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Machine learning-aideddesign and screening
of an emergent protein function in
synthetic cells

Shunshi Kohyama 1,2, Béla P. Frohn 1,2, Leon Babl1 & Petra Schwille 1

Recently, utilization of Machine Learning (ML) has led to astonishing progress
in computational protein design, bringing into reach the targeted engineering
of proteins for industrial and biomedical applications. However, the design of
proteins for emergent functions of core relevance to cells, such as the ability to
spatiotemporally self-organize and thereby structure the cellular space, is still
extremely challenging. While on the generative side conditional generative
models andmulti-state design are on the rise, for emergent functions there is a
lack of tailored screening methods as typically needed in a protein design
project, both computational and experimental. Here we describe a proof-of-
principle of how such screening, in silico and in vitro, can be achieved for ML-
generated variants of a protein that forms intracellular spatiotemporal pat-
terns. For computational screening we use a structure-based divide-and-
conquer approach to find the most promising candidates, while for the sub-
sequent in vitro screening we use synthetic cell-mimics as established by
Bottom-Up Synthetic Biology. We then show that the best screened candidate
can indeed completely substitute the wildtype gene in Escherichia coli. These
results raise great hopes for the next level of synthetic biology, where ML-
designed synthetic proteins will be used to engineer cellular functions.

The design of artificial proteins to perform specific functional tasks is
one of the ultimate goals of synthetic biology, with the hope to utilize
proteins as nano-machines in vivo in cells aswell as in vitro in industrial
applications1–3. In the last two years, the introduction of Machine
Learning (ML) based generative models has yielded major break-
throughs inprotein design andengineering2–8. Thesemethodshave led
to great advances in the generation of proteins with individual func-
tionality, that is, functionality that depends on the protein alone.
Examples are catalytic activity5–8, small molecule binding5,6, or spike
protein capping5. However, the design of proteins with emergent, or
higher-order functions, that is, complex functionality that may only be
observed indirectly when embedded in a specific biological system,
such as biological pattern formation ormembrane deformation, is still
in its infancy. Proteins that are involved in such functions often exhibit
switch-like conformational states and finely tuned cooperative

interactions with other proteins, lipids, or nucleotides, which is still
challenging to computationally design9 and predict10–12. Importantly,
many large-scale intracellular processes of core relevance to life, such
as cellmigration or division, dependonemergent functions the design
and engineering of which would be of great interest for both funda-
mental and applied research.

Progress towards the design of proteins with emergent function
faces two major hurdles, which correspond to the typical workflow of
protein design projects: First, sequences are computationally gener-
ated, and second, they are both computationally and experimentally
screened. For the design of an emergent function, the generation of
customized amino acid sequences is a nontrivial task, as the desired
function often results from a combination of several simpler sub-
functions. Initial steps in this direction are taken by the rise of condi-
tional generative models that are for example conditioned on Gene
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Ontology terms13 or EnzymeConditionNumbers8,14, aswell as diffusion
models that can take into account non-protein atoms such as DNA or
small molecules15. Such methods promise to advance protein design
from generating hyper-stable, “rock-like” proteins towards the sam-
pling of sequenceswith the necessary conformationalflexibility to give
rise to complex functions16. For the screening step, a very large number
of sequences that are typically generated in the design phase is then
filtered first computationally (in silico) and second experimentally
(in vitro), often resulting in multiple design-and-screen iterations2.
Hence, for the screening of proteins designed for higher-order func-
tions, adequate screening methods both in silico and in vitro must be
established.

On the computational side, prediction of protein function is still
an enormously difficult problem, despite progress being made again
by utilization of ML3,10,17. Importantly, compared to the prediction of
protein affinities, where models perform decently already, higher-
order biological functions are much harder to predict10,11. On the
experimental side, proteins often need specific cellular environments
to unfold emergent functions, such as spatial confinement and/or
specific membrane composition and geometry, and they often show
unexpected behaviors when observed in simplified in vitro
environments18. For such specialized functional requirements, there
exists no established in vitro screening system to date.

Here, we present a proof-of-principle of how ML-generated pro-
teins can be screened for emergent function by an efficient combina-
tion of in silico and in vitro screening. Specifically, we developed a
computational and experimental pipeline to screen ML-generated
variants of the bacterial MinDE system for biological pattern forma-
tion. In Escherichia coli, the two proteins MinD and MinE engage in
ATP-driven reaction-diffusion dynamics that result in membrane-
concentrated protein oscillations between the cell poles, placing the
division ring at mid-cell and thus determining the division site (Sup-
plementary Fig. 1). Since these oscillations canbe reconstituted in vitro
within closed lipid compartments19,20 and on the lipid membrane as a
matrix21–23, and depend on complex interactions between proteins,
lipids and ATP24, the MinDE system is a widely used model of a biolo-
gical system with higher-order function. Therefore, it is an ideal test
system to develop a proof-of-principle screening pipeline for emer-
gent functions.

As conditional models to entirely de novo generate proteins with
emergent functions are still in their infancy and mostly not experi-
mentally validated, and since we here we are focusing on the devel-
opment of a screening pipeline, we utilize an established evolution-
based ML model, the MSA-VAE25, to generate variants of the MinE
protein. This method generates a diverse set of proteins where func-
tionality is expected to vary between variants, henceproviding an ideal
test-set for our screening approach. We then describe and validate
screening processes to efficiently assess these variants both compu-
tationally and experimentally. For the computational screening,weuse
a divide-and-conquer approach to score how likely variants are to give
rise to the higher-order function based on individual sub-functions. As
the MinDE system is well studied, such individual sub-functions of
MinE are known that are necessary to give rise to the functional
emergence. Hence, we predict and score these functions, namely
dimerization,membrane binding, and protein complex formationwith
MinD, the non-trivial combination of which result in the desired
emergent function of pattern formation. Importantly, we show that
such a “divide-and-conquer” approach outperforms traditional
function-estimation approaches based on sequence similarity or HMM
profiles. While here we developed a specialized screening method for
the MinDE system, it will be easy to adapt this approach for other
higher-order protein functions in the future, based on theoretical or
experimental knowledge of complex systems and protein behavior.
For the experimental screening of cell-level spatiotemporal patterns,
we utilize lipid droplet-based synthetic cell models as utilized by

bottom-up synthetic biology19,20. These minimal systems provide a
highly customizable, highly controllable environment to characterize
proteins particularly by light microscopy-based techniques, and will
hence be easy to adapt for other emergent protein functions. Fur-
thermore, we show that cell-free protein expression systems, which
have recently becomea vital technique in synthetic biology as they can
deliver various peptide/protein libraries26 for prototyping in a rapid
and easy manner, can significantly speed up the experimental
screening process.

Importantly, we demonstrate that the variant that we have iden-
tified as performing best in the in silico and in vitro screening pipeline
can fully functionally substitute the wild-typeMinE gene in E. coli cells.
This shows the great potential of divide-and-conquer in silico and
synthetic-cell-based in vitro screening for the design of proteins with
complex emergent functions. We propose that this and similar pipe-
lines following a combined in silico, in vitro, and in vivo (i3) screening
approach (Fig. 1) will open the door to the next level of protein design,
where the combination of computational design and experimental
screening will allow to engineer cellular functions.

