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Cross-layer transmission realized by
light-emitting memristor for constructing
ultra-deep neural network with transfer
learning ability

ZhenjiaChen 1,2, ZhenyuanLin1,2, Ji Yang3,CongChen1,2, Di Liu1,2, LiutingShan1,2,
Yuanyuan Hu 4, Tailiang Guo1,2 & Huipeng Chen 1,2

Deep neural networks have revolutionized several domains, including auton-
omous driving, cancer detection, and drug design, and are the foundation for
massive artificial intelligence models. However, hardware neural network
reports still mainly focus on shallow networks (2 to 5 layers). Implementing
deep neural networks in hardware is challenging due to the layer-by-layer
structure, resulting in long training times, signal interference, and low accu-
racy due to gradient explosion/vanishing. Here, we utilize negative ultraviolet
photoconductive light-emitting memristors with intrinsic parallelism and
hardware-software co-design to achieve electrical information’s optical cross-
layer transmission. We propose a hybrid ultra-deep photoelectric neural net-
work and an ultra-deep super-resolution reconstruction neural network using
light-emittingmemristors and cross-layer block, expanding the networks to 54
and 135 layers, respectively. Further, two networks enable transfer learning,
approaching or surpassing software-designed networks in multi-dataset
recognition and high-resolution restoration tasks. These proposed strategies
show great potential for high-precision multifunctional hardware neural net-
works and edge artificial intelligence.

Deep neural networks (DNNs) possess the capability to represent
more complex nonlinear problems than shallow neural networks,
and their distributed data learning method is more effective1–3. The
development of DNNs has greatly advanced the breakthroughs in
autonomous driving4, cancer detection5, drug design6, and they
serve as the foundation formassiveAImodels likeChatGPT7, PaLM8,
PanguLM9. These advancements are largely attributed to the con-
tinuous improvement in computational power, network scale, and
available data, which enables the implementation of DNNs with
more layers and neurons. However, the execution of DNN models

demands substantial computational resources. Currently, main-
stream methods involve the use of high-end GPUs, accelerators, or
cloud computing, which incur high costs and latency and severely
limits the application of DNNs in edge AI scenarios, autonomous
driving and robotics10.

Within this background, neuromorphic devices have been inten-
sively studied in recent years, aiming for implementing hardware
neural networks with low power consumption and high speed11–16.
Nonetheless, the current efforts havemainly focusedonshallowneural
networks with a few layers (typically 2 to 5 layers)17–21. Meanwhile,
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achieving high accuracy in multifunctional DNNs using the reported
devices and hardware network structures remains huge challenging.
The main reason is that the majority of networks rely on back-
propagation (BP) for weight updates22–25, yet the layer-by-layer struc-
ture leads to gradient vanishing (exploding), making it difficult to
effectively train the network26–29. Although the most advanced neuro-
morphic chips have attempted to construct DNNs with cross-layer
transmission, they still rely on repeated reading of digital memory and
DAC/ADC to achieve parallel output of results30–32. This greatly limits
the throughput of data, as these works construct hardware neural
networks through all-electric memristors and traditional software-
designed structure instead of designing neural networks based on
intrinsic parallel devices. Another issue is that, neuromorphic devices
require physical processes for weight modulation33,34, and more layers
and synaptic devices will inevitably increase the training time of DNNs.
Therefore, to overcome the limitations of current work in terms of
computation and training speed and achieve efficient and versatile
hardware DNNs, the key lies in designing innovative fast-modulating
intrinsic parallel synapses and building cross-layermodules and neural
networks through hardware-software co-design.

Here, a strategy utilizing innovative dual-output N-LEM to con-
struct cross-layer block (ClBlock) was proposed to achieve a hybrid
ultra-deep photoelectric neural network (UPENN) and an ultra-deep
super-resolution reconstruction neural network (USRNN) with
transfer learning ability. The N-LEM reducing the reset time of a
single device after 50 enhanced pulses to less than 3.52 % of natural
decay time, which can effectively accelerate the training of DNNs.
Furthermore, the N-LEM array and hardware-software co-design were
employed to achieve the equivalent cross-layer transmission of
electrical information using optical signals, which was utilized in the
construction of the ClBlock. Based on optical cross-layer transmis-
sion strategy, the UPENN and USRNN effectively prevented gradient
vanishing (exploding), extended DNN to 54 and 134 layers, and
shown strong transfer learning ability. The N-LEM and optical cross-
layer transmission strategy successfully filled the gap in the con-
struction of efficient, accurate, high-robust and low-power DNN,
providing a new scheme for high-precision multifunctional hardware
neural network and edge AI.

