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Deep learning model for personalized
prediction of positive MRSA culture using
time-series electronic health records

Masayuki Nigo 1,2,3 , Laila Rasmy 2, Bingyu Mao 2, Bijun Sai Kannadath 4,
Ziqian Xie2 & Degui Zhi 2

Methicillin-resistant Staphylococcus aureus (MRSA) poses significant morbid-
ity and mortality in hospitals. Rapid, accurate risk stratification of MRSA is
crucial for optimizing antibiotic therapy.Our study introduced a deep learning
model, PyTorch_EHR, which leverages electronic health record (EHR) time-
series data, including wide-variety patient specific data, to predict MRSA cul-
ture positivity within two weeks. 8,164 MRSA and 22,393 non-MRSA patient
events fromMemorial Hermann Hospital System, Houston, Texas are used for
model development. PyTorch_EHR outperforms logistic regression (LR) and
light gradient boost machine (LGBM) models in accuracy (AUROCPyTorch_EHR =
0.911, AUROCLR = 0.857, AUROCLGBM = 0.892). External validation with 393,713
patient events from the Medical Information Mart for Intensive Care (MIMIC)-
IV dataset in Boston confirms its superior accuracy (AUROCPyTorch_EHR = 0.859,
AUROCLR = 0.816, AUROCLGBM = 0.838). Ourmodel effectively stratifies patients
into high-, medium-, and low-risk categories, potentially optimizing anti-
microbial therapy and reducing unnecessary MRSA-specific antimicrobials.
This highlights the advantage of deep learning models in predicting
MRSA positive cultures, surpassing traditional machine learning models and
supporting clinicians’ judgments.

Methicillin-resistant Staphylococcus aureus (MRSA) is a common
pathogenic cause of hospital-acquired and community-associated
infections1–3. Since this pathogen eliminates most beta-lactam class
antibiotics as a treatment option, physicians often need to add an
antibiotic, such as vancomycin, to empirically treat this pathogen
when suspected. Considering the side effect profile of vancomycin and
the antibiotic stewardship standpoint, avoiding unnecessary anti-
microbial therapy is highly desirable4. Furthermore, a recent study
showed the absolute benefit of empiric therapy against MRSA is 0.1%
or less5. Therefore, accurately identifyinghigh-riskpatients is critical to
preserve the benefit of treatment and minimize the adverse side
effects of empiric therapy. Althoughmultiple clinical factorshave been

proposed as risk factors for MRSA infection6–9, there are several lim-
itations to identifying high-risk patients. Commonly, the tested
population is restricted to specific populations, such as patients with
ventilator-associated pneumonia10. Due to the complex associations
among risk factors, it is often difficult to discern actual risks when
multiple risk factors exist simultaneously8. For example, previous
exposure to cephalosporine and fluoroquinolone are considered risk
factors11,12. The risk seems to accumulate whenmultiple antibiotics are
previously prescribed13. Furthermore, the optimal timeline between
the index infection and the presence of the risk factor is not well
established, and often an arbitrary duration is used8,14. More flexible
models that can integrate multiple risk factors and the timing of
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various risk factors are warranted for frontline physicians to safely
decide the necessity of empiric antibiotic therapy.

Electronic health records (EHRs) became widely available in the
United States since theMeaningful Use programwas introduced as part
of the 2009 Health Information Technology for Economic and Clinical
Health Act15. EHRs are a rich data source for daily clinical practice and
research. As thedata in EHRs expand, physicianshavemore information
to process and interpret to improve patient management. Given its
computational capabilities, artificial intelligence could reveal complex
relationships among numerous factors in EHRs. Artificial intelligence
has been used to process genetic and imaging data and has become an
attractive technology to process real-time big EHR data to facilitate
personalized medicine16,17. Although there are multiple machine learn-
ingmodels predict drug-resistant bacterial infectionswith EHRdata18–20,
they use limited input data, such as basic demographics, previous sus-
ceptibility results, or a limited number of patients18. Furthermore, some
models only predict the index culture or screening results, which may
not be optimal in clinical use to guide antibiotic therapy21. Deep
learning-basedmodels, such as recurrentneural network (RNN)models,
have a significant advantage in time-sequence events because the fun-
damentalmodel structure allows sequential inputs into themodel. Also,
RNNswithmedical codeembedding can take inputsdirectly froma real-
time EHR data stream, automatically adjust to reflect subtle changes,
and provide real-time outputs22 PyTorch_EHR, a deep learning-based
prediction model using time-series categorical data, has been success-
fully applied to predict various clinical outcomes23. Despite the poten-
tially high expressive power of deep learning models, deep learning
models using time-series EHR data to predict drug-resistant bacteria,
particularly for MRSA, are limited24.

We created a deep learning-based prediction model using
PyTorch_EHR for positiveMRSA culture using big time-series EHR data
from a local hospital system and compared it to the traditional
machine learning approaches and clinician’s decisions of empirical
therapy against MRSA. We also evaluated the model’s generalizability
using external EHR data from a different region of the United
States. PyTorch_EHR outperforms logistic regression (LR) and light
gradient boost machine (LGBM) models in accuracy (Area Under
Receiver Operating Characteristic Curve [AUROC] PyTorch_EHR = 0.911,
AUROCLR = 0.857, AUROCLGBM = 0.892). External dataset from the
Medical Information Mart for Intensive Care (MIMIC)-IV validates
its superior accuracy (AUROCPyTorch_EHR = 0.859, AUROCLR = 0.816,
AUROCLGBM =0.838). Ourmodel effectively stratifies patients into high-,
medium-, and low-risk categories, potentially optimizing antimicrobial
therapy and reducing unnecessary MRSA-specific antimicrobials.