Results
Generation of artificial MinE homologs
Since non-generative-model-based methods such as random muta-
genesis of existing sequences arguably result in mostly nonfunctional
proteins, we used a Multiple Sequence Alignment based Variational
Autoencoder (MSA-VAE) as introduced by ref. 25. (Fig. 2a) to generate
MinE variants. We chose this architecture as it is one of the few
methods that is experimentally validated andwas shown to have a high
success rate25, thereby outperforming simpler sampling methods
based on Hidden Markov Models25. On the other hand, we did not
utilize de novo protein design models, as we mainly focused on a
screening pipeline, but not on design, and the development of a de
novo design model capable of the necessary multi-state design would
have been a project on its own. TheMSA-VAE generates a diverse set of
MinE-like proteins with varying functionality expected25, hence pro-
viding an ideal test-set for the development of a screening pipeline.
There are relatively few naturally occurring MinE sequences to train
the model on, compared to other studies where homologs were gen-
erated (~6000 sequences in our dataset, compared to
~17,000 sequences used to train ProteinGAN27), so we preferred the
MSA-VAE over a GAN as it needs fewer parameters because informa-
tion about fold and function is already encoded in the MSA28,29

(ProteinGAN27 has ~60,000,000 trainable parameters while ourmodel
has ~1,000,000). We trained the MSA-VAE with a modified ELBO loss
function similar to ref. 25. with a range of different hyperparameters
(see Methods) and evaluated performance by single and pairwise
amino acid frequency distributions as in the original paper (Supple-
mentary Fig. 2a). A high correlation in this metric indicates that evo-
lutionary constraints are considered when generating sequences25.
With the selected set of hyperparameters, we generated 4000 variants
by passing random draws from a normal distribution through the
decoder and using the maximum value at each MSA position to
determine amino acids. As can be seen in Fig. 2b, sequence con-
servation among the generated variants is highly similar to sequence
conservation in naturally occurring variants, indicating that the model
had generated reasonable sequences, taking into account evolutionary
constraints. Dimensionality reduction on the latent space by Principal
Component Analysis (Supplementary Fig. 2b) further showed cluster-
ing by phylogenetic groups, confirming that the latent space con-
served information about sequence relationships. However, some
overlaps in the clusters can be observed and the correlation between
pairwise amino acid frequencies of natural and generated sequences is
not perfect, indicating that the generativemodel might also introduce
somemutations that could impair the function of the protein. Thus,we
had generated a set of artificial homologs where different grades of
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functional performance were expected, which we could then subse-
quently screen for emergent function.

In silico scoring of emergent function
We reduced the number of candidate proteins from 4000 to 48 for
subsequent experimental in vitro analysis by first screening them
computationally. To provide sufficient heterogeneity of this subset, we
initially screenedproteins basedon sequence identity. First, we filtered
out all proteins withmore than 60% sequence identity to the wild-type
MinE in E. coli, the organism eventually targeted for in vivo screening.
Second, we clustered the remaining generated variants by 60%
sequence identity. Third, we randomly selected one sequence per
cluster for further analysis. As a result, wegot 167 remaining sequences
to evaluate in our in silico pipeline.

Here, we defined emergent, or higher-order protein functions as
behaviors of a protein that can be measured only indirectly, e.g., via
large-scale effects. Such complex functions arise when proteins or
protein modules with specific, more easily measurable sub-functions
interact to forma system that shows higher-order behavior beyond the
sum of the individual functions. Due to the distinct nature of this
approach and the sparsity of respective data, qualitative and quanti-
tative predictions of emergent functions are still beyond the scope of
ML. Thus, to screen computationally for the potential of our protein
variants to showemergent behavior,wehypothesized that a combined
screening for the necessary sub-functions could provide an indirect
measure of higher-order functions. We call this a “divide-and-conquer
approach”. In the case of MinE, its higher-order function, volume
oscillations through spatiotemporal self-organization with MinD, is
known to be composed of three sub-functions22–24: (i) membrane
binding, (ii) formation of the MinDE complex that stimulates MinD’s
ATPase activity, and (iii) homo-dimerization (Fig. 2c upper panel). To
evaluate the expected functionality of the generated variants, we first
predicted their structures using AlphaFold2 Multimer30, and then
developed an in silico pipeline to estimate the three sub-functions
from the structure. Thus, we used a full sequence-structure-function

pipeline (Fig. 2a). Interaction to MinD and homodimerization was
evaluated based on the Predicted Align Error (PAE) of the AlphaFold2
Multimer30 output, similar to other protein design studies4,5. The
membrane binding capability was estimated by calculating the
hydrophobicity of the N-terminal region using ProteinSol Patches31,
since the hydrophobic interaction between the N or C-terminal region
of proteins and lipid molecules is a determinant factor of the mem-
brane binding32–34 (see Methods and Supplementary Fig. 2c). As we
eventually wanted to test the proteins in E. coli cells, we also predicted
solubility of the proteins in E. coli using ProteinSol35 as fourth score
(Supplementary Fig. 2c). All four scores were normalized and summed
up, resulting in a roughly normally distributed final Function Score
(Fig. 2a lower panel). While here we weighted each score equally, in
future similar studies each sub-function could be weighted by impor-
tance to the emergent function, if such information is available (see
below for post-hoc analysis of the scores used here). We then sorted
the 167 heterogeneous variants by this score and validated the ranking
visually. As can be seen representatively in Fig. 2c, proteins with low
scores tend to be predicted tomiss a proper interaction interface with
MinD and to have a disordered and either very long or very short
N-terminal region, suggesting impairedMinD’s ATPase stimulation and
membrane binding. Proteins with high scores tend to resemble the
wild type closely. Interestingly, it is known that a conformational
change is needed to swap from MinE-MinE homodimer to MinE-MinD
heterodimer24, and among the low-scoring variants such a change was
often not predicted (Supplementary Figs. 3, 4). We then chose and
double-blinded the best-scoring and worst-scoring 24 sequences for
experimental screening (Fig. 2a lower panel, Supplementary Fig. 3, 4,
and Supplementary Data 1), in order to validate our in silico scoring
approach.

In vitro screening for emergent function using a cell-free system
The first step in the experimental screening of newly designed pro-
teins is typically the expression of target proteins in E. coli cells fol-
lowed by chromatographic purification protocols6,7,25,27. However,
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this approach comes with many difficulties in experimental optimi-
zation due to protein solubility, cell toxicity, etc. Instead, to accel-
erate the screening pipeline and make it more generally applicable,
we utilize an in vitro cell-free protein synthesis system36,37, where
target proteins can typically be expressed within 1 h of incubation of

a mixture of transcription-translational factors and DNA/mRNA
templates encoding the target proteins. The transcription-
translational factors can be typically obtained from either a lab-
made cell lysate or a commercially available cell-free protein synth-
esis kit. Such cell-free expression systems have an enormous
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potential to be further utilized in various experimental setups. For
instance, different protein synthesis systems are available which can
easily be adapted to the target/original organism, protein size,
required protein chaperons, or expected expression yield. In this
study, we tailored our designed proteins for in vivo function in E. coli
and thus chose the E. coli-based cell-free synthesis platform called
PURE system38. It has been previously demonstrated that the PURE
system can efficiently synthesize functional Min proteins, which self-
organize into dynamic wave patterns in vitro in cell-mimicking
environments such as lipid containers39–42.