Result
Schematic diagram of N-LEM and cross-layer transmission
structure in ultra-deep neural networks
The complex structure of human brain empowers individuals with
strong learning and reasoning abilities, allowing them to expand
upon acquired knowledge and engage in logical thinking across
diverse fields35,36. To achieve a more human-like behavior in artificial
neural networks, it is necessary to increase layers and neurons in the
networks, thereby enhancing their transfer learning ability. Figure 1a
illustrates a schematic diagram of pre-learning method and cross-
regional hierarchical structure in biological brain37–40. The artificial
neural network realized by imitating this structure shows great
ability after extensive basic learning (pre-learning) and achieves high
accuracy in untrained tasks, which is very similar to human learning
ability.

In previous all-electronic hardware neural network implementa-
tions, the use of DAC/ADC and memory is necessary for cross-layer
signal transmission due to the negative effects of high-frequency
modulation and parasitics on signal quality30. All-electronic systems
typically use ADCs to convert computed synaptic currents into digital
signals for storage, and DACs are used to read these digital signals and
convert them into corresponding voltage signals in layers requiring
access to computed results17,23. This process consumes additional
computational resources and limits the speed improvement of hard-
ware neural networks as digital signals have lower throughput than
analog signals. On the other hand, photonic neural networks

effectively address the issues ofhigh-frequency interference and signal
parallelization10,41. Optical signals are immune to electrical signal
interference, and the propagation of light beams between layers will
not cross talk with each other. This has enabled previous reports to
achieve end-to-end classification times equivalent to a single clock
cycle of state-of-the-art digital platforms42. However, photonic neural
networks face challenges in being compatible with CMOS technology,
and the densefiber layout occupies a large area. Furthermore, once the
hardware network is constructed, changing weights becomes extre-
mely costly as the weights are typically expressed using transmittance,
which is fixed and unchangeable. Furthermore, despite some efforts
have proposed artificial luminescent synapses, these devices only
employed one output (optical or electrical signal) for transmission in
the neural network, failing to propose effective strategies to leverage
the dual-output potential of devices and achieve powerful
networks13,34,43. Hence, a strategy utilizing dual-output characteristics
of N-LEM to construct cross-layer transmission block (ClBlock) was
proposed to achieve an ultra-deep photoelectric neural network
(UPENN) and ultra-deep super-resolution reconstruction neural net-
work (USRNN) with transfer learning ability (Fig. 1b), effectively com-
bining the synaptic tunability and integration advantages of hardware
electronic neural networks with the interference immunity and paral-
lelization advantages of photonic neural networks. The UPENN and
USRNN employ the optical output of N-LEM for ClBlock, effectively
avoiding signal interference and leveraging the advantages of one-to-
many transmission34,43, thus alleviating the issue of gradient vanishing
(exploding) in deep neural networks.

Figure 1c shows the structure diagram of N-LEM with ultraviolet
suppression and dual-output characteristics. The device is capable of
generating a photogenerated electric field at the interface of IDTBT/
PVP/QDs under UV stimulation, and effectively resetting the synaptic
weight. Figure 1d is the schematic diagram of the UV negative photo-
conductive effect and parallel equivalent output of the device. The
corresponding UV-visible absorption spectrum of the materials is
displayed in Figure. S1. Figure. S2 presents the emission spectrum of
the device.

Characteristics of N-LEM with photoelectric modulation and
dual output
In Fig. 2a, the output current characteristics of device is observed by
three consecutive positive voltage scans (0 V-6 V-0 V) under dark
conditions. The presence of the ionic relaxation effect results in a
counterclockwise hysteresis in the transfer curve. Additionally, as the
number of scans increases, both the conductance and maximum
brightness (as shown in the inset of Fig. 2a) continuously increase,
which indicates the potential ability of N-LEM as a synaptic device. The
voltage-induced synaptic characteristics are primarily associated with
hole trapping in the PVP layer, whichmodifies the device conductance
and facilitates hole injection and composite luminescence (Fig. 2b).
This process has been previously reported in our work13, and we have
presented a schematic diagram and provided a detailed explanation of
this process in Figure. S3. 10, 30 and 50 continuous electric pulses
(5 V, 30ms) were applied to obtain continuous postsynaptic currents,
and photodetector and oscilloscope are used to record the post-
synaptic brightness of the device (Figure. S4 is the schematic diagram
of the test process). Figure 2c illustrates the typical excitatory post-
synaptic current (EPSC) and corresponding excitatory postsynaptic
brightness (EPSB) generated by 10 voltage pulses. The synaptic device
demonstrates excellent synaptic properties, with a strong correlation
observed between the light output signal and the electrical signal. The
nonlinear (NL) weight updates of the synaptic devicewere determined
by fitting the EPSC and EPSB with the pulses (Fig. 2d), in which yields
NL values of 0.20 for electricity and 0.27 for light. The PEARSON cor-
relation coefficient between the two signals reached 0.999, demon-
strating the feasibility of using the device for the transmission of the
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Fig. 1 | Schematic diagram of UPENN and USRNN with transfer learning ability
and the structural diagram of N-LEM with photoelectric equivalent transmis-
sion and UV suppression. a A schematic diagram of pre-learning method and
cross-regional hierarchical structure in biological brain. After pre-learning,
the brain can process the unlearned content. b Schematic diagram of neural

