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Direct observation of phase transitions in
truncated tetrahedral microparticles under
quasi-2D confinement

David Doan 1,2, John Kulikowski1,2 & X. Wendy Gu 1

Colloidal crystals are used to understand fundamentals of atomic rearrange-
ments in condensed matter and build complex metamaterials with unique
functionalities. Simulations predict a multitude of self-assembled crystal
structures from anisotropic colloids, but these shapes have been challenging
to fabricate. Here, we use two-photon lithography to fabricate Archimedean
truncated tetrahedrons and self-assemble them under quasi-2D confinement.
These particles self-assemble into a hexagonal phase under an in-plane grav-
itational potential. Under additional gravitational potential, the hexagonal
phase transitions into a quasi-diamond two-unit basis. In-situ imaging reveal
this phase transition is initiated by an out-of-plane rotation of a particle at a
crystalline defect and causes a chain reactionof neighboringparticle rotations.
Our results provide a framework of studying different structures from hard-
particle self-assembly and demonstrates the ability to use confinement to
induce unusual phases.

Colloidal particles can self-assemble into ordered crystals with extra-
ordinary nano and mesoscale complexity1 and unique optical, elec-
tronic, andmagnetic properties2,3. These emergent properties depend
on the properties of the constituent particle and the crystal phase of
the final ordered structures. The phase behavior of self-assembled
colloidal structures depend on a variety of factors, such as shape,
surface interactions, and external fields1. Two-dimensional (2D), hard-
particle colloidal systems are of interest because they are entropically
driven, and their final assembly state solely depends on the shape and
packing fraction of the particles. Previous computational4 and
experimental studies have shown interesting crystallization behavior
(from liquid to solid) and crystal structures in 2D systems consisting of
spherical colloids5,6, ellipses7,8, rods and rectangles9–11, squares12,13,
triangles14,15, and hexagons16. Hard or nearly hard spheres are com-
monly observed to form face-centered cubic structures. Complex
three-dimensional (3D) structures such as diamond, space-filling
polyhedral packing, and porous lattices have been formed by using
patchy DNA interactions, shape-dependent entropic forces, or mag-
netic, gravitational, and capillary forces17–22. A wide range of hard-

particle 3D assemblies have been extensively predicted in simulation23,
but are challenging to experimentally achieve and image.

Colloidal crystals are often described as programmable
materials24 but typically form static structures that cannot be reconfi-
gured into different crystals once assembled, or can only be dis-
sembled and re-assembled into the same structure25. The ability to
directly switch between distinct crystal structures is analogous to
solid-solid phase transitions in atomic matter and has previously been
studied in different colloidal self-assembled systems26. Phase transi-
tion kinetics in soft spherical colloids have been previous studied
under electric fields27. Phase transitions that maintain crystal sym-
metry can be induced in DNA-functionalized nanoparticle super-
lattices by inserting additional nanoparticles or DNA linkers28,29. Phase
transitions have also been investigated with hard-particle spherical
colloids30,31. The majority of the studies have been in 2D systems that
require complicated external fields. 3D phase transitions (e.g. from
FCC phase to AuCu phase) have been observed using X-ray
scattering32–34 and confocal techniques35–37. In hard-particle systems,
one strategy is to change the colloidal shape to an anisotropic, or
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higher order polygon, which can result in complex phase behavior
such as crystal-crystal or solid-solid phase transitions. Colloidal
squares13 that were assembled in 2D have shown complex phase
behavior as a function of packing fraction. Superballs38 that have been
assembled in 3D have also shown solid-solid phase transition under
different osmotic pressures. However, these superball assemblies
show similar phase behavior as those found in 2D systems12,13. In
addition to shape change, an external potential, such as confinement
or boundary conditions, can also play a large role in the possible
accessible crystal phases39–42.