We performed in vitro screening of the 48 MinE variants, named
synMinEv1–48, by validating whether cell-free expressed synMinE
variants could formMinwaves in an in vitro reconstitution setup. First,
all 48 synMinE variants were synthesized with the PURE system, where

more than 80% (40 variants) of synMinE proteins were expressed at
detectable level (Supplementary Fig. 5). Subsequently, each expressed
variant was encapsulated within lipid droplets composed of POPC/PG
mixture with purified MinD and ATP as cofactors to provide the lipid
interaction partner and geometrical constrains needed for oscillation.
After checking for Min waves by laser scanning microscopy, we found
in total 14 positive variants that give rise to spatiotemporal patterns on
the lipidmembranewith typicalMinwave patterns (travelingwave and
pole-to-pole oscillation), as well as typical oscillation periods (1–2min)
in lipid droplets as previously reported39 (Fig. 3a, b, Supplementary
Fig. 6, and SupplementaryMovie 1). The other 34 variants did not show
any heterogeneous localization over the usual time scale of Min wave
emergence (5–15min) (Supplementary Fig. 6 and Supplementary
Movie 2).
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Reassuringly, after unblinding the variants, we found that 10 of
these positive variants are from the high in silico scoring candidates
and 4 variants are from the low in silico scoring candidates. Post-hoc
analysis (Supplementary Fig. 7) showed that the function scorewe had
assigned during the in silico screening indeed significantly dis-
tinguished between variants that showed oscillations in vitro vs. var-
iants that did not (Mann–Whitney–Wilcoxon test: p = 0.03,
AUC =0.68). We also found that the function score only minimally
correlates with sequence similarity/identity to natural MinEs (Supple-
mentary Fig. 8). Interestingly, post-hoc we furthermore found that two
of the four sub-function scores, solubility and dimerization, could not
significantly distinguish positive from negative variants (Mann-Whit-
ney-Wilcoxon test: psolubility = 0.79, pdimerization = 0.22). Inspired by this
we generated an improved function score by only combining the
scores for MinD interaction and N-terminal hydrophobicity. Aston-
ishingly, this improved score could not only almost perfectly distin-
guish between positive and negative variants (Supplementary Fig. 7,
Mann–Whitney–Wilcoxon test: p = 2e−7, AUC =0.92), but also out-
performs measures typically used for automated function annotation
such as sequence similarity to the closest homolog or HMM-profile-
based scoring (Supplementary Fig. 7), suggesting that “divide-and-
conquer” approaches might be promising for automated labeling of
sequencedatabases. Taken together, these results suggest that in silico
screening for higher-order functions is indeed possible by an indirect
scoring based on the sub-functions necessary for the emergent beha-
vior. This could be extended to other emergent functions that are
composed of measurable sub-functions of one or more proteins, and
should also be possible with entirely de novo designed proteins. In
addition, the combination of cell-free expression (here we took 1 h for
incubation) and quick encapsulation and visualization (15min/sample)
steps enabled us to screen all synMinE variants in 2 days (24 variants/
day), showing that such complex function can be efficiently screened
for in vitro, as compared to conventional purification procedures.

In vivo substitution finds a fully functional complement of the
wild-type gene
To further investigate whether these bottom-up constructed
in vitro systems can truly screen for physiological function in vivo,
we then assessed whether those 14 positive variants could also give
rise to Min oscillations in E. coli cells. The 14 positive synMinE var-
iants were introduced in an E. coli strain (HL1) lacking minDE genes
by transforming plasmids encoding the respective synMinE variant
and GFP-tagged MinD, as shown in previous studies23,43. With this
setup, there are three possible phenotypes44 (Fig. 3c and Supple-
mentary Fig. 9). First, the normal phenotype, where both MinD and
MinE are functional. Second, the minicell phenotype, observed
whenMin proteins are dysfunctional in division ring placement, i.e.,
where the division ring is not positioned at mid-cell but at a random
position. This results in a certain number of cells (29% of the
population in ΔminDE control vs 2.1% in the normal phenotype)
becoming non-chromosome miniature-sized spherical cells. Third,
the filamentous phenotype, observed when Min proteins are dys-
functional in division ring assembly, where MinD occupies the
entire inner membrane area and prevents the formation of a divi-
sion ring at all. Notably, since Min wave dynamics can be observed
with someMinEmutants regardless of cell morphology45,46, synMinE
variants may also be able to induce the wave dynamics even in
minicell or filamentous phenotype.

Strikingly, we found that 7 out of 10 high in silico scoring synMinE
variants evoked Min oscillations inside the cells, while only one of the
low-scoring variants showed oscillations (Fig. 3a, c, Supplementary
Fig. 9, and Supplementary Movie 3–6). This suggests that the essential
requirements for Min wave oscillation might be stricter in vivo than
in vitro, potentially because proteins are constricted in even smaller
microscopic spaces and other cellular molecules, such as proteins,

DNA, and RNA, could potentially induce non-specific interactions with
the Min proteins. In addition, we confirmed that none of the top-5 in
silico but in vitro negative variants induced oscillations in vivo (Sup-
plementary Fig. 10), showing that in vitro screening successfully fil-
tered out the non-functional variants. Furthermore, analysis of cell
morphology revealed that the majority of wave-inducing synMinE
variants, and especially all low-scoring variants, induce the minicell or
filamentous phenotype, as a result of dysfunction in division ring
assembly or placement (Fig. 3a, c, and Supplementary Fig. 9). This
suggests that further complex molecular dynamics of Min proteins, as
the interactionofMinDwith other proteins competingwithMinE, such
as the third Min protein, MinC44,47,48, are essential to position the
division machinery at the proper region. Finally, we found that one
variant, synMinEv25, fully restores the normal cell phenotype together
with Min oscillations (Fig. 3a, c, Fig. 4, Supplementary Movie 3, and 4),
representing, to our knowledge, the first functional substitution of a
natural gene by an artificial homolog generated by a generativemodel
in a living organism. Intriguingly, synMinEv25 had already out-
performed all the other variants in the in vitro wave occurrence scores
(Supplementary Fig. 6b), as well as ranked as best candidate in the
improved function score in silico (Supplementary Fig. 7), confirming
that in vitro scoring as well as in silico scoring could reasonably esti-
mate the emergent protein function, which will considerably enhance
the efficiency of experimental validation for emergent functions in
coming studies following a similar pipeline.

Functional analysis of synMinEv25 reveals its impeccable
capability
To further understand the function of synMinEv25, we conducted in
vivo and in vitro characterization of synMinE variants. First, we analyzed
cell growth with all high-scoring synMinE variants. In contrast to the
control (-MinE) condition, the introduction of synMinEv25 successfully
restored growth rates to the wild-type level (Fig. 4a, Supplementary
Fig. 11a, and b). Also, 6 of the 10 positive high-scoring variants restored
cell growth as well (Supplementary Fig. 11a), suggesting that even
without proper positioning of the division machinery inducing abnor-
mal phenotypes, synMinE variants can induce cell division and growth.
We then measured the cell size distribution of normal and minicell
phenotype mutants to assess the accuracy of cell division led by Min
oscillations.We found that synMinEv25has a similarminicell population
(2.1% (wt) vs 2.3% (v25)), median cell size (3.5 µm (wt) vs 3.4 µm (v25)),
and evennarrower size distribution thanwild type (2.4 µm(wt) vs 1.4 µm
(v25) in variance), suggesting synMinEv25 supports proper cell division
by placing the division ring in a correct location within comparable
temporal and geometrical scales, and especially reduces the population
of elongated cells, thus better-conferring functionality in cell division
(Fig. 4b). The other variants induced much higher minicell populations
(7.2–35%) and wider size distributions (Supplementary Fig. 11c), indi-
cating that they were inefficient in positioning the cell division
machinery. The Min oscillations induced by synMinEv25 showed a
similar tendency of periods against cell length as the wild type, with
slightly slower oscillations (Fig. 4c, Supplementary Fig. 11d, Supple-
mentaryMovie 3, and 7). Taken together, synMinEv25 can substitute the
wild type in all intrinsic functions of the Min system—cell growth,
morphology, and biological pattern formation.

