
Article https://doi.org/10.1038/s41467-024-46255-2

Systematic review of the uncertainty of coral
reef futures under climate change

Shannon G. Klein 1,2,3 , Cassandra Roch 1,2,3 & Carlos M. Duarte 1,2,3

Climate change impact syntheses, such as those by the Intergovernmental
Panel on Climate Change, consistently assert that limiting global warming to
1.5 °C is unlikely to safeguard most of the world’s coral reefs. This prognosis is
primarily based on a small subset of availablemodels that apply similar ‘excess
heat’ thresholdmethodologies. Our systematic review of 79 articles projecting
coral reef responses to climate change revealed five main methods. ‘Excess
heat’ models constituted one third (32%) of all studies but attracted a dis-
proportionate share (68%) of citations in the field. Most methods relied on
deterministic cause-and-effect rules rather than probabilistic relationships,
impeding the field’s ability to estimate uncertainty. To synthesize the available
projections, we aimed to identify models with comparable outputs. However,
divergent choices in model outputs and scenarios limited the analysis to a
fraction of available studies. We found substantial discrepancies in the pro-
jected impacts, indicating that the subset of articles serving as a basis for
climate change syntheses may project more severe consequences than other
studies andmethodologies. Drawing on insights fromother fields, we propose
methods to incorporate uncertainty into deterministic modeling approaches
and propose a multi-model ensemble approach to generating probabilistic
projections for coral reef futures.

Anthropogenic climate change is anticipated to propel large compo-
nents of the Earth’s system beyond critical climate tipping points
(CTPs), initiating feedback-driven change and impacts across biophy-
sical systems1. These components, known as ‘tipping elements,’ are
distinguished by their significance in Earth’s system functioning, their
substantial contributions to humanwell-being, and their unique value1.
A notable example is the projected dieback of the Amazon rainforest
that could release gigatons of carbon into the atmosphere and accel-
erate global warming1–3. Although the concept of CTPs has been sub-
ject to debate4,5, a recent synthesis delivered a shortlist of nine global
and seven regional elements at risk1. Global tipping elements, such as
the Amazon rainforest and West Antarctic Ice Sheet, refer to compo-
nents spanning subcontinental scales that could alter the operation of

Earth’s system1. Regional tipping elements represent biospheres
expected to exhibit perpetual feedback at confined scales that have
the potential to occur synchronously across subcontinental scales,
including for example, the simultaneous melting of alpine glaciers1,6.
Among the shortlisted regional elements at risk are warm-water coral
reefs, which are deemed vulnerable to exceedance if global warming
surpasses 1.5 °C above preindustrial levels1,4,7.

Low-latitude reefs, as some of Earth’s most biodiverse
ecosystems8, have reached a critical juncture where further dete-
rioration could compromise global food supply, coastline protection,
economic revenue, and the livelihoods of up to one billion people9–11.
Their inclusion as a regional tipping elementwas based upon historical
evidence of near-synchronous coral bleaching events spanning
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>1000 km scales12,13 and projections indicating progressive degrada-
tion of reefs undermodest levels of globalwarming14–17. Although coral
bleaching is regarded as a localized process, near-synchronous
bleaching events on many of the world’s reefs have occurred as a
result of concomitant increases in ocean temperatures across the
tropics13. These phenomena are expected to become more frequent,
intense, last longer, and affect wider geographic areas with future
warming18–20.

The most recent CTP synthesis followed the same confidence
rating system used by the Intergovernmental Panel on Climate
(IPCC)1,21. It identified a CTP of 1.5 °C (1–2 °C, high confidence) for
tropical coral reefs, with an estimated timescale of 10 years for
dramatic change (with medium confidence)1. In high agreement
with findings of the IPCC22,23, the synthesis cited several modeling
efforts using similar ‘excess heat’ modeling approaches as the basis
of the assessment14–17. These approaches apply thresholds– in the form
of degree heating weeks or months – that represent an accumulation
of excess heat above baseline summer conditions. These thresholds
are then applied to sea surface temperatures (SSTs) and forced
by different emissions scenarios in an effort to retrieve the likelihood
of future bleaching events14–17. Such models analyze the frequency
of bleaching events and estimate the proportion of reef locations
at risk of ‘long-term degradation’ or ‘severe bleaching events’, produ-
cing estimates with high coherence among studies14–17. The resulting
CTP of 1.5 °C (1–2 °C) places warm-water reefs among the six elements
at risk of exceeding their tipping points within the global warming
range set by the Paris Agreement (1.5–<2 °C)1. This finding aligns
with the conclusions of Working Group II’s contribution to the
IPCC’s 6th Assessment Report (AR6)22 and raises concerns over
imminent impacts to marine biodiversity, human livelihoods, and
the effectiveness of interventions to alleviate further coral reef
degradation.

The earliest studies to project coral reef responses to future glo-
bal warming utilized ‘excess heat’ threshold approaches24–27. Put sim-
ply, these methods operate under the notion that widespread
bleaching predictably occurs when temperatures accumulate beyond
a specific threshold. While many investigations show that ‘excess heat’
threshold metrics have strong predictive relationships with bleaching
events12,28,29, others have found these metrics to have weak predictive
power when applied to historical bleaching records24,30,31. These
inconsistencies indicate that the effectiveness of ‘excess heat’ thresh-
old metrics may depend on the specific context24. In the mid to late-
2000s, a consensus emerged that differences in bleaching suscept-
ibility between locations were best explained by multiple modifying
variables24, which eventually led to development of alternative model-
based approaches. Since then, various approaches, such as species
distribution models, ecology-evolutionary models, and models of
reef population dynamics have been applied. However, influential
syntheses of climate change impacts largely overlook these later
developments, relying on projections derived exclusively from ‘excess
heat’ threshold approaches that apply similar assumptions and
parameterizations1,4,22,23,32.

Despite the growing body of literature projecting coral reef
futures and their prominent role in assessments of climate change
impacts, a comprehensive evaluation of available projections is lack-
ing. Here, we address this requirement by conducting a systematic
review of published projections of coral reef futures under climate
change in isolation or in combination with other pressures. We first
reviewexisting approaches toproject coral reef futures and their use in
the scientific literature, and then identify key gaps in knowledge that
currently contribute to uncertainties. We also disarticulate how les-
sons from the field of climate change science can provide pathways for
improving coordination of modeling efforts toward greater certainty
in projections of coral reef futures.

Results and discussion
Approaches for projecting coral reef futures
A search of articles in the peer-reviewed literature found 79 studies
published between 1999 and 2023 that modeled coral reef responses
to future climate change (Supplementary Data 1). While most studies
delivered projections for distinct geographical regions (59% of the
studies), a considerable proportion offered global-scale predictions
(41%) (Supplementary Data 1 & Supplementary Table 1). We found six
studies in our literature search that provided projections for individual
reef ecosystems33–38. However, these studieswere excluded to ensure a
comparable synthesis with most other assessments at regional and
global scales. The majority of articles in our database (76 of 79) could
be classified into five broad categories of methodologies: ‘excess heat’
threshold models, population dynamic models, species distribution
models (SDMs), ecological-evolutionary models, and projective meta-
analyses of published data.