network for photoelectric parallel transmission with cross-layer transmission
structure. c Structure diagram of N-LEM with negative UV photoconductive
response and parallel output. d Schematic diagram of photoelectric
equivalent transmission and UV negative photoconductive phenomenon
of N-LEM.
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same information by both light and electricity (Figure. S5). Addition-
ally, the multi-conductance distribution of the device was examined
under different pulse conditions (n = 10, n = 30, and n = 50), as shown
in Fig. 2e, with the corresponding EPSB displayed in Figure. S6.
Moreover, with continuous pulse stimulation, the gain of EPSC (the
ratio of the peak value AN of the last pulse to the first peak value A1)
gradually increased from 1.38 to 2.40, while the corresponding gain of
EPSB increased from 1.57 to 3.17 (Fig. 2f).

Paired-pulse facilitation (PPF) is a commonly observed phe-
nomenon in short-term synaptic plasticity. To evaluate this effect in
our device, two consecutive electrical pulses at varying inter-pulse
intervals (ΔT) were applied, and the PPF index was calculated using
the formula PPF index = (A2-A1)/A1, as depicted in Fig. 2g. Previous
studies reported the breakdown of light-emitting memristors when a
large reverse voltage was applied to suppress synaptic weights34,43.
The N-LEM proposed in this work can realize weight suppression by
using photo-generated electric field and avoid reverse breakdown, as
shown in Fig. 2h. Figure 2f illustrates the multi-conductance state
distribution of our device under 15 consecutive cyclic voltage scans,
while Figure. S7 displays the conductance enhancement and sup-
pression curves obtained by applying continuous electrical pulse
stimulation and UV stimulation. The device shows excellent distin-
guishable conductance changes and is suitable for constructing
neural networks.

Mechanism of negative UV photoconductance effect in N-LEM
To investigate the negative UV photoconductivity mechanism of the
device, 10 devices are fabricated with different structures (Supple-
mentary Table 1). Figure. S8 displays the current changes of 9 control
structures during the process of 50 electrical pulsemodulations with
or without UV light exposure for 3 s, followed by continuous elec-
trical pulse stimulation, electrical pulses and UV light are applied to
all devices under identical conditions. The results reveal that only the
device with the IDBT/PVP/QDs(ZnO) exhibited significant negative
UV photoconductivity. This effect is attributed to the presence of a
built-in electric field (Ein) generated by photogenerated electrons
and holes. As depicted in Fig. 3a, a portion of the photogenerated
electrons recombine with the accumulated holes at the interface,
leading to a reduction in device conductivity. Moreover, PVP cap-
tured a large number of holes (electrons) at the interface of
IDTBT(QDs) under the action of electric field, which led to the
accumulation of photogenerated electrons (holes). Consequently, a
built-in electric field Ein, opposite to the Eout, is formed at the inter-
faces of IDTBT/PVP and PVP/QDs. The magnitude of Ein gradually
increases with prolonged illumination until it reaches saturation. This
phenomenon further hinders the trapping of holes and their migra-
tion across PVP into the luminescent layer. To verify this, the physical
field coupling of COMSOL Multiphysics was employed to simulate
the generation of electric field.

