the onset of these recent
extreme warming events. We estimate the effects of MHWs on the
energy flow between producers and consumers across scales from
individual functional groups to the entire food web network. Account-
ing for energy flux within the entire ecosystem allows us to directly
estimate the cascading, ecosystem-wideeffects of temperature-induced
changes through both direct and indirect food web pathways.

Results and discussion
Leveraging time series abundance data of 361 taxa (grouped into 86
functional groups, see Supplementary Data 1) from six long term
surveys, diet information from a new diet database, and previous
modeling efforts, we built two food web networks (pre- and post-
onset of MHWs, hereafter pre-MHWandMHW) using an extension of
the popular Ecopath ecosystemmodeling framework (Ecotran36,37,39).
Our comparative analysis of these two foodweb networks shows that
lower trophic level biomass and energy pathways experienced
greater changes after onset of MHWs than upper trophic levels
(Figs. 1, 2), but that the energetic consumption (of lower trophic
levels) and energetic contribution (to higher trophic levels) of many
functional groups significantly changed betweenpre-MHWandMHW
time periods (Figs. 3, S1–S5). Predators consumed prey both in dif-
ferent absolute quantities and proportions before compared with
after the MHWs (Fig. 2).

By directly estimating changes in both biomass and trophic
interactions across the entire ecosystem, we find that the largest per-
turbation to the energy flux of the Northern California Current eco-
system since the onset of multiple marine heatwaves is driven by a

dramatic increase in the abundance of pyrosomes, Pyrosoma atlanti-
cum (Fig. 1, Supplementary Data 1). This gelatinous species was
essentially absent from the Northern California Current prior to recent
MHWs24,30,31,40, and this rapid increase drove substantial changes
throughout the food web at low and mid trophic levels as pyrosomes
consumed energy that would have been available for other groups
(Fig. 1). Species at the base of the foodweb, such as pteropods, pelagic
amphipods, small invertebrate larvae, small mesh-feeding jellies, krill,
and sardine all consumed less phytoplankton in the MHW period,
whichmay have contributed to decreases in their abundances. This, in
turn, possibly left less forage for the carnivorous and larger jellies,
which also declined (Figs. 1, 3).

Further, our models suggest that the majority of this re-directed
energy does not flow to higher trophic levels, with >98% of pyrosome
biomass ending up in detritus pools (Figs. 1, 2). Although there is evi-
dence that some predators have consumed pyrosomes and other
abundant gelatinous taxa during the MHWs41,42, it is not clear what
energetic benefits accrue to these predators compared to feeding on
crustacean or fish prey. It has long been assumed that gelatinous prey
are trophic dead ends, due to their low energy content43, although
recent advances inmethodology suggest that gelatinouspreymight be
more important than previously believed44. In the Northern California
Current, it appears that pyrosomes are not consumed as readily as
jellies36,41,42. Thismay be because they aremore difficult to digest, offer
lower energy content, or remain novel to the food web such that
predators have not yet responded. Thus, while overall gelatinous
biomass in the ecosystem increased, the boom in scarcely consumed
pyrosomes along with the concurrent decrease in jelly abundance has
led to amarkeddecrease in the overall consumptionof gelatinous prey
since the onset of MHWs (Figs. 1, 2). More generally, a persistent shift
toward filter-feeding gelatinous zooplankton and away from omni-
vorous euphausiids could havemajor negative implications for higher
trophic levels including commercially important fishes, and thus food
security in many ecosystems45. This further highlights the importance
of understanding the uncertainty in the trophic influence of pyro-
somes in their recently expanded northward range shift, the outcome
of which will have important consequences for the future of the
Northern California Current ecosystem under intensifying global
warming.