In general, these previous hard-particle phase transitions lack
complex phase transformations, such as those in which the “atoms”
change coordination number, or transform between crystal lattice
systems. Further progress in this field of work could lead to metama-
terials with rapidly switchable properties and functional structures.
Elucidating the kinetics of colloidal phase transitions could also pro-
vide understanding of solid-solid phase transitions in atomic solids,
which remain controversial even for elemental materials due to the
challenges of observing dynamic behavior at the atomic scale43,44. The
advantage of these colloidal systems is that they can be imaged at a
spatial and temporal resolution that cannot be achieved in real atomic
systems, even with state-of-the-art experimental tools such as trans-
mission electron microscopy45 or ultrafast X-ray diffraction46–48.

In this work, we assemble lithographed Archimedean truncated
tetrahedrons (ATT) at an interface to achieve quasi-2D confinement.
This strategy takes advantage of the high dependence of shape on the
phase behavior of the final assembled state, in addition to subjecting
the system to a boundary condition that has been previously shown to
induce rich phase behavior in polygons. The Archimedean truncated
tetrahedron was chosen because simulations of truncated tetra-
hedrons in 3D show phase behavior that is highly dependent on the
truncation parameter, t, (see Methods) with crystalline structures
that are analogous to important atomic crystals. For example, ATTs
(t = 2/3), which have four regular hexagonal faces and four regular
triangular faces with all the same edge lengths, are predicted to form
diamond structure at lower packing densities ( ≈0.6), and α-arsenic at
the highest packing density ( ≈ 1)49. Simulations of truncated poly-
hedrons (i.e. cubes, octahedrons) constrained to a 2D plane have been
previously explored41, but truncated tetrahedrons have yet to be stu-
died. ATTs have also been studied in simulation under spherical and
wall confinements40, but their 2D behavior on a surfacewas not further
explored. Although the behavior of these types of polyhedrons are of
interest, the main experimental limitation is the ability to fabricate
such geometries with low dispersity in size and shape.

Results
Hexagonal phase induced at low tilt angles
To overcome the synthetic challenges of forming polyhedral particles
with low dispersity, two-photon lithography is used to fabricate ATT
microparticles with a side length of 3.5μm (Fig. 1a). Approximately
50,000 particles are fabricated with ≤ 5% variation in particle size50.
Other tetrahedral particles, such as regular tetrahedrons (t =0) and
truncated tetrahedrons (t = 7/10), are also easily fabricated using this
method (see Suppl. Fig. 1). After fabrication, the particles are dispersed
in water and deposited in a well plate for assembly. Initially, the par-
ticles randomly sediment on the substrate and aredispersed across the
substrate with low packing density. We observe that the particles are
generally oriented with a hexagonal side facing the substrate, with a
triangular face pointing upward, referred to as the ‘upright’ position.
This is due to the center of gravity of the particle being weighed
towards the hexagonal face.

The substrate is then tilted to apply an in-plane (x/y direction)
gravitational potentialfield. This gravitationalfield leads to an induced
osmotic pressure and density gradient along the direction of tilt. After
several days ( ≈ 144 h), the particles aggregate to one side of the well

plate which increases the local packing density and causes ordered
regions to form.

At a ≈ 5° tilt angle, the ATTs form a hexagonal phase (Fig. 1b). In
this phase, the particles, which are oriented with their hexagonal face
in contact with the substrate, have 6 nearest neighbors. For this geo-
metry to form, three of the triangular faces of each particle are in face-
to-face contact with the hexagonal faces of its neighboring particles as
shown in Fig. 1c. This effectively “locks” the particle into place by
preventing the neighboring particle from moving in the z-direction.
The grain size and rotational order is analyzed using a bond orienta-
tional order parameter that accounts for the 6-fold symmetry of the
assembled structures (see Methods)49. This order parameter is repre-
sented as colors in Fig. 1d. Using this analysis, grains are identified as
particles with the same color and found to be ≈30μm or 30–40 par-
ticles in size. Grains are separated by vacancies (missing particles) and
point defects (disordered particles). The spatial pair distribution
function, g(r), is used to quantify the translational packing order
(Fig. 1e). The g(r) plot shows a first peak at ≈6.6μm followed by a
double peak. This is indicative of a hexagonal phase, which has been
observed in 2D assemblies of spherical colloids on a surface51. The
corresponding Fourier transform shows bright spots in a hexagonal
geometry, which is indicative of a hexagonal phase.