Next, we set out to purify the promising synMinE variants and
were able to obtain 6 out of the 10 high-scoring variants, including
synMinEv25, in a standard affinity purification protocol (Supplemen-
tary Fig. 12a). This success rate of only 60% with already pre-filtered
candidates emphasizes the great benefit of cell-free expression for
functional screenings, wheremore than 80% of variants were obtained
(Supplementary Fig. 5). We characterized those purified proteins by
three functional assays in vitro with regard to the three sub-functions
that were tested during the in silico scoring, (i) membrane binding, (ii)
catalyzing MinD’s ATPase activity, and (iii) oligomerization. Strikingly,
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a bubble plot (Fig. 4d, Supplementary Fig. 12b, c, and Supplementary
Fig. 13) indicates that synMinEv25 has almost the same scores in all
three parameters compared to the wild type, showing that our
screening and in vivo characterization are plausible. Moreover, we
found an interesting relationship between scores and cell phenotype.
Variants with higher ATPase induction activity than the wild type but
relatively similar oligomerization scores seem to induce the fila-
mentous phenotype, while variants with ATPase induction comparable
to the wild type but bigger oligomer sizes seem to induce the minicell
phenotype. This suggests that a delicate balance of those two para-
meters is particularly important for proper cell division, while the
strength of membrane binding seems not to be a determining factor.
These facts can be considered as possible weighting factors as men-
tioned above for in silico scoring to further improve the function
estimation in future studies. It should bementioned, however, that the
individual in silico scores and the determined in vitro characteristics
showed only diminishing correlations (Supplementary Fig. 14), which
is unsurprising given that we only characterized a small number of
successful proteins that showed oscillations in vitro.

Finally, we analyzed similarities of our generated variants to nat-
ural MinE proteins on the sequence level (Supplementary Fig. 15).
Unsurprisingly, residues known to be crucial for MinD ATPase
stimulation46,49 as well as core residues for its conformational
changes46,50–52 are conserved in all functional variants. However, these
residues are also conserved in most variants that did not work, and
especially also in many of the variants that had low in silico scores.
Matching to the minimal correlation of the function score and

sequence identity/similarity to natural MinEs mentioned above (Sup-
plementary Fig. 8), we see this as another sign that our scoring did not
simply indirectly test for sequence similarity to wild type variants, but
truly for function based on their structures.

Furthermore, sequence comparison showed that the sequence
identity of wild type MinE and synMinEv25 is less than 50%, sequence
similarity is less than 70% (Fig. 4e), and sequence identity of synMi-
nEv25 and its closest natural homolog is 78.7% (SupplementaryData 1).
This validates synMinE clearly as a homolog of existing MinE proteins,
where existing similarity-based sequence annotation pipelines would
assume a similar function. Interestingly, ML models similar to ours,
generating variants of existing proteins, that were recently used to
generate versions of enzymes, showed a clear cutoff in experimental
validation when the generated sequences go below 80% identity to the
respective closest homolog8,27. That is, when sequences with lower
identity to their closest natural homolog were tested, they showed
diminishing catalytic activity. It is quite remarkable that synMinEv25
with 78.7% identity lies at the edge of this empirical cutoff, despite it
having not one, as in the case of enzymes, but three sub-functions that
are necessary to perform the desired emergent function.

Discussion
Computational protein design has made impressive advances in the
last two yearswith the introduction of Deep Learning based generative
models, and the rise of conditional models, e.g., taking into account
Gene Ontology terms13, and models including non-protein data, like
DNA or small molecules15, brings the computational design of proteins
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Fig. 4 | Characterization of synMinEv25 confirms the functional substitution of
the wild type. a Growth curves of E. coli cells show that the introduction of syn-
MinEv25 in ΔminDE cells together with MinD recovers cell growth at the same level
as wtMinE (n.s. indicates p >0.05 between wild type (wt) and synMinEv25 (v25) in
double-sided Welch’s t test at 300min). N = 10 biologically independent samples
are examined over 10 independent experiments. Error bars indicate average ±
standard deviation. b Violin plots of cell-size distributions of E. coli cells confirm
that both wtMinE and synMinEv25 confer proper size distribution while ΔminDE
(-MinDE) cells produce a high population of minicells (<1 µm in cell length). Box
plots inside the violin distribution indicatemaximumandminimum in 1.5xIQR, 25th
and 75th percentile, median (bar), and mean (cross symbol) values. N.s. indicates
p >0.05 in double-sided Mann–Whitney U test. N = 3 biologically independent

samples are examined over 3 independent experiments. c Scatter plots of Min
oscillations induced by wtMinE or synMinEv25 exhibit similar period and size
dependency, confirming that synMinEv25 can functionally substitute the wild type.
The dotted lines and shades indicate linear trends with 95% confidence intervals.
Distributions of plots are also shown as external density plots. N = 3 biologically
independent samples are examinedover 3 independent experiments.dBubbleplot
of in vitro characterization of synMinE variants. synMinEv25 has the closest scores
to the wild type among other variants, showing a fine match with the screening
results. e Comparison between wtMinE and synMinEv25 structures and sequences
confirms that synMinEv25 is a proper distant homolog while keeping similar
structures to the wild type.
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with emergent functions into reach, that is, emergent functions that
may only be observed indirectly when embedded in a specific biolo-
gical system. The computational design step, however, is only the first
in a typical protein design pipeline, which usually needs to be followed
by a sophisticated combination of computational and experimental
screening procedures. This remains an exceptionally difficult problem,
as computational prediction of biological function is still performing
poorly compared to the prediction ofmolecular function10,11, and high-
throughput experimental screening needs to provide the specific
environment necessary for the higher-order function. Here, we pro-
vide a proof of principle of how such integrated screening, both
computationally and experimentally, can be achieved. We generate
variants of the bacterial protein MinE, which is part of the pattern-
formation systemMinDE, often used as amodel system in the study of
emergent protein functions.

First, we use a divide-and-conquer approach for computational
screening, where we predict sub-functions known to be necessary for
the emergent function, and sum them up to estimate an overall func-
tion score. The pipeline we used here is adapted to predict MinE’s sub-
functions, namely,membrane binding,MinDE complex formation, and
dimerization, and hence not generalizable without modifications.
However, the adaptation of the concept to other proteins with emer-
gent function and entirely de novo designed proteins should be
straightforward if respective sub-functions can be defined. For exam-
ple, a similar divide-and-conquer approach has recently been sug-
gested for the de novo design of linear motor proteins, whose higher-
order function (linear walking) can be broken down into three sub-
functions: track binding, asymmetry, and allosteric control53. Similarly,
theoretical studies suggest that systems showing biological pattern
formation canbedissected to essentially two sub-functions, where one
sub-function is for one component of the system to be switchable
between two states, whilst the other sub-function is for the other
component of the system to facilitate the switching54. We argue that
protein design and screening informed by such theoretical and
experimental dissection of emergent functions into sub-functions will
serve as a protein design toolbox, given that accurate methods to
predict the necessary sub-functions either already exist or can be
developed. It is worth mentioning here, however, that ML-based pre-
dictors of protein function are to be treated with a grain of salt,
becausemany suchprojects still fail to account for the unique biases of
protein datasets, such as the fact that protein sequences with similar
functionmostly evolved from a common ancestor and hencemust not
be treated as independent samples, which leads to false-high perfor-
mance metrics if it is not controlled for55. We recommend to evaluate
function directly based on structural and surface features like we did,
as structure predictors are quite trustworthy. In fact, we showed that
this approachoutperforms sequence-similarity basedprediction in the
post-hoc analysis.

Second, for experimental screening, we utilize a minimal cell-
mimicking in vitro system, as established by bottom-up synthetic
biology, that allows a rapid and easy-to-follow pipeline to screen
designed proteins for intracellular functions. More specifically, we
introduce two core techniques of bottom-up synthetic biology,
namely, droplet-based synthetic cell models and cell-free protein
expression, to the field of protein design, providing the grounds to
efficiently screen for emergent functions of proteins and protein
assemblies. Here, we screened for pattern formation inside a mem-
brane compartment. As synthetic cell models are highly modular and
customizable, this could easily be adapted to other biological systems
that require specific environments for their functions. For example, it
would be easy to adapt the pipeline established here to a wide pH
range, a variety of salt/ion conditions, crowding environments, or
particular types of lipids. Similarly, any kind of interaction partner
could easily be included in the encapsulation, as shown here by sup-
plementing purifiedMinD in the in vitro screening, e.g., DNAor protein

filaments as tracks for novel motors as described above, or DNA con-
densates to mimic the nucleoid.