Despite large shifts in biomass and connections of lower trophic
levels (Fig. 1), the average trophic level did not change across models
(Table 1). A higher number of trophic levels across a food web may
signal a less efficient, or more unstable, ecosystem46, while a low
number of trophic levels can indicate amore efficient systemas energy
is lost at each level of consumption between the base of the food web
and a higher trophic level species47,48. This may suggest that the effi-
ciency of theNorthern CaliforniaCurrent foodweb is relatively robust,
in the face of disruption by repeated MHWs. Various network metrics,
such as connectance (the number of realized trophic links relative to
the total possible number) and link density (the number of links per
node) aremeasures of complexity that are also thought to relate to the
robustness of food webs to disturbances48–50. Here, both network
metrics were slightly higher in the MHW model, which might further
suggest that the MHW ecosystem model is at least as robust to dis-
turbance as the pre-MHWmodel was (Table 1). However, we showhere
that the pre-MHW ecosystem shifted considerably in response to
repeated intense MHWs, despite also demonstrating metrics of net-
work stability. As MHWs become more frequent and predictable on a
global scale51, it remains unclear how the Northern California Current
ecosystem will be impacted by further perturbations or temporary
reversals to pre-MHW conditions.

The current state of the ecosystem, characterized by increased
pyrosome biomass and decreased energy flux to and from other low
trophic-level species, may have important implications for fishery
management. Chinook salmon and cod for example, appear to have
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Fig. 1 | Consumptionmatrix differencebetweenpre-MHWandMHWfoodwebs.
a Sea surface temperature anomalies (°C) in the North Pacific from 1950 to 2022.
Inset boxes indicate time period that pre-MHW and MHW ecosystem models are
focused on. b Pre-MHW and MHW network diagrams show the food web con-
sumption matrix. Trophic linkages (network edges) show rates of biomass
exchange between trophic levels while the size of circles (network nodes)
represent the absolute biomass densities in the system (on the log scale; see
Supplementary Data 1). c A difference network was calculated as the difference
between the pre-MHWmodel and theMHWmodel for both the edge weights and
node biomasses. Node and edge sizes and colors depend on the magnitude and
direction of change, respectively. Red colors indicate an increase from the pre-

MHW food web to the MHW food web, while blue colors indicate a decrease. The
size of the circle corresponds to the magnitude of the change in biomass (see
scale for multiplication factor, note that a factor of 1 means no change, and thus
the circle will not appear) of a given functional group (indicated by the corre-
sponding number, see Supplementary Data 1). Similarly, the thickness and color
intensity of the lines (network edges) indicate themagnitude of change in energy
flux between food webs. Node locations are identical in all three networks. The
node numbers were omitted from the top two plots for easier visualization.
d A list of functional groups in ecosystemmodels, with bolded names selected to
highlight those with larger changes betweenmodel time periods. Source data are
provided as a Source Data file.
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Fig. 2 | Bottom-upenergyflow through ecosystem functional groups.The x-axis
in both panels indicates the pre-MHW vs MHW time period. a The y-axis is the
absolute consumption rate of specific functional groups (indicated in boxes across
top of panel facets) by consumer groups (see legend for color-pattern combina-
tions) in units of mmol N per cubic meter per day. b The y-axis shows the pro-
portion of consumption that is allocated from specific functional groups to living
consumer group types. All non-living nutrients and detritus pool groups were

removed from these plots of energy transfer, because the ending fate of much of
the system energy ends up in these pools, obscuring patterns in non-detritus
groups. Thus, note that the y-axis in panel b does not extend to 1, but the total
proportion (including the non-living groups) still sums to 1. A representative subset
of taxa is presented across the figure facets. Source data are provided as a Source
Data file.
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decreased since the onset of the marine heatwaves in the Northern
California Current (Fig. 1)52. Chinook salmon commercial harvest has
been reduced by nearly a factor of three (corresponding to a 67%
decline) in theNorthernCalifornia Current since the onset of theMHWs
[PacFIN, http://pacfin.psmfc.org]36,37. Cod do not sustain amajor fishery
in the Northern California Current, but they are an important fished
species in Alaska, where declines have similarly been documented
during these recent North PacificMHWs4. If these species do not return
to their former abundance and biomass, commercial fisheriesmay have
to shift their efforts towards more readily available species. The
increased dominance of Pacific jack mackerel (Trachurus symmetricus)
in the Northern California Current ecosystem is demonstrated by huge
increases in their abundance in recent years24,53 (Fig. 1). The impact of
jack mackerel on lower trophic levels has increased since the onset of
recent marine heatwaves (Figs. 2, 3). Yet, despite this increase in
abundance, commercial fisheries in theU.S. have not shown any change
in jack mackerel landings [PacFIN, http://pacfin.psmfc.org/]36, which
might suggest jack mackerel is an under-utilized resource that can
support substantial fishery landings. Adapting harvest strategies to
account for changes in ecosystem structure could represent a sig-
nificant step towards climate-resilient fisheries. However, further work
is needed to determine if changes in the abundance of these species are
directly influenced by marine heatwaves. Pacific sardine (Sardinops
sagax) have complicated population fluctuations in response to multi-
ple factors, and are often thought to have a positive relationship with