Quasi-diamond phase induced at higher tilt angles
The ATTs are then tilted by an additional ≈5° to an angle of ≈10° and
allowed to assemble over 48 h. This results in a phase that is drastically
different than the previous hexagonal phase. This is reflected in the
optical images as triangular shapes that are arranged with 3 nearest
neighbors. Because of the drastically different particle shape in the
optical microscope, the particle orientations are elucidated by using
confocal imaging at different z-planes (Fig. 2a–c). These images show
alternating triangular and hexagonal faces near the substrate. As we
focus away from the substrate, the triangular faces become larger, and
the hexagonal faces become more triangular (Fig. 2b, c). This
demonstrates that the ATTs form a nearly space-filling structuremade
up of a two-particle unit cell that consists of one ‘upright’ facing ATT
and one ‘upside-down’ facing ATT. This structure, which we refer to as
quasi-diamond, is equivalent to a two-atom basis in diamond cubic
structure. This has been predicted to form from ATTs that self-
assemble under an entropic driving force at packing fractions
above 0.5049.

The bond orientational order parameter is calculated for the
quasi-diamond structure (Fig. 2e). These images are obtained at a focal
plane near the center of the particle which cause the ATTs to appear as
triangular shapes under these imaging conditions. Grains are shown as
regions of alternating colors and are approximately half the size ( ≈ 20
um)of thehexagonalgrains. The spatial pairdistribution function, g(r),
and corresponding Fourier transform show a first peak at ≈4.4 um, a
weaker second peak, and no additional peaks (Fig. 2f). This indicates
the formation of a 3-fold symmetric phase with short range order,
small grains, and a higher density of defects as compared to the hex-
agonal phase. This g(r) and bond orientational order is similar to that
of self-assembled triangular plates that form 3-fold, 2D structures14, as
well as self-assembled, two-photon lithographed regular tetrahedrons
(see Supplementary Fig. 2).

Here, we consider the thermodynamics of self-assembly. For hard
particle systems, this behavior can be examined through the lens of
entropy maximization52. In these systems, self-assembly is dominated
by an entropic driving force due to the gain in free volume when the
particles form an ordered arrangement. Generally, the free volume is
maximized when particles are in face-to-face arrangements53. For the
disordered (right after deposition) to hexagonal phase transition, the
increase in face-to-face area is due to the contact of the three of the
triangular faces of the ATT with the hexagonal faces of its neighboring
particles. The hexagonal to quasi-diamond phase transition results in
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further gains in entropy because the face-to-face contact increases by
> 100%. The free volume change between hexagonal and quasi-
diamond phase can also be computed directly. The total volume of
the system is considered as an x-y box that fits N particles, with a z-
height of one particle unit. Using this as the total volume accessible to
the particles, the hexagonal phase has a maximum packing fraction of
≈64% while the quasi-diamond structure is a nearly space-filling
structure at ≈99%. Therefore, the relative change in volume density
between hexagonal phase and the quasi-diamond phase is ≈50%. This
indicates that there is a large driving force towards the quasi-diamond
phase from the hexagonal phase. Other truncated tetrahedrons (t = 7/
10) formeven smaller quasi-diamond grains because of a lower change
in free volume and lower driving force for self-assembly (see Supple-
mentary Fig. 3).