‘Excess heat’ threshold models. ‘Excess heat’ threshold models
integrate thermal threshold metrics assumed to predict the likelihood
of severe coral bleaching with future sea surface temperature (SST)
projections to forecast future instances of bleaching events. These
models usually adopt a specific frequency of events exceeding the
thresholds, such as two severe bleaching events per decade14,39,40, that
is estimated to preclude long-term recovery. This assumption permits
the estimation of reef cells (e.g., 0.5° × 0.5° pixels on the Earth’s sur-
face) that are at risk of ‘long-term degradation’14,15 or ‘severe bleaching
events’41–43, according to the threshold and frequency of events set.
Although these models have the advantage of utilizing a method that
can be applied to broad geographical scales and incorporate other
moderating factors without the need for detailed in situ data, they
rarely perform any direct assessments of biological or ecological
processes14,15,44–46. This approachwas themost prevalentmodel type in
our analysis (32%) (Fig. 1a) and attracted a disproportionately higher
number of cumulative citations (68%) than all other model types
(Fig. 1b). This trend can be partly attributed to this method’s dual role
as the foundation for satellite products that are used to alert the risk of
coral bleaching47,48, and its widespread adoption as the primary
method for global-scale projections in the field (Supplementary Data 1
& Supplementary Table 1).

Population dynamicmodels. Articles examining the consequences of
climate change on the dynamics of coral reef populations accounted
for 23% of the analyzed studies (18 of 79) (Fig. 1a). Population dynamic
models typically employ a process-based approach to simulate the
impacts of warming on crucial ecological and biological processes.
They consider factors such as coral recruitment49,50, colony growth51,52,
coral basal mortality53, predation52,54, herbivory55, and the interactions
between coral and algal populations53, including competition for
space55,56. By incorporating such mechanisms, population dynamic
models provide detailed mechanistic frameworks of how coral reef
states could change with warming. These models have been used to
simulate connectivity between reef ecosystems, by considering
alterations in the physical transport of coral larvae and the expected
physiological impacts of warming on larvae49,53,57. They have also been
used to evaluate the efficacy of management strategies, such as
increased control of crown-of-thorns starfish (CoTS) and reductions in
local nutrient inputs54,55,58. However, a significant drawback of these
approaches is their reliance on detailed ecological and biological data,
which are available only for a few taxa and locations54. As a result, the
majority of population dynamic studies (17 out of 18) focused on
regional geographical scales (Supplementary Data 1 & Supplementary
Table 1). Despite accounting for nearly one-quarter of the studies
in our database, these models received only 13% of the cumulative
citations (Fig. 1b).
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Species distribution models. Species distribution models (SDMs),
also known as niche models, establish correlations between the
occurrence or abundance of species and environmental data in geo-
graphic space. In turn, they project changes in the distribution of
suitable habitat under future environmental conditions59,60. Nearly
one-quarter of the studies in our database (23%) applied SDMs to
forecast the effects of climate change on coral reefs. Despite the equal
contribution of SDMs andpopulation dynamicmodels to our database
(Supplementary Data 1 & Supplementary Table 1), they received
even fewer cumulative citations than population dynamic models,
accounting for <7%of the total cumulative citations (Fig. 1b). The SDMs
primarily focused on assessing changes in suitable areas for coral
reefs under future climate change scenarios (78% of the SDMs)
and accounted for 25% of studies offering global-scale projections
(Supplementary Data 1). By identifying the conditions that support
historical or present-day coral reefs and simulating future changes in
environmental variables, the models project shifts in suitable
habitats61–63. This approach permits large-scale projections that con-
sider multiple physical parameters, even with limited field
sampling63–65, making SDMs cost-effective tools. Although the wide-
spread adoption of SDMs amplifies their value for comparing a diverse

range of responses across marine and terrestrial ecosystems66,67, a
recent systematic review showed that SDMs may have significant lim-
itations in accurately predicting the biology of real-world
populations68.

While climate-related data (e.g., mean SST) are used in SDMs
applied to coral reefs, other physical parameters such as light avail-
ability, current speed, and water depth can also be included63,65,69. The
most common physical parameters employed in the SDMs within our
database were SST and aragonite saturation64,65,70,71, which were com-
monly represented by their means (Supplementary Data 2). By pri-
marily relying onmeans of physical parameters, suchmodels overlook
the well-recognized importance of environmental variability in influ-
encing coral reef responses to climate change, which includes cap-
turing the shapes and distributions of these parameters72,73. Another
major limitation arises from the assumption that the physical envir-
onment alone largely governs the natural distribution of warm-water
reefs. This key assumption overlooks key biological and ecological
processes, such as the influential role of larval dispersal and retention
in shaping reef distributions74,75, as well as the role of top-down con-
trols in the food web76–79. Significantly, the biogeographic approach of
inferring past ecology largely disregards the potential for species’
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niches to evolve through adaptive processes. This limitation can lead
to an underestimation of future distributions80.

Ecology-evolutionary models. Simulating the potential role of eco-
evolutionary processes in helping coral reefs to adapt to changing
ocean conditions has gained attention in this field (12% of the studies)
(Fig. 1). Eco-evolutionary models simulate the interplay between eco-
logical dynamics and evolutionary processes in response to changing
climatic conditions. The earliest eco-evolutionary models81,82 (pub-
lished in 2009 and 2013) examined how heat-tolerant symbionts – the
phototrophic component of reef-building corals — could improve
coral heat tolerance through changes in the symbiont community and/
or evolutionary adaptation. Building upon similar frameworks used in
population dynamic models, more recent studies83–85 incorporate
species interactions and their abilities to adapt and disperse across
diverse environments. While nearly a third of these studies generated
global-scale projections (Supplementary Table 1 & Supplementary
Data 1), a significant challenge lies in the requirement for knowledge of
taxa-specific traits, genetic adaptation, and ecological dynamics,which
is lacking for most coral species and locations. As with population
dynamic models, the reliability of their projections for non-focal taxa
and regions can be influenced by the parameter estimations and
assumptions incorporated85.

While these studies do not aim to achieve spatial or ecological
realism, they provide essential insights into the potential role of
adaptation and key environmental drivers that help to inform con-
servation planning at local and regional scales85. For instance, recent
eco-evolutionary models reveal the importance of protecting net-
works of reefs to facilitate the migration of heat-tolerant larvae to
cooler waters, thereby facilitating evolutionary adaptation84–86.
Despite the rising demand for conservation strategies that prioritize
the adaptive capacity of coral reefs and a deeper understanding of the
underlying mechanisms87,88, these models attracted a minor propor-
tion of the cumulative citations (Fig. 1b).

Meta-analyses. Another approach to project coral reef futures con-
solidates data from published experimental manipulations. Repre-
senting a minority of the reviewed studies (5%) (Fig. 1), the identified
meta-analyses20,89–91 shared a common aim of projecting the dual
impacts of ocean warming and acidification on biological processes
within reefs. They compile data from experiments that measure how
corals and other coral reef taxa respond to conditions that simulate
future warming and acidification scenarios. These data are then uti-
lized to parameterize models for estimating future coral responses
under various representative concentration pathway (RCP) scenarios.
The specific purposes of these meta-analyses range from estimating
changes in numerous biological responses of corals20 to those that
exclusively focused on alterations in coral calcification processes91 or
reef-wide calcium carbonate production89,90. Although data from coral
reef monitoring, rather than controlled experiments, arguably offer
more realistic insights into how reefs will respond to further warming,
our understanding of how reef organisms will react to ocean acid-
ification is primarily based onmanipulative experiments92,93. Thus, one
significant advantage of these approaches is their capacity to con-
solidate the wealth of data derived from experiments to estimate how
futurewarming and acidificationwill interact and impact the biological
responses of reef organisms.