Fig. 2 | Performance characterization of N-LEM. a I-V characteristics of N-LEM
measured in continuous double-sweep model. b Charge trapping process inside
the device during electrical pulse stimulation. c Current signal and optical signal
under 10 continuous voltage pulses. d NL fitting of electrical and optical signals of
10pulses. (e) Conductivity changes of devices causedby continuous electricpulses.

f Gain of EPSC and EPSB under different pulse numbers. g Schematic diagram of
PPF exponential fitting curve of device. h UV irradiation leads to current and light
intensity suppression in devices (4V, 30ms). iCurrent variation of equipment in 15
consecutive I-V scans.
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Figure 3b and e illustrate the UV suppression principle of the
device in the initial state andunder illumination, respectively. Figure 3c
and d show the distribution of electrons and holes in the initial state,
while Fig. 3f and g display the distribution of electrons and holes in the
device under UV irradiation. In the initial state, the electron con-
centration at the interfaceof PVK:IDTBT/PVP is approximately 10−15/m2.
Under illumination, the photogenerated electrons at the interface are
attracted and accumulated by the holes trapped in PVP, resulting in an
increase in the electron concentration to around 1015 /m3

, then forming
an electric field Ein at the interface with the holes in PVP. The presence
of Ein causes the holes near the PVP layer in IDTBT to repel towards the

anode, preventing their movement towards the luminous layer. Simi-
larly, the Ein generated at the interface between PVP and QDs can be
explained in the same manner, considering that the QDs layer can be
considered as N-typematerial due to the injection of a large number of
electrons by ZnO, and PVP can also capture electrons. The arrows at
the interface in Fig. 3f and g represent the direction of Ein at the
interface, as simulated by COMSOL Multiphysics, which is consistent
with Fig. 3a. It should be noted that under a large forward voltage,
electrons and holes in the QDs layer recombine to emit light, and the
Ein is mainly produced at the IDTBT/PVP interface. The distribution of
the electric field generated by UV illumination from simulation is

Fig. 3 | Mechanism and simulation of negative UV photoconductance effect.
a Formation and saturation process of built-in electric field in devices caused byUV
light. b Device model and charge distribution in initial state. c Software simulation
diagram of electronic distribution of devices in the dark. d Software simulation
diagram of electronic distribution of devices in the dark. e Device model, charge

distribution and built-in electric field direction under UV irradiation. f Software
simulationdiagramof electrondistribution andelectricfielddirectionof thedevice
under UV light. g Software simulation diagram of holes distribution and electric
field direction of the device under UV light.
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shown in Figure. S9. Additionally, under illumination, IDTBT generates
a significant number of electron-hole pairs. Since the majority carriers
in IDTBT are holes, the hole concentration remains relatively
unchanged, while the electron concentration increases. According to
the Fermi-Dirac distribution function, the Fermi energy level of
materials will rise, resulting in energy band distortion and the increase
of potential barrier between IDTBT and PVP, hindering the transmis-
sion of holes, as shown in Figure. S10. Furthermore, an organic field
effect transistor (OTFTs) is fabricated with the structure shown in
Figure. S11 to confirm the generation of an electric field by negative UV
photoconductance of the device. And the direction of photo-induced
electric field is demonstrated in detail in Figure. S12 to Figure. S14 and
Supplementary Note 1. These experiments fully explain the reason
behind the negative UV photoconductance of our memristor.

By utilizing the negative UV photoconductance effect, the time
required for device reset can be effectively shortened. As depicted in
Figure. S15, the first pulse of the second cycle only attenuates by 63.06
% after a natural attenuation of 71.6 s when 50 consecutive electric
pulses are applied. However, after 2.52 s of UV irradiation with an
intensity of 70mW/cm2, the weight of the device is reduced by 100 %
(Figure. S16) and time cost is reduced to below 3.52 %. Furthermore, in
Figures. S17 to S19, we demonstrate the repeatability of this reset
operation, the reset time with different pulse settings, and the reset
effect under different optical powers within a fixed duration. This
offers an efficient method for weight resetting in the training of dual-
output memristors in neural networks.