On the other hand, by using PURE cell-free protein expression, we
were able to speed up the experimental screening process enor-
mously, as there was no need for time-consuming protein purification.
We chose the PURE system among different types of cell-free expres-
sion because of its easy use and commercial availability, and impor-
tantly, an expectation of high expression yield of synMinE proteins,
given their small sizes (around 90–100 residues) and simple struc-
tures. Indeed, the success rate of PURE cell-free expression of synMinE
was more than 80% and was clearly better than 60% success in the
purification of those proteins. However, in the case of bigger and
difficult-to-fold proteins, it could be done by supplementation of
protein chaperones, protein disulfide isomerase, and additional ribo-
somal factors that are also commercially available, as well as lysate-
based cell-free expression systems that are known to provide a com-
prehensive environment for protein folding and expression efficiency.
As both, synthetic cell models and cell-free expression, provide mod-
ularity and support different use cases, the screening strategy can be
adapted to the specific needs of individual design projects.

Moreover, we showed that a combined in silico and in vitro
screening can successfully identify a candidate that not only func-
tions in vitro, but can fully replace the wild type gene in vivo, marking
an example of a Machine Learning (ML) generated protein substitu-
tion of a natural gene. Remarkably, the MinE homolog from Neisseria
gonorrhoeae, ngMinE, has a similar sequence identity/similarity to
wtMinE as synMinEv25 (ngMinE: 41.6%/71.9%, synMinEv25: 48.9%/
68.9%) and can also induce waves in vivo in E. coli56. However, a
significantly lower appearance of waves was reported with ngMinE
than we found with MinEv25 (MinEng: ~70% among observed cells,
synMinEv25: ~100%), and the oscillation period was about 4 times
slower (174 s) than with wtMinE, while synMinEv25 shows a differ-
ence of only less than 10% (39 s vs 42 s). Therefore, this natural
homolog could not fully functionally substitute the wtMinE in the
same way synMinEv25 can. It is easily imaginable how our combina-
tion of ML-aided design and in vitro screening could help to not only
produce known functions, but to show enhanced or entirely func-
tions in vivo. As a toy problem in the framework of theMinDE system,
for example, variants that lead to slower/faster oscillations or dif-
ferent cell length distribution could be screened for, while not
affecting the cell viability itself in both cases. Other exciting candi-
dates are cytoskeleton-like proteins that force cells into particular
shapes, or motor proteins that facilitate the directed movement of
cells are particularly fascinating. Taken together, the proof-of-
principle screening system presented here by a combined in silico,
in vitro, and in vivo pipeline marks a huge step forward towards
customizable biological systems and opens the door to the engi-
neering of whole living organisms from the bottom-up.

Methods
Dataset construction
All sequences containing the InterPro57 domain IPR005527 were
downloaded from InterPro on 30/05/2022. They were clustered by cd-
hit58 with 100% identity cutoff, meaning that no redundant sequences
were kept. As the dataset was small (8,496 non-identical sequences)
and VAEs intrinsically add noise, no further clustering by identity was
performed. All sequences shorter than 20 and longer than 200 amino
acids and all sequences containing non-standard amino acids were
omitted. A Multiple Sequence Alignment (MSA) was calculated using
Clustal Omega59, using the Hidden Markov Model Profile of the MinE
domain provided by Pfam60 (downloaded and extracted on 17/03/
2022). Tonarrow theMSA, columns that contained gaps in over 98%of
the sequences were cut out. The remaining dataset consisted of
5,958 sequences and the MSA was 186 columns wide. Finally, sequen-
ces were one-hot encoded as input for the VAE and split into a train
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(80%) and validation (20%) set. As the final evaluation of the model
would be done experimentally, a test split was omitted.

Variational Autoencoder (VAE)
The Variational Autoencoder followed largely the architecture intro-
duced by Hawinks-Hooker et al.25. (Fig. 2a), implemented in PyTorch61.
We optimized hyperparameters by evaluating the performance of the
VAE using the correlation of pairwise amino acid frequencies (see
below) of 4000 randomsamples generatedby theVAEwith the natural
5,958 sequences, ametric introduced by the originalMSA-VAE paper25.
A high correlation in thismetric indicates that evolutionary constraints
are considered when generating sequences25. In the final model, both
Encoder and Decoder consisted of a fully connected neural network
with two 128-dimensional hidden layers and ReLU activation function.
The latent space was 16 dimensional. After the second hidden layer in
the Decoder, a softmax function generates a probability score to
observe an amino acid or gap at each position in the MSA. For opti-
mization, the Adam optimizer was used with PyTorch defaults and
batch size 8 and learning rate 0.001, and the model was trained for 60
epochs. As loss function amodified version of the ELBO loss was used,
where the KL-divergence loss was multiplied with the factor 0.01.
Duringhyperparameter optimizationwehad found thatwithout such a
weighting, the VAE would always generate the same sequence, similar
to mode collapse in Generative Adversarial Networks62. The final loss
function used was

Loss =0:01LossKL + Lossreconstruction =0:01KL+BCE ð1Þ

=0:01
1
D

XD

i = 1
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2 � eσlog ,i
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� 1
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XL

i= 1

yi log ŷi
� �

+ 1� yi
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logð1� ŷiÞ
ð2Þ

where KL is the Kullback–Leibler divergence between the latent dis-
tribution and a normal distribution, BCE is binary cross entropy, D is
the number of dimensions of the latent space, L is the length of the
sequenceafter one hot encoding andflattening,σlog,i is the logarithmic
variance of the ith latent dimension, μi is the mean of the ith latent
dimension, yi is the true value of the ith one hot encoding and ŷi is the
predicted value of the ith one hot encoding. σlog,i and μi are the output
of the Encoder, ŷi is the output of the Decoder.

During the Review process, we realized that we had made some
unfortunate choices when formulating the loss function, which might
have been the cause of the mode collapse behavior because of which
we had to introduce the factor 0.01. First, we used a binary cross
entropy loss for the reconstruction loss, which treats every amino acid
at every position individually. Clearly, it would have been better to use
a categorial cross entropy per position, as only one amino acid (or gap)
per position shouldbe selected. Second, we normalized the KL-Loss by
D ( = 16), whilst we normalized the reconstruction loss by L = 3906).
Hence, without factor 0.01, we originally weighted the KL loss by a
factor of 3906/16 = 244 more than the reconstruction loss. In effect,
this means that the reconstruction loss played a diminishing role,
which is a very likely explanation of the observed mode collapse
behavior. This becomes obvious when the loss described above is
written in a more standard form

Loss =
1
D
KLðq z,j,xð ÞjjpðzÞÞ � 1

L
log p x,j,zð Þð Þ= ð3Þ

=
1
L

L
D
KLðq z,j,xð ÞjjpðzÞÞ � log p x,j,zð Þð Þ

� �
= ð4Þ

=
1
L

L
D

XD

i= 1

�0:5 1 + σlog ,i � μi
2 � eσlog ,i

� �
�
XL

i= 1

yi log ŷi
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Hence, the KL part is multiplied by L/D = 244 before the normal-
ization by L (that could then also be dropped). When introducing the
0.01 scaling factor, we implicitly set L/D close to 1 (0.01*3906/16 = 2.44,
instead of 244 as before):

Loss =
1
L

0:01L
D

KLðq z,j,xð Þjjp zð ÞÞ � log p x,j,zð Þð Þ
� �

ð6Þ

This most likely enabled to reconstruction loss to play a sig-
nificant role in the optimization process and solved themode collapse
problem. We thank the anonymous reviewer for catching our over-
complication and hope this explanation will help researchers using
similar models.