By aggregating data from numerous independent studies, meta-
analyses can help to resolve discrepancies among experimental
designs, locations, and species by uncovering overall patterns across
studies94. However, the data underlying the projections from meta-
analyses originate from short-term experiments20,89–91, which fail to
measure important elements of resilience such as genetic adaptation20

and the complex ecological feedbacks that operate in natural reef
environments95. It is important to acknowledge, however, that other

model types similarly rely on results from short-term acidification
experiments to parameterize their models14,15,96. Overall, the cumula-
tive frequency of citations based on these meta-analyses aligned with
their rarity in the field, equating to <3% (Fig. 1b).

Other emerging approaches. There are several other approaches to
examine coral reef vulnerability to future climate change. In addition
to the five approaches outlined above, one study adopted a spatial
modeling approach to project the combined effects of warming and
sea-level rise on the future coral reef growth rates in the South China
Sea97. Another integrated linear extension rates of corals from three
different islands in the same region with future SSTs to forecast coral
growth rates98. One study used historical bleaching and sea surface
temperature records to project future bleaching probabilities in the
Indo-Pacific99, while another regional-scale study focused on larval
connectivity and identified conservation areaswith lower risks of coral
bleaching in the Amani Islands of southern Japan100.

A standardized method for assessing the risk of ecosystem col-
lapse, the International Union for Conservation of Nature (IUCN) Red
List of Ecosystems (RLE), represents an emerging method101–104. The
RLE offers a standardized classification system that utilizes thresholds
for key variables to integrate diverse data101,105,106. One study applying
this method used various coral reef datasets to model interactions
within western Indian Ocean reefs under future warming104. The study
reported varying levels of regional vulnerability to ecosystem collapse,
ranging from ‘critically endangered’ to ‘vulnerable’ across the 11 eco-
regions examined104. However, the ecosystem model’s assessment
excluded data on fishing pressure and rates of sedimentation, among
other variables, due to data scarcity across countries and regions.
There are at least four studies applying thismethod to coral reefs in the
Caribbean101,102, meso-America103, and the western Indian Ocean104.
Together, they emphasize the need for improvements in the con-
sistency of monitoring efforts and advocate for the development of a
unifying framework to enable more conclusive risk assessments.

In summary, the discussed approaches span a spectrum from
simplistic models that minimize complexity to those incorporating
detailedmechanistic frameworks that address complex ecological and
evolutionary processes. While the latter approaches provide a deeper
understanding of the effects of climate change on essential ecological
and biological processes in warm-water reefs, their practical utility is
constrained by limited data availability.

How heat stress is modeled
Severe marine heatwaves that trigger mass coral bleaching events are
expected to become more intense, frequent, last longer, and affect
wider geographical areas as the planet continues to warm18,20,107. While
the approaches discussed thus far encompass five distinct approaches
for forecasting coral reef futures, the underlying procedures for
modeling heatwaves and their impacts on reefs can be classified into
two overarching techniques (sensu24). The first technique utilizes
thermal stress thresholds, which are defined as metrics requiring a
variable, such as SST, to surpass a pre-determined value24. For studies
to be classified as threshold techniques, the use of thesemetrics had to
form the primary framework of the models that delivered projections.
The second technique represents approaches that abandon the central
threshold concept to focus on empirical relationships between con-
tinuous variables. Articles classified as using this approach could use
thermal stress thresholds, however, they had to be included as one of
numerous variables examined24. Only one study in our database could
not be classified as using either technique. The study integrated var-
ious data sources, environmental variables, and analytic techniques,
including regression and association methods for projecting future
coral cover72.

Our analysis revealed that more than half of all the studies (53%)
employed thermal threshold techniques as the primary basis for their
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projections (Supplementary Data 2). Besides the exclusive use of this
method in ‘excess heat’ threshold models, around 40% of population
dynamic and eco-evolutionary models also relied on thresholds as the
basis for their projections (Fig. 2). Across the five major approaches
(Fig. 2), the most common threshold metrics applied were degree
heating weeks (DHWs) or months (DHMs), which calculate values
representing both the intensity and duration of heat stress events in
singular metrics.

One explanation for variations in the efficacy of thresholds
metrics in explaining realized coral bleaching is their inability to cap-
ture different marine heatwave characteristics, such as peak tem-
peratures, duration, and rates of heating. For instance, a historical
assessment spanning from 1985 to 2017 examined variations in SST
and showed that increases in accumulated heat stress, asmeasured by
two common threshold metrics, were predominantly attributed to
longer heating events affecting wider areas108. However, the study
could not detect changes in peak temperatures or event frequencies
during the analyzed period, indicating the limitations of themetrics in
capturing changes in different heating variables108. A study by McCla-
nahan et al.73 evaluated the effectiveness of heatwave variables in
explaining bleaching severity on 226 coral reefs and found that the
DHW metric explained 9% of the model variance. In contrast, peak
temperatures, the duration of cool temperatures, and temperature
bimodality were found to be stronger predictors of bleaching severity.
Several empirical studies have also reported that variables represent-
ing different marine heatwave characteristics were best at predicting
changes in coral cover72,109,110. For example, a study investigating the
power of 27 environmental factors in explaining changes in coral cover
on Indian Ocean reefs reported that temperature anomalies, tem-
perature variation, and the duration of cyclones were the best
predictors109.

We found only one study projecting impacts on coral reefs that
directly compared model outputs derived from both thermal thresh-
old and continuous variable techniques72. This study revealed that a
DHW-basedmodel projectedmore severedeclines in coral cover in the
Indian Ocean compared to the multivariate approach that integrated
variables characterizing historical and future patterns of stressors. The

findings suggested that patterns of acute and chronic stressors could
be more influential than cumulative heat stress in predicting future
coral cover in certain regions72, further highlighting the importance of
variable selection procedures in the modeling process. Although
there is substantial uncertainty in how climate change will morph
future thermal regimes, global databases of marine environmental
data provide many useful exposure and modifying variables for this
purpose72,111.

While thermal threshold metrics have acknowledged limitations,
they remain vital for established programs forecasting coral bleaching
risk using satellite-based products. Work has already been done to test
how well different degree heating algorithms explain coral bleaching
patterns at local, regional, and global scales in an effort to improve
their efficacy (e.g. refs. 112–115). New configurations of the operational
DHW algorithm hold promise in improving their ability to predict
instances of observed bleaching112,113,116, although the extent to which
adapted algorithms improve predictability depends on the focal
region and spatial scale of the test. This suggests that researchers
could consider adapting different degree heating algorithms to pin-
point the most appropriate stress metric for their geography. Subse-
quently, these customized algorithms could be confidently applied to
projectionmodels for the focal region. Several studies in our database
have shown how threshold choice affected their model
outputs26,40,46,112,117,118. For example, one study reported divergent esti-
mates of bleaching onset timing when different inter-annual variation
thresholds were used117.