ocean temperatures54,55. Yet sardine collapsed just prior to the onset of
theMHWs, and populations have not shown signs of rebuilding despite
the warm ocean conditions persisting throughout the California Cur-
rent Ecosystem56.

Ecosystem modeling tools remain under-utilized in exploring
the impacts in large scale disturbances such as marine heatwaves.
The work presented here is a static comparison across measured
ecosystem model states, yet future dynamic modeling can include
abiotic variables such as ocean temperatures and mechanistic links
to physiological rates acrossmembers of the foodweb. A 2 °C change
in water temperatures can lead to an estimated 3.7% increase in the
rate of biomass flow to higher trophic levels (also known as the
biomass turnover rate and the production to biomass ratio, P/B57).
This means that climate change may be exacerbating the already
global trend of faster biomass transfers due to fishing pressure58.
Faster biomass flow can indicate lower overall biomass in an eco-
system as the biomass residence time within each trophic level is
reduced58. Furthermore, using general Q10 scaling relationships59 a
2 °C increase in temperature can lead to an increase inmetabolic rate
of about 14.9% and a lower production efficiency (less energy is
directed to production of new biomass as metabolic rates increase).
This can result in a reduced trophic transfer efficiency, or the fraction
of energy consumed by prey that is transferred to consumers at
the next higher trophic level. The ecosystem then becomes less
efficient at supporting higher trophic levels. Functional groups with
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Fig. 3 | Ecosystem-wide consumption and contribution values for
representative taxa. Violin plots show density of points from 1000 Monte Carlo
runs of ecosystem models. Plotted over the violin plots, boxplots show median
values as thick horizontal lines and first and third quartiles (the 25th and 75th
percentiles) as the lower and upper edges of the box, respectively (n = 1000
independent Monte Carlo model parameterizations; see Methods). The lower and
upperwhiskers extend from the edges of the box to the values that are smallest and
largest (respectively), yet no further than 1.5 × interquartile range (i.e., the distance
between the first and thirdquartiles) from thebox. Outlyingdata beyond the endof

the whiskers are plotted as individual points. Asterisks indicate that the difference
in consumption of prey and contribution to predators between the pre-MHW and
MHW models is significantly different (exact p-values found in Source Data file).
Statistical significance was determined via t-tests with Bonferroni corrections for
multiple comparisons. Units are proportions of total ecosystem consumption or
contributions (see notes on footprint and reach in the Methods). See supplement
for visualization of other functional groups. Source data are provided as a Source
Data file.
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particularly low initial production efficiencies in the pre-MHWmodel
(e.g., jack and Pacific mackerels) would need to increase their con-
sumption rates to maintain viable populations in a warmer, more
metabolically costly environment. It is unclear, however, whether the
production of lower trophic level species could support a sustained
increase in predation pressure in combination with existing fishing
pressures.