VAE evaluation
The sequence logo seen in Fig. 2b was generated using the Python
library logomaker63. Amino acid frequency and pairwise amino acid
frequency (Supplementary Fig. 2a) were calculated with a custom
python script, gaps were not taken into account. The projection on the
latent space (Supplementary Fig. 2b) was generated by encoding all
5,958 natural sequences in the latent space, calculating a Principal
Component Analysis of the resulting 16-dimensional vector repre-
sentations, and projecting on the first two principal Components. In
the scatterplot in Supplementary Fig. 2b only the four largest phylo-
genetic groups are displayed for clarity.

Sequence generation and selection
With the final VAE model, 4,000 sequences were generated by ran-
domly sampling from a 16-dimensional normal distribution and pas-
sing these draws through the Decoder. An amino acid sequence was
then generated by taking themaximum value of the 21 possible letters
(20 amino acids plus gap) at eachposition of theMSA. Aswewanted to
make homologs distant to MinE in E. coli (ecMinE), we excluded all
generated sequences that had >=60% identity with ecMinE (UniProt ID
P0A734). Then, to ensure heterogeneity among the sequences to test,
we clustered the remaining sequences by 60% identity using cd-hit58

and randomly selected one sequence per cluster for further analysis.
167 sequences remained. All pairwise sequence alignments (Fig. 4e,
Supplementary Data 1) were calculated using browser version of the
EMBOSS Needle pairwise sequence alignment tool64 with default
parameters.

in silico function estimation
The emergent function of MinE is known to be based on three
properties22–24: (i) membrane binding, which is mediated by a short
hydrophobic N-terminal alpha helix, (ii) stimulation of MinD’s ATPase
activity by formation of a MinD-MinE heterodimer, for which a con-
formational switch in MinE, changing a beta-sheet to an alpha-helix, is
needed, and (iii) the formation of homo-dimers. As we eventually
wanted to score the generated sequences for the emergent function,
we defined individual scores to estimate the capability to show each of
the three individual properties, and then summed them up to a final
Function Score. As preparation, we used AlphaFold Multimer30 to
predict the structures of the generated MinE homologs under two
conditions:first, in presenceof E. coli’sMinD (UniProt IDP0AEZ3), thus
testing for heterodimer capability, second, in presence of itself, thus
testing for homodimer capability. MSAs were generated for every
sequence by the AlphaFold pipeline, specifying --db-preset=full_dbs
and --max_template_date = ”2021-11-01”. Databases were downloaded
on April 19, 2022.
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Membrane binding estimation
To evaluate the membrane binding capability, we calculated hydro-
phobicity with ProteinSol Patches31, using the predicted heterodimer
structure as input, as MinE must be able to bind the membrane while
binding to MinD. We then calculated a single score by averaging the
hydrophobicity score over all amino acids of the N-terminal alpha
helix. If the N-terminal region was unstructured, we averaged over the
full N-terminal region, stopping at the MinD interaction helix. Sup-
plementary Fig. 3c shows a histogram of the resulting scores.

MinD interaction estimation
We evaluated the potential to interact with MinD based on the Pre-
dicted Align Error (PAE) matrix provided by AlphaFold Multimer. The
PAE is a measure of confidence of AlphaFold Multimer30, where small
values indicate high confidence. Thus, if AlphaFold Multimer is con-
fident about the interaction of two proteins, this value is low on
average4,30. The interaction ofMinE andMinD is known to be located at
a specific alpha-helix of MinE24, and only this part of MinE is in a stable
position relative to MinD, whilst the rest of MinE has some flexibility.
Thus, we evaluated the potential to interact with MinD by averaging
the PAE between theMinD-binding alpha helix of each generatedMinE
homolog and structured regions of MinD, while neglecting other parts
of the MinE structure. Supplementary Fig. 3c shows a histogram of the
resulting scores.

Dimerization estimation
We evaluated the potential to form homodimers similar to the MinD
interaction, based on the PAE. We calculated the average PAE between
structured regions of twoMinEs, that is, alpha-helices and beta-sheets.
As can be seen in Supplementary Fig. 3c, the PAE for dimerization was
on average lower than for MinD interaction, indicating that most
generated MinE homologs might dimerize, but not all of the might
interact with MinD, or might interact correctly.

Solubility prediction
Aswe eventually wanted to test the homologs in vivo in E. coli, we used
ProteinSol35 to predict the solubility in E. coli. Values above 0.7 indicate
a high probability of being soluble. As can be seen in Supplementary
Fig. 3c, most homologs were predicted to be soluble.

Final Scoring and selection for in vitro screening
To merge the four individual scores (membrane binding, MinD
interaction, Dimerization, Solubility) to one Function Score, we
normalized each score by setting the lowest value to 0 and the
highest value to 1 (for MinD interaction and Dimerization we then
calculated 1-score, because good values in their metrics are small),
and then summed them up, such that the final function score could
reach values between 0 and 4. We then selected the highest scoring
24 and the lowest scoring 24 sequences for in vitro analysis (Fig. 2a),
double-blinded them, and named them synMinEv1–48 (Supplemen-
tary Data 1, also find a table combining all computational results in
the Source Data.).

Preparation of synMinE gene library
The amino acid sequences of each synMinE variant were reverse-
translated into DNA sequences using the Codon optimization tool
from Integrated DNA Technologies (Coralville, IA USA) to optimize
codon usage by referencing Escherichia coliK12. Then, the sequenceof
the first 30 bp (10 amino acids)were further altered bymaximizing the
frequency of A andT bases while keeping the translated amino acids to
optimize the cell-free expression yield. Then, 5’ and 3’ additional
sequences (Supplementary Table 1) coding T7 promoter, Ribosome
binding site, T7 terminator etc. were further attached to the synMinE
sequences. The resultant 48 sequenceswere synthesized using eBlocks
Gene Fragments service (Integrated DNA Technologies).

Estimation of cell-free expression yield of synMinE variants
Cell-free expression of synMinE variants was carried out using PURE-
frex 2.0 (PF201-0.25-5-EX, GeneFrontier, Chiba, Japan) according to the
instruction from the supplier. Each synMinE gene was mixed in PURE
solution at 1 ng/µL, together with 4.4% of FluoroTect GreenLys in vitro
Translation Labeling System (L5001, Promega, Madison, WI, USA) and
then incubated for 4 h at 37 °C. Synthesized synMinE variants were
then separated by sodium dodecyl sulfate poly-acrylamide gel elec-
trophoresis (SDS-PAGE) and fluorescence was detected using Amer-
sham Imager 600 (GE HealthCare, Chicago, IL, USA). The relative
expression yield of each variant was analyzed using the Fiji software65.

In vitro screening assay for functional synMinE variants
synMinE variants were synthesized using PUREfrex 2.0 as described in
the previous section but incubating only 1 h at 37 ˚C without Fluor-
oTect GreenLys in vitro Translation Labeling System. Then, expressed
synMinE solutions were 5-folds diluted in the Reaction buffer (50mM
Tris-HCl, pH 7.5, 150mM GluK, 5mM GluMg) and further mixed with
1 µM EGFP-MinD, 2.5mM ATP, and 10 g/L BSA to obtain the inner
solution for the assay. The concentration of synMinE solutions was
further varied up to 1- to 20-folds after checking the dynamics ofMinD
inside the lipid droplets at 5-folds dilution to confirm the emergence of
Min waves at different concentration ranges of synMinE. As a positive
control, purified wtMinE (see Purification of synMinE variants)
(0.75 µM) was mixed with MinD, ATP, and BSA as mentioned above.