Another major consideration is the future efficacy of threshold-
basedmetrics in reliably approximating instances of coral bleaching or
changes in other coral reef metrics. This is because most coral reefs
have already experienced a complex legacyof exposure todisturbance
and it is presently unclear by howmuch and to what extent organisms
have adapted or will adapt in future119,120. A recent study examined
intrapopulation variability of heat tolerance in corals from thewestern
Pacific Ocean121. The study demonstrated that the most heat-tolerant
corals in their study required double the heat stress to induce
bleaching compared to their least-tolerant corals. When these differ-
ences in heat tolerance were translated into contrasting DHW

Fig. 2 | Proportion of studies applying thermal threshold versus continuous
variable techniques tomodelheat stress. Proportion of studies classified as using
either a thermal threshold or continuous variable technique across the five broad
categories of methodologies (n = 74 articles). Note: one article could not be

classified as using either of the threshold or continuous variable techniques72 and
four studies could not be classified as one of five major methodologies. These five
studies were excluded to enable a meaningful analysis, but see Supplementary
Data 2. Source data are provided as a Source Data file.
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thresholds and applied to an ambitious emissions scenario (SSP2 −4.5),
the study reported that themost heat-tolerant corals could potentially
experience annual bleaching events up to 17 years later than their less-
tolerant counterparts121. Overall, greater confidence in coral reef pro-
jections will depend on an increased number of projections derived
from methods that incorporate robust variable selection procedures
and a deeper understanding of how the thermal tolerances of corals
and other coral reef taxa may evolve under escalating stress levels
over time.

Addressing uncertainty through more coordinated modeling
efforts
Uncertainties in coral reef projections stem from various sources that
compound in the steps involved in generating the projections122. The
sources range from variations in the climate system that impact var-
ious modeling tools, such as General Circulation Models (GCMs)122,123,
to uncertainties in how future socioeconomic policies and technolo-
gies will affect future emissions trajectories124. Uncertainties related to
the models themselves pertain to the model structure and parameter
settings used122,125, which both rely on knowledge of the specific phy-
sical and ecological processes affecting how coral reefs will respond in
the future.

While the models reviewed here vary in their complexity and
underlying methodologies, most rely on deterministic rules to estab-
lish cause-and-effect relationships (Supplementary Data 2). Such
deterministic models do not directly incorporate uncertainty126 and
are inherently limited in their ability to account for uncertainties
stemming from interactions between physical and ecological factors
inherent to coral reefs. In contrast, models employing probabilistic
relationships can accommodate natural variation and uncertainty in
model input values and parameters by considering potential value
ranges and associated probabilities127. While probabilistic models may
be deemedmost suitable for capturing uncertainties in how coral reefs
will respond in the future127–129, this field still faces significant issues in
establishing robust connections between key coral reef metrics and
satellite-derived data72,73,109,110. These difficulties ultimately hinder the
reliability and utility of probabilistic models.

The question of how to account for uncertainty of deterministic
models poses a significant challenge. Uncertainty associated with the
model structure, specifically uncertainty about the cause-and-effect
relationships, is often difficult to quantify because this requires the
comparison of model outputs with real-world observations127. How-
ever, it is possible to evaluate and then use uncertainty caused by the
model’s input values and parameters. The probable range of model
outputs can be examined by analyzing how these outputs behave
when model input values are changed within plausible ranges127,130.
Some studies have evaluated how choices in model inputs and dif-
ferent assumptions affect the outputs of coral reef models (e.g.
refs. 55,72,130–133), though differences in model outputs are seldom
used to produce formal estimates of uncertainty arising from model
inputs. One approach to doing this is to conduct a formal uncertainty
analysis of different model outputs. A straightforward method for
conducting such an analysis is by applying Monte Carlo methods,
where variations in model inputs are drawn randomly, and the
resulting model outputs are treated as a random sample of the model
output distribution127 (e.g. refs. 55,130). Although effective in helping
to incorporate uncertainty into deterministic models, this approach
requires a substantial number of model runs.

Another approach is to apply a sensitivity analysis – a common
method to understand how changes in input values and/or parameters
of a model affect its output127. Essentially, these analyses aim to pin-
point the input parameters to which the model output is most sensi-
tive. For example, if plausible changes in an input parameter value
induce large variations in the model output, this indicates that the
parameter value is highly uncertain. Conversely, if model outputs

remain stable, the analysis will indicate that the parameter value has
low uncertainty. These analyses can become computationally expen-
sive when all possible parameter values and their interactions are
tested in a step-wisemanner. However, there are techniques to reduce
the number of model runs127,130. For instance, sensitivity analyses have
been applied to coral reef models by testing only the highest and
lowest plausible values of the biological parameters and adjusting
single parameter values by ±10%130,131.

While the model sensitivity analyses described above offer
ways to account for uncertainty caused by the model’s input values
and parameters within an individual study, it is possible to address
system and model uncertainty using multiple independent models
in an ensemble approach127. For instance, in the field of climate
change science, atmospheric scientists initially faced issues with
fragmented data and disparate deterministic models when modeling
the Earth’s response to increasing greenhouse gas emissions134. By
the 1980s, coordinated data collection from weather stations and
satellites improved the accuracy of atmospheric-oceanGCMmodels135.
By 1988, the IPCC formed and used the Coupled Model Inter-
comparison Project (CMIP) to coordinate simulations using the
same emissions scenarios and model outputs136. This ensemble
approach combineddiversedeterministicmodel types across research
groups to generate reliable probabilistic statements134. While
acknowledging that climate scientists only model a single system
compared to the thousands of interdependent and locally-adapted
species comprising coral reefs, adopting a multi-model ensemble
approach to generate probabilistic projections for coral reef futures is
feasible123,134,137. This, in turn, would help to highlight major sources of
variation and better characterize the extent of uncertainty of coral reef
futures under climate change. However, applying an IPCC ensemble-
like approach would initially necessitate improved coordination
among modelers and the selection of common output metrics and
emission scenarios.

Despite the growingbodyof studies forecasting coral reef futures,
there is presently no broad consensus on the optimal variables for
projecting coral reef vulnerability102–104. This is reflected in the diversity
of variables used and the large proportion of studies delivering pro-
jections with metrics that prove challenging to translate to real-world
observations (Supplementary Data 1). Establishing a connection
betweenmodel outputs and real-world observations is not only crucial
for enhancing the practicality and usefulness of modeled projections
but also enables future assessments of the models’ ability to simulate
past conditions. More than half of the studies employing ‘excess heat’
thresholds presented their projections in terms of fractions of reef
cells at risk (52%), while SDMs typically provided estimates in terms of
fractions of reef cells with suitable habitats or relative changes in
habitat suitability (69%) (Supplementary Data 1). Although coral cover
serves as a widely used and accessible indicator for this purpose104,138,
projections of coral cover were delivered in less than a third of all
published studies in our database (29%).