As marine heatwaves intensify and are increasingly common,
these climate disturbances will have major impacts on marine
ecosystems2 with both winners and losers as some species take
advantage of changing conditions or expand their distribution
whereas others struggle to adapt or are physiologically constrained60.
Estimating changes to energy flow within ecosystems and the ener-
getic consumption and contribution of individual functional groups
provides an approach for quantifying ecosystem changes as global
warming increasingly disrupts food webs and the sustainable use of
such resources. Ecosystem models may provide a means for better
predicting future winners and losers as we prepare for climate resi-
liency in ecosystem-based fisheries management and the recovery of
threatened and protected species in ecologically and economically
important ecosystems.

Methods
EcoTran
Pre-MHW and MHWwere built and analyzed within the EcoTran end-
to-end ecosystemmodel platform39. EcoTran builds upon the widely-
used Ecopath food web modeling framework61. One NCC ecosystem
model was parameterized from datasets collected prior to the 2014
onset of MHW37 and the other model was developed recently, which
is based on datasets from 2014 onwards through multiple warm
ocean years36. Both models represent 80 living functional groups, 3
nutrient pools, 5 detritus pools, and 2 fisheries, which are para-
meterized with multiple sea surveys (biomass)22,53,62–66, commercial
and recreational fishery databases (landings)67,68, a trophic interac-
tion database (diets)69, and various sources of literature, among
other unpublished data (described in more detail in Gomes et al.,
202236 and Ruzicka et al., 201237). The trophic interactions within
each model are described as a production matrix defining the fate of
all consumption by each group between its metabolic costs, non-
assimilated egestion, biomass production that is consumed by each
predator or fleet, and senescence36,37,70. For the analyses presented
here we use static, steady-state ecosystem models, which has the
advantage of allowing for a direct comparison across ecosystem time
periods (parameterized with data collected within this system)
without requiring a complete understanding of how MHW physical
variables (e.g., temperatures) mechanistically affect each functional
group’s physiology and trophic relationships.

Sea surface temperature (SST) anomalies
Monthly SST anomaly values for the North Pacific Ocean (Fig. 1a) are
from the Met Office Hadley Centre HadSST data set71,72. Data were
plotted in R73 with help from ‘ggplot2‘74.

Model adjustment details
The pre-MHW model, adapted from Ruzicka et al. (2012)37, was upda-
ted in severalways. First, Ruzicka et al. (2012) used Ecopathmethods to
estimate the biomass of euphausiids required to to maintain the pre-
MHW food web in thermodynamic balance37. Since then, a longer and
more precise euphausiid time series has beendeveloped from the Joint
U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl
Survey and modeling efforts63. In the MHW model, Gomes et al.
(2022)36 used euphausiid biomass densities from the 2015, 2017, and
2019 surveys63. The pre-MHW model was updated to use the earlier
period of the time series (2007, 2009, 2011, and 2012). Similarly,
Ecopath-based estimates of invertebrate egg biomasses were drama-
tically different between the pre-MHW and MHWmodels36,37. We used
survey data from the Newport Hydrographic Line (NHL)65 to para-
meterize invertebrate eggs in the pre-MHW (NHL data: 2000–2012)
and MHW (NHL data: 2014–2020) models. Due to the changes in bio-
mass between the previously published pre-MHW model and the
one used here we needed to re-balance the ecopath model because
phytoplankton were slightly over-consumed by the increase in
euphausiids. We accomplished this with small changes to the diet
matrix of the pre-MHWmodel to move pressure off of phytoplankton
(see supplemental preMHW_DietChanges.csv). See previous food web
models for more information about data used, model-building, and
mass-balancing procedures36,37.