Cross-layer transmission block based on N-LEM and hardware-
software co-design
The dual outputs of N-LEM exhibit strong correlation, which is extre-
mely suitable for realizing cross-layer transmission of equivalent
information without other units. A hardware-software co-design
approach is used to construct two fully connected networks (FCNs)
that share an input layer and a hidden layer, which are utilized to
validate the equivalent and cross-layer transmission capabilities of our
device for optical signals. The network structure is depicted in Fig. 4a,
where the output information from hidden layer 1 needs to be trans-
mitted to hidden layer 2 via synapses.Hidden layer 2 of FCN-1 and FCN-
2 respectively receive the post-synaptic current and post-synaptic
brightness from hidden layer 1. The detailed circuit structure is illu-
strated in Fig. 4b. In this case, N-LEMs and photodiodes are designed
for weight expression and cross-layer signal reception. Sinceweight of
a singlememristor canonly generate a positive value, the conductance
difference between twomemristors is utilized to represent one weight
of FCN. FCN-1 includes 50N-LEMs to represent 25weights, while FCN-2
is equipped with 50 photodiodes to receive optical signals corre-
spondingly. The current and brightness of each device are measured
and adjusted to achieve optimal weight printing. The electrical
potential signal generated by the photodiode array is directly pro-
portional to the synaptic current in FCN-1 and is fed into the final layer
after analog-to-digital conversion (ADC). All the synapses in the system
except between the hidden layers 1 and 2 are implemented in FPGA
(represented by the yellow synapse in Fig. 4b). The synaptic connec-
tion between hidden layer 1 and hidden layer 2 is established using a
customized PCB circuit and N-LEM array. The output of the FPGA is
converted into the input signal of the PCB circuit using a digital-to-
analog converter (DAC), and the analog signal from the PCB circuit is
input into the FPGA through an ADC for final identification.

Limited by the conductance state of the discontinuous hardware
synapse device, the neural network designed by software adds weight
restriction, which divides the positive and negative values of the
weight between the hidden layers 1 and 2 of the neural network into 15
states, accommodating the conductance in the hardware circuit17.
Furthermore, since FCNhas a limited number of neurons in the hidden
layer, namely 5, 5, and 20 neurons respectively, this network is first

employed for different classification tasks in software to ensure the
accuracy of the network. The number of training graphs of MNIST
dataset is 5000 and the number of test graphs is 1000. Figure 4c dis-
plays the PCB hardware diagram of synaptic connection between
hidden layers in FCN-1 and FCN-2, the position of the light-emitting
memristor array and the picture of the array are marked. The array
used for receiving optical signals is identical to the light-emitting
memristor array, except that the devices are replaced with photo-
diodes. As shown in Fig. 4d, when the classification task is two kinds of
classification, the accuracy rate reaches 99 %, and with the increase of
classification number, the accuracy rate drops to 73.48 %. We choose
the network model with four classifications, write the weights of each
epoch into FPGAandN-LEMs (pulses are 1ms and 5 V). Thedistribution
of 25 weights between hidden layers 1 and 2 after training is shown in
Fig. 4e. In the testing phase, FCN-1 achieves a maximum accuracy of
91.6 % while FCN-2 achieves a maximum accuracy of 90.23 %. These
values are close to the ideal accuracyof 94.95% (Fig. 4f). The successful
construction of FCN circuit demonstrates the feasibility of utilizing
optical signals for cross-layer transmission in deep neural networks.
Furthermore, this electro-optical hybrid structure can effectively exert
optical advantages, realize low-energy and high-parallel integration
technology, and break through the physical limitations of traditional
electrical systems10,34.

The UPENN based on cross-layer transmission block
The above results demonstrate that the cross-layer block (ClBlock)
constructed by N-LEM is reliable. Furthermore, the existing Res-net
model has been modified as the ultra-deep photoelectric neural net-
work (UPENN) based on the cross-layer transmission module, with
adjustmentsmade to the signal reception layers, as well as the number
and positions of cross-layer transmission modules to ensure compat-
ibility with hardware implementation. TheUPENN is developedwith 53
convolution layers (including 16 cross-layer transmission modules)
and a fully connected layer (Fig. 5a and Figure. S20). In addition, a
common neural network called Contrast Net is constructed, which
does not incorporate cross-layer transmission but has the same other
network parameters as UPENN. (Figure. S20 to Figure. S23 show the
structures of these two networks in detail).

To elucidate the role of cross-layer transmission in the construc-
tion of UPENN, the gradient change in the process of backpropagation
of the two networks is discussed in Supplementary Note 2. Moreover,
two network models are constructed for the purpose of comparison.
The gradient of each layer in the UPENN and Contrast Net is analyzed
using supercomputer. The gradient changes from deep to shallow in
the first convolution layer of the ClBlocks is emphasized in stage 1 and
stage 4 of both networks. (Figure. S21 and S23). The violin diagram in
Fig. 5b, derived from the gradient data selected from UPENN, shows
changes in the gradient during the internal transmission process of
stage 4 and stage 1. Despite the gradient propagating through
numerous layers, as illustrated in Fig. 5b, the average gradient μ still
exhibits perceptible non-exponential changes, indicating that the
shallow layer weights can be updated through training in UPENN. On
the contrary, average μ and variance σ of the gradient in Contrast Net
decrease by a factor of 10 during the internal transmission process of
stage 4 (Fig. 5c), and after the propagation of multiple layers, the
average μ and variance σ of the gradient in stage 1 converge to
approximately 10−8. Consequently, the gradient of the deep layer
diminishes significantly when it is propagated to shallow layers,
resulting in ineffective training and low accuracy. The above analysis
demonstrates the effectiveness of cross-layer optical transmission in
addressing the issue of gradient vanishing (exploding) in DNNs.