While coral cover represents the most frequently simulated
metric directly linked to real-world observations, its effectiveness as a
singular measure is constrained104. The simplicity and accessibility it
provides comes with trade-offs, as it fails to encompass other crucial
aspects of reef health, including changes in community compositions
of corals, algae, andother key taxa essential for ecosystem functioning.
Transitions in coral communities in the western Indian Ocean and the
GreatBarrier Reef havemarked significant ecological shifts in response
to climate change139,140, highlighting the requirement for coordinated
simulations of numerous common reef variables to better capture
future coral reef vulnerability. Present coral reef assessment and
monitoring efforts, however, suffer from differences in methods and
the resulting datasets104. Recommendations for unifying frameworks
to select common metrics to capture different dimensions of ecosys-
tem integrity and risk of collapse across ecosystems already exist141.
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However, coordination to select key metrics specific to coral reef
ecosystems for this purpose is still lagging. This recommendation is
further emphasized by studies utilizing the IUCN RLE classification
system to evaluate the risk of coral reef ecosystem collapse, which call
for enhanced coordination in monitoring coral reefs and improved
data quality and quantity102–104.

There is currently no formal consensus on the most suitable
emissions scenarios for modeling coral reef futures. While the
number and type of emissions scenarios varied, the most frequently
used scenario in our database was RCP8.5 (CMIP5), representing
a high-emission scenario of ~4.5 °C global warming by the end of
the 21st century (Supplementary Data 2). Most studies applied two
emissions scenarios, typically comparing RCP8.5 (CMIP5) with a sce-
nario of lower radiative forcing such as RCP2.6 or RCP4.5 (CMIP5)
(Supplementary Data 2). Though subject to debate, recent analyses
show that observed trends in global CO2 emissions are substantially
lower than those simulated by high-emission baseline scenarios such
as RCP8.5 (CMIP5)142–145. These studies suggest that this divergence
couldwiden throughout this century and conclude that such scenarios
should no longer serve as reference high-emission scenarios142–145.
Given these developments and the release of the IPCC’s AR6 report22,
there is a pressing need for coordination to select the common emis-
sions pathways for modeling coral reef futures. This urgency is
underscored by the introduction of new socioeconomic pathways
representing novel levels of radiative forcing (1.9, 3.4, 7.0Wm−2),
already incorporated into recent projections for coral reefs
(e.g. refs. 17,146).

Comparison with a prevailing diversity in methodologies
A major challenge in synthesizing existing projections stems from the
diversity of coral reef metrics simulated and emissions scenarios used.
In other fields, meta-analyses have been employed to compile pub-
lished projections and compare the direction and extent of modeled
impacts across studies using diverse metrics147,148. These syntheses
adopt standardized effect-size metrics such as Hedges’ g. Calculated
based on relative differences between impacted and baseline (or
control) scenarios and weighted for variance, these metrics offer a
uniform measure for assessing the magnitude of anticipated
effects147,149. We focused on the three most commonly projected coral
reef metrics (fractions of reef cells at risk, fractions of reef cells
deemed habitable, and changes in coral cover). However, due to
reporting limitations in most published articles, we could extract
requisite data from only 39 modeled scenarios across eight studies
(Fig. 3 & Supplementary Data 3). We therefore consider this analysis to
be exploratory in nature to encourage future efforts, rather than
providing definitive or conclusive results.

Figure 3 illustrates mean effect sizes representing the direction
and magnitude of expected impacts on coral reef metrics across the
selected studies. The distribution of effect sizes among the studies is
influenced by a combination of factors: (1) varying assumptions on key
drivers, such as choices in future emissions scenarios, (2) methodo-
logical differences, including the choice of simulated coral reef metric
and the type and parameterization of the model, and (3) how the
results were reported, such as the number of, and agreement among
individual scenarios within each study. To help disentangle these

Fig. 3 | Comparative effect-size analysis of projected impacts on coral reefs
among a small subset of available studies and three warming scenarios. Cal-
culated mean effect sizes (Hedges’ g ± 95% CIs) represent the magnitude of pro-
jected impacts on model outputs (i.e., coral reef metrics) across three global
warming scenarios (1.5–2 °C, 2–4 °C, and >4 °C).Model outputs (mean ± 1 Std) used
in this analysis were extracted from n = 39 individual modeled scenarios across
eight published studies, and represented in Fig. 4. Mean effect sizes were derived
from differences between projected estimates of coral reef metrics for the end-of-
century (2090–2100) and the baseline period (2000–2015) (cf. “Methods” section).

Hedges’ g, a common effect-size metric ranging from −∞ to +∞, signifies no impact
at zero, positive values indicate ecological benefits, and negative values signify
adverse effects. The 95% CIs represent variability among scenarios within each
study and warming scenario (Supplementary Data 3). Analyzed coral reef metrics
include percent reef cells at risk (black), percent habitat change (blue), and percent
coral cover change (red). Circles and triangles denote studies using thermal
threshold and continuous variable techniques for modeling heat stress, respec-
tively. Open symbols represent global-scale projections, while closed symbols
denote regional-scale projections. Source data are provided as a Source Data file.
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factors, we aligned model outputs to baselines years between 2000
and 2015 (0.86–0.96 °C) and three end-of-century warming scenarios
(1.5–2 °C, 2–4 °C, and >4 °C), which categorized the various emissions
scenarios used (Supplementary Data 3). We further categorized each
study based on whether it employed a thermal threshold or con-
tinuous variable technique in modeling heat stress and whether it
presented global or regional-scale projections (Fig. 3).

Nearly all studies projected negative impacts on the coral reef
metrics, but the relative sizes of these effects differed (Fig. 3). Articles
that used thermal threshold techniques tended to yield more negative
effect sizes than alternative methods (Fig. 3). Among the threshold
studies in the 2–4 °C scenarios, Teneva et al.117 produced a relatively
small effect size, aligningwith the study’s less severe andmore variable
projections of reef cells at risk (Figs. 3 & 4). The projections by Teneva
et al.117 cannot be easily compared with other threshold studies
reviewed here because of various methodological differences. In

contrast to the other studies14, which applied global temperature
thresholds to estimate future bleaching frequencies, Teneva et al.117

used bleaching observations from Reef Base to test prediction meth-
ods in which thermal thresholds were determined by historical SST
variability. Accounting for historical climate experience might explain
why the projections by Teneva et al.117 deviated from most other
threshold studies in the analysis (Fig. 4). Importantly, Teneva et al.117

also defined reef cells at risk as grid cells characterizedby at least a 50%
probability of experiencing 5-year mild or severe bleaching events
by 2100.

In future scenarios characterized by >4 °C warming, articles
applying thermal threshold techniques consistently projected that
>93% of global reef cells will be at risk by the end of the century14,42,55

(Fig. 4). However, the study by Maynard et al.42 generated a notably
smaller effect size than Frieler et al.14 and Anthony et al.55 (Fig. 3). Given
that the effect sizes were based on relative differences between the
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Fig. 4 | Percent changes in coral reef metrics representing the model outputs
used in the analysis of Fig. 3. Percent change in mean estimates (±1 standard
deviation) of model outputs (i.e., coral reef metrics) used in the analysis presented
in Fig. 3.Model outputswere extracted fromn = 39modeling scenarios across eight
published studies and converted into percent change for ease of interpretation.
Mean estimates of coral reef metrics for historical global warming levels of
0.86–0.96 °C represent the baseline period of the years 2000–2015. Mean esti-
mates of coral reef metrics categorized into for future warming scenarios of
1.5–2 °C, 2–4 °C, and >4 °C represent projections at the end of the century (years