Due to slight differences in the foodwebmodel structure between
thepre-MHWandMHWecosystemmodels, itwasnecessary to combine
some functional groups to make comparisons across the models (see
Supplementary Data 1). For all groups that were combined, diets were
aggregated as a weighted averaging (weighted by biomass of individual
components/species of the functional group). Total functional group
biomasses (for mass-balancing) were summed across the constituent
components/species within each functional group. Pyrosomes are not
thought to have been present in the pre-MHW period in the NCC
ecosystem31, but tomakemodels directly comparable, we added a trace
amount of pyrosomes to this pre-MHW model (0.00001 mt/km2).
Marine mammals from Gomes et al. (2022) were combined to match
that of Ruzicka et al. (2012); that is, Northern elephant seals and sea lion
(California and Steller’s) functional groups were combined into a large
pinniped group and other killer whales and southern resident killer
whales were grouped into a killer whale functional group (as they both
originally were in Ruzicka et al., 2012). Juvenile salmon groups also did
notmatch between the two ecosystemmodels; for simplicity, theywere
combined into four groups within each model: yearling coho, yearling
chinook, subyearling chinook, and other juvenile salmonids. Similarly,
all commercial fleets were aggregated into one commercial fishery fleet
due to recent changes in the PacFIN database fleet names (http://pacfin.
psmfc.org/)67. To see expanded fleet information, please see Ruzicka
et al. (2012) and Gomes et al. (2022).

Network analyses and metrics
To compare food web structures pre-MHW and MHW, we
measured average (arithmetic mean) trophic level, average trophic

Table 1 | Network metrics

Statistic Pre-MHW SD MHW SD p-value t-value df

Number of nodes 86 – 86 – – – –

Mean Trophic Level (TL) 3.268 0.995 3.288 1.030 0.90 −0.128 169.8

TL weighted by biomass 2.339 0.995 2.413 1.030 0.63 −0.481 169.8

Connectance 0.229 0.022 0.251 0.023 2.15 ×10−10 6.698 197.8

Link density (links per node) 19.709 1.875 21.605 1.942 2.15 ×10−10 6.698 197.8

Comparison between pre-MHW and MHW ecosystem model network values with associated standard deviations (SD). Two-tailed T-test outputs are reported as p-values, t-values, and degrees of
freedom (df). N = 100 independent Monte Carlo model parameterizations (see Methods). Connectance = the number of (non-zero) realized links relative to the total number of possible links
(86 × 86= 7396). None of the calculations include nutrients as functional groups.
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level weighted by the biomass of each functional group, network
connectance (the number of non-zero realized links relative to, i.e.,
divided by, the total number of possible links; 7396 in an 86 × 86
network), and link density (the average number of connecting links
per functional group) (Table 1). The initial food web for the MHW
model was built upon the pre-MHW model, such that pre-MHW
trophic connections were included in the MHW along with new diet
data36. To ensure that the network connectance and link densities
were not artificially inflated in the MHW period, we removed all
trophic connections within the MHW network that were originally
carried over from the pre-MHW model (and which were not repre-
sented in the updated diet data; see supplemental code).

A difference network was calculated as the difference
between the edges and node biomasses in the pre-MHW model
and the MHW model (Fig. 1). Node and edge sizes and colors are
dependent on the magnitude and direction of change, respectively.
Blue signifies a decrease in (from pre-MHW to MHW) biomass
density (nodes) or energy flow (edges) and red signifies an increase.
Bigger circles indicate (on a log scale) higher differences in biomass
and thicker and darker edges denote larger changes in energy
flows. The network was visualized with help from the R package
‘qgraph‘75.

Energetic consumption and contributions
To make comparisons of ecosystem structure between pre-MHW and
MHW years, steady-state models were used to estimate the relative
importance of functional groups for transferring energy to higher
trophic levels. We calculated the relevance of targeted functional
groups as both consumer (consumption of lower trophic levels) and
producer (contribution to next trophic level) with two non-dimensional
metrics: footprint and reach, respectively.

A functional group’s trophic impact upon lower trophic levels is
expressed by its footprint, which is the fraction of each producer
group’s total production supporting focal consumer groups via all
direct and indirect pathways (excluding detritus). The footprint, in
other words, is the proportion of energy from lower trophic levels
(relative to a focal group) consumed by that focal group. Conversely,
the importance of a focal functional group to higher trophic levels was
expressed by its reach: the fraction of consumers’ production that
originated with (or passed through) that functional group via all direct
and indirect pathways37. Thus, the reach is the proportion of energy
consumed by higher trophic levels (relative to a focal group) that
passed through that functional group.