Results
Patient characteristics
A total of 26,233 and 152,979 patientswhomet our selection criteria, as
described under Methods, were identified from the Memorial Her-
mann Hospital System (MHHS) and Medical Information Mart for
Intensive Care (MIMIC)-IV databases, respectively. Those patients had
56,233 and 393,713 index culture events over time in MHHS and
MIMIC-IV datasets. The aggregated patient characteristics are descri-
bed inTable 1. Somepatients were classified intoMRSA and non-MRSA
groups when they had both MRSA and non-MRSA events at different
index time. Patient features were used once if the patient had two or
more events in the same group. Demographic features at the time of
index culture were used to describe the characteristics when patients
were classified more than twice into one group. Overall, the MRSA
group had a higher number of intensive care unit (ICU) admissions
(MHHS: 4.3% vs. 0.7%, MIMIC-IV: 31.7% vs. 16.7%) and emergency
department (ED) patients (MHHS: 66.4% vs. 13.3%, MIMIC-IV: 51.3% vs
35.0%). As MIMIC-IV was originally developed based on an ICU
database, the MIMIC-IV dataset included a higher number of ICU
patients. Intermediate unit (IMU) status was not included in the

MIMIC-IV data. Table 2 summarizes types of antibiotics and cultures
before index time. Vancomycin was the most commonly used anti-
biotic, followed by cefepime in the MHHS dataset, whereas cef-
triaxone was the second most commonly used antibiotic in the
MIMIC-IV dataset. As expected, given the origin of the EHRs (MHHS
from Houston and MIMIC-IV from Boston), the MHHS dataset had
more Hispanic patients compared to MIMIC-IV (10.5–10.6% vs.
3.6–3.9%). Across groups, Caucasianwas themost common race, and
55–65 years was the most common age group. Gender was equally
distributed in all groups. Blood and urine cultures were other com-
mon cultures taken during the study periods.

Types of infection and other pathogens
Table 3 summarizes the bacteria anddiagnostic codes identifiedwithin
the event periods. S. aureus were the most common bacteria in MRSA
groups, whereas E. coliwas themost common in the non-MRSA group.
Bacteremia (MHHS: 6.7% vs. 2.1%,MIMIC-IV: 8.6% vs. 1.9%) and skin soft
tissue infection (MHHS: 24.8% vs. 5.6%, MIMIC-IV: 13.2% vs. 2.6%) were
more common in MRSA groups.

Model prediction
Table 4 shows the prediction accuracy of the models. For the MHHS
dataset, the deep learning model PyTorch_EHR exhibited the highest
Area Under Curve of Receiver Operating Characteristics (AUROC) of
0.911 [0.900 – 0.916] (see ROC curve in Supplementary Fig. 5-1) com-
pared to other machine learningmodels (logistic regression [LR]: 0.857
[0.849–0.865] and light gradient boost machine [LGBM]: 0.892
[0.885–0.899]). Similar results were obtained for the MIMIC-IV dataset
(PyTorch_EHR: 0.859 [0.849–0.869], LR: 0.816 [0.804–0.828], and
LGBM: 0.838 [0.823–0.849]; see ROC curve in Supplementary Fig. 5-2).
We also evaluated the AUROC in each patient group with a specific
diagnosis during the event. Although the AUROC decreased by
0.50–0.10, we had acceptable accuracy in each infection in the MHHS
dataset. We also evaluated confusion matrices based on our model’s
high-risk and low-risk predictions (see Supplementary Table 4). In high-
risk groups, Pytorch_EHR showeda specificity of 95.0%and99.0%, and a
sensitivity of 48.1% and 19.3% in MHHS and MIMIC-IV datasets, respec-
tively, whereas LGBM showed a specificity of 95.0% and 99.0%, and a
sensitivity of 44.5% and 14.9%. In low-risk groups, Pytorch_EHR had a
sensitivity of 95.0% and 90.0% and a specificity of 62.9% and 58.7% in
MHHS and MIMIC-IV datasets, respectively, whereas LGBM showed a
sensitivity of 95.0% and 90% and a specificity of 62.8% and 57.2%.

Given the imbalanced distributions of positive events in both
datasets, for high-risk patients, positive predictive values (PPV) were
relatively low: 65.6% and 22.4% for Pytorch_EHR and 63.6% and 17.5%
for LGBM in MHHS and MIMIC-IV datasets, respectively. However,
negative predictive values (NPV) were high: 90.3% and 98.9% for
Pytorch_EHR and 89.7% and 98.8% for LGBM in MHHS and MIMIC-IV
datasets, respectively. For low-risk patients, PPV was low: 37.6% and
3.0% for Pytorch_EHR and 33.5% and 2.9% for LGBM in MHHS and
MIMIC-IV datasets, respectively. However, NPV were particularly high:
98.6% and 99.8% for Pytorch_EHR and 98.5% and 99.8% for LGBM in
MHHS and MIMIC-IV datasets, respectively.

Fig. 1 shows the cumulative incidence curve of MRSA-positive
cultures over two weeks from the index culture. In both datasets,
our model clearly differentiated the patients with high and low
risks of MRSA-positive cultures. The cumulative incidence of MRSA-
positive cultures in the MRSA group in the MHHS dataset was 61.2%,
whereas the incidence in the MIMIC-IV dataset was approximately
18.2%. The low incidence in MIMIC-IV despite a high risk was likely
due to the overall incidence of positive MRSA cultures in the MIMIC-
IV dataset.

AUROC curves over multiple index events were evaluated in
MHHS and MIMIC-IV test datasets. (See Supplementary Fig. 10) When
evaluated on patients with only the first event in MHHS dataset, LGBM
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model performance was better than that of PyTorch_EHR and LR
models. However, when evaluated on patients who had repeated
events, i.e., a longer duration of observation in the dataset, PyTorch_-
EHR model performance improved significantly and sustained super-
iority against the LR and LGBM models. Similar results were obtained
for the MIMIC-IV dataset, with a longer duration of observation pro-
viding better performance in the PyTorch_EHR model.