Free energy single-cell occupancy model
An approximate single-cell occupancy model is used to estimate free
energy (F) as a function of packing fraction (ϕ) (Fig. 3a)54,55. This model
is one of the severalmethods to analytically calculate the free energy of
a hard-particle systemandhas only beenused tomodel hard spheres in
different phases56–60. Other similar cell methods have also been devel-
oped to calculate the densest packing states of polygons, and subse-
quently, the free volume of certain packing structures61,62. Cell models
use thephaseof interest (for spheres, face-centered cubic or hexagonal
closed-packed) at the highest packing fraction and partitions each
particle center inside Voronoi polyhedrons, known as cells. For spheres
packed in a face-centered cubic or hexagonal closed-packed phase, the
corresponding Voronoi polyhedron would be a dodecahedron. This
model assumes that each particle is constrained within its own cell and
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Fig. 1 | Hexagonal phase. a SEM image and 3D model of ATT (isometric, top, and
bottom view). Scale bar is 5μm. b Optical image of self-assembled hexagonal
structure. Scale bar is 20μm. c 3Dmodel of self-assembled structure (isometric and
top view). d Bond orientational order parameter of the particles represented as

different colors. Particles with similar colors have similar rotational orientation.
Particles with opposite colors on the color wheel are rotated by 30°. Scale bar is
20μm. e Pair distribution function, g(r) and Fourier transformof image b. Scale bar
is 0.5μm−1. Color bar corresponds to 8-bit grayscale.
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can only access the volume associated with its own cell. The Voronoi
cell can then be scaled equally in 3D to decrease the packing fraction,
and effectively increase the volume accessible to each particle. The
total accessible volume of each cell can then be used to estimate the
free energy of the system as a function of packing fraction, ϕ:

FðϕÞ=ðNkBTÞ≈ ln V freeðϕÞ
� � ð1Þ

The single-cell occupancy model is most accurate at higher
packing fractions when the assumptions aremore likely to be satisfied.
For lower packing fractions, this error is associated with a “communal

entropy”59. For our system, which consists of polyhedron shapes and is
quasi-2D, a slightly different procedure is taken. Instead of con-
structing Voronoi cells and dilating in 3D, self-similar cells are con-
structed around each particle from their phase (either hexagonal or
quasi-diamond) and then dilated in two dimensions (Fig. 3a and Sup-
plementary Fig. 4). That is, the single-cell is constructed to be in a
shape of anATT, and then stretched only in the x-ydimension. Because
of the shape of the cell, the volume of the single cell, V cell, can be
calculated analytically for different dilated states. The accessible free
volume, V free, is then taken as V cell � VATT, where V cell varies as a
function of the dilation and VATT is constant.
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Fig. 2 | Quasi-diamond phase. a 3Dmodel of self-assembled structure. The planes
that correspond to images b and c aremarked.b, cConfocal images and 2Dmodels
of the same quasi-diamond structure at different focal planes. b is focused at the
substrate (gray) and c is focused at the middle of the particle. The peach outline
shows the analogous geometry between the model and the confocal images. Scale
bars are 5 μm. d Confocal image of a large region of the sample. Scale bar is 20μm.

e The bond orientational order parameter of the particles is represented as dif-
ferent colors. Adjacent particles with opposite colors on the color wheel indicate
the quasi-diamond structure (e.g., blue and brown). Scale bar is 20μm. f Pair dis-
tribution function, g(r), and Fourier transform of image d. Scale bar is 0.5 μm−1.
Color bar corresponds to 8-bit grayscale.
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We find that the quasi-diamond phase has a slightly lower free
energy than the hexagonal phase at all packing fractions. However,
this difference becomes larger when packing fraction increases,
especially when it approaches the maximum hexagonal packing
density. As the packing fraction reaches the theoretical maximum
packing fraction of its phase, the free energy approaches infinity. The
quasi-diamond phase is not accessible until there is sufficient energy
to overcome the thermodynamic or kinetic barrier of the transi-
tion from the hexagonal to the quasi-diamond phase. We attribute
this barrier to the effects of the quasi-2D confinement, which pre-
vents particle out-of-plane rotation. A thermodynamic barrier exists
due to the gravitational potential at low tilt angles. A hexagonal to
quasi-diamond phase transition would require 50% of the particles to
flip froman ‘upright’ orientation to an ‘upside-down’ orientation. The
flipping of a particle corresponds to an increase in gravitational
potential energy. The gravitational energy required to flip a particle
upside down is calculated as ΔE =mgΔh, where Δh is the change in
height of the center of gravity of the particle in its “upright” (hex-
agonal face is adjacent to the substrate) vs “upside down” (triangular
face is adjacent to the substrate) position. The energy needed to flip
the particles is ≈10 kBT , which suggests that it is very unlikely that out
of plane rotation can occur spontaneously at room temperature
without external energy input (see Suppl. Movie 1). In addition, a
kinetic barrier also exists due to the free volume required to mediate

the rotation of a particle out-of-plane from its locked hexagonal
phase to the quasi-diamond phase.