2090–2100). Negative values for percent reef cells at risk (black), percent habitat
change (blue), and percent coral cover change (red) signify adverse ecological
impacts compared to a baseline of 0% (no effect), while positive values indicate a
positive effectdirection, suchasprojections estimating increases in reef cell habitat
availability. Circles and triangles denote studies using thermal threshold and con-
tinuous variable techniques for modeling heat stress, respectively. Open symbols
represent global-scale projections, while closed symbols denote regional-scale
projections. Supplementary Data 3 provides a comprehensive list of individual
scenario descriptions. Source data are provided as a Source Data file.
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baseline and end-of-century scenarios and weighted for variance, this
discrepancy may be explained by the more severe and variable base-
line impacts modeled by Maynard et al.42 (Fig. 4). The relatively large
effect size for Frieler et al.’s14 projections occurred because of the
absence of any variance with the study’s drastic projections of reef
cells at risk (−100%, ±0 Std) (Fig. 4). In contrast to the threshold stu-
dies, articles employing continuous variable techniques produced
effect sizes that were relatively modest, but variable (Fig. 3). This can
be attributed to the high variability in model outputs across the indi-
vidual scenarios, reflecting the distinct characteristics of different
coral reef provinces (Fig. 4). For example, projected changes in sui-
table habitats under >4 °C ranged from −99.9% (±3.1 Std) to +36.8%
(±3.1 Std), and changes in coral cover varied from−100% ( ± 25.4 Std) to
−19.2 (±25.8 Std) (Fig. 4).

How do our findings relate to the IPCC’s projections for coral
reefs? The IPCC’s AR6 Summary for Policy Makers anticipates that
coral reefs will decline by 70–90% at 1.5 °C global warming, exceeding
99% at 2 °C (with high confidence)22,150. Although the IPCC reports lack
a definition for coral reef “decline,” their assessments draw on pro-
jections from Schleussner et al.15 and Frieler et al.14. The two studies
exhibit high agreement, collectively estimating that between 69.7%
(±42.2 1 Std) and 100% (±15.2 1 Std) of coral reef cells will be at risk
under scenarios of 1.5−2 °C (Fig. 4). We find that these projections
generated effect sizes similar to those generated by alternative
methodologies under even the most pessimistic warming scenario
(Fig. 3). This suggests that the studies serving as a basis for recent
climate change impact assessments1,22,23 might project more severe
consequences for coral reefs than other approaches.

The main reason for the high coherence between Schleussner
et al.15 and Frieler et al.14 is the minimal differences in their approaches
tomodeling the frequency of bleaching events across global reef cells.
Both articles used the same model type and made analogous
assumptions, including their selection of global thermal thresholds
and frequency of heating events expected to impede reef recovery.
Overall, there are several factors thatmay explain the high variation in
expected outcomes for coral reefs. In contrast to Schleussner et al.15

and Frieler et al.14, differences inmodel types,model parameterization,
and assumptions are likely important factors explaining differences in
the extent of expected impacts. While our analysis has limitations, it
underscores the importance of exercising caution when drawing
conclusions from a limited number of key studies and emphasizes the
need for enhanced coordination to transition toward a multi-model
ensemble approach.

Reporting uncertainty and metrics of model outputs
One of the fundamental, yet basic steps toward improving future
syntheses of modeled projections is the adherence to essential
reporting standards. While all studies in our database provided ample
data to facilitate interpretation of the study outcomes, most (89% of
studies) failed to report basic metrics for model outputs or sufficient
extractable data for measures of variation to be converted into the
same units. In many cases, challenges arose from the display of results
in figures and geographical maps that were not accompanied by ade-
quate supplemental information reporting extractable values. While
there is an increasing emphasis on depositing empirical data into
online repositories (e.g., Dryad, Figshare, and Zenodo), this is rarely
required for model outputs. Recognizing the necessity for reporting
andmetadata availability standards, other fields focused on projecting
climate change impacts to biological systems have implemented
agreed-upon standards66,67,134. For instance, the IUCN established pre-
liminary reporting standards for species threat assessments based on
SDMs151, which have been further refined in subsequent
publications66,67.

Another vital component of studies projecting coral reef futures is
clarity over units of the metrics projected. Modeling studies simulate

changes using a diverse set of metrics that vary according to the
purpose of the study and ultimately communicate the extent and
nature of expected impacts on coral reefs. However, a lack of clarity
over the ecological or biologicalmeaning of the projected variable and
the exact outcomes anticipated for coral reefs constrains the useful-
ness of projections in guiding effective decisionmaking,management,
and conversation efforts.

While the vast majority explicitly define the metrics simulated,
some earlier studies provide indistinct descriptions (Supplementary
Data 2). For instance, several ‘excess heat’ threshold models simulate
the frequency of severe bleaching events to deliver projections as the
proportion of coral reef cells (e.g., 1° × 1° grid cells on the Earth’s sur-
face) at risk of ‘long-termdegradation’or ‘severe bleaching events’ 14–17.
However, there is presently no agreed nomenclature of such states for
coral reefs, raising uncertainty as to their exact meaning and the
consequences involved. In some cases, subjective terms affect
the communication of projections in influential assessments of climate
change impacts, where terms like ‘losses of coral reefs’152, ‘corals being
lost’23, and ‘coral reefs at risk’23 are used interchangeably without
accompanying definitions. These terms could, in theory, be under-
stood to imply a range of outcomes for coral reefs, ranging from
reductions in live coral to the ecological collapse of entire reef eco-
systems. Clear and well-defined nomenclature is especially important
to in the context executive summaries addressing policymakers and
other stakeholders. In summary, establishing and adhering to stan-
dards for the comprehensive reporting and communication of pro-
jections, including associated uncertainties, would facilitate more
conclusive syntheses of coral reef projections in the future. This may
also involve setting standards for publishing metadata.

Toward ecologically relevant and restoration-compatible
spatial scales
The recent establishment of ambitious goals to restore biodiversity
(Kunming–Montreal biodiversity framework) has ignited a race to
identify effective strategies assisting decision-makers in implementing
successful mitigation and intervention efforts for coral reefs153. The
capacity of projection models to guide these strategies, however, is
challenged by the difficulties they face in detecting changes at prac-
tical scales17,154. Almost half of the studies in our database (49%) pro-
vided projections at geographical resolutions lower than 0.25°
latitude ×0.25° longitude (Supplementary Data 2). In practical terms,
this roughly corresponds to grid cells with an area of 770 km² at the
equator — a size that is orders of magnitude larger than a typical
coral reef.

There are two main approaches to improve the spatial resolution
of global and regional models: statistical and dynamical downscaling
procedures155 (Table 1). Statistical downscaling estimates local-scale
climate variables from larger-scale climate models using statistical
methods, whereas dynamical downscaling uses regional numerical
models to simulate local conditions at a higher spatial resolution based
on global climate model outputs156. Among the 19 studies in our
database that applied downscaling techniques, themajority (85%) used
statically downscaled models to formulate their projections (Supple-
mentary Data 2). While statistical techniques are computationally
inexpensive, one major drawback is their inherent assumption that
patterns between large- and local-scale climates observed today will
remain unchanged in the future157 (Table 1). This assumption intro-
duces substantial uncertainty across decadal time frames157. On the
other hand, dynamical techniques explicitly model ocean dynamics
and are more likely to capture the key processes involved156 (Table 1).
These dynamical procedures, however, can still inherit biases present
in the large-scale climate models and face challenges in considering
how ocean dynamics may change over time157,158 (Table 1).