To prepare the lipid-oil mixture, 1-palmitoyl-2-oleoyl-glycero-3-
phosphocholine (POPC) (850457, Avanti Polar Lipids, Alabaster, AL,
USA) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol)
(POPG) (840457, Avanti Polar Lipids) were mixed at 70:30 (POPC:-
POPG) mol% in chloroform at 25 g/L. Then, 50μL of the POPC:POPG
mixture was dried under nitrogen gas stream, and subsequently, 10μL
of decane (D0011, TCI Deutschland GmbH, Eschborn, Germany) and
500μL of mineral oil (HP50.1, Carl Roth GmbH, Karlsruhe, Germany)
were added to the lipid film, and lipids were resuspended in oil by
vortexing for 1min at room temperature. Then, 1 uL of the inner
solution was added to 50 uL of the lipid-oil mixture and subsequently,
emulsified by tapping to obtain lipid droplets.

For the observation of Min protein dynamics, 1 uL of the droplet
solution was added in a well of a 384-well plate together with 50 uL of
the lipid-oil mixture. Imaging of samples was carried out by a Zeiss
LSM780 confocal laser scanningmicroscope using a Plan-Apochromat
20x/0.80 air objective (Carl Zeiss AG, Oberkochen, Germany), using a
488 nm Argon laser for excitation with 10 s intervals for 3–5min to
validate the self-organization dynamics of Min waves as previously
reported39. The visualization of images including kymographs was
carried out using Fiji software and ImageJ macro published in ref. 40.
The in vitro screening scores were manually calculated as the occur-
rence of Min waves (the number of droplets that exhibit Min oscilla-
tions vs. the number of all droplets within the field) with every 14
positive variants, one negative variant (v4), and wtMinE as a positive
control.

Construction of plasmids encoding synMinE variants for in vivo
observation and purification
All PCR fragments were amplified by using Phusion High-Fidelity DNA
Polymerase (F530L, Thermo Fisher Scientific, Waltham,MA, USA) with
a set of origo primers (Supplementary Table 1) and subsequently
treated with DpnI (FD1703, Thermo Fisher Scientific). All 14 positive
variants (v5, v10, v25, v26, v29, v31, v33, v35, v37, v40, v43, v44, v46,
v48) foundby the in vitro assay and 5 variantswhich scored the highest
in silico scores but were negative in in vitro assay (v2, v9, v19, v30, v45)
were cloned in a pMLB plasmid together withmGreenLantern-MinD as
previously reported23. Briefly, sfGFP was substituted by
mGreenLantern66 gene fragment (Integrated DNA Technologies) using
GeneArt Seamless Cloning and Assembly Enzyme Mix (A14606,
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Thermo Fisher Scientific) according to the supplier’s protocol with
PCR fragments (see Supplementary Table 1 for primers) from pMLB-
sfGFP-MinD.MinE23. Then, MinE (wild type) was substituted with each
synMinE variant using the Seamless Cloning method with PCR frag-
ments (see Supplementary Table 1 for primers). To construct pMLB-
mGreenLantern-MinD and pMLB-mGreenLantern, MinE and MinD
genes were omitted from pMLB-mGreenLantern-MinD.MinE plasmid
using blunt end cloning technique with a PCR fragment (see Supple-
mentary Table 1 for primers). All enzymes for cloning (DpnI (FD1703),
T4 Phosphokinase (EK0031), and T4 DNA Ligase (EL0011)) were pur-
chased from Thermo Fisher Scientific. Additionally, all 10 positive
variants with high scores of in silico screeningwere further cloned into
a pET28 plasmid with C-terminus His-tag for purification. MinE (wild
type) was substituted with each synMinE variant using Seamless
Cloning with PCR fragments (see Supplementary Table 1 for primers)
from pET28-MinE-His. All constructed plasmids were propagated in
OneShot TOP10 competent E. coli (C404003, ThermoFisher Scientific)
and extracted by using NucleoBond Xtra Midi kit (Macherey-Nagel
GmbH, Duren, Germany) from overnight LB culture. All gene sequen-
ces were confirmed using Sanger Sequencing Service (Microsynth AG,
Balgach, Switzerland).

In vivo phenotype characterization, analysis of cell size dis-
tribution and oscillation period
Substitution of wild type minE gene was carried out using E. coli
ΔminDE strain, HL1 (ΔminDE zcf117::Tn10 recA::cat)23,43. HL1 was
transformed with the plasmids pMLB-mGreenLantern (as -MinDE
condition), pMLB-mGreenLantern-MinD (as -MinE condition), pMLB-
mGreenLantern-MinD.MinE (as wt condition), or pMLB-
mGreenLantern-MinD.synMinEv5, as well as other synMinE variants
(as each variant condition). Transformed HL1 cells were inoculated
from glycerol stocks and incubated in LB (with 100 µg/mL ampicillin)
medium overnight at 37 °C. Cells were then diluted to 1:100 in 50mL
LB (ampicillin) medium and grown at 37 °C, 180 rpm for 90–180min.
After an optical density at 600 nm (OD600) of cell cultures reached
∼0.1, Isopropyl-β-D-thiogalactopyranoside (IPTG) was added to the
cultures at 50μM to induce expression of Min proteins. Cells were
further incubated at 37 °C, 180 rpm for 2–4h and then diluted in LB
(ampicillin) medium with 50μM IPTG to an OD600 of 0.1.

To prepare agarose pads, 1% (w/v) of UltraPure LowMelting Point
Agarose (16520050, Life Technologies, Carlsbad, CA, USA) was first
melted in LB (ampicillin) medium with 50μM IPTG at 60 ˚C using a
bench-top incubator. Then, 400 µL of agarose solution was pipetted
onto a coverslip, and another coverslip was immediately placed on top
of the agarose solution to obtain a planer surface of agarose pads. The
agarose solution was left at room temperature for 30min to obtain
solid pads. The coverslip was removed from the top of the pad, and
then cultured cells (1 µL)were spottedonto the agarosepad and left for
10min at room temperature. Then, the agarose pad was flipped onto
another coverslip and mounted to a Zeiss LSM780 confocal laser
scanningmicroscope. Imaging was carried out as described for in vitro
assay using C-Apochromat 40x/1.20 water-immersion objective (Carl
Zeiss AG). TheoscillationofMinproteins inside cellswas capturedwith
5 s intervals. The observation was performed within 2 h after sample
preparation at room temperature.

The phenotypes of each synMinE variant were determined as (1)
the filamentous: elongated (>25 µm in length) cells were observed, (2)
the minicell: miniature size (<1 µm in length) cells were observed
more than 6.3% of the population (which is three times higher than
wild type MinE (2.1%)), and (3) the normal. The phenotypes were
confirmed to show the same morphology by at least three biological
replicates. The cell size distribution and periods of Min oscillations
were further analyzed by using Fiji software and custom ImageJ
macro. Briefly, time-averaged fluorescence of mGreenLantern-MinD
was used to determine cell position and length. Then, fluorescence

was normalized along with a long axis of the cell to obtain
1-dimensional images and then vertically stacked at each time point,
resulting in a kymograph. Then the period of Min oscillation was
obtained by fitting the fluorescent signals (along with the vertical
(time) axis) with a sine function.

Cell growth measurement
The E. coli HL1 cells transformed with pMLB plasmids were inoculated
from glycerol stocks and incubated in LB (with 100 µg/mL ampicillin)
medium for overnight at 37 °C. Cells were then diluted to 1:100 in
50mL LB (ampicillin) medium and incubated at 37 °C, 180 rpm for
90min (180min in case -MinE and v31 conditions due to the slow cell
growth) and theOD600wasmeasured as t =0. Subsequently, 50μMof
IPTG was added to the cultures and cells were further incubated at
37 °C, 180 rpm for 5 h. The OD600 of cell cultures were continuously
monitored at each 30min after addition of IPTG, and total 11 time-
points were measured per sample.