Potential clinical impact
Table 5 summarizes the potential clinical impact of the PyTorch_EHR
model. In patients predicted as low risk, our model exhibited NPV of
98.6% and 99.8% in MHHS and MIMIC-IV datasets, respectively. In
addition, among those low-risk patients who had true negative results,
MRSA-specific antimicrobials were given by treating clinicians in 21.6%
(1505/6975) and 2.3% (1069/45,533) of events, which translated to 7949
and 1397 doses of MRSA-specific antimicrobials in MHHS and MIMIC-
IV, respectively. The main antimicrobials used for those patients were

vancomycin (6833 and 1254 doses in MHHS and MIMIC-IV, respec-
tively), followed by linezolid (852 and 88 doses) and daptomycin (264
and 55 doses). Further, 1.4% (98/6,975) and 0.2% (108/45,533) events
were false negatives in our model. Among them, only 0.3% (23/6,975)
and 0.04% (27/45,533) events received MRSA-specific antimicrobials,
which could be missed by our model.

In high-risk patients, our model exhibited PPV of 65.6% and 22.4%
in MHHS and MIMIC-IV datasets, respectively (Supplementary
Table 4). The model predicted 12% (1437/11,922) and 1.2% (957/78,548)
of events as high risk. Among high-risk groups, patients did not receive
any MRSA-specific antimicrobials in 34.6% (497/1437) and 19.7% (189/
957) of events in MHHS and MIMIC-IV datasets, respectively. On the
contrary, with our model’s high-risk prediction, 15.8% (227/1437) and
71.1% (671/957) events may receive unnecessary MRSA-specific anti-
microbials (potential harm from our model).

Finally,weevaluated theperformanceofourmodel inpatientswho
hadMRSAbacteremia. As summarized in Tables 5, 31.8% (457/1437) and

Table 1 | Characteristics of Patients with and without Positive MRSA Cultures

Memorial Hermann Hospital System MIMIC-IV

MRSA group N = 8164 a Non-MRSA group N = 22,393 a MRSA group N = 4107 a Non-MRSA group N = 152,006a

Hospital locationb: Top 5 N (%) N (%) N (%) N (%)

ICU 354 (4.3%) 166 (0.7%) 1302 (31.7%) 25,319 (16.7%)

IMU 283 (3.5%) 124 (0.6%) – –

ED 5421 (66.4%) 2981 (13.3%) 2106 (51.3%) 53,185 (35.0%)

Age

55–65 1965 (24.1%) 3637 (16.2%) 943 (23.0%) 30,196 (19.9%)

65–75 1943 (23.8%) 3857 (17.2%) 934 (22.7%) 28,551 (18.8%)

45–55 1483 (18.2%) 2752 (12.3%) 729 (17.8%) 23,956 (15.8%)

Gender, Male 4200 (51.4%) 9897 (44.2%) 2338 (56.9%) 86,718 (57.0%)

Ethnicity

Hispanic 866 (10.6%) 2,358 (10.5%) 159 (3.9%) 5400 (3.6%)

Non-Hispanic 5671 (69.5%) 11,210 (50.1%) 2810 (68.4%) 78,559 (51.7%)

Unknown 651 (8.0%) 1064 (4.8%)

Race: Top 5

White 3123 (38.3%) 6576 (29.4%) 2153 (52.4%) 55,657 (36.6%)

African American 1555 (19.0%) 2878 (12.9%) 406 (9.9%) 12,701 (8.4%)

Asian 103 (1.3%) 413 (1.8%) 53 (1.3%) 3,233 (2.1%)

Other 2174 (26.6%) 4470 (20.0%) 281 (6.8%) 9872 (6.5%)

Unknown 470 (5.8%) 905 (4.0%) 185 (4.5%) 4,991 (3.3%)

Primary Languagec

English 6314 (77.3%) 12,927 (57.7%) 2699 (65.7%) 74,779 (49.2%)

Spanish 248 (3.0%) 743 (3.3%) – –

Unknown 732 (9.0%) 1260 (5.6%)

Selected Comorbiditiesd

Cerebrovascular accident 918 (11.2%) 4700 (21.0%) 328 (8.0%) 14,360 (9.4%)

Congestive Heart Failure 1408 (17.2%) 7021 (31.4%) 1034 (25.2%) 37,401 (24.6%)

Chronic pulmonary diseases 1041 (12.8%) 5779 (25.8%) 1156 (28.1%) 51,492 (33.9%)

Cirrhosis 149 (1.8%) 1175 (5.2%) 184 (4.5%) 13,126 (8.6%)

Chronic Kidney Disease 1438 (17.6%) 8049 (35.9%) 1081 (26.3%) 41,702 (27.4%)

Hypertension 3008 (36.8%) 17,429 (77.8%) 2228 (54.2%) 106,436 (70.0%)

Diabetes Mellitus 1790 (21.9%) 9225 (41.2%) 1411 (34.4%) 52,323 (34.4%)

Malignancy 477 (5.8%) 3380 (15.1%) 767 (18.7%) 45,128 (29.7%)

HIV/AIDS 136 (1.7%) 541 (2.4%) 56 (1.4%) 2829 (1.9%)

AIDS Acquired Immunodeficiency Syndrome, ED Emergency Department, HIVHuman Immunodeficiency Virus, ICU Intensive Care Unit, IMU Intermediate Unit,MIMICMedical Information Mart for
Intensive Care, MRSA Methicillin-Resistant Staphylococcus aureus, N Number.
aPatients who had positive cultures for both MRSA and non-MRSA at different prediction periods were included in both groups. The number is unique number of patients in the group.
bPatients who had multiple encounters, orders, or documentation during study periods were counted separately unless documented on the same date.
cIf multiple languages were documented, they were counted separately.
dSince some patients had multiple encounters during the study period, diagnostic codes are summarized based on patient levels rather than encounter levels.
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7.3% (70/957) of high-risk events in MHHS and MIMIC-IV datasets,
respectively, hadMRSAbacteremia. These rates weremuch higher than
the rates in low-risk events in MHHS (0.5%; 32/6975) and MIMIC-IV
(0.04%; 35/48,455). Based on these findings, high-risk group had 69.3
and 101.2 higher relative risk ofMRSA bacteremia compared to low-risk
patient group. In addition, our model identified 58.0% (265/457) and
50.0% (35/70) of high-risk patients with true MRSA bacteremia did not
receive MRSA-specific antimicrobials, considered “optimal” antibiotics
for MRSA bacteremia, within 12 h of the index cultures.