We can test the hypothesis that the phase transition energy bar-
rier is related to an out-of-plane particle rotation by using hardparticle
Monte Carlo simulations (Fig. 3b, c and Suppl. Movie 2). ATTs are first
confined to a 2D plane such that the particles cannot rotate out-of-
plane and canonlymove in the x-ydirections. Theparticles are laterally
compressed until they approach the maximum theoretical packing
fraction. This leads to the formation of a hexagonal structure, with
some defects (Fig. 3b) as seen in experiments. This 2D constraint is
then removed, which allowsout-of-plane rotation. Once this constraint
is removed, the particles almost immediately form the quasi-diamond
phase under continued lateral compression (Fig. 3c).

In-situ optical microscopy reveals the kinetics of phase transition.
First, a hexagonal sample is assembled through a small tilt angle ( ≈ 5°)
as previously described. This sample is then tilted by an additional
≈5–10° and moved to the microscope stage. By the time that imaging
begins ( ≈ 10min after tilting to ≈5–10°), many hexagonal regions have
already transformed to quasi-diamond. However, the transition of the
remaining hexagonal phase can be observed.

Phase transitions are initiated by defects
These in-situ experiments show that the phase transition is mediated
by defects and that these defects allow for out-of-plane particle
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rotation. Figure 4 shows specific instances of these defect induced
phase transitions (see Supplementary Movies 3 and 4). Figure 4a–h
show a vacancy mediated phase transition. Initially, a hexagonal grain
is surrounded by the quasi-diamondphasewith a vacancy present near
the phase boundary. The hexagonal particle adjacent to the vacancy
rotates out-of-plane and is ‘upside-down’, in which a triangular face is
adjacent to the substrate (Fig. 4i). This leads to a chain reaction in
which the next particle rotates and transforms, and then the next
particle, until the hexagonal phase has fully transformed into a quasi-
diamondphase. Thepresenceof the vacancy seems to facilitate anout-
of-plane rotation of the ATT particle by providing the free volume to
accommodate an out-of-plane rotation.

Direct observation of a phase transition is alsoobserved at an anti-
phase boundary between two hexagonal grains which have particles
oriented in different directions (Fig. 4j–m). The two rows above (green
hexagonal grain) and the row below (peach hexagonal grain) the anti-
grain boundary (army-greendashed line) undergo aphase transition to
the quasi-diamond phase. The transition occurs rapidly for half the
particles, while the remaining particles in these rows begin to rotate
into a transition state (begin flipping out-of-plane, Fig. 4k). This is
followed by the transition of the remaining particles at the anti-phase
boundary into the quasi-diamond phase (Fig. 4l) and further growth of
the quasi-diamond phase until two smaller, isolated hexagonal grains
remain (Fig. 4m).

In Fig. 4, the propagation of the phase transformations is per-
pendicular to the tilt direction with the transition proceeding in a
linear direction. However, this is not always the case. Supplementary
Movie 5 shows a randomly proceeding phase transition for ATTs.
Multiple particle flipping events occur and propagate inward, trans-
forming the structure from a hexagonal to quasi-diamond phase. This
suggests that while a mechanical driving force is necessary to induce
the phase transition, entropy does in fact play a role. Likely, the phase
transition is driven by a combination of mechanical and thermo-
dynamic driving forces.