Purification of synMinE variants
Purification of EGFP-MinD, MinD, MinE, and all synMinE variants was
performed according to the previous reports67,68. In Brief, BL21(DE3)
pLysS cells were transformed by pET28-EGFP-MinD20,23, pET28-MinD21,
pET28-MinE21, synMinEv5 or the other synMinE variants, and then
incubated in LB medium (with 50μg/mL Kanamycin) for overnight at
37 °C. The overnight cultures were then diluted to 1:100 in 500mL LB
(Kanamycin) and incubated while shaking at 37 °C, 180 rpm. Then,
IPTGwas added at 1mM to induce overexpression of proteins onceOD
600nm reached 0.2-0.3. Cells were further cultured for 3–4 h and
harvested.

The cell pellets were resuspended in Lysis buffer (50mMTris-HCl,
pH 7.5, 300mMNaCl, 10mM Imidazole) and subsequently lysed using
a tip sonicator (Branson ultrasonics S-250D, Thermo Fisher Scientific).
The cell lysates were centrifuged for 30min at 20,000 x g, 4 °C and
then the supernatants were mixed with Ni-NTA agarose (30210, QIA-
GEN,Hilden, Germany). The sampleswere then incubated for 10min at
4 °C and loaded into a gravity column. Subsequently, Ni-NTA agarose
was rinsed with Wash buffer (50mM Tris-HCl, pH 7.5, 300mM NaCl,
20mM Imidazole, 10 % Glycerol), and then the proteins were eluted
with Elution buffer (50mM Tris-HCl, pH 7.5, 300mM NaCl, 250mM
Imidazole, 10 % Glycerol). The buffer of the protein solution was dia-
lyzedwith Storage buffer (50mMTris-HCl, pH 7.5, 150mMGluK, 5mM
GluMg, 10 % Glycerol) using Amicon Ultra-0.5 centrifugal filter unit
3 kDa (Merck KGaA, Darmstadt, Germany) and stored at −80 °C until
further use. The concentration of the proteins was measured by
Bradford Assay (5000006, Bio-Rad, Hercules, CA, USA), and separated
by SDS-PAGE to check the purity.

Size exclusion chromatography
The oligomerization of synMinE variants was estimated using ÄKTA
pure with Superdex 75 Increase 10/300 GL column (Cytiva, Marlbor-
ough, MA, USA). The column was equilibrated with Reaction buffer
prior to themeasurements. The standard proteins (Blue Dextran2000:
2000 kDa, Aldolase: 158 kDa, Conalbumin: 75 kDa, Ovalbumin: 44 kDa,
Carbonic Anhydrase: 29 kDa, RNaseA: 13.7 kDa, Aprotinin: 6.5 kDa)
were separately loaded into the column and then eluted fractions were
monitored to determine the peak fraction. The peak fraction of each
standard protein was then fitted to obtain a standard curve by calcu-
lating

Kav =Ve � Vo=Vc � Vo ð7Þ

where Vo is the column void volume (the elution volume of Blue
Dextran2000), Ve is the elution volume of each sample, and Vc is the
geometric column volume (23.5mL in case of Superdex 75 Increase 10/
300 GL column).
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The eluted fractions of each synMinE variant weremonitored and
then the elution volume was determined as the peak fraction. The
oligomer size of synMinE variants was then calculated from the
standard curve.

ATPase assay
ATPase assay was performed following the previous report using
NADH-coupled assay19. To prepare small unilamellar vesicles (SUVs),
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (850375, Avanti
Polar Lipids) and 1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol)
(DOPG) (840475, Avanti Polar Lipids) were mixed at 70:30mol% in
chloroform at 25mg/mL. Lipids were then dried under nitrogen gas
stream and then hydrated in Min buffer (25mM Tris-HCl, pH 7.5,
150mMKCl, 5mMMgCl2) at 4mg/mL. Subsequently, the solution was
vortexed to obtain multilamellar vesicles and the solution was further
extruded through a membrane with 50 nm pore size to break down to
the small unilamellar vesicles.

For the measurement of MinD’s ATPase activity, 0.2mg/mL of
SUVs solution, 1mMATP, 2mMphosphoenolpyruvate, 0.5mMNADH,
the mixture of pyruvate kinase (600–1000U/mL) and lactate dehy-
drogenase (900–1400U/mL) (P0294, Sigma-Aldrich, St. Louis, MO,
USA), 2 µM MinD, and 2 µM of MinE or each synMinE variant were
mixed in the Min buffer. Then, the decrease in absorption at 340 nm
wasmeasured in a 96-well plate using the Sparkmultimodemicroplate
reader (TECAN, Männedorf, Switzerland). To calculate the ATPase
activity, the linear parts of the measured values of the NADH absorp-
tion were fitted to gain a linear regression curve.

Quartz crystal microbalance with dissipation monitoring
(QCMD) measurements
QCMDmeasurementswere carriedout following theprevious report23.
Prior to each measurement, silicon dioxide (SiO2)-coated quartz
crystal sensors (Biolin Scientific, Gothenburg, Sweden) were treated
with a 3:1 mixture of sulfuric acid and hydrogen peroxide (piranha-
solution). Subsequently, sensors were rinsed with ultrapure water,
dried under a stream of nitrogen, andmounted in the flowmodules of
the Qsense Analyzer (Biolin Scientific). After baseline stabilization,
supported lipid bilayers (SLBs) formation was induced through con-
stant injection (flow rate: 0.15mL/min) of a 1mg/mL mixture of SUVs
solution (prepared as described in the method section for ATPase
assay), in the TK buffer (20mM Tris-HCl pH 7.5, 150mM KCl), spiked
with 5mM CaCl2. The formed SLBs were washed with TK buffer until
no frequency change was observed. Then, 150 µl of the 5 µM of each
synMinE variant in TK buffer was flown over the sensor at 0.15ml/min
and the change in frequency was monitored at overtone F9. The
measured frequency was normalized by averaging the value of 5 con-
sequent measurements at each time point, and then the change in
frequency was determined by subtracting the maximum value (as
baseline) from the minimum value (as dropped frequency).

Post-Hoc analysis of in silico scoring
The improved combined function score was calculated as combi-
ned_score_improved = (normalised_MinD_score + normal-
ized_nterminal_hydrophobicity_score). To generate the ELBO-based
score, we passed every synMinE sequence 200 times through the VAE,
calculated the ELBO loss (see above) and averaged. To generate the
HMM score, we run hmmsearch (HMMER 3.1b2 (February 2015) using
the same Hidden Markov Model Profile of the MinE domain as men-
tioned above (used command: hmmsearch --tblout ./hmmsearch_scor-
es.out ./minE.hmm ./synMinEs.fasta).

Data analysis and statistics
All statistical tests were carried out using the R software, with the
exception of the one sided Mann–Whitney–Wilcoxon test in the post
hoc analysis, which was performed using SciPy. Welch’s t test (double-

sided) was used for cell growth analysis as a standard unpaired t test to
avoidmultiplicity issues. TheMann–WhitneyU test (double-sided)was
used for cell size distribution analysis since distributions were not
normally distributed, and therefore a t test would not have been sui-
table. The sample size (shown as n) and biological replicates (shown as
N) are indicated in the corresponding figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data areavailable in the text,figures, or supplementary information.
All source data for graphs andgel images areprovided as a SourceData
file. Due to their large file size (>10 GB), the original image data files for
in vitro screening and in vivo screening are available from the corre-
sponding author upon request. Source data are provided with
this paper.

Code availability
All code is available at https://github.com/BelaFrohn/synMinE.
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