These results were also evaluated in other models and any MRSA
antimicrobials (see Supplementary Table 5). Overall, PyTorch_EHR

model exhibited higher net-benefits against treating clinician’s deci-
sions compared to LGBM and LRmodels, except for MRSA bacteremia
in MIMIC-IV dataset. LGBM model provided better net benefit com-
pared to PyTorch_EHR model (18 vs. 10 MRSA bacteremia cases may
receive early MRSA antimicrobials, respectively.)

Feature importance
We obtained the contribution scores for positive MRSA cultures in the
datasets. Supplementary Fig. 7 shows the top 14 median contribution
scores of admission diagnoses in our model for MHHS data. Interest-
ingly, our model identified multiple diagnoses often related to MRSA

Table 2 | Types of antibiotics and cultures which patients had before Index Time

Memorial Hermann Hospital
System

MIMIC-IV

MRSA group N = 8164 a Non-MRSA group
N = 22,393 a

MRSA group
N = 4107 a

Non-MRSA group
N = 152,006 a

Total Antibiotics Given in The Group
(days)b: Top 5

Vancomycin 28,153 21,185 7647 75,879

Cefepime 19,486 14,687 3590 42,530

Meropenem 11,960 9542 1744 19,448

Ceftriaxone 10,674 8259 2879 49,130

Piperacillin-tazobactam 10,473 8227 2224 25,558

Total Antibiotics Route Given in The Group (days)b: Top 5

IV 71,749 54,986 16,160 191,633

PO 13,446 10,317 10,498 167,895

Enteric tube 8275 6703 – –

Inhalation 561 504 0 0

Ophthalmic 138 121 2 100

Total Culture Type Obtained in The Group b: Top 5

Blood 14,741 33,907 17,557 128,537

Urine 6263 29,840 12,402 215,712

Wound 4769 7523 4424 11,798

Anaerobic 2150 5966 5603 13,214

Body Fluid/Tissue 1963 6443 1946 13,974

IV Intravenous, PO Per Os, MIMICMedical Information Mart for Intensive Care,MRSA Methicillin-Resistant Staphylococcus aureus, N Number.
aPatients who had positive cultures for both MRSA and non-MRSA at different prediction periods were included in both groups. The number is unique number of patients in the group.
bPatients who had multiple encounters, orders, or documentation during study periods were counted separately unless documented on the same date.

Table 3 | Name of bacteria identified from cultures and types of infection based on ICD codes

Memorial Hermann Hospital
System

MIMIC-IV

MRSA group N = 9773a Non-MRSA group
N = 48,461a

MRSA group N = 5789a Non-MRSA group N = 387,924a

Bacteria Nameb 5 Common Bacteria N (%) N (%) N (%) N (%)

S. aureus 9773 (100%) 2117 (4.4%) 5789 (100%) 10,724 (2.8%)

Enterococcus spp. 848 (8.7%) 3745 (7.7%) 360 (6.2%) 10,140 (2.6%)

E. coli 569 (5.8%) 8028 (16.6%) 287 (5.0%) 27,403 (7.1%)

K. pneumoniae 373 (3.8%) 2258 (4.7%) 213 (3.7%) 7619 (2.0%)

P. aeruginosa 783 (8.0%) 2224 (4.6%) 463 (8.0%) 5753 (1.5%)

Types of Infectionsb

Sepsis 1965 (20.1%) 5621 (11.6%) 411 (7.1%) 8007 (2.6%)

Pneumonia 1130 (11.6%) 3882 (8.0%) 675 (11.2%) 14,669 (3.8%)

Bacteremia 657 (6.7%) 1045 (2.1%) 497 (8.6%) 7531 (1.9%)

Skin Soft Tissue Infection 2420 (24.8%) 2721 (5.6%) 762 (13.2%) 10,106 (2.6%)

UTI 1151 (11.2%) 12,545 (25.9%) 652 (11.2%) 20,929 (5.3%)

MIMICMedical Information Mart for Intensive Care, MRSA Methicillin-Resistant Staphylococcus aureus, N Number, UTI Urinary Tract Infection
aThe number represents the number of events during two-week window. Non-MRSA group includes events with negative cultures.
bPatients who had multiple bacteria or types of infections were counted separately unless documented on the same index periods.
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infections, such as cutaneous abscesses or boils. Supplementary Fig. 8
shows the top 10 overall contribution scores for antimicrobial expo-
sures before the index time in the datasets. Some common antibiotics
had high scores in both datasets, but it was difficult to interpret the
scores clinically.

We also present individual feature importance as a bar graph for
an example patient among the patients we visualized (see Supple-
mentary Fig. 9). The patient is female and between 45 – 54 years of age,
with multiple underlying comorbidities listed on admission two days
(−2 days) before the index culture (blood culture on index date). Our
model identified a risk score of 0.541 (predicted as a positive patient).
After the patient was admitted to the hospital, vancomycin and mer-
openem were initiated, and a blood culture was ordered. Subse-
quently, cultures identified MRSA over two weeks.

Discussion
In this study, our deep learning-based MRSA-predictive model exhib-
ited better performance compared to other machine learning models
in real-world MHHS and MIMIC-IV datasets. Traditional Machine
learning, especially LGBM, also provided a great performance in pre-
dicting MRSA-positive culture. However, PyTorch_EHR model had
better overall AUCROC and showed better potential clinical impact in
majority of datasets. PyTorch_EHR model successfully “learned”
patient-specific features, especially with time sequence events, to
provide personalized risks of positive MRSA cultures over two weeks
from index time. The model maintained better predictions even after
transferring from the MHHS dataset to the MIMIC-IV dataset and tol-
erated the significantly imbalanced outcomes in theMIMIC-IV dataset.
Compared to other existing models, our model successfully predicted
positive MRSA cultures not only on the index day but also over two
weeks from the index day. (see Fig. 2) This prediction window is better
aligned with the daily clinical practice of physicians since physicians
decide on empiric antibiotic therapy to treat MRSA, such as intrave-
nous vancomycin, not only for the culture of index day but also any
subsequent cultures that may be related to the episode of infection
after initiation of therapy. We decided to use a two-week window in
this project as themajority of infections after admission are diagnosed
within the timeperiods. The incidence curve successfully captured any
events within two weeks. Our deep learning model readily accepts the
time sequence of the events in the patient history, which we believe is
more consistent with the physician’s assessment in clinical practice. In
addition, our model showed that accuracy improves when time-series