Without these defects, the hexagonal to quasi-diamond phase
transitions is kinetically improbable: an ATT particle would need to
escape from its “locked” hexagonal configuration, and then rotate out-
of-plane. This kinetic pathway is unlikely, given that the “locked”
hexagonal configuration geometrically prevents out-of-plane motion.
However, once a particle successfully rotates into a quasi-diamond
phase, the local packing density of the particles around it is lowered
because the quasi-diamond phase is ≈50% denser than the hexagonal
phase. This allows neighboring particles to also have more free space
to rotate out-of-plane and continue propagating the phase transition.
This type of defect mediated transition is also seen in the simulations,
right after the removal of the 2D constraint (see Supplementary
Movie 2). By analyzing a hexagonal to quasi-diamond phase transition,
thephase transition ratewas found to followAvrami’s solid-solid phase
kinetic theory in 2D63,64 (see Supplementary Fig. 5).

In summary, we have assembled Archimedean truncated tetra-
hedrons under quasi-2D confinement and shown a hexagonal phase
that has not been previously reported in literature for this shape. We
directly imaged aphase transition fromahexagonal phase,which has 6
nearest neighbors, into a quasi-diamond phase, which has 3 nearest
neighbors. We determined the thermodynamics and kinetic mechan-
ism of this phase transition using analytical and computational meth-
ods. Other 3D polyhedral geometries can be easily fabricated using 3D
nanoprinting methods, such as two-photon lithography, to access a
huge phase space of additional crystal phases, especially when under
quasi-2D confinement.While the size of the current lattices is too large
for optical frequency photonic crystals or metamaterials, two-photon
lithographed structures can be shrunk up to ≈20% of their original size
to form sub-micron scale particles through pyrolysis65. In addition,
chemistries exist for directly printing high dielectric materials such as
silica, which is also necessary for optical applications66. Magnetic,

plasmonic and luminescent nanoparticles can be incorporated into
photoresists to impart further functionality and enable self-assembly
under external stimuli. This could be used to generate programmable
matter in which dynamic phase transitions are used to switch between
structures and properties.

Methods
Fabrication of tetrahedrons and truncated tetrahedrons
Microscale tetrahedrons, truncated tetrahedrons (t = 7/10) and ATTs
(t = 2/3) are fabricated using two-photon lithography on the Nano-
scribe PhotonicGT (Nanoscribe, GmbH). Three-dimensionalmodels of
tetrahedrons and ATTs are generated in Solidworks 2021 and then
exported to STL files. These STL files are then imported into slicing
software (DeScribe 2019, Nanoscribe, GmbH), to control printing
conditions. The particles are printed in 10 × 10 arrays, resulting in a
total of ≈50,000 particles for a single print. IP-Dip resist (Nanoscribe,
GmbH), and a high magnification objective (63× NA 1.4 Zeiss) are used
to fabricate the particles on a quartz coverslip (0.25mm, SPI Supplies).
After fabrication, theparticles aredeveloped in SU-8developer (Kayaki
Advanced Materials) for 10min and then 2-propanol ( > 99.5%, J.T.
Baker) for 1min. Theparticles are placedunder aUV lamp for 30min to
improve surface roughness and cure any remaining surface mono-
mers. The particles are treated with 1 w.t.% Pluronic F127 to stabilize
the particles in solution. The substrate is then placed in a beaker filled
withMilli-Qwater and sonicated for < 30 s to remove theparticles from
the substrate. The solution is then transferred to a centrifuge tube and
centrifuged at ≈7500× g for 20min to aggregate the particles. The
supernatant is removed, and the remaining solution is sonicated for
5–10min to redisperse the particles.

Colloidal assembly
The colloidal solution is deposited into a glass bottom well plate
(Sensoplate, Greiner). The well plate is placed on an orbital shaker
plate (Troemner Talboys, Fisher Scientific) at a setting of 5. This well
plate is placed at an angle ( ≈ 10° for the tetrahedrons and ≈5° for the
truncated tetrahedrons) to allow the particles to aggregate at the edge
of the well plate. The particles sediment and assemble for several days
(3–5 days) before imaging. To induce a phase transition, the particles
are tilted at a higher angle for several days (3–5 days) before imaging.