Footprint and reach can be defined broadly (i.e., the footprint
upon all lower trophic levels) or precisely (i.e., the footprint upon one
specific producer). For our general ecosystem-wide comparison of the
roles of phytoplankton, copepods, euphausiids, forage fishes, gelati-
nous zooplankton, rockfishes, and fish, seabird, and mammalian pre-
dators, we adopted the broadest definitions, considering footprint and
reach relative to (proportions of) total system production and total
consumer production, respectively.

The net uncertainty among physiological parameters, diet, and
nutrient cycling terms are expressed as levels of uncertainty about
each element of the productionmatrix. In our analyses, each element
of the production matrix was randomly varied by drawing model
parameters from a normal distribution with a mean of the originally
parameterized value and a standard deviation [converted from
conservative coefficient of variation (CV) values, which were based
on the Ecopath pedigree strategy of assigning uncertainty based on
the types of (i.e., survey type) and confidence in (quantity and
quality) our data sources; see supplemental data and code repository
readme]. For example, we used diet information from 39083 indivi-
dual juvenile Chinook salmon, 2911 Pacific herring, and seven pyro-
some colonies36. Thus, we set CV values for each element of their diet
vectors to 0.1, 0.5, and 0.8, respectively to reflect differences

in the robustness of the datasets (and the associated uncertainty).
We drew 1000 possible Monte Carlo food web models to investigate
the propagation of uncertainty for footprint and reach of each
assessed functional group within each model (pre-MHW and MHW).
Footprint and reach values were plotted with help from the R pack-
age ‘ggplot2‘74.

Estimates of biomass flow and trophic transfer efficiency chan-
ges due to temperature
The inverse of the residence time of biomass, or the speed of biomass
flow, found in Maureaud et al. (2017)58 is defined as the production to
biomass ratio (P/B) for any particular group and allows for the inclu-
sion of temperature (T) as:

P
B

� �
= 1:06× e0:018×T ×K0:75 ð1Þ

Assuming no change in the von Bertalanffy asymptotic growth
rate parameter (K), the ratio between MHW (P/B) and pre-MHW (P/B)
simplifies to:

e0:018×TMHW

e0:018×TpreMHW
ð2Þ

Or more simply:

e0:018×TMHW�0:018 ×TpreMHW ð3Þ

Using a hypothetical temperature change of 2 °C we calculated
a scaling factor of 1.037 (increase in 3.7%) to convert P/B
values parameterized during pre-MHW conditions to an ecosystem
that is 2 °C warmer. To explore changes that might occur to trophic
transfer efficiencies due to higher metabolic costs associated with
higher temperature, we used classic Q10 scaling relationships. We
estimate the proportional change in metabolic rate (M) as:

MMHW

MpreMHW
=Q10

ΔT=10 ð4Þ

where ΔT is the change in temperature between MHW and pre-MHW
ecosystems and Q10 is a temperature scaling coefficient76. We used a
common and general Q10 value of two77 for calculations of the
metabolic scaling factor of 1.149 (14.9%). As metabolic costs increase,
trophic transfer efficiencies decrease.

Statistical analysis
Two-tailed t-tests in R73 were used to compare mean trophic levels,
network connectance, link density, and the footprint and reachmetrics
(for each functional group) across pre-MHW and MHW models. Since
we made multiple comparisons for footprint and reach metrics (each
functional group × both footprint and reach metrics), we corrected p-
values with conservative Bonferroni corrections. For network con-
nectance and link density, we created 100 bootstrapped networks by
randomly sampling, with replacement, which nodes to use, each
iteration re-calculating connectance and density, which were then
compared across models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data andmaterials used in themanuscript are available in a long-term
data repository at: https://doi.org/10.5281/zenodo.8121889. Source data
are provided with this paper.
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Code availability
All MATLAB (R2021a) and R (v 4.2.2) code used in the analysis are
available in a long-term repository at: https://doi.org/10.5281/zenodo.
8121889.
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