data are used, and patients have a longer duration of observation
before the index time. (see Supplementary Fig. 10) We also tested the
model in different types of infection posing various MRSA risks, such
as sepsis, bacteremia, and pneumonia. Although there were some
decreases in the AUROC, high performance were maintained, which
supports the use of this single model for multiple types of infections.
Finally, our model could benefit clinical practice by reducing the
number of antimicrobials used in low-risk patients and providing
optimal MRSA antimicrobials when the model predicts high risk,
including bacteremia. Although the difference in AUCROC was small
between PyTorch_EHRand LGBM, the actual difference of possible net-
benefit is substantial, especially in MHHS datasets which had high
prevalence rates of positive MRSA cultures.

Personalized medicine is of great interest in medical fields. Many
studies on personalized medicine focus more on genetic-based pre-
dictions rather than clinical data fromEHRs25. EHR data have become a
rich source of real-world data and provide invaluable information.
Even without genetic data, we believe EHR data can be a useful source
for deep learningmodels to achieve personalizedmedicine inmultiple
clinical settings. Furthermore, compared to traditional machine
learningmodels, deep learning caneasily integrate time-sequence data
as inputs into the model, which provides significant advantages for
outcome predictions requiring sequential event inputs. Although
PyTorch_EHR only uses categorical data from EHRs, this model pro-
vides high performance with the advantages of relatively simpler
preprocessing steps and flexible variable selections for input. This
allows us to preserve model transferability and generalizability across
different data sources.

Since MRSA emerged, multiple predictive models for risk factors
for MRSA infections have been proposed. The models have differing
degrees of accuracy but often focus on a certain type of infection, such
as pneumonia, to achieve and simplify the risk factors and models.
Rhodes et al. used a machine learning model to predict community-
acquired MRSA pneumonia26. Although the time frame and patient
populationdiffered fromour study, theirmodel achieved anAUROCof
0.775, which was lower than ours. Additionally, some risk factor-based
models rely heavily on certain tests, such as the nasal MRSA PCR test
from nare27, which hampers the model’s generalizability due to lim-
itations in the tests’ availability and applicability to other types of
infections. Also, some of the resultsmay not be availablewhen starting
antibiotics, which limits the usability of models in hospitals. In con-
trast, our model carries a significant advantage since the model can

Table 4 | Outcome of Models in Overall and Subgroup Analyses

Memorial Hermann Hospital
System

MIMIC-IV

AUROC Average (CI) AUROC Average (CI)

PyTorch_EHR 0.911 (0.900–0.916)* 0.859 (0.849–0.869)*

Overall Prediction PyTorch_EHR Pre-Trained – 0.860 (0.850–0.871)*

LR 0.857 (0.849–0.865) 0.816 (0.804–0.828)

LGBM 0.892 (0.885 – 0.899) 0.838 (0.823–0.849)

Subgroups Analysis

PyTorch_EHR 0.864 (0.846–0.882)* 0.789 (0.740–0.840)

Sepsis PyTorch_EHR Pre-Trained – 0.781 (0.734–0.828)

PyTorch_EHR 0.879 (0.842–0.915) 0.797 (0.755–0.840)

Bacteremia PyTorch_EHR Pre-Trained – 0.809 (0.770–0.848)

PyTorch_EHR 0.872 (0.849–0.894)* 0.783 (0.743–0.823)

Pneumonia PyTorch_EHR Pre-Trained – 0.769 (0.730–0.807)

PyTorch_EHR 0.804 (0.778–0.831) 0.819 (0.783–0.856)

Skin Soft Tissue Infections PyTorch_EHR Pre-Trained - 0.811 (0.775–0.847)

CI Confidence Interval, LGBM Light Gradient-Boosting Machine, LR Logistic Regression, MIMICMedical Information Mart for Intensive Care.
*Statistically significantly better compared to light GBM.
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Fig. 1 | Cumulative Incidence Curve of Positive MRSA Over Two Weeks in the
MHHS and MIMIC-IV Datasets. a and b show cumulative incidence of MRSA cul-
tures inMemorial HermannHospital System (MHHS) andMedical InformationMart
for Intensive Care (MIMIC)-IV datasets, respectively. Both figures were generated
based on the risk predicted by our model in test datasets. Given the significant

imbalance in the MIMIC-IV dataset, even high-risk patients achieved 20% positivity
compared to the MHHS dataset. In contrast, the low-risk patient group had fewer
false negatives. The shaded area in the graph represents the 95% confidence
intervals. MHHS Memorial Hermann Hospital System, MIMIC Medical Information
Mart for Intensive Care, MRSA Methicillin Resistant Staphylococcus aureus.
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take widely available data from EHRs and predict the outcomes even
with some missing certain tests. Our model can be used not only for
treatment decisions but also for infection prevention to isolate the
patients in high-risk groups before culture results, although the utility
of contact precaution is still controversial. Ourmodel used a two-week
time window to provide more meaningful predictions in clinical
settings. Some predictive models only predict the index culture rather
than overall risks21. To be applied in a clinical setting, predicting over a
two-week window can be more impactful for clinicians when they
choose antimicrobial therapy at the time of the initiation. The cumu-
lative incidence curves based on our model prediction clearly differ-
entiated the high-risk and low-risk patients. The majority of patients
had positiveMRSA cultures on the index day, but approximately 15%of
high-risk patients had positive cultures after the index day, which
couldbemissed if weonly predicted the positivity of the index culture.
Currently, ourmodel only predicts the positivity of cultures regardless
of the source of cultures, which allows simplification of the data

processing and model structure. However, providing more informa-
tive predictions, such as source of cultures, may allow physicians to
decide finer selection of antimicrobial therapies. For example, when
the model predicts only wound culture is positive for MRSA in stable
cellulitis patients, oral antimicrobials, such as sulfamethoxazole-tri-
methoprim, may be adequate for the therapy.