Microscopy
Bright-field optical images are captured using a Nikon Eclipse Ti2 with
a CCD camera. Confocal images are taken using a Zeiss LSM 780
microscope. For high magnification images, an index matching oil is
used between the objective and the glass bottomof thewell plate. SEM
images are takenon a FEIHeliosNanoLab600iDual BeamSEM/FIB. For
in-situ videos, particles are imaged over several hours using a Nikon
Eclipse Ti2 with a CCD camera (0.2 frames per s).

Monte Carlo simulations
Three-dimensionalmodels of ATTs are generated in Solidworks 2021,
and the vertex coordinates are referenced with the origin (0,0,0)
coincident with the center of mass. HOOMD hard particle Monte
Carlo package (v3.2.0) is used to simulate the assembly of ATTs. For
the hexagonal structure, two impenetrable planes are placed at the
top and bottom of the simulation box to constrain motion to a 2D
plane (to prevent out-of-plane rotation). Particles (N = 400) are
initialized in a simple array and Monte Carlo steps are run to ran-
domize the initial configuration. After this, the simulation box is
compressed in x-y. The final hexagonal phase is used as the initial
configuration for the simulation of the quasi-diamond structure. The
top impenetrable plane is raised to allow out-of-plane rotation. The
simulation box is then compressed in all directions. These simula-
tions are stopped once the simulation box dimensions converge, and
the structure is stable.
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Truncation parameter
The truncation parameter describes the level of truncation of a tetra-
hedron. The truncation parameter, t, can range from 0 to 1, and

corresponds to a regular tetrahedron when t =0 and a regular octa-
hedron when t = 1. A truncated tetrahedron with truncation parameter
of t will have 4 equilateral triangles with edge length a(t/2) and four
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Fig. 4 | Direct imaging of defect mediated phase transitions. In-situ optical
images of the (a) initial hexagonal grain and vacancy, (b) first particle rotation, (c)
propagation of the phase transition through the hexagonal grain, (d) final quasi-
diamond state. The vacancy is marked by a navy-blue circle. The adjacent ATT is
marked by a pink circle, which is the first particle to transform. e–h The same
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i Illustration of the kinetics of a particle rotation from an ‘upright’ to ‘upside-down’
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boundary (army-green dashed line). Green and peach arrows show the alignment
of the particles and point in the direction of a triangular vertex. k Transition of
hexagonal grains (green or peach) to quasi-diamond (mustard yellow) at the anti-
phase boundary is preceded by the rotation of particles into a transition state
(pink) along these rows. l The anti-phase boundary is replaced by the quasi-
diamond phase (mustard yellow) which separates the two remaining hexagonal
grains (green or peach). m The phase transition begins to propagate in the lower
grain and transform the hexagonal phase (peach) to the quasi-diamond phase
(mustard yellow). All scale bars are 25μm.
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hexagons with two edge lengths of a(1-t) and a(t/2) as described by
Damasceno et al.49

Bond-order analysis
The bond orientational order parameter describes the angular posi-
tions of neighboring particles. The bond orientational order para-
meter, ψk,p, is defined as:

ψa
k,p =

1
p

X

b

eikαab ð2Þ

where a is the reference particle, b is a neighboring particle, k is the
fold symmetry, p is the number of expected neighboring particles, and
αab is the angle between a and b in the global frame. This is calculated
for neighboring particles, b, a certain radius away from the reference
particle. This radius is equal to the first valley after the first peak in the
g(r). For a quasi-diamond phase, k = p = 3. For a hexagonal phase,
k = p = 6. The resulting ψk,p is a complex number that can be
represented on a color wheel, in which the x-axis (real) is normalized
to the average bond order, 〈ψk,p〉.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study is deposited in Dryad67

and are available from the corresponding author upon request.

Code availability
Code for simulation and analysis are deposited in Dryad67 and are
available from the corresponding author upon request.
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