Transfer learning and multi-task recognition based on UPENN
Different from shallow networks that can only perform single task, the
ultra-deep photoelectric neural network (UPENN) is equipped with
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substantial neurons and synapses, and the cross-layer transmission
modules enable it to be effectively trained, thus possessing transfer
learning ability similar to the human brain. To demonstrate this
advantage, a large number of datasets from ImageNet are used to pre-
learnUPENN andContrast Net. This enables them to effectively extract
and recognize image features, similar to the innate capability of the
human brain. Subsequently, the accuracy of the networks is evaluated
using untrained 8 datasets. The process of pre-learning and re-learning
is depicted in Fig. 5a. The number of types and recognition accuracy of
each dataset can be found in Supplementary Table 2, and hyperlinks
are provided to access the datasets. This validation of transfer learning

ability is conducted by directly using the test sets of 8 datasets without
any additional training.

Figures 5d to 5f depict the featuremaps obtained from twoneural
networks using X-ray chest images of COVID-19 patients for pneumo-
nia diagnosis. The original images labeled as negative retain rich fea-
tures after passing through different convolutional kernels in UPENN
network during the propagation from shallow to deep layers (from
stage 1 to stage 4), while the feature maps in Contrast Net tend to be
consistent after convolution (Contrast Net fails to obtain effective
convolutional kernels due to gradient vanishing). To demonstrate the
feature extraction capabilities of the two networks more intuitively,
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the samephoto in stage 1 and stage2of twonetworks. eThe featuremaps extracted

from the same photo in stage 3 of two networks, the content of Contrast Net has
lostmost of its features. fCharacteristic Diagram in stage 4 of TwoNetworks. g The
recognition accuracy of UPENN and Contrast Net on the unlearned content after
pre-learning. h The recognition accuracy of UPENN and Contrast Net after re-
learning.
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twoX-ray images labeled as negative and positive are input into the two
networks, and the feature maps are obtained at the same network
positions (Figure S24 and S25). The similarity of the feature maps
obtained from the same network for both images is analyzed using the
structural similarity index (SSIM) to determine whether the network
can effectively distinguish between negative and positive. The SSIM for
UPENN and Contrast Net are 0.052 and 0.925, respectively (closer to 1
indicates higher similarity), indicating that the features obtained after
convolution in UPENN are extremely different, which helps UPENN to
effectively distinguish between negative and positive cases. On the
other hand, the feature maps obtained by Contrast Net are highly
similar, suggesting that this network is highly likely to classify the two
conditions into the same category. Therefore, Contrast Net has a very
low accuracy (close to the minimum value of 50 % for binary classifi-
cation tasks). The accuracy and average performance of both networks
in the pre-learning phase are shown in Fig. 5g. TheContrast Net exhibits
a decrease in accuracy as the types in dataset increases, with an average
accuracy of 21.36 %. In contrast, the UPENN achieves an average accu-
racy of 86.71 %, which is 305.9 % higher than the Contrast Net.

In addition, the relearning method is used to improve the accu-
racy of UPENN in specific tasks, and to verify whether the Contrast Net
can achieve higher accuracy on specific tasks after targeted training.
During the re-learning, most of the neural networks are frozen,
allowing only adjustments to the weights of the last fully connected
layer and a ClBlock (as shown in Fig. 5a), while the Contrast Net is
allowed to adjust the whole network to achieve higher accuracy. After
relearning, the Contrast Net struggles due to gradient vanishing,
resulting in an average accuracy of only 21.31 %. Conversely, UPENN
achieves an average accuracy of 90.76 %, which is 325.9 % higher than
the Contrast Net (Fig. 5h). Therefore, relearning can effectively
improve the accuracy of UPENN for specific tasks and demonstrate its
practicability. These results confirm the transfer learning ability of
UPENN based on cross-layer transmission and N-LEM. Additionally,
UPENN has not yet reached its layer limit, indicating the potential to
further increase the number of layers and enhance its functionality.