We evaluated the potential impact of our PyTorch_EHRmodel in a
clinical setting. MRSA-specific and any MRSA antibiotics were used to
evaluate the impacts. Although linezolid and daptomycin can be used
for vancomycin-resistant enterococci (VRE), the low-risk groups had
positive VRE in 6 cases inMHHS test datasets and 32 cases inMIMIC-IV
test datasets. The model identified a large number of potentially
avoidable antimicrobials targeting MRSA used in low-risk patients
(7949 and 1397doses inMHHSandMIMIC-IV, respectively).Ourmodel
only “missed” a small number of patients (0.3% and 0.04% in MHHS
and MIMIC-IV, respectively). When evaluating overall performance,
our model potentially provides benefits in 1752 cases and 560 cases in

Table 5 | Potential Clinical Impact of the PyTorch_EHR Model

MHHS Data (PyTorch_EHR)

Model
Predictions

MRSA Cx Treating Clinician’s
decision

Cases Potential Benefit and Harm
of Model

Overall Potential Benefit

High Risk
1437
PPV: 65.6

True Positive
943 (65.6%)

+ Empirically Treat 446/1437 (31.0%) NA 474 cases may receive early
MRSA Abx
1278 cases may avoid unneces-
sary MRSA Abx

+ Not Empirically Treat 497/1437 (34.6%) 497 cases may get early
MRSA Abx.

False Positive
494 (35.4%)

− Empirically Treat 267/1,437 (18.5%) NA

− Not Empirically Treat 227/1,437 (15.8%) 227 cases may receive unne-
cessary MRSA Abx.

Low Risk
6975
NPV: 98.6

True Negative
6877 (98.7%)

− Empirically Treat 1505/6975 (21.6%) 1505 cases may avoid unne-
cessary MRSA Abx.

− Not Empirically Treat 5372/6975 (77.0%) NA

False Negative
98 (1.4%)

+ Empirically Treat 23/6,975 (0.3%) 23 cases may delay MRSA Abx

+ Not Empirically Treat 75/6,975 (1.1%) NA

MRSABacteremia
457

True Positive
434 (95.0%)

+ Empirically Treat 169/457 (37.0%) NA 250 MRSA bacteremia cases
may start early MRSA Abx+ Not Empirically Treat 265/457 (58.0%) 265 cases may start early

MRSA Abx

False Negative
23 (5.0%)

+ Empirically Treat 15/457 (3.3%) 15 cases may delay MRSA Abx

+ Not Empirically Treat 17/457 (3.7%) NA

MIMIC-IV (PyTorch_EHR)

Model
Predictions

MRSA Cx Treating Clinician’s
decision

Cases Potential Benefit and Harm
of Model

Overall Potential Benefit

High Risk
957
PPV: 22.4

True Positive
214 (21.1%)

+ Empirically Treat 25/957 (2.6%) NA 162 cases may receive early
MRSA Abx
398 cases may avoid unneces-
sary MRSA Abx

+ Not Empirically Treat 189/957 (19.7%) 189 cases may get early
MRSA Abx

False Positive
743 (77.6%)

− Empirically Treat 72/957 (7.5%) NA

− Not Empirically Treat 671/957 (70.1%) 671 cases may receive unne-
cessary MRSA Abx

Low Risk
45,533
NPV: 99.8

True Negative
45,425 (99.8%)

− Empirically Treat 1069/
45,533 (2.3%)

1069 cases may avoid unne-
cessary MRSA Abx

− Not Empirically Treat 44,356/
45,533 (97.4%)

NA

False Negative
108 (0.2%)

+ Empirically Treat 27/45,533 (0.04%) 27 cases may delay MRSA Abx

+ Not Empirically Treat 81/45,533 (0.17%) NA

MRSABacteremia
70

True Positive
35 (50.0%)

+ Empirically Treat 8/70 (11.4%) NA 10 MRSA bacteremia cases may
receive early MRSA Abx+ Not Empirically Treat 27/70 (38.6%) 27 cases may start early

MRSA Abx

False Negative
35 (50.0%)

+ Empirically Treat 17/70 (24.3%) 17 cases may delay MRSA Abx

+ Not Empirically Treat 18/70 (25.7%) NA

Abx Antibiotics, Cx Culture, MHHS Memorial Hermann Hospital System, MIMIC Medical Information Mart for Intensive Care, MRSA Methicillin-Resistant Staphylococcus aureus, NPV Negative
Predictive Value, PPV Positive Predictive Value.
This table summarizes the potential clinical benefits or harms of our model compared to the treating clinician’s decisions. The numbers obtained are based on antimicrobials possessing MRSA-
specific activities. Bolded lines indicate the potential benefits with our model, and italic lines indicate the potential harms with our model. In each dataset, the overall net benefit outweighed the
harms with our model even compared to the treating clinician’s decision, i.e. overall 1669 cases and 424 cases potentially get benefit from our model in MHHS and MIMIC-IV cohort, respectively.
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MHHS and MIMIC-IV datasets. The high-risk patient population had a
significantly high relative risk ratio for MRSA bacteremia. This indi-
cates that our model predicts not only the positivity of MRSA culture
but also the severity of MRSA infections in high-risk patients. Fur-
thermore, although the absolute numberswere small, 58.0% and 38.6%
of events with MRSA bacteremia did not receive “optimal” anti-
microbials within 12 h of the index time.MRSAbacteremia is one of the
most severe infections in the hospital. In our study, although only early
antimicrobial therapy and avoidable MRSA-specific antimicrobials
were evaluated, early initiation of appropriate antibiotics in critically ill
patients improves their outcomes1 and avoiding unnecessary anti-
microbials reduces side effects and potential complications from
those antimicrobials, such as Clostridioides difficile infection. We
believe potential benefits can be larger in clinical settings.