We found only one study that compared the performance of
statistical and dynamical downscaling procedures. The study by
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Hooidonk and colleagues compared models of annual coral reef
bleaching in the Caribbean that were downscaled using either statis-
tical or dynamical procedures156. While there was a high level of
agreement between the projections produced by the two techniques,
the dynamically downscaledmodel detected an earlier onset of annual
severe bleaching linked to future changes in regional currents. In
contrast, the statistical procedure failed todetect these changes due to
its inability to capture local-scale features, such as eddies, which
influence warming levels leading to coral bleaching156. Although these
results suggest that dynamical downscalingmayoutperformstatistical
methods, further assessments of the relative costs and benefits of the
two techniques are warranted (Table 1). Downscaling techniques,
however, ultimately introduce an additional source of uncertainty.
Fortunately, the spatial resolution of global models is expected to
improve in the near term with the introduction of new data streams,
including higher-resolution satellites (e.g., Himawari159) coming online.
This enhancement will improve sea surface temperature (SST) data
resolution and reduce the reliance on downscaling approaches160.

Geographical bias in modeled projections
It is well-documented that coral reef responses to climate change vary
across major coral reef provinces13,161,162. However, when analyzing the
landscape of climate projections, it becomes evident that there are
substantial geographic gaps that require attention (Fig. 5)163,164. A sig-
nificant portion of the research provides global-scale projections,
which offer a broad perspective on climate patterns and anticipated
changes across coral reefs worldwide. While these global-scale pro-
jections provide valuable insights into overall trends, they lack the
necessary resolution and accuracy to provide detailed and reliable
information atmore practical scales formanagement and intervention
purposes17,154. In contrast, regional-scale models usually benefit from
region-specific data and typically offer projections with finer spatial
detail, addressing the need for more localized information to inform
conservation efforts156.

Our analysis shows that the availability of regional-scalemodels is
inconsistent across the world’s coral reefs. Provinces such as eastern
Australia and the Caribbean have received considerable attention and
have well-documented projections using various modeling approa-
ches (Fig. 5). However, other equally important coral reef provinces,
including the eastern Pacific (Costa Rica, Ecuador, and Mexico),
the western Atlantic (Brazil’s northeastern coast), the Indian Ocean,
and the Arabian Seas, lack regional-scale models (Fig. 5165). These
understudied regions thus heavily rely on less-tailored global assess-
ments for projections of future reef impacts in these locations.Manyof
these provinces also suffer from a limited number of studies and
diversity ofmodeling approaches (Fig. 5). For example, projections for
the Arabian seas, the western Atlantic, and the eastern Pacific are
exclusively based on SDMs, which involve key assumptions and

limitations. Coral reef scientists are increasingly aware of this issue.
Addressing these gaps necessitates targeted efforts to enhance the
resolution and accuracy of global-scale projections, while simulta-
neously expanding the scope and diversity of regional and local-scale
projections andmonitoring efforts. Such efforts are already underway
and essential in providing decision-makers with actional information
to manage climate change impacts on coral reefs at global, regional,
and local scales166,167.

Beyond the impact of warming
Although climate change is acknowledged as a dominant driver of
coral reef degradation, it is clearly not the only threat. The extensive
list of pressures includes ocean acidification168, sea-level rise169,
deoxygenation170, cyclones171, pollution172 as well as numerous biotic
pressures such as disease42, pest species173, and overfishing174. How-
ever, the vastmajority of studies in this reviewmodeled the impacts of
warming aloneorwarming in combinationwithonlyoneother stressor
(76% of studies) (Supplementary Data 1). In reality, coral reefs are
subject to ongoing climate change and a complex interplay of
numerous interacting pressures that operate across various temporal
and spatial scales.

Coral reef research has allocated significant effort to projecting
andunderstanding the combined impacts of climate change andocean
acidification on coral reefs (Supplementary Data 1 & Supplementary
Table 2). On the other hand, our analysis revealed that 16 studies in the
database considered pollution to some extent, and four studies con-
sidered fishing pressure in their projections (Supplementary Data 1 &
Supplementary Table 2) Althoughocean acidificationwill undoubtedly
have discernable effects on coral reefs175, there are no practical solu-
tions available to mitigate ocean acidification, apart from the urgent
reduction of greenhouse gas emissions176,177. In contrast, elevated
nutrients and fishing pressure are now well recognized to increase the
susceptibility of coral reefs to heatwaves172,178,179, and measures to
address these pressures are effective and practical180,181. Local-scale
management actions to minimize pollution and regulate fishing have
already demonstrated success in reducing cumulative impacts to coral
reefs180–183, particularly in Pacific nationswhere actions tomanage reefs
have been implemented for centuries184.

A similar pattern exists for evaluating how pest species and dis-
easewill interactwith climate change to shape the future of coral reefs.
In our analysis, we found only two investigations that delved into the
role of coral disease outbreaks in influencing coral reef futures under
climate change (Supplementary Data 1 & Supplementary Table 2)34,42,
with one of these studies being limited to a simulation of a single reef.
The global study highlighted that future warming is likely to heighten
coral susceptibility to disease and identified specific locations where
targeted management could be implemented42. Although excluded
from our analysis due to the absence of future climate change

Table 1 | Advantages and limitations of statistical and dynamical downscaling procedures. Adapted from ref. 196

Advantages Limitations

Statistical downscaling • Computationally inexpensive and requires minimal expertise • Assumes constant relationship between local and large-scale cli-
mate through time

• May correct for biases in GCMs • May not capture climate mechanisms

• Can be applied in data-scarce regions • Limited ability to capture variability and extremes

• More flexibility in models and scenarios

Dynamical downscaling • Simulates climate mechanisms and more likely to capture key
processes involved

• Computationally demanding, requires specialized expertise, and
longer run-time

• No assumptions of the relationship between current and future
climate conditions

• Biases present in GCMs can extend and propagate to regional
scales

• Technology advances constantly improving availability of regional
climate models

• Results can be sensitive to uncertain parameterizations

• Limited flexibility, often tied to specific models and scenarios
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projections, numerous predictive models serving as early warning
systems for coral diseases exist185–187. These early warning system
models have identified crucial drivers of disease outbreaks in various
regions, which could prove useful for refining existing models pro-
jecting coral disease outbreaks under future climate change scenarios.
Similarly, we identified only one study that simulated the impact of a
pest species in climate change scenarios for coral reefs (Supplemen-
taryData 1 & SupplementaryTable 2). This study assessed the potential
effectiveness of management strategies in addressing outbreaks of
CoTS and reducing cumulative impacts on theGreatBarrier Reef54. The
urgency to address this area of uncertainty is underscored by the
ongoing coral disease outbreak in the Gulf of Mexico, which poses a
severe threat to coral reefs in the region188,189. Disease outbreaks are
becoming increasingly concerning, affecting not only coral reefs but
also other marine life190,191, highlighting the need for urgent attention
and action.