The USRNN based on cross-layer transmission block
During the process of image acquisition, most obtained images suffer
from suboptimal resolution due to factors such as sensor unit density
and optical blurring44,45. Consequently, there is an exigent requirement
for a technology capable of augmenting spatial resolution of images
within the confines of existing hardware capabilities. Super-resolution
restoration entails the generation of high-resolution images from
blurred low-resolution counterparts46,47. Presently, this technology
relies on software-based signal processing methods and necessitates
high-performance GPUs for super-resolution processing, while being
constrained by the throughput and power limitations inherent in tra-
ditional architectures.

Here, we propose an ultra-deep super-resolution reconstruction
neural network (USRNN) constructed using cross-layer block (ClBlock),
thus affirming the versatility of the ClBlock module in building neural
networks with diverse functionalities, and furnishing a viable hardware
implementation for high-speed, low-power super-resolution proces-
sing. In contrast to UPENN, our design features an alternative structure
for the ClBlock module, as illustrated in Fig. 6a, with the constructed
USRNN comprising 133 layers for 2x resolution restoration and 135
layers for 4x resolution restoration. The detailed ClBlock and USRNN
structures are shown in Figure. S26. Following training of the USRNN
for 2x resolution restoration, the majority of the USRNN is immobi-
lized, replacing the Upsamplemodule, and allow only fine-tuning of the
Upsample and final convolution layers to achieve 4x restoration.

The RGB input blocks of low-resolution (LR) images, sized 48*48,
and their corresponding high-resolution (HR) images from the DIV2K
dataset are utilized to showcase the restorative capabilities of the
USRNN48. Furthermore, the hardware-based USRNN, structured with

ClBlock, is compared against existing software-constructed networks,
including VDSR49, SRCNN50, and SRresnet51. A comparison of the peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) of
the Y-channel of multiple models reveals the 2x resolution restoration
effects, asdepicted inFig. 6b. The “bicubic” refers to the image that has
been enlarged through interpolation.

In contrast to alternative methods, the hardware architecture of
USRNN successfully reconstructed details and edges in the high-
resolution (HR) image, surpassing the existing software-based
approaches in both PSNR and SSIM, achieving performances of
28.94 dB and 0.8975, respectively. Moreover, the fine-tuned 4x reso-
lution restoration USRNN demonstrates robust performance, as evi-
denced in Fig. 6c and Fig. 6d, which showcases the effects of 2x and 4x
resolution restoration on the same image. This highlights the excep-
tional pre-learning capabilities of the USRNN based on the ClBlock
architecture, and its potential for further expansion and application in
other super-resolution domains such as X-ray imaging, angiography
analysis, and astronomical observations. Figure 6e displays the com-
parison of PSNR and SSIM obtained by variousmethods for the images
shown in Fig. 6b, while Fig. 6f presents the PSNR performance of
USRNN during 2x and 4x training cycles. Additionally, the magnified
images of Fig. 6b, c, and d are further depicted in magnified form in
Figures. S27–29, allowing for examination of the resolution recon-
struction effects and details.

Finally, the advantages of ultra-deep neural networks based on
ClBlock are summarized in the following aspects: (i) Efficient training:
The device can be reset using UV light, eliminating the reverse
breakdown issue and reducing the reset time of 50 enhance pulses to
less than 3.52 %. (ii) High accuracy cross-layer transmission: The
ClBlock with dual signals is proposed in our devices. Through
hardware-software co-design, the optical cross-layer transmission of
electrical information is successfully verified, achieving recognition
accuracies of 91.66 %(electricity) and 90.23 %(light). (iii) Deeper neural
networks: The proposed UPENN and USRNN demonstrate effective
prevention of gradient vanishing in the network, enabling the expan-
sion of hardware neural networks from the traditional few layers
(typically 2 to 5 layers) to 54 layers and 135 layers. (iv) Excellent transfer
learning ability: Compared to networks without cross-layer transmis-
sion, UPENN exhibits basic recognition ability for unknown tasks after
pre-learning and achieved accuracies of 86.71 % and 90.76 % after pre-
learning and relearning, surpassing traditionalmethodsby 305.9% and
325 % respectively. (v) Software-level performance: The ClBlock-based
USRNN demonstrates software-level performance in super-resolution
restoration, approaching or surpassing the performance of current
software-designed super-resolution restoration networks, achieving a
PSNR of 35.15 dB in 2x resolution reconstruction.