One of the challenges of deep learning models is their explain-
ability. Interestingly, our model successfully identified clinically
important features. Although therewas variability among patients, our
model successfully identified MRSA-related admission diagnosis. Pre-
vious antimicrobial exposures were also visualized in the population.

However, the results were difficult to interpret clinically. We also
visualized the factors contributing to the model predictions at an
individual level (see Supplementary Fig. 9). Since the model uses the
time sequencewithout dichotomizing the time framewith an arbitrary
cutoff, i.e., positive MRSA culture within 90 days, the contribution
weight can be different depending on the patient and the timing of
events. Although some of the factors seem associated with MRSA
infection, those highly contributed events are not necessarily directly
associated with the predictions of MRSA. The inputs could surrogate
other underlying events. Caution is required to interpret the feature
importance as those outputsmay not be traditional risk factors we use
in clinical settings.

This study has limitations. First, due to the nature of retrospective
studies, potential biases are inevitable, and its findings should be
confirmed in prospective studies. In addition, although the datasets
we used are from hospitals in two distinct regions of the United States,
the model should be validated in other patient populations and high-
risk populations, such as immunocompromised patients. Second, this
model predicts positive MRSA cultures rather than infections. Since

Fig. 2 | Schematic Structure of Deep Learning-Based Prediction Model for
MRSA-Positive Cultures. a summarizes the overall structure of themodel used to
predictMRSA-positive cultures over a two-week period from the index culture. Our
model integrates multiple structural data tables from Electronic Health Records
(EHRs) as time-sequenced data prior to the index time. A deep learning-based

model (PyTorch_EHR) is employed to predict MRSA-positive cultures over two
weeks from the index time. b describes scenarios where patients experience mul-
tiple events over time. EHR: Electronic Health Records, MRSA: Methicillin-Resistant
Staphylococcus aureus.
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some patients can haveMRSA infections without positive cultures, the
model should be used cautiously when there are significant concerns
about MRSA when initiating antibiotics. We also included analysis for
patients with MRSA bacteremia, which is usually considered a true
infection. The potential clinical benefits were consistent in this cohort.
Third, potential clinical impacts by ourmodelwere evaluated based on
the clinician’s antibiotic prescriptions and final culture results. We
used MRSA-specific antimicrobials and any MRSA antimicrobials to
evaluate the different clinical scenarios. Our model consistently
showed the benefits in both settings. Particularly in the evaluation of
MRSA-specific antimicrobials, although vancomycin is often used to
targetMRSA, linezolid and daptomycin canbe used for other potential
pathogens, such as VRE. Although those were minor cases in the
datasets, there could be uncommon situations where those antibiotics
were used for other purposes. Fourth, although we included multiple
variables in themodel, several important variables as knownMRSA risk
factors, such as residence in a long-term care facility, were not inclu-
ded. Furthermore, vital signs or other basic laboratory results were not
included in this model. Those can be considered in future studies.
Finally, although we showed the generalizability of the model in this
study, the transferability of themodel needs tobeaddressed to use the
deep-learning model widely.

In summary, our deep learning-based predictive model success-
fully predicted positive MRSA culture over two weeks from index
culture. Our study revealedmodel superiority against other traditional
machine learning models in both MHHS and MIMIC-IV datasets with
high performance, even in significantly imbalanced datasets and
some subgroup analyses. The model can be widely applied to various
types of infections. Compared to the treating physician’s decision, our
model could provide potential benefits, reducing unnecessary MRSA
antimicrobial use and optimizing antimicrobial therapy. Considering
the performance of our model in the datasets, the model likely pro-
vides more clinical benefits in populations with a high prevalence of
MRSA infections. Studies in high-risk populations, such as immuno-
compromised patients, and prospective studies are warranted to
validate the model.

Methods
EHR datasets
Patient data were retrospectively retrieved from two EHR databases: 1)
Database at MHHS, Houston, Texas, for model training and compar-
ison to traditional machine learning models and 2) MIMIC-IV v2.1 for
external validation. MIMIC-IV is a relational de-identified EHR database
containing hospital encounters from a tertiary academic medical
center in Boston, Massachusetts28.

From the MHHS database, EHRs from 1/2018 and 4/2021 were
obtained for patients >= 18 years of age, with at least one bacterial
culture during the study period. To avoid an imbalanced dataset, we
randomly selected 8,164 patients with MRSA-positive cultures and
18,069 patients with other types of cultures, including cultures posi-
tive for methicillin-sensitive S. aureus (MSSA) and other types of bac-
teria and negative cultures. Demographic data, admission data,
diagnostic and procedure codes, antibiotic administration, other
infectious disease-related test results, and previous microbiological
data, including the type of cultures, name of bacteria, and all antibiotic
sensitivities, were obtained from the database. Microbiology data
tables included cultures and other infectious disease tests, such as
serologies. To avoid label leakage,we used only results reportedby the
index time. The laboratory orders were included without results when
they were ordered by the index time. For diagnostic and procedure
codes, International Classification of Disease (ICD)−9 or ICD-10 codes
were used. Since other data tables, such as antibiotics, did not contain
standardized codes for medications, free text, such as “vancomycin,”
was used. Extracted data were cleaned and converted to categorical
data to fit the PyTorch_EHR scheme. The admission ward information

was converted to generalized features, such as ED, ICU, and IMU, to
later map those locations to MIMIC-IV data.

Similarly, EHRs for all patients with bacterial cultures and >18
years of age were retrieved from the MIMIC-IV database. To validate
the generalizability of themodel, each data tablewasmappedwith the
MHHS data table. Only data mapped with MHHS data were used in the
MIMIC-IV dataset. Since the MIMIC-IV dataset aggregated the ICD and
procedure codes at each encounter level, only codes reported in the
previous encounters were used to avoid label leakage. The micro-
biology event table was used to identify eligible patient events, and
those data were used as part of inputs in our model. Of the total
25,599 S. aureus-positive cultures from various sources in the table of
MIMIC-IV, 19,605 isolates (76.6%) had been tested for antimicrobial
sensitivity for various reasons, including multiple positive cultures
with S. aureus in a short period and positive wound cultures due to
multiple organisms. S. aureus-positive cultures within seven days of
positive MSSA or MRSA were removed, leaving 519 S. aureus isolates,
which did not have any recent sensitivity to classify them as MRSA or
MSSA. These isolates were classified into the non-MRSA group. The
datasets were further divided as 70:10:20 (Supplementary Fig. 1). We
used the data for twopurposes; 1) to generate amodel only trained and
tested onMIMIC-IV, and 2) to fine-tune the pre-trained model with the
MHHSdatasets and test on theMIMIC-IV test dataset. For the results of
model predictions and clinical impact, only test datasets of each
database were used.