With the growing recognition of the need for intervention mea-
sures, particularly in line with the Kunming–Montreal biodiversity

framework’s objective of restoring 30% of degraded habitats by 2030,
projection models are likely to play a crucial role in guiding these
endeavors. Our analysis points toward a possible need to shift the
focus of future modeling experiments to better guide actions to
manage and restore coral reefs. This does not imply that modeling
studies should neglect stressors like ocean acidification, which are
expected to have long-term impacts with limited practical solutions.
Instead, modelers could consider prioritizing the inclusion of man-
agement and intervention scenarios, including coral reef restoration,
that integrate the modeled effects of global and regional pressures.
Just three of the 79 studies reviewed here included potential inter-
vention scenarios. Two of these studies explored unconventional
geoengineering solutions96,192, while one simulated the potential ben-
efits of demographic restoration and assisted evolution in enhancing
reef resilience83.

In summary, projections of coral reef futures at global, regional,
and local scales play a crucial role in informing discussions and policy-
making at various levels of governance. While recognizing the diverse
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Fig. 5 | Association betweenmajor coral reef provinces and applied approaches
used to project coral reef futures. a represents the distribution of modeling
approaches used at a global-scale, and b represents the association between coral
reef provinces and the main methodologies used. The specific flow width is pro-
portional to the number of research articles applying each of the five main meth-
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mentary Data 1 for a full description of the focal geographic regions for each study
included in database (n = 74). This diagram has been generated using the online
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vided as a Source Data file.
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objectives and methods employed in the reviewed articles, there is a
clear need for greater coordination in efforts to project coral reef
futures. Robust projections are vital for decision-makers and policy-
makers to implement effective strategies for coral reef management
and restoration, helping us achieve our climate, biodiversity, and
sustainable development goals. The recommendations presented here
propose tangible steps toward a greater understanding of the uncer-
tainty surrounding coral reef futures while also promoting transpar-
ency in reporting projections and communicating them to decision-
makers. Crucially, the success of these endeavors will depend on
interactive communication between the scientific community, policy-
makers, and local end-users.

Methods
Literature search and study selection
We searched the Thomson Reuters Web of Science database (http://
www.webofknowledge.com) to identify studies projecting the impact
of climate change on shallow tropical and sub-tropical coral reefs. The
search was performed on March 6, 2023, and retrieved 2705 peer-
reviewed articles. Our literature search strategy followed the guide-
linesofPRISMA(PreferredReporting Items forSystematic Reviews and
Meta-analyses)193 (Supplementary Fig. 1). To synthesize the initial
database, we screened the title, abstract, and display items of each
article, resulting in the identification of 2073 potentially eligible arti-
cles to be included inour database (SupplementaryFig. 1). Publications
were then selected based on the following criteria: (1) projections
represented the responses of tropical and/or sub-tropical coral reefs to
future levels of warming alone or in combination with any other dri-
vers, (2) future emissions pathways and/or warming scenarios used to
force the simulations were stated, and (3) projections were modeled
acrossmore than one reef site to be included in the database. The final
database consisted of 79 peer-reviewed articles published between
1999 and 2023.

Data extraction
We initially extracted the key characteristics of each study, including
the focal variable(s) simulated, model inputs, spatial scale, and focal
geographic area.We classified themodels into five broad categories of
methodologies: (a) ‘excess heat’/threshold models, (b) population
dynamic models, (c) species distribution models, (d) ecological-
evolutionary models, and (e) meta-analyses of published data (see
theMain text for definitions). In a few cases where studies could not be
categorized, the model type was recorded as ‘other’ (Supplementary
Data 1). We further classified the studies according to the underlying
techniques used to simulate heat stress on reefs, as either threshold
techniques or continuous variable techniques (see the Main text for
definitions). We recorded each study’s purpose, underlying metho-
dological approach, key assumptions, spatial resolution, and applica-
tion of downscaling techniques (Supplementary Data 2). Finally, we
acknowledged the diverse range of approaches used to simulate coral
reef futures by summarizing the key advantages and limitations of
each study (Supplementary Data 2).

Study criteria and data analysis
A major objective of our study was to examine and compare the
magnitude of projected impacts and estimated uncertainties across
different model types. Meta-analyses offer a valuable approach to
aggregate evidence frommultiple studies to provide a comprehensive
overviewof currentmodeled projections149. The databaseof 79 studies
was considered for inclusion in the exploratorymeta-analysis based on
specific criteria (view supplementary methods for detailed list and
Supplementary Fig. 1). Briefly, to enable a meaningful analysis, we
identified the three most common coral reef metrics used as model
outputs in our database. The first unit, usually expressed as a per-
centage of reef cells at risk of repeated severe bleaching events

(or ‘long-term degradation’14,15), was a common model output of
‘excess heat’ threshold models (Supplementary Data 1). Both popula-
tion dynamic and ecological-evolutionary model types frequently
projected changes in percent coral cover, whereas species distribu-
tion/niche models usually simulated fractional changes in habitat
suitability (Supplementary Data 1). Among those, only studies that
provided: (1) sufficient data for projection estimates and uncertainty
measures to be reliably extracted or calculated, (2) reported end-of-
century projections, and (3) used a baseline period between 2000 and
2015, were selected for the exploratory meta-analysis. In cases where
projection and uncertainty estimates were only presented in figures,
values were extracted using PlotDigitizer (plotdigitizer.com), where
possible. When projection estimates and uncertainties were reported
as proportional values between 0 and 1, we converted these values to
percentages ranging from 0 to 100.

Among the initial pool of 79 studies, eight studies were
identified as containing quantitative data that could be extracted
and compared in our analysis. As such, due to the low number of
studies included, we consider this analysis to be exploratory in
nature. For each study, we calculated Hedges’ g effect sizes and
variance for all individual scenarios/trajectories (39 scenarios in total)
(Supplementary Data 3). The signs of the effect sizes (positive or
negative) were adjusted to align with the effect direction reported
by the individual studies. In this adjustment, a negative effect size
denotes a negative ecological response, while a positive effect size
indicates a positive ecological response (Supplementary Methods).
Hedges’ g quantifies the difference between the means of two
groups divided by the pooled standard deviations and was calculated
as follows:

g = XP � XB

� �
×

J
s:d:pooled

ð1Þ

where XP and XB are the estimate of end-of-century projections and
baseline data, respectively. J corrects for bias attributed to different
sample sizes by differentially weighting studies as follows:

J = 1� 3
4× NP +NB � 2
� �� 1

� �

 !

ð2Þ

Where NP and NB are the number of models used for projections and
baselines.

The s.d.pooled was calculated as follows:

s:d:pooled =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP�1ð Þ× s:d:Pð Þ2 + NB�1ð Þ× s:d:Bð Þ2

ðNP +NB�2Þ

� �s

ð3Þ

Variance for each scenario was calculated as:

Vg =
NP +NB

NP ×NB

� �
+

g2

2 × NP +NB

� �

 ! !

ð4Þ

All calculations were computed using themetafor package (v. 4.2-
0) in R (v. 4.3.0)194.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data supporting Figs. 1–5 are available in the Source Data
file. Supplementary Data Files 1–3 provide a summary of all other data
generated by this study, and the complete database is deposited in
Dryad (https://doi.org/10.5061/dryad.4f4qrfjkp)195. Source data are
provided with this paper.
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Code availability
The R script needed to produce the analysis has been deposited in
Dryad (https://doi.org/10.5061/dryad.4f4qrfjkp)195.
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