Discussion
In summary, an innovative dual-output N-LEM with negative photo-
conductivity for ultraviolet light has been developed, significantly
reducing the time required for weight suppression. Through software-
hardware co-design, the cross-layer transfer module (ClBlock) of
neural networks has been successfully implemented. Furthermore,
based on ClBlock, two ultra-deep neural networks for multi-task clas-
sification and super-resolution restoration have been constructed,
effectively expanding the depth and alleviating the issue of gradient
vanishing (exploding). The proposed neural networks demonstrate
strong transfer learning capabilities and practicality, with UPENN
achieving 305.9 % and 325.9 % higher accuracy than Contrast Net after
pre-learning and relearning, respectively, while USRNN’s performance
in resolution restoration approaches or even surpasses that of
software-designed networks. Thus, the proposed N-LEM and ClBlock
provide solutions for the challenges of training speed and network
depth in neural networks, offering new possibilities for hardware-
based ultra-deep neural networks and edge AI.
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Fig. 6 | Structure and performance of USRNN. a The network structure diagram
of the USRNN used for super-resolution restoration, capable of achieving 2x or 4x
resolution reconstruction. b The comparison of the 2x resolution reconstruction
effects between the USRNN based on hardware-software co-design and other

software methods within the same image. c and d The demonstration of the
effectiveness of the USRNN for 2x and 4x resolution reconstruction. e The PSNR
and SSIM indices obtained for each image in Fig. 6b. f The performance of the
USRNN for 2x and 4x resolution reconstruction across multiple training cycles.
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Methods
Materials availability
The indium tin oxide (ITO) substrates were obtained from Shenzhen
Huanan Xiangcheng Technology Corp. The red CdSe/ZnS QDs
were obtained from Poly OptoElectronics Co. Ltd. Dissolve
Indacenodithiophene–benzothiadiazole (IDTBT) and Poly(9-vinylcar-
bazole) (PVK) in chlorobenzene at the concentrations of 5mg/mL and
8mg/mL respectively, and mix them according to the volume of 1:1.
ZnO nanoparticles (ZnO NPs) were synthesized by a solution method.
The cross-linked PVP solution was prepared by mixing 150mg of
Poly(4-vinylphenol) (PVP) powder with 15mg of 4,4′-(hexa-
fluoroisopropylidene)-diphthalic anhydride in 1ml of Propylene glycol
monomethyl ether acetate solvent.

Device fabrication
The PEDOT:PSS solution was spin-coated on the ITO substrate after
plasma treatment at a speed of 4000 rpm for 40 s, and then annealed at
120 °C for 10min. The PVK:IDTBT solution was spin-coated on PED-
OT:PSSfilm at 3000 rpm for 40 s, and then annealed at 120 °C for 10min.
The cross-linked PVP solution was spin-coated on PVK:IDTBT film in
nitrogen atmosphere, rotated at 1000 rpm for 5 s and 2000 rpm for 30 s,
then annealed at 120 °C for 2h. The quantum dot solution was spin-
coated at 3000 rpm for 40 s, and then annealed at 60 °C for 10min. The
ZnO solution was spin-coated on the luminescent layer at the speed of
3000 rpm for 40 s, and then annealed at 120 °C for 30min. Finally, 50nm
silver cathode was deposited by vacuum mask to obtain the devices.

Memristor array fabrication
The patterned ITO glass substrate was customized, so that the ITO
electrodes of two adjacent devices were staggered. After the same
steps in the device fabrication, thematerials between two adjacent ITO
electrodes were etched away. Then, the substrate was placed in a
patterned mask, and 50 nm Ag electrode was deposited in vacuum. In
the obtained device array, the anode ITO of the device was in contact
with the anode Ag of the next device. After the arraywaspackaged, the
electrodes were led out through the adapter for testing the hardware
circuit. And according to the position of each light-emitting memris-
tor, the same photodiode circuit was designed on another PCB circuit
for receiving optical signals.

Device characterization
Transient EL measurements of the QLED were detected using a pho-
todetector (EOT Silicon PIN Detector ET-2030) and an oscilloscope
(Keysight DSOX 1202). The brightness and EL spectrum were calcu-
lated from a Src-200 spectral color luminometer. The absorption
spectra of each layer were obtained by using a spectrophotometer
(Shimadzu UV 3600). The electrical characteristics of the synaptic
deviceweremeasured using Keithley B2902A. Using FPGA towrite and
test PCB circuits.

Data availability
Source data are provided with this paper. The data that support the
plots within these paper and other findings of this study are available
from the corresponding authors upon request.

Code availability
The code that supports the theoretical plots within this paper is
available from the corresponding author upon request.
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