For subgroup analysis in the MHHS dataset, the ICD code was
used to identify the patient with that codewithin the two-week period.
Since the MIMIC-IV dataset only provided ICD codes at the encounter
levels, we used the encounter to find the patients with the ICD codes
within the encounter.

PyTorch_EHR prediction model scheme
We used the deep learning platform PyTorch_EHR to predict clinical
outcomes using categorical data from EHRs. As the majority of MRSA
infections or new infections are diagnosed within two weeks, we set a
two-week window for the prediction, and any first culture within the
window was used as an index culture (Fig. 2). This prediction window
allows not only prediction at the time of culture but also cultures
obtained after initiation of empiric antibiotics, which is essential for
physicians to decide whether to start or continue empiric MRSA anti-
biotic therapy at the index time. Some patients had multiple cultures
over time, including MRSA and non-MRSA cultures. Those patients
were included in both MRSA and non-MRSA groups for patient char-
acteristic description, depending on the timing of positive or negative
culture the patient had during the window period.

PyTorch_EHR implements an RNN model. We chose the gated
recurrent unit (GRU) RNN architecture, which is known for being an
efficient sequential deep learning architecture for clinical event pre-
dictions (see Supplementary Fig. 1). The source code of this model is
publicly available to enable its application and further evaluation by
other researchers29. In addition to categorical data, PyTorch_EHR
handles the time difference between hospital visits for a better tem-
poral representation of patient history to improve accuracy (see
Supplementary Fig. 2)30,31.We converted the interval to days fromvisits
to accommodate predictions for more acute issues.

For binary classification tasks, we compared our model to two
traditional machine learning algorithms, LR32 and LGBM33. We elected
LR as the most basic binary classification model and gradient boost
machine as powerful and used in multiple classification tasks34,35. To
keep the temporal relationship between index time and each feature
available for those models, we prepared the data to include the num-
ber of occurrences of each feature before index time and the distance
between the most recent feature occurrence and the index time. (see
Supplementary Fig. 3) After preparation of the data, we standardized
the numerical values to optimize algorithms. For eachmodel including
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RNN, we obtained their optimal hyperparameters using optuna (ver.
2.10.0)36. After obtaining the area under the curve (AUC) for each
model prediction, we use DeLong test37 to obtain p-values and the 95%
confidence intervals of AUC differences between the models to sta-
tistically evaluate the significance.

For survival prediction, we used the DeepSurv38 architecture,
replacing the multiple-layer perceptron layers with GRU layers for
better sequential information modeling, similar to the way we mod-
elled COVID-19 outcome prediction23. Python version 3.9.7, PyTorch
version 1.7.1, and Sklearn version 0.24.2 were used in this study.

Possible clinical impact of our model
To evaluate the potential clinical impact of our model, we filtered high-
risk and low-risk patient cohorts based on the prediction of our model.
Considering thedifferentprevalencesofMRSA-positive cultures in each
dataset, we defined different cutoffs for high-risk and low-risk patients.
For MHHS dataset, we used the cutoff to obtain a specificity of 95% for
high-risk patients and a sensitivity of 95% for low-risk patients. For
MIMIC-IV, considering significant imbalanced data, we decided to use a
specificity of 99%and a sensitivity of 90%, respectively. All threemodels
used the same cutoff and were evaluated for the model performance.
After defining the cohort, we evaluated the number of patientswho had
positive MRSA cultures and received or did not receive empiric MRSA-
related antimicrobial therapy. We used two groups of antimicrobials:
MRSA-specific antibiotics and MRSA antibiotics. MRSA-specific anti-
biotics include vancomycin, daptomycin, linezolid, and telavancin,
which are often used in the hospital when empiric therapy is necessary,
or bacteremia is suspected. Any MRSA antibiotics include other intra-
venous and oral antimicrobials, which possess anti-MRSA activity.
However, these antimicrobials are also often used for other types of
bacteria, such as gram-negative bacteria. We evaluated our model with
both groups of antimicrobials. MRSA bacteremia was specifically cho-
sen to define true bacterial infections since positive cultures in other
types of culture do not necessarily mean true infections, i.e., some
patients may have contamination or colonization in some situations.

Model interpretation
For the mechanistic interpretation of MRSA predictions, we used the
integrated gradient technique39 to expose the factors contributing to
the personalized model predictions. For RNN-based models, we can
achieve apatient-level explanation,which shows the contribution scores
for each clinical event on each day in the patient trajectory. We also
obtained themedians of contribution scores of frequent features in our
model to evaluate the overall importance of certain features in the
cohort. However, we need to highlight that such contribution scores
should bemainly used for patient-level predicted score explanation and
not for inferring population-level risk factors/important features as it is
different from LR coefficients or LGBM feature importance scores, such
as SHAP40. To evaluate our RNN-based model explainability, we
reviewed the calculated contribution scores for each clinical event in the
input of 10 patients. We visualized the contribution score per patient
through an institutional Tableau interactive dashboard (Seattle,
Washington), where clinicians can navigate different clinical events
within various categories and across multiple visits in the patient
history.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
MHHS data that support the findings of this study are not openly
available due to reasons of sensitivity and are available from the cor-
responding author upon requests and our institutional IRB approvals.
MIMIC-IV data v2.1, used in this study as an external validation, is

publicly available after data use agreement on the website. (https://
physionet.org/content/mimiciv/2.1/).

Code availability
TheOriginal Pytorch_EHR code and sample codes used in this work are
publicly available29